1
|
Zhong P, Zhang C, Li Y, Su C, Zhang C, Cui DM. Divergent Synthesis of α-(1,3,5-Triazinylthio)-ketones and Thiazolo[3,2- a][1,3,5]triazines from 1,3-Dicarbonyl compounds or Chalcones with 1,3,5-Triazine-2-thiols. J Org Chem 2023; 88:14210-14215. [PMID: 37703517 DOI: 10.1021/acs.joc.3c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
An efficient synthesis of α-(1,3,5-triazinylthio)-ketones from 1,3-dicarbonyl compounds with 1,3,5-triazine-2-thiols has been developed. The reaction proceeds through the C-C bond cleavage and C-S bond reconstruction of 1,3-dicarbonyl compounds, and β-keto esters, β-keto amides, and 1,3-diones were tolerated. In addition, the annulation of 1,3,5-triazine-2-thiols with chalcones has been achieved for the synthesis of thiazolo[3,2-a][1,3,5]triazines. The method occurred in moderate to good yields and tolerated chalcone with a broad functional group.
Collapse
Affiliation(s)
- Pengzhen Zhong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengwu Su
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Mei Cui
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Lakhdari W, Benyahia I, Bouhenna MM, Bendif H, Khelafi H, Bachir H, Ladjal A, Hammi H, Mouhoubi D, Khelil H, Alomar TS, AlMasoud N, Boufafa N, Boufahja F, Dehliz A. Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment. Molecules 2023; 28:5025. [PMID: 37446686 DOI: 10.3390/molecules28135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated in vitro the potential of Trichoderma harzianum to produce bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with different polarities. The extracts were examined using phytochemical analysis to determine the content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS analysis identified 33 potential compounds with numerous benefits that could be used in agriculture and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the IC50 of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by 56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate and n-butanol.
Collapse
Affiliation(s)
- Wassima Lakhdari
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Ibtissem Benyahia
- Laboratory of Biogeochemistry and Desert Environments, Department of Chemistry, Faculty of Mathematics and Material Sciences, University of Kasdi Merbah, Ouargla 30000, Algeria
| | - Mustapha Mounir Bouhenna
- Scientific and Technical Center of Research in Physical and Chemical Analysis (CRAPC), Bou-Ismail 42004, Algeria
| | - Hamdi Bendif
- Department of Natural and Life Sciences, Faculty of Science, University of M'sila, M'sila 28000, Algeria
| | - Hafida Khelafi
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Hakim Bachir
- Division of Hydraulic and Bioclimatology, National Institute of Agronomic Research (INRA), Algers 16000, Algeria
| | - Amel Ladjal
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Hamida Hammi
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
| | | | | | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | | | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abderrahmene Dehliz
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
| |
Collapse
|
3
|
Saha A, Choudhury AAK, Adhikari N, Ghosh SK, Shakya A, Patgiri SJ, Pratap Singh U, Bhat HR. Molecular docking and antimalarial evaluation of hybrid para-aminobenzoic acid 1,3,5 triazine derivatives via inhibition of Pf-DHFR. J Biomol Struct Dyn 2023; 41:15520-15534. [PMID: 37154740 DOI: 10.1080/07391102.2023.2208207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/03/2023] [Indexed: 05/10/2023]
Abstract
In this study, a structurally guided pharmacophore hybridization strategy is used to combine the two key structural scaffolds, para-aminobenzoic acid (PABA), and 1,3,5 triazine in search of new series of antimalarial agents. A combinatorial library of 100 compounds was prepared in five different series as [4A (1-22), 4B (1-21), 4 C (1-20), 4D (1-19) and 4E (1-18)] using different primary and secondary amines, from where 10 compounds were finally screened out through molecular property filter analysis and molecular docking study as promising PABA substituted 1,3,5-triazine scaffold as an antimalarial agent. The docking results showed that compounds 4A12 and 4A20 exhibited good binding interaction with Phe58, IIe164, Ser111, Arg122, Asp54 (-424.19 to -360.34 kcal/mol) and Arg122, Phe116, Ser111, Phe58 (-506.29 to -431.75 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR. These compounds were synthesized by conventional as well as microwave-assisted synthesis and characterized by different spectroscopic methods. In-vitro antimalarial activity results indicated that two compounds 4A12 and 4A20 showed promising antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum with IC50 (1.24-4.77 μg mL-1) and (2.11-3.60 μg mL-1). These hybrid PABA substituted 1,3,5-triazine derivatives might be used in the lead discovery towards a new class of Pf-DHFR inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | | | - Nayana Adhikari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Saurav Jyoti Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
