1
|
Johny A, Ilardi P, Olsen RE, Egelandsdal B, Slinde E. A Proof-of-Concept Study to Develop a Peptide-Based Vaccine against Salmon Lice Infestation in Atlantic Salmon ( Salmo salar L.). Vaccines (Basel) 2024; 12:456. [PMID: 38793707 PMCID: PMC11125789 DOI: 10.3390/vaccines12050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins present in blood samples from Atlantic salmon (Salmo salar) infected with salmon lice (Lepeophtheirus salmonis) were analyzed using liquid chromatography-high-resolution mass spectrometry. Bioinformatic analyses revealed 1820 proteins, of which 58 were assigned to lice. Among these, peroxiredoxin-2, an antioxidant protein, was found relevant with respect to blood feeding of the parasite. The three-dimensional structure analysis of the protein revealed a surface amino acid sequence of interest. A 13-amino-acid peptide was selected as a potential antigen due to its predicted solubility, antigenicity, probable non-allergenic, and non-toxic nature. This peroxiredoxin-2-derived peptide was synthesized, combined with a commercially available adjuvant, and used for vaccination. The test vaccine demonstrated a 60-70% protection rate against early-stage Lepeophtheirus salmonis infection in a challenge trial in Norway. Additionally, the vaccine was tested against salmon lice (Caligus rogercresseyi) in Chile, where a remarkable 92% reduction in the number of adult lice was observed. Thus, in combination with the selected adjuvant, the peptide showed antigenic potential, making it a suitable candidate for future vaccine development. The approach described holds promise for the development of peptide vaccines against various ectoparasites feeding on blood or skin secretions of their hosts.
Collapse
Affiliation(s)
- Amritha Johny
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway; (B.E.); (E.S.)
| | - Pedro Ilardi
- Farmacologia en Aquacultura Veterinaria FAV S.A., 295, Pedro de Valdivia Avenue, Santiago 7500524, Chile
| | - Rolf Erik Olsen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology Sealab, 7010 Trondheim, Norway;
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway; (B.E.); (E.S.)
| | - Erik Slinde
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway; (B.E.); (E.S.)
| |
Collapse
|
2
|
Bhattacharya P, Gannavaram S, Ismail N, Saxena A, Dagur PK, Akue A, KuKuruga M, Nakhasi HL. Toll-like Receptor-9 (TLR-9) Signaling Is Crucial for Inducing Protective Immunity following Immunization with Genetically Modified Live Attenuated Leishmania Parasites. Pathogens 2023; 12:pathogens12040534. [PMID: 37111420 PMCID: PMC10143410 DOI: 10.3390/pathogens12040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
No human vaccine is available for visceral leishmaniasis (VL). Live attenuated centrin gene-deleted L. donovani (LdCen−/−) parasite vaccine has been shown to induce robust innate immunity and provide protection in animal models. Toll-like receptors (TLRs) are expressed in innate immune cells and are essential for the early stages of Leishmania infection. Among TLRs, TLR-9 signaling has been reported to induce host protection during Leishmania infection. Importantly, TLR-9 ligands have been used as immune enhancers for non-live vaccination strategies against leishmaniasis. However, the function of TLR-9 in the generation of a protective immune response in live attenuated Leishmania vaccines remains unknown. In this study, we investigated the function of TLR-9 during LdCen−/− infection and found that it increased the expression of TLR-9 on DCs and macrophages from ear-draining lymph nodes and spleen. The increase in TLR-9 expression resulted in changes in downstream signaling in DCs mediated through signaling protein myeloid differentiation primary response 88 (MyD88), resulting in activation and nuclear translocation of nuclear factor-κB (NF-κB). This process resulted in an increase in the DC’s proinflammatory response, activation, and DC-mediated CD4+T cell proliferation. Further, LdCen−/− immunization in TLR-9−/− mice resulted in a significant loss of protective immunity. Thus, LdCen−/− vaccine naturally activates the TLR-9 signaling pathway to elicit protective immunity against virulent L. donovani challenge.
Collapse
Affiliation(s)
- Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
- Correspondence: (P.B.); (H.L.N.); Tel.: +1-240-402-8209 (H.L.N.)
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Ankit Saxena
- Immune Monitoring Shared Resource, Rutgers, Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adovi Akue
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mark KuKuruga
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
- Correspondence: (P.B.); (H.L.N.); Tel.: +1-240-402-8209 (H.L.N.)
| |
Collapse
|
3
|
Rawal K, Sinha R, Abbasi BA, Chaudhary A, Nath SK, Kumari P, Preeti P, Saraf D, Singh S, Mishra K, Gupta P, Mishra A, Sharma T, Gupta S, Singh P, Sood S, Subramani P, Dubey AK, Strych U, Hotez PJ, Bottazzi ME. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Sci Rep 2021; 11:17626. [PMID: 34475453 PMCID: PMC8413327 DOI: 10.1038/s41598-021-96863-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.