4
|
Dhiman S, Ramirez D, Li Y, Kumar A, Arthur G, Schweizer F. Chimeric Tobramycin-Based Adjuvant TOB-TOB-CIP Potentiates Fluoroquinolone and β-Lactam Antibiotics against Multidrug-Resistant Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:864-885. [PMID: 36917096 DOI: 10.1021/acsinfecdis.2c00549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
According to the World Health Organization, antibiotic resistance is a global health threat. Of particular importance are infections caused by multidrug-resistant Gram-negative bacteria including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa for which limited treatment options exist. Multiple and simultaneously occurring resistance mechanisms including outer membrane impermeability, overexpression of efflux pumps, antibiotic-modifying enzymes, and modification of genes and antibiotic targets have made antibiotic drug development more difficult against these pathogens. One strategy to cope with these challenges is the use of outer membrane permeabilizers that increase the intracellular concentration of antibiotics when used in combination. In some circumstances, this approach can rescue antibiotics from resistance or repurpose currently marketed antibiotics. Tobramycin-based hybrid antibiotic adjuvants that combine two outer membrane-active components have been previously shown to potentiate antibiotics by facilitating transit through the outer membrane, resulting in increased antibiotic accumulation within the cell. Herein, we extended the concept of tobramycin-based hybrid antibiotic adjuvants to tobramycin-based chimeras by engineering up to three different membrane-active antibiotic warheads such as tobramycin, 1-(1-naphthylmethyl)-piperazine, ciprofloxacin, and cyclam into a central 1,3,5-triazine scaffold. Chimera 4 (TOB-TOB-CIP) consistently synergized with ciprofloxacin, levofloxacin, and moxifloxacin against wild-type and fluoroquinolone-resistant P. aeruginosa. Moreover, the susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached using the triple combination of chimera 4 with ceftazidime/avibactam, aztreonam/avibactam, and imipenem/relebactam, respectively, against β-lactamase-harboring P. aeruginosa. Our findings demonstrate that tobramycin-based chimeras form a novel class of antibiotic potentiators capable of restoring the activity of antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg R3E 0J9, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| |
Collapse
|
5
|
Adhikari N, Choudhury AAK, Shakya A, Ghosh SK, Patgiri SJ, Singh UP, Bhat HR. Design and development of novel
N
‐(4‐aminobenzoyl)‐
l
‐glutamic acid conjugated 1,3,5‐triazine derivatives as
Pf
‐DHFR inhibitor: An
in‐silico
and
in‐vitro
study. J Biochem Mol Toxicol 2022; 37:e23290. [PMID: 36541419 DOI: 10.1002/jbt.23290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
In the present work, a library of 120 compounds was prepared using various aliphatic and aromatic amines. Finally, 10 compounds were selected through in silico screening carrying 4-aminobenzoyl-l-glutamic acid and 1,3,5-triazine moiety. The docking results of compounds 4d16 and 4d38 revealed higher binding interaction with amino acids Asp54 (-537.96 kcal/mol) and Asp54, Phe116 (-618.22 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR inhibitors and were comparable to standard WR99210. These compounds were developed by facile and microwave-assisted synthesis via nucleophilic substitution reaction and characterized by different spectroscopic methods. In vitro antimalarial assay results also suggested that these two compounds were having higher antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strain out of the ten synthesized compounds with IC50 13.25 μM and 14.72 μM, respectively. These hybrid scaffolds might be useful in the lead discovery of a new class of Pf-DHFR inhibitors.
Collapse
Affiliation(s)
- Nayana Adhikari
- Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh Assam India
| | | | - Anshul Shakya
- Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh Assam India
| | - Surajit K. Ghosh
- Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh Assam India
| | - Saurav J. Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR) Dibrugarh Assam India
| | - Udaya P. Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences Sam Higginbottom University of Agriculture, Technology & Sciences Prayagraj Uttar Pradesh India
| | - Hans R. Bhat
- Department of Pharmaceutical Sciences Dibrugarh University Dibrugarh Assam India
| |
Collapse
|
6
|
Adhikari N, Choudhury AAK, Shakya A, Ghosh SK, Patgiri SJ, Singh UP, Bhat HR. Molecular docking and antimalarial evaluation of novel N-(4-aminobenzoyl)-l-glutamic acid conjugated 1,3,5-triazine derivatives as Pf-DHFR inhibitors. 3 Biotech 2022; 12:347. [PMID: 36386564 PMCID: PMC9649585 DOI: 10.1007/s13205-022-03400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
Malaria has been a source of concern for humans for millennia; therefore in the present study we have utilized in-silico approach to generate diverse anti-malarial hit. Towards this, Molinspiration cheminformatics and Biovia Discovery Studio (DS) 2020 were used to conduct molecular modelling studies on 120 designed compounds. Furthermore, the TOPKAT module was used to evaluate the toxicity of the screened compounds. The CDOCKER docking technology was used to investigate protein-ligand docking against the Pf-DHFR-TS protein (PDB ID: 1J3I and 1J3K). These compounds were synthesized using a conventional and microwave-assisted nucleophilic substitution reaction, and they were characterized using a variety of physicochemical and spectroscopic methods. Among the ten compounds tested, Df3 had the highest antimalarial activity against the chloroquine-resistant (Dd2) strain, with an IC50 value of 9.54 μg mL-1 and further demonstrate, molecular dynamics (MD) simulation studies and estimation of MM-PBSA-based free binding energies of docked complexes with 1J3I and 1J3K were carried out. The discovery of a novel class of Pf-DHFR inhibitors can be accomplished using this hybrid scaffold. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03400-2.
Collapse
Affiliation(s)
- Nayana Adhikari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | | | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Saurav Jyoti Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam 786001 India
| | - Udaya Pratap Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007 India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
7
|
Saini M, Das R, Mehta DK, Chauhan S. Styrylquinolines Derivatives: SAR study and Synthetic Approaches. Med Chem 2022; 18:859-870. [DOI: 10.2174/1573406418666220214085856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
In the present-day scenario, heterocyclic derivatives have revealed the primary function of various medicinal agents precious for humanity. Out of a diverse range of heterocycles, Styrylquinolines scaffolds have been proved to play an essential role in a broad range of biological activities, includinganti-HIV-1, antimicrobial, anti-inflammatory, anti-Alzheimer activity with antiproliferative effects on tumor cell lines.
Due to the immense pharmacological importance, distinct synthetic methods have been executed to attain new drug entities from Styrylquinolines. Various schemes for synthesizing Styrylquinolines derivatives like one-pot, ultrasound-promoted heterogeneous acid-catalysed, microwave-assisted, solvent-free, and green synthesis were discussed in the present review. Some products of Styrylquinolines are in clinical trials, and patents are also granted for the novel synthesis of Styrylquinolines. According to the structure-activity relationship, replacement at the R-7 and R-8 positions is required for various activities.
In this review, recent synthetic approaches in the medicinal chemistry of Styrylquinolines and potent Styrylquinolines derivatives based on structural activity relationships (SAR) are outlined. Moreover, their primary methods and modifications are also discussed.