Collapse
Affiliation(s)
- Kamal Rawal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India.
| | - Robin Sinha
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Bilal Ahmed Abbasi
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Amit Chaudhary
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Swarsat Kaushik Nath
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Priya Kumari
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - P Preeti
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Devansh Saraf
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Shachee Singh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kartik Mishra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Pranjay Gupta
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Astha Mishra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Trapti Sharma
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Srijanee Gupta
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Prashant Singh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Shriya Sood
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Preeti Subramani
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aman Kumar Dubey
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
4
|
Askarizadeh A, Badiee A, Khamesipour A. Development of nano-carriers for Leishmania vaccine delivery. Expert Opin Drug Deliv 2020; 17:167-187. [PMID: 31914821 DOI: 10.1080/17425247.2020.1713746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Leishmaniasis is a neglected tropical infection caused by several species of intracellular protozoan parasites of the genus Leishmania. It is strongly believed that the development of vaccines is the most appropriate approach to control leishmaniasis. However, there is no vaccine available yet and the lack of an appropriate adjuvant delivery system is the main reason.Areas covered: Adjuvants are the utmost important part of a vaccine, to induce the immune response in the right direction. Limitations and drawbacks of conventional adjuvants have been necessitated the development of novel particulate delivery systems as adjuvants to obtain desirable protection against infectious diseases such as leishmaniasis. This review focused on particulate adjuvants especially nanoparticles that are in use to develop vaccines against leishmaniasis. The list of adjuvants includes generally lipids-, polymers-, or mineral-based delivery systems that target antigens specifically to the site of action within the host's body and enhance immune responses.Expert opinion: Over the past few years, there has been an increasing interest in developing particulate adjuvants as alternatives to immunostimulatory types. The composition of nano-carriers and particularly the physicochemical properties of nanoparticles have great potential to overcome challenges posed to leishmaniasis vaccine developments.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ribeiro PA, Dias DS, Novais MV, Lage DP, Tavares GS, Mendonça DV, Oliveira JS, Chávez-Fumagalli MA, Roatt BM, Duarte MC, Menezes-Souza D, Ludolf F, Tavares CA, Oliveira MC, Coelho EA. A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis. Cytokine 2018; 111:131-139. [DOI: 10.1016/j.cyto.2018.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
|
6
|
Kusakisako K, Fujisaki K, Tanaka T. The multiple roles of peroxiredoxins in tick blood feeding. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:269-280. [PMID: 30030662 DOI: 10.1007/s10493-018-0273-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen peroxide (H2O2) and hydroxyl radicals (HO·) are generated through partial reduction of oxygen. The HO· are the most reactive and have a shorter half-life than H2O2, they are produced from comparatively stable H2O2 through Fenton reaction. Although controlling HO· is important and biologically advantageous for organisms, it may be difficult. Ticks are obligate hematophagous arthropods that need blood feeding for development. Ticks feed on vertebrate blood containing high levels of iron. Ticks also concentrate iron-containing host blood, leading to high levels of iron in ticks. Host-derived iron may react with oxygen in the tick body, resulting in high concentrations of H2O2. On the other hand, ticks have antioxidant enzymes, such as peroxiredoxins (Prxs), to scavenge H2O2. Gene silencing of Prxs in ticks affects their blood feeding, oviposition, and H2O2 concentration. Therefore, Prxs could play important roles in ticks' blood feeding and oviposition through the regulation of the H2O2 concentration. This review discusses the current knowledge of Prxs in hard ticks. Tick Prxs are also multifunctional molecules related to antioxidants and immunity like other organisms. In addition, tick Prxs play a role in regulating the host immune response for ticks' survival in the host body. Tick Prx also can induce Th2 immune response in the host. Thus, this review would contribute to the further understanding of the tick's antioxidant responses during blood feeding and the search for a candidate target for tick control.
Collapse
Affiliation(s)
- Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
7
|
Singh T, Fakiola M, Oommen J, Singh AP, Singh AK, Smith N, Chakravarty J, Sundar S, Blackwell JM. Epitope-Binding Characteristics for Risk versus Protective DRB1 Alleles for Visceral Leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2018; 200:2727-2737. [PMID: 29507109 DOI: 10.4049/jimmunol.1701764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022]
Abstract
HLA-DRB1 is the major genetic risk factor for visceral leishmaniasis (VL). We used SNP2HLA to impute HLA-DRB1 alleles and SNPTEST to carry out association analyses in 889 human cases and 977 controls from India. NetMHCIIpan 2.1 was used to map epitopes and binding affinities across 49 Leishmania vaccine candidates, as well as across peptide epitopes captured from dendritic cells treated with crude Leishmania Ag and identified using mass spectrometry and alignment to amino acid sequences of a reference Leishmania genome. Cytokines were measured in peptide-stimulated whole blood from 26 cured VL cases and eight endemic healthy controls. HLA-DRB1*1501 and DRB1*1404/DRB1*1301 were the most significant protective and risk alleles, respectively, with specific residues at aa positions 11 and 13 unique to protective alleles. We observed greater peptide promiscuity in sequence motifs for 9-mer core epitopes predicted to bind to risk (*1404/*1301) compared with protective (*1501) DRB1 alleles. There was a higher frequency of basic amino acids in DRB1*1404/*1301-specific epitopes compared with hydrophobic and polar amino acids in DRB1*1501-specific epitopes at anchor residues pocket 4 and pocket 6, which interact with residues at DRB1 positions 11 and 13. Cured VL patients made variable, but robust, IFN-γ, TNF, and IL-10 responses to 20-mer peptides based on captured epitopes, with peptides based on DRB1*1501-captured epitopes resulting in a higher proportion (odds ratio 2.23, 95% confidence interval 1.17-4.25, p = 0.017) of patients with IFN-γ/IL-10 ratios > 2-fold compared with peptides based on DRB1*1301-captured epitopes. Our data provide insight into the molecular mechanisms underpinning the association of HLA-DRB1 alleles with risk versus protection in VL in humans.
Collapse
Affiliation(s)
- Toolika Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Michaela Fakiola
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Joyce Oommen
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia 6008, Australia; and
| | - Akhil Pratap Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Abhishek K Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Noel Smith
- Lonza Biologics PLC, Great Abington, Cambridge CB21 6GS, United Kingdom
| | - Jaya Chakravarty
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi OS 221 005, India
| | - Jenefer M Blackwell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; .,Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia 6008, Australia; and
| |
Collapse
|
8
|
Kusakisako K, Miyata T, Tsujio M, Galay RL, Talactac MR, Hernandez EP, Fujisaki K, Tanaka T. Evaluation of vaccine potential of 2-Cys peroxiredoxin from the hard tick Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 74:73-84. [PMID: 29374845 DOI: 10.1007/s10493-018-0209-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
Ticks require blood feeding on vertebrate animals throughout their life cycle, and also concentrate the iron-containing blood, resulting in a high concentration of hydrogen peroxide (H2O2). High concentrations of H2O2 are harmful to organisms, due to their serious damage of macromolecules. Ticks have antioxidant enzymes, such as peroxiredoxins (Prxs), that scavenge H2O2. Prxs may have important roles in regulating the H2O2 concentration in ticks during blood feeding and oviposition. Moreover, Prxs are considered potential vaccine candidates in other parasites, such as Leishmania and Fasciola. In the present study, the efficacy of a tick Prx (HlPrx2) as a vaccine candidate antigen was evaluated. First, recombinant HlPrx2 (rHlPrx2) was expressed in Escherichia coli, and then, its purity and endotoxin levels were confirmed prior to administration. The rHlPrx2 proteins were of high purity with acceptably low endotoxin levels. Second, the ability of rHlPrx2 administration to stimulate mouse immunity was evaluated. The rHlPrx2 protein, with or without an adjuvant, could stimulate immunity in mice, especially the IgG1 of Th2 immune response. Using Western blot analysis, we also observed whether rHlPrx2-immunized mice sera could recognize native HlPrx2 protein in crude tick midgut proteins. Western blot analysis demonstrated that rHlPrx2-administrated mouse sera could detect the native HlPrx2. Finally, the effects of rHlPrx2 immunization in mice were studied using nymphal ticks. Although the challenged ticks were not affected by rHlPrx2 immunization, rHlPrx2 still might be considered as a vaccine candidate against ticks because of its high immunogenicity.
Collapse
Affiliation(s)
- Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan
| | - Masashi Tsujio
- Laboratory of Anatomy, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, 4031, Laguna, Philippines
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang, 4122, Cavite, Philippines
| | - Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
9
|
Immune Response and Protective Efficacy of a Heterologous DNA-Protein Immunization with Leishmania Superoxide Dismutase B1. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2145386. [PMID: 29359145 PMCID: PMC5735611 DOI: 10.1155/2017/2145386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022]
Abstract
Growing evidence shows that antioxidant proteins of Leishmania could be used as vaccine candidates. In this study, we report the efficacy of Leishmania donovani iron superoxide dismutase B1 (LdFeSODB1) as a vaccine antigen in BALB/c mice in a DNA-protein prime-boost immunization regimen in the presence or absence of murine granulocyte macrophage colony stimulating factor (mGMCSF) DNA adjuvant. The expression study confirmed that LdFeSODB1 is expressed in mammalian cells and mGMCSF fusion mediates the secretion of the recombinant protein. Heterologous immunization with LdFeSODB1 induced a strong antibody- and cell-mediated immune response in mice. Immunization triggered a mixed Th1/Th2 response as evidenced by the ratio of IgG2a to IgG1. Antigen-stimulated spleen cells from the immunized mice produced high level IFN-γ. Multiparametric flow cytometry data showed that immunization with LdFeSODB1 induced significantly higher expression of TNF-α or IL-2 by antigen-stimulated T cells. Eight weeks after L. major infection, immunization with the antigen shifted the immune response to a more Th1 type than the controls as demonstrated by IgG2a/IgG1 ratio. Moreover, IFN-γ production by antigen-stimulated spleen cells from immunized mice remained high. The footpad swelling experiment showed that immunization with LdFeSODB1 resulted in partial protection of mice from a high dose L. major infection.