Collapse
Affiliation(s)
- Monika Saini
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Rina Das
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Dinesh Kumar Mehta
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Samrat Chauhan
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| |
Collapse
|
8
|
Patel JA, Patel NB, Maisuriya PK, Tiwari MR, Purohit AC. Structure-Activity Design, Synthesis and Biological Activity of Newer Imidazole-
Triazine Clubbed Derivatives as Antimicrobial and Antitubercular
Agents. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210521150011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Imidazole and triazine derivatives act as antimicrobial and antitubercular
agents. 2D-QSAR determination estimates the pharmacological activity based on the
thermodynamic properties of the structure.
Objective:
The structural arrangements and thermodynamic properties of the imidazole derivatives
are necessary for the enhancement of pharmacological activity. So,imidazole-triazine
clubbed derivatives were designed based on molecular modeling 2D-QSAR study on antitubercular
activity.
Methods:
PLSR method is applied for 2D-QSAR determination of the (Z)-5-ethylidene-3-(4-
methoxy-6-methyl-1,3,5-triazin-2-yl)-2-phenyl-3,5-dihydro-4H-imidazol-4-one (B1-B10). The
designed compounds were synthesized and spectrally evicted by IR, 1H NMR, 13C NMR, and
mass spectra data as well as biologically screened against the different antitubercular and antimicrobial
species.
Result:
Compounds B4, B6, and B7 were found potent against the different antimicrobial species.
Compound B3 was more effective against the M. tuberculosis H37Rv. Statistically significant
QSAR model generated by PLSR methods showed external r2=0.9775 and internal
q2=0.2798 predictive abilities. Furthermore, the model also incorporated three parameters, Polar
Surface Area Excluding Pand S, Mom Inertia Y, and SsCH3 count, with their corresponding
values for each molecule.
Conclusion:
The 2D-QSAR study revealed that antitubercular activity was directly proportional
to the total surface area of the polar atoms having molecules and the moment of inertia
on the Y-axis. At the same time, antitubercular activity was inversely proportional to the methyl
group joined with a single bond. The present study afforded favorable results, which were
further used to generate lead target molecules.
Collapse
Affiliation(s)
- Jaydeep A. Patel
- Department of Chemistry, Vidhyadeep Institute of Science, At. & Po. Anita, Kim-Olpad Road, Surat-394 110, Gujarat,
India
| | - Navin B. Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat-395 007, Gujarat, India
| | - Pratik K. Maisuriya
- Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat-395 007, Gujarat,
India
| | - Monika R. Tiwari
- Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat-395 007, Gujarat,
India
| | - Amit C. Purohit
- Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat-395 007, Gujarat,
India
| |
Collapse
|
9
|
Rizk HF, El-Borai MA, Ragab A, Ibrahim SA, Sadek ME. A Novel of Azo-Thiazole Moiety Alternative for Benzidine-Based Pigments: Design, Synthesis, Characterization, Biological Evaluation, and Molecular Docking Study. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hala F. Rizk
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Seham A. Ibrahim
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed E. Sadek
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Kashyap A, Choudhury AAK, Saha A, Adhikari N, Ghosh SK, Shakya A, Patgiri SJ, Bhattacharyya DR, Singh UP, Bhat HR. Microwave-assisted synthesis of hybrid PABA-1,3,5-triazine derivatives as an antimalarial agent. J Biochem Mol Toxicol 2021; 35:e22860. [PMID: 34313355 DOI: 10.1002/jbt.22860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022]
Abstract
The present manuscript deals with the development of novel p-aminobenzoic acid (PABA) associated 1,3,5-triazine derivatives as antimalarial agents. The molecules were developed via microwave-assisted synthesis and structures of compounds were ascertained via numerous analytical and spectroscopic techniques. The synthesized compounds were also subjected to ADMET analysis. In a docking analysis, the title compounds showed high and diverse binding affinities towards wild (-162.45 to -369.38 kcal/mol) and quadruple mutant (-165.36 to -209.47 kcal/mol) Pf-DHFR-TS via interacting with Phe58, Arg59, Ser111, Ile112, Phe116. The in vitro antimalarial activity suggested that compounds 4e, 4b, and 4h showed IC50 ranging from 4.18 to 8.66 μg/ml against the chloroquine-sensitive (3D7) strain of Plasmodium falciparum. Moreover, compounds 4g, 4b, 4e, and 4c showed IC50 ranging from 8.12 to 12.09 μg/ml against chloroquine-resistant (Dd2) strain. In conclusion, our study demonstrated the development of hybrid PABA substituted 1,3,5-triazines as a novel class of Pf-DHFR inhibitor for antimalarial drug discovery.