Collapse
|
10
|
Rostamian M, Niknam HM. Evaluation of the adjuvant effect of agonists of toll-like receptor 4 and 7/8 in a vaccine against leishmaniasis in BALB/c mice. Mol Immunol 2017; 91:202-208. [PMID: 28963929 DOI: 10.1016/j.molimm.2017.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
There is no effective vaccine against human leishmaniasis. Achieving successful vaccines seems to need powerful adjuvants. Separate or combined use of toll like receptor (TLR) agonists as adjuvant is a promising approach in Leishmania vaccine research. In present study, we evaluated adjuvant effect of separate or combined use of a TLR7/8 agonist, R848 and a TLR4 agonist, monophosphoryl lipid A (MPL) beside soluble Leishmania antigen (SLA) in BALB/c mice. Mice were vaccinated three times by SLA with separate or combined TLR7/8 and TLR4 agonists and were then challenged by Leishmania major. Delay type hypersensitivity, lesion development, parasite load, and cytokines (interferon gamma, and interleukin-10) response were assessed. Results showed: 1) MPL can slightly assist SLA in parasite load reduction, but it is not able to increase SLA ability in evoking DTH and cytokine responses or decreasing lesion diameter. 2) R848 does not affect the DTH response and parasite load of mice vaccinated with SLA, but it decreases/inhibits cytokine responses induced by SLA, leading to increase lesion diameter. 3) MPL neutralized inhibitory effect of R848. In overall, these data emphasize that MPL slightly assists SLA to make a more potent vaccine, but R848 is not a good adjuvant to induce T cell-dependent immune response in BALB/c mice, and therefore combination of these TLR agonists in the current formulation, is not recommended for making a more powerful adjuvant.
Collapse
Affiliation(s)
- Mosayeb Rostamian
- Immunology Department, Pasteur Institute of Iran, Tehran, 13164, Iran
| | - Hamid M Niknam
- Immunology Department, Pasteur Institute of Iran, Tehran, 13164, Iran.
| |
Collapse
|
11
|
Mahato JP, Rana S, Kumar M, Sarsaiya S. Homology Modeling of Leishmania donovani Enolase and its Molecular Interaction with Novel Inhibitors. J Pharm Bioallied Sci 2017; 9:99-105. [PMID: 28717332 PMCID: PMC5508423 DOI: 10.4103/jpbs.jpbs_241_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: The treatment of Indian tropical disease such as kala-azar is likely to be troublesome to the clinicians as AmpB- and miltefosine-resistant Leishmania donovani has been reported. The rationale behind designed a novel inhibitors of model of L. donovani enolase and performing a binding study with its inhibitors to gain details of the interaction between protein residues and ligand molecules. Methods and Materials: The L. donovani enolase model consists of two typical domains. The N-terminal one contains three-stranded antiparallel β-sheets, followed by six α-helices. The C-terminal domain composes of eleven-stranded mixed α/β-barrel with connectivity. The first α-helix within the C-terminal domain, H7, and the second β-strand, S7, of the barrel domain was arranged in an antiparallel fashion compared to all other α-helices and β-strands. The root-mean-square deviation between predicted model and template is 0.4 Å. The overall conformation of L. donovani enolase model is similar to those of Trypanosoma cruzi enolase and Streptococcus pneumoniae enolase crystal structures. Result: The key amino acid residues within the docking complex model involved in the interaction between model enolase structure and ligand molecule are Lys70, Asn165, Ala168, Asp17, and Asn213. Conclusion: Our theoretical prediction may lead to the establishment of prophylactic and therapeutic approaches for the treatment of kala-azar. This biomedical informatics analysis will help us to combat future kala-azar.
Collapse
Affiliation(s)
- Jay Prakash Mahato
- Department of Biotechnology, Sri Satya Sai University of Technology and Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sindhuprava Rana
- Department of Biotechnology, Sri Satya Sai University of Technology and Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Maneesh Kumar
- Department of Biotechnology, College of Commerce, Arts and Science (Magadh University, Bodh Gaya), Patna, Bihar, India
| | - Surendra Sarsaiya
- Department of Biotechnology, College of Commerce, Arts and Science (Magadh University, Bodh Gaya), Patna, Bihar, India
| |
Collapse
|
12
|
Galdino H, Saar Gomes R, Dos Santos JC, Pessoni LL, Maldaner AE, Marques SM, Gomes CM, Dorta ML, de Oliveira MAP, Joosten LAB, Ribeiro-Dias F. Leishmania (Viannia) braziliensis amastigotes induces the expression of TNFα and IL-10 by human peripheral blood mononuclear cells in vitro in a TLR4-dependent manner. Cytokine 2016; 88:184-192. [PMID: 27649507 DOI: 10.1016/j.cyto.2016.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022]
Abstract
While the role of Toll-like receptors (TLRs) has been investigated in murine models of tegumentary leishmaniasis caused by Leishmania (Viannia) braziliensis, the interaction between TLRs and Leishmania sp. has not been investigated in human cells. The aim of this study was to evaluate the involvement of TLR4 in cytokine production of human peripheral blood mononuclear cells (PBMCs) induced by L. braziliensis, and whether the parasite alters the expression of TLR4 on monocytes/macrophages. Amastigote forms were obtained from mice lesions and PBMCs were isolated from healthy donors. PBMCs were cultured in absence or presence of IFNγ, TLR4 neutralizing antibodies, natural antagonist of TLR4 (Bartonella LPS), TLR4 agonist (E. coli LPS), and amastigote forms. The concentrations of tumor necrosis factor (TNFα) and interleukin 10 (IL-10) were assayed by ELISA and TLR4 expression by flow cytometry. Amastigotes forms of L. braziliensis induced TNFα and IL-10 production only in IFNγ-primed PBMCs. The TNFα and IL-10 production was inhibited by TLR4 neutralization, both with anti-TLR4 antibodies and Bartonella LPS. Interestingly, addition of E. coli LPS further increased TNFα but not IL-10 production induced by L. braziliensis amastigotes. Amastigotes of L. braziliensis strongly reduced membrane TLR4 expression on monocytes/macrophages, apparently by internalization after the infection. The present study reveals that TLR4 drives the production of TNFα and IL-10 induced by L. braziliensis amastigotes and that the parasites decrease TLR4 expression on monocyte surface.