Collapse
Affiliation(s)
- Ankita Kashyap
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ayesha A K Choudhury
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Nayana Adhikari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Saurav J Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| | - Dibya R Bhattacharyya
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| | - Udaya P Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
11
|
3-Methyl-imidazo[2,1-b]thiazole derivatives as a new class of antifolates: Synthesis, in vitro/in vivo bio-evaluation and molecular modeling simulations. Bioorg Chem 2021; 115:105205. [PMID: 34329992 DOI: 10.1016/j.bioorg.2021.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022]
Abstract
Inhibiting the Dihydrofolate reductase (DHFR) enzyme has been validated in multiple clinical manifestations related to bacterial infection, malaria, and multiple types of cancer. Herein, novel series of 3-methyl-imidazo[2,1-b] thiazole-based analogs were synthesized and biologically evaluated for their in vitro inhibitory profile towards DHFR. Compounds 22 and 23 exhibited potent inhibitory profile targeting DHFR (IC50 0.079 and 0.085 µM, respectively comparable to MTX IC50 0.087 µM). Compounds 22 and 23 showed promising cytotoxicity against MCF7 breast cancer cell lines inducing cell cycle arrest and apoptosis. Furthermore, Compound 23 showed its potential to reduce body weight and tumor volume significantly, using Ehrlich ascites carcinoma (EAC) solid tumor animal model of breast cancer, compared to control-treated groups. Further, molecular modeling simulations validated the potential of 22 and 23 to have high affinity binding towards Arg22 and Phe31 residues via π-π interaction and hydrogen bonding within DHFR binding pocket. Computer-assisted ADMET study suggested that the newly synthesized analogs could have high penetration to the blood brain barrier (BBB), better intestinal absorption, non-inhibitors of CYP2D6, adequate plasma protein binding and good passive oral absorption. The obtained model and pattern of substitution could be used for further development of DHFR inhibitors.
Collapse
|
12
|
Panchal J, Jain S, Jain PK, Kishore D, Dwivedi J. Greener approach toward synthesis of biologically active
s
‐Triazine
(
TCT
) derivatives: A recent update. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jigar Panchal
- Department of Chemistry Banasthali Vidyapith Banasthali India
| | - Sonika Jain
- Department of Chemistry Banasthali Vidyapith Banasthali India
| | | | - Dharma Kishore
- Department of Chemistry Banasthali Vidyapith Banasthali India
| | - Jaya Dwivedi
- Department of Chemistry Banasthali Vidyapith Banasthali India
| |
Collapse
|
13
|
Pande A, Manchanda M, Bhat HR, Bairy PS, Kumar N, Gahtori P. Molecular insights into a mechanism of resveratrol action using hybrid computational docking/CoMFA and machine learning approach. J Biomol Struct Dyn 2021; 40:8286-8300. [PMID: 33829956 DOI: 10.1080/07391102.2021.1910572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A phytoalexin, Resveratrol remains a legendary anticancer drug candidate in the archives of scientific literature. Although earlier wet-lab experiments rendering its multiple biological targets, for example, epidermal growth factors, Pro-apoptotic protein p53, sirtuins, and first apoptosis signal (Fas) receptor, Mouse double minute 2 (MDM2) ubiquitin-protein ligase, Estrogen receptor, Quinone reductase, etc. However, notwithstanding some notable successes, identification of an appropriate Resveratrol target(s) has remained a major challenge using physical methods, and hereby limiting its translation into an effective therapeutic(s). Thus, computational insights are much needed to establish proof-of-concept towards potential Resveratrol target(s) with minimum error rate, narrow down the search space, and to assess a more accurate Resveratrol signaling pathway/mechanism at the starting point. Herein, a brute-force technique combining computational receptor-, ligand-based virtual screening, and classification-based machine learning, reveals the precise mechanism of Resveratrol action. Overall, MDM2 ubiquitin-protein ligase (4OGN.pdb) and co-crystallized quinone reductases 2 (4QOH.pdb) were found two suitable drug targets in the case of Resveratrol derivatives. Indeed, carotenoid cleaving oxygenase together with later twos gave gigantic momentum in guiding the rational drug design of Resveratrol derivatives. These molecular modeling insights would be useful for Resveratrol lead optimization into a more precise science.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akshara Pande
- Department of Computer Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Mahesh Manchanda
- Department of Computer Science & Engineering, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Dehradun, Uttarakhand, India
| | | | - Navin Kumar
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, India
| |
Collapse
|
14
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
15
|
Singh S, Mandal MK, Masih A, Saha A, Ghosh SK, Bhat HR, Singh UP. 1,3,5-Triazine: A versatile pharmacophore with diverse biological activities. Arch Pharm (Weinheim) 2021; 354:e2000363. [PMID: 33760298 DOI: 10.1002/ardp.202000363] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
1,3,5-Triazine and its derivatives have been the epicenter of chemotherapeutic molecules due to their effective biological activities, such as antibacterial, fungicidal, antimalarial, anticancer, antiviral, antimicrobial, anti-inflammatory, antiamoebic, and antitubercular activities. The present review represents a summarized report of the crucial biological activities possessed by substituted 1,3,5-triazine derivatives, with special attention to the most potent compounds.
Collapse
Affiliation(s)
- Saumya Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Milan K Mandal
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Anup Masih
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya P Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
16
|
Guan B, Jiang C. Design and development of 1,3,5-triazine derivatives as protective agent against spinal cord injury in rat via inhibition of NF-ĸB. Bioorg Med Chem Lett 2021; 41:127964. [PMID: 33744436 DOI: 10.1016/j.bmcl.2021.127964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Spinal cord injury (SCI) is a chronic disease causing motor and sensory loss in the affected individuals. The SCI has a huge impact on the lives of patients that makes them susceptible to life-long disability. However, the current clinical modalities are ineffective to cope the aftermath of SCI. Thus, in the present study, we aimed to develop a series of 1,3,5-triazine derivatives as a protective agent against SCI. The molecules were developed by facile synthetic route and obtained in excellent yield. The compounds were tested for their efficacy to inhibit the transcription of NF-κB in RAW 264.7 cells, where they displayed mild to potent activity. Compound 8a was identified as most potent NF-κB inhibitor among the tested analogues. The effect of compound 8a was further scrutinized against the SCI injury in rats induced by contusion injury. It has been found that compound 8a improves motor function of rats together with reduction in inflammation and edema in spinal cord of rats. It also showed to inhibit oxidative stress and inflammation in the SCI rats. In a western blot analysis, after SCI induction, compound 8a inhibited NF-κB and its upstream regulator TLR4 in a dose-dependent manner. Collectively, our study provides a novel class of agent that provide protective action against SCI.