Collapse
Affiliation(s)
- Hélio Galdino
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Jessica Cristina Dos Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Department of Internal Medicine, Radboud University Medical Center and Radboud Center of Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Lívia Lara Pessoni
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Anetícia Eduarda Maldaner
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Stéfanne Madalena Marques
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayson Moura Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Leo A B Joosten
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Department of Internal Medicine, Radboud University Medical Center and Radboud Center of Infectious Diseases (RCI), Nijmegen, The Netherlands.
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
13
|
Knudsen NPH, Olsen A, Buonsanti C, Follmann F, Zhang Y, Coler RN, Fox CB, Meinke A, D'Oro U, Casini D, Bonci A, Billeskov R, De Gregorio E, Rappuoli R, Harandi AM, Andersen P, Agger EM. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep 2016; 6:19570. [PMID: 26791076 PMCID: PMC4726129 DOI: 10.1038/srep19570] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023] Open
Abstract
The majority of vaccine candidates in clinical development are highly purified proteins and peptides relying on adjuvants to enhance and/or direct immune responses. Despite the acknowledged need for novel adjuvants, there are still very few adjuvants in licensed human vaccines. A vast number of adjuvants have been tested pre-clinically using different experimental conditions, rendering it impossible to directly compare their activity. We performed a head-to-head comparison of five different adjuvants Alum, MF59®, GLA-SE, IC31® and CAF01 in mice and combined these with antigens from M. tuberculosis, influenza, and chlamydia to test immune-profiles and efficacy in infection models using standardized protocols. Regardless of antigen, each adjuvant had a unique immunological signature suggesting that the adjuvants have potential for different disease targets. Alum increased antibody titers; MF59® induced strong antibody and IL-5 responses; GLA-SE induced antibodies and Th1; CAF01 showed a mixed Th1/Th17 profile and IC31® induced strong Th1 responses. MF59® and GLA-SE were strong inducers of influenza HI titers while CAF01, GLA-SE and IC31® enhanced protection to TB and chlamydia. Importantly, this is the first extensive attempt to categorize clinical-grade adjuvants based on their immune profiles and protective efficacy to inform a rational development of next generation vaccines for human use.
Collapse
Affiliation(s)
- Niels Peter H Knudsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Cecilia Buonsanti
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Yuan Zhang
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | | | - Ugo D'Oro
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Daniele Casini
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Alessandra Bonci
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ennio De Gregorio
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
14
|
Sun W, Fang M, Chen Y, Yang Z, Xiao Y, Wan M, Wang H, Yu Y, Wang L. Delivery System of CpG Oligodeoxynucleotides through Eliciting an Effective T cell Immune Response against Melanoma in Mice. J Cancer 2016; 7:241-50. [PMID: 26918036 PMCID: PMC4747877 DOI: 10.7150/jca.12899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 11/13/2015] [Indexed: 01/22/2023] Open
Abstract
Purpose: In order to improve the immunogenicity of whole tumor cell lysate for tumor vaccine, we have designed a series of CpG ODNs to study their transport and to evaluate their anti-tumor activity in B16 melanoma mouse models. Methods: In this study, we investigated whether C-class CpG ODN (CpG ODN-685) could facilitate tumor cell lysate to induce vigorous anti-tumor activity against tumors in mice both prophylactically and therapeutically. Results: It was found that the combination of tumor cell lysate and CpG ODN-685 could inhibit the growth of B16 melanoma and prolong the survival of tumor-bearing mice. Moreover CpG ODN-685 with the addition of tumor cell lysate can also cause the generation of tumor specific immune memory by inducing specific cytotoxic T lymphocytes and helper T lymphocytes in mice. Conclusion: The results suggest that CpG ODN-685 could be developed as an efficient adjuvant for tumor vaccines against melanoma.
Collapse
Affiliation(s)
- Wei Sun
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Mingli Fang
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yajing Chen
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhaogang Yang
- 3. NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA
| | - Yue Xiao
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Min Wan
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hua Wang
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yongli Yu
- 2. Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Liying Wang
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
15
|
Campos BLS, Silva TN, Ribeiro SP, Carvalho KIL, Kallás EG, Laurenti MD, Passero LFD. Analysis of iron superoxide dismutase-encoding DNA vaccine on the evolution of the Leishmania amazonensis experimental infection. Parasite Immunol 2015; 37:407-16. [PMID: 26040192 DOI: 10.1111/pim.12206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/27/2015] [Indexed: 12/16/2022]
Abstract
The present work aimed to evaluate the immunogenicity of Leishmania amazonensis iron superoxide dismutase (SOD)-encoding DNA experimental vaccine and the protective properties of this DNA vaccine during infection. The SOD gene was subcloned into the pVAX1 plasmid, and it was used to immunize BALB/c mice. Twenty-one days after the last immunization, mice were sacrificed (immunogenicity studies) or subcutaneously challenged with L. amazonensis (studies of protection), and alterations in cellular and humoral immune responses were evaluated, as well as the course of infection. Mice only immunized with pVAX1-SOD presented increased frequencies of CD4(+) IFN-γ(+), CD8(+)IFN-γ(+) and CD8(+)IL-4(+) lymphocytes; moreover, high levels of IgG2a were detected. After challenge, mice that were immunized with pVAX1-SOD had increased frequencies of the CD4(+)IL-4(+), CD8(+)IFN-γ(+) and CD8(+)IL-4(+) T lymphocytes. In addition, the lymph node cells produced high amounts of IFN-γ and IL-4 cytokines. Increased IgG2a was also detected. The pattern of immunity induced by pVAX1-SOD partially protected the BALB/c mice from a challenge with L. amazonensis, as the animals presented reduced parasitism and lesion size when compared to controls. Taken together, these results indicate that leishmanial SOD modulates the lymphocyte response, and that the elevation in IFN-γ possibly accounted for the decreased skin parasitism observed in immunized animals.
Collapse
Affiliation(s)
- B L S Campos
- Laboratory of Pathology of Infectious Diseases (LIM50), University of Sao Paulo School of Medicine, São Paulo, Brazil
| | - T N Silva
- Laboratory of Pathology of Infectious Diseases (LIM50), University of Sao Paulo School of Medicine, São Paulo, Brazil
| | - S P Ribeiro
- Laboratory of Clinical Immunology and Allergy (LIM60), University of Sao Paulo School of Medicine, São Paulo, Brazil.,Institute of Investigation in Immunology - iii-INCT, São Paulo, Brazil
| | - K I L Carvalho
- Laboratory of Clinical Immunology and Allergy (LIM60), University of Sao Paulo School of Medicine, São Paulo, Brazil
| | - E G Kallás
- Laboratory of Clinical Immunology and Allergy (LIM60), University of Sao Paulo School of Medicine, São Paulo, Brazil.,Institute of Investigation in Immunology - iii-INCT, São Paulo, Brazil
| | - M D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), University of Sao Paulo School of Medicine, São Paulo, Brazil
| | - L F D Passero
- Laboratory of Pathology of Infectious Diseases (LIM50), University of Sao Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
16
|
Differential Immune Response against Recombinant Leishmania donovani Peroxidoxin 1 and Peroxidoxin 2 Proteins in BALB/c Mice. J Immunol Res 2015; 2015:348401. [PMID: 26380320 PMCID: PMC4562178 DOI: 10.1155/2015/348401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/25/2015] [Indexed: 11/25/2022] Open
Abstract
We assessed the immune response against recombinant proteins of two related, albeit functionally different, peroxidoxins from Leishmania donovani: peroxidoxin 1 (LdPxn1) and peroxidoxin 2 (LdPxn2) in BALB/c mice. We also evaluated the effect of coadministration of TLR agonists (CpG ODN and GLA-SE) on the antigen-specific immune response. Immunization with recombinant LdPxn1 alone induced a predominantly Th2 type immune response that is associated with the production of high level of IgG1 and no IgG2a isotype while rLdPxn2 resulted in a mixed Th1/Th2 response characterized by the production of antigen-specific IgG2a in addition to IgG1 isotype. Antigen-stimulated spleen cells from mice that were immunized with rLdPxn1 produced low level of IL-10 and IL-4 and no IFN-γ, whereas cells from mice immunized with rLdPxn2 secreted high level of IFN-γ, low IL-4, and no IL-10. Coadministration of CpG ODN or GLA-SE with rLdPxn1 skewed the immune response towards a Th 1 type as indicated by robust production of IgG2a isotype. Furthermore, the presence of TLR agonists together with rLdPxn1 antigen enhanced the production of IFN-γ and to a lesser extent of IL-10. TLR agonists also enhanced a more polarized Th 1 type immune response against rLdPxn2.