Collapse
Affiliation(s)
- Binggang Guan
- Department of Spine Surgery, Tian Jin Hospital, Tianjin 300211, China
| | - Chang Jiang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University , Dalian, Liaoning 116011, China.
| |
Collapse
|
17
|
Hu J, Zhang Y, Tang N, Lu Y, Guo P, Huang Z. Discovery of novel 1,3,5-triazine derivatives as potent inhibitor of cervical cancer via dual inhibition of PI3K/mTOR. Bioorg Med Chem 2021; 32:115997. [PMID: 33440319 DOI: 10.1016/j.bmc.2021.115997] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
This study describes the synthesis of novel 1,3,5-triazine derivatives as potent inhibitors of cervical cancer. The compounds were initially tested for inhibition of PI3K/mTOR, where they showed significant inhibitory activity. The top-ranking molecule (compound 6 h) was further tested against class I PI3K isoforms, such as PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ, where it showed the most significant activity against PI3Kα. Compound 6 h was then tested for anti-cancer activity against triple-negative breast cancer cells (MDA-MB321), human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human liver cancer cells (HepG2), and it showed the greatest potency against HeLa cells. The effects of compound 6 h were further evaluated against the HeLa cells, where it showed significant attenuation of cell viability by inducing cell cycle arrest in the G1 phase. Compound 6 h induced apoptosis and reduced migration and invasion of HeLa cells. Western blotting analysis showed that 6 h inhibited PI3K and mTOR with positive modulation of Bcl-2 and Bax levels in HeLa cells. The effects of compound 6 h were also investigated in a tumour xenograft mouse model, where it showed reduction of tumour volume and weight. It also inhibited the PI3K/Akt/mTOR signalling cascade in xenograft tumour tissues, as evidenced by western blotting analysis. The results of the present study suggest the possible utility of the designed 1,3,5-triazine derivative as a potent inhibitor of cervical cancer.
Collapse
Affiliation(s)
- Junbo Hu
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Yanli Zhang
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Na Tang
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Yanju Lu
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Peng Guo
- Department of Pathology, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China
| | - Ziming Huang
- Department of Thyroid Breast Surgery, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Wuhan city, Hubei province 430070, China.
| |
Collapse
|
18
|
Gogoi P, Shakya A, Ghosh SK, Gogoi N, Gahtori P, Singh N, Bhattacharyya DR, Singh UP, Bhat HR. In silico study, synthesis, and evaluation of the antimalarial activity of hybrid dimethoxy pyrazole 1,3,5-triazine derivatives. J Biochem Mol Toxicol 2020; 35:e22682. [PMID: 33332673 DOI: 10.1002/jbt.22682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023]
Abstract
Malaria continues to become a major global health problem, particularly in Sub-Saharan Africa, Asia, and Latin America. The widespread emergence of resistance to first-line drugs has further bolstered an urgent need for a new and cost-effective antimalarial(s). Thus, the present study enumerates the synthesis of novel hybrid dimethoxy pyrazole 1,3,5-triazine derivatives 7(a-j) and their in silico results short-listed three compounds with good binding energies and dock scores. Docking analysis shows that hydrogen-bonding predominates and typically involves key residues, such as Asp54, Tyr170, Ile164, and Arg122. The in vitro antimalarial evaluation of three top-ranked compounds (7e, 7g, and 7h) showed half-maximal inhibitory concentration values range from 53.85 to 100 μg/ml against chloroquine-sensitive strain 3D7 of Plasmodium falciparum. Compound 7e may be utilized as a lead for further optimization work in drug discovery due to good antimalarial activity.