Collapse
|
17
|
Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+ T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant. PLoS Negl Trop Dis 2014; 8:e3391. [PMID: 25500571 PMCID: PMC4263403 DOI: 10.1371/journal.pntd.0003391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To date, no universally effective and safe vaccine has been developed for general human use. Leishmania donovani Peroxidoxin-1 (LdPxn-1) is a member of the antioxidant family of proteins and is predominantly expressed in the amastigote stage of the parasite. The aim of this study was to evaluate the immunogenicity and protective efficacy of LdPxn-1 in BALB/c mice in heterologous DNA-Protein immunization regimen in the presence of fusion murine granulocyte-macrophage colony-stimulating factor (mGMCSF) DNA adjuvant. METHODOLOGY AND PRINCIPAL FINDINGS A fusion DNA of LdPxn1 and mGMCSF was cloned into a modified pcDNA vector. To confirm the expression in mammalian system, Chinese hamster ovary cells were transfected with the plasmid vector containing LdPxn1 gene. BALB/c mice were immunized twice with pcDNA-mGMCSF-LdPxn-1 or pcDNA-LdPxn1 DNA and boosted once with recombinant LdPxn-1 protein. Three weeks after the last immunization, mice were infected with Leishmania major promastigotes. The result showed that immunization with pcDNA-mGMCSF-LdPxn1 elicited a mixed Th-1/Th-2 immune response with significantly higher production of IFN-γ than controls. Intracellular cytokine staining of antigen-stimulated spleen cells showed that immunization with this antigen elicited significantly higher proportion of CD4+ T cells that express IFN-γ, TNF-α, or IL-2. The antigen also induced significantly higher proportion of multipotent CD4+ cells that simultaneously express the three Th-1 cytokines. Moreover, a significant reduction in the footpad swelling was seen in mice immunized with pcDNA-mGMCSF-LdPxn1 antigen. Expression study in CHO cells demonstrated that pcDNA-mGMCSF-LdPxn-1 was expressed in mammalian system. CONCLUSION The result demonstrates that immunization of BALB/c mice with a plasmid expressing LdPxn1 in the presence of mGMCSF adjuvant elicits a strong specific immune response with high level induction of multipotent CD4+ cells that mediate protection of the mice from Leishmania major infection. To our knowledge, this is the first study showing the vaccine potential of Leishmania peroxidoxin -1.
Collapse
Affiliation(s)
- Abebe Genetu Bayih
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Nada S. Daifalla
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Magalhães RDM, Duarte MC, Mattos EC, Martins VT, Lage PS, Chávez-Fumagalli MA, Lage DP, Menezes-Souza D, Régis WCB, Manso Alves MJ, Soto M, Tavares CAP, Nagen RAP, Coelho EAF. Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis 2014; 8:e2764. [PMID: 24699271 PMCID: PMC3974679 DOI: 10.1371/journal.pntd.0002764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background The present study analyzed whether or not the in vitro cultivation for long periods of time of pre-isolated Leishmania amazonensis from lesions of chronically infected BALB/c mice was able to interfere in the parasites' infectivity using in vivo and in vitro experiments. In addition, the proteins that presented a significant decrease or increase in their protein expression content were identified applying a proteomic approach. Methodology/Principal Findings Parasites were cultured in vitro for 150 days. Aliquots were collected on the day 0 of culture (R0), as well as after ten (R10; 50 days of culture), twenty (R20; 100 days of culture), and thirty (R30; 150 days of culture) passages, and were used to analyze the parasites' in vitro and in vivo infectivity, as well as to perform the proteomic approach. Approximately 837, 967, 935, and 872 spots were found in 2-DE gels prepared from R0, R10, R20, and R30 samples, respectively. A total of 37 spots presented a significant decrease in their intensity of expression, whereas a significant increase in protein content during cultivation could be observed for 19 proteins (both cases >2.0 folds). Some of these identified proteins can be described, such as diagnosis and/or vaccine candidates, while others are involved in the infectivity of Leishmania. It is interesting to note that six proteins, considered hypothetical in Leishmania, showed a significant decrease in their expression and were also identified. Conclusions/Significance The present study contributes to the understanding that the cultivation of parasites over long periods of time may well be related to the possible loss of infectivity of L. amazonensis. The identified proteins that presented a significant decrease in their expression during cultivation, including the hypothetical, may also be related to this loss of parasites' infectivity, and applied in future studies, including vaccine candidates and/or immunotherapeutic targets against leishmaniasis. Leishmania amazonensis can induce a diversity of clinical manifestations in mammal hosts, including tegumentary and visceral leishmaniasis. The present study evaluated the variation of infectivity of L. amazonensis, which was pre-isolated from lesions of chronically infected mice and in vitro cultured for 150 days, in turn connecting these results with the profile of parasite protein expression using a proteomic approach. Parasites were recovered after the first passage, as well as after 50, 100, and 150 days of axenic cultures, and were subsequently evaluated. A total of 37 proteins presented a significant decrease, whereas 19 proteins presented a significant increase in their protein expression content in the assays (both cases >2.0 fold). Some of the identified proteins have been reported in prior literature, including diagnosis and/or vaccine candidates for leishmaniasis, while others proved to be involved in the infectivity of Leishmania. It is interesting to note that proteins related to the parasites' metabolism were also the majority of the proteins identified in the old cultures of L. amazonensis, suggesting a possible relation between the metabolic state of parasites and their possible loss of infectivity. In conclusion, the proteins identified in this study represent a contribution to the discovery of new vaccine candidates and/or immunotherapeutic targets against leishmaniasis.
Collapse
Affiliation(s)
- Rubens D. M. Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vivian T. Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P. Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wiliam C. B. Régis
- Departamento de Bioquímica, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Maria J. Manso Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo A. P. Nagen
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
19
|
Gerbaba TK, Gedamu L. Cathepsin B gene disruption induced Leishmania donovani proteome remodeling implies cathepsin B role in secretome regulation. PLoS One 2013; 8:e79951. [PMID: 24244582 PMCID: PMC3828211 DOI: 10.1371/journal.pone.0079951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/29/2013] [Indexed: 11/29/2022] Open
Abstract
Leishmania cysteine proteases are potential vaccine candidates and drug targets. To study the role of cathepsin B cysteine protease, we have generated and characterized cathepsin B null mutant L. donovani parasites. L. donovani cathepsin B null mutants grow normally in culture, but they show significantly attenuated virulence inside macrophages. Quantitative proteome profiling of wild type and null mutant parasites indicates cathepsin B disruption induced remodeling of L. donovani proteome. We identified 83 modulated proteins, of which 65 are decreased and 18 are increased in the null mutant parasites, and 66% (55/83) of the modulated proteins are L. donovani secreted proteins. Proteins involved in oxidation-reduction (trypanothione reductase, peroxidoxins, tryparedoxin, cytochromes) and translation (ribosomal proteins) are among those decreased in the null mutant parasites, and most of these proteins belong to the same complex network of proteins. Our results imply virulence role of cathepsin B via regulation of Leishmania secreted proteins.
Collapse
Affiliation(s)
- Teklu Kuru Gerbaba
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
20
|
Daifalla NS, Bayih AG, Gedamu L. Leishmania donovani recombinant iron superoxide dismutase B1 protein in the presence of TLR-based adjuvants induces partial protection of BALB/c mice against Leishmania major infection. Exp Parasitol 2012; 131:317-24. [PMID: 22580023 DOI: 10.1016/j.exppara.2012.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/22/2012] [Accepted: 05/01/2012] [Indexed: 01/03/2023]
Abstract
In this study, we tested the protective efficacy of recombinant Leishmania donovani iron superoxide dismutase B1 (SODB1) against Leishmania major infection in BALB/c mice. Mice were challenged with L. major 3weeks after the second boost immunization with rSODB1 alone or in the presence of adjuvants. Injection of BALB/c mice with rSODB1 alone elicited both humoral and cellular immune responses. Administration of rSODB1 with CpG ODN or GLA-SE (a synthetic toll-like receptor 4 agonist) adjuvant resulted in the induction of anti-SODB1 IgG1, and more importantly of significantly high levels of IgG2a isotype. Immunization of mice with rSODB1 alone or with adjuvant induced the production of IFN-γ by splenocytes in response to stimulation with L. major soluble leishmanial antigens (SLA). Moreover, immunization protocols involving rSODB1 resulted in a significant decrease in IL-10 as compared to controls. The presence of CpG ODN or GLA-SE adjuvant in the immunization protocols resulted in a relative increase in IFN-γ in response to stimulation with rSODB1 in comparison to immunization with rSODB1 alone. Mice immunized with rSODB1 plus CpG ODN or GLA-SE, were able to partially control their Leishmania infections, as indicated by the reduction in footpad swelling and parasite numbers, compared to controls. These results suggest that immunization with recombinant SODB1 protein together with CpG ODN or GLA-SE can be potential vaccine candidate against leishmaniasis.
Collapse
Affiliation(s)
- Nada S Daifalla
- University of Calgary, Department of Biological Sciences, Room 374, 2500 University Drive NW, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
21
|
Toll-like receptors in leishmania infections: guardians or promoters? J Parasitol Res 2012; 2012:930257. [PMID: 22523644 PMCID: PMC3317170 DOI: 10.1155/2012/930257] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/01/2011] [Accepted: 12/06/2011] [Indexed: 12/19/2022] Open
Abstract
Protozoa of the genus Leishmania cause a wide variety of pathologies ranging from self-healing skin lesions to visceral damage, depending on the parasite species. The outcome of infection depends on the quality of the adaptive immune response, which is determined by parasite factors and the host genetic background. Innate responses, resulting in the generation of mediators with anti-leishmanial activity, contribute to parasite control and help the development of efficient adaptive responses. Among those, the potential contribution of members of the Toll-like receptors (TLRs) family in the control of Leishmania infections started to be investigated about a decade ago. Although most studies appoint a protective role for TLRs, there is growing evidence that in some cases, TLRs facilitate infection. This review highlights recent advances in TLR function during Leishmania infections and discusses their potential role in restraining parasite growth versus yielding disease.
Collapse
|