Collapse
Affiliation(s)
- Pinku Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Nardev Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Dibya R Bhattacharyya
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| | - Udaya P Singh
- Department of Pharmaceutical Sciences, Drug Design and Discovery Laboratory, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
19
|
Masih A, Agnihotri AK, Srivastava JK, Pandey N, Bhat HR, Singh UP. Discovery of novel 1,3,5-triazine as adenosine A 2A receptor antagonist for benefit in Parkinson's disease. J Biochem Mol Toxicol 2020; 35:e22659. [PMID: 33156955 DOI: 10.1002/jbt.22659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/13/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is a chronic neuro-degenerative ailment characterized by impairment in various motor and nonmotor functions of the body. In the past few years, adenosine A2 A receptor (A2 AR) antagonists have attracted much attention due to significant relief in PD. Therefore, in the current study, we intend to disclose the development of novel 1,3,5-triazines as A2 AR antagonist. The radioligand binding and selectivity of analogs were tested in HEK293 (human embryonic kidney) and the cells were transfected with pcDNA 3.1(+) containing full-length human A2 AR cDNA and pcDNA 3.1(+) containing full-length human A1 R cDNA, where they exhibit selective affinity for A2 AR. Molecular docking analysis was also conducted to rationalize the probable mode of action, binding affinity, and orientation of the most potent molecule (7c) at the active site of A2 AR. It has been shown that compound 7c form numerous nonbonded interactions in the active site of A2 AR by interacting with Ala59, Ala63, Ile80, Val84 Glu169, Phe168, Met270, and Ile274. The study revealed 1,3,5-triazines as a novel class of A2 AR antagonists.
Collapse
Affiliation(s)
- Anup Masih
- Department of Pharmaceutical Sciences, Drug Design & Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Amol K Agnihotri
- Department of Pharmaceutical Sciences, Drug Design & Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Jitendra K Srivastava
- Department of Pharmaceutical Sciences, Drug Design & Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Nidhi Pandey
- Department of Medicine and Health Sciences, University Rovira i Virgili, Tarragona, Spain
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya P Singh
- Department of Pharmaceutical Sciences, Drug Design & Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
20
|
Design and development of 1,3,5-triazine-thiadiazole hybrids as potent adenosine A 2A receptor (A 2AR) antagonist for benefit in Parkinson's disease. Neurosci Lett 2020; 735:135222. [PMID: 32619652 DOI: 10.1016/j.neulet.2020.135222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
Various studies showed adenosine A2A receptors (A2ARs) antagonists have profound therapeutic efficacy in Parkinsons Disease (PD) by improving dopamine transmission, thus being active in reversing motor deficits and extrapyramidal symptoms related to the disease. Therefore, in the presents study, we have showed the development of novel 1,3,5-triazine-thiadiazole derivative as potent A2ARs antagonist. In the radioligand binding assay, these molecules showed excellent binding affinity with A2AR compared to A1R, with significant selectivity. Results suggest, compound 7e as most potent antagonist of A2AR among the tested series. In docking analysis with A2AR protein model, compound 7e found to be deeply buried into the cavity of receptor lined via making numerous interatomic contacts with His264, Tyr271, His278, Glu169, Ala63, Val84, Ile274, Met270, Phe169. Collectively, our study demonstrated 1,3,5-triazine-thiadiazole hybrid as a highly effective scaffold for the design of new A2A antagonists.
Collapse
|
21
|
Prasher P, Sharma M, Aljabali AAA, Gupta G, Negi P, Kapoor DN, Singh I, Zacconi FC, Jesus Andreoli Pinto T, Silva MW, Bakshi HA, Chellappan DK, Tambuwala MM, Dua K. Hybrid molecules based on 1,3,5‐triazine as potential therapeutics: A focused review. Drug Dev Res 2020; 81:837-858. [DOI: 10.1002/ddr.21704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Parteek Prasher
- UGC‐Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar India
- Department of Chemistry University of Petroleum & Energy Studies Dehradun India
| | - Mousmee Sharma
- UGC‐Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar India
- Department of Chemistry Uttaranchal University Dehradun India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology Faculty of Pharmacy, Yarmouk University Irbid Jordan
| | - Gaurav Gupta
- School of Pharmacy Suresh Gyan Vihar University Jaipur India
| | - Poonam Negi
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
| | - Inderbir Singh
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Flavia C. Zacconi
- Departamento de Organica, faculdad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile Santiago Chile
| | | | - Mateus Webba Silva
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy International Medical University Kuala Lumpur Malaysia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Kamal Dua
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan New South Wales Australia
- Centre for Inflammation, Centenary Institute Royal Prince Alfred Hospital Sydney New South Wales Australia
| |
Collapse
|
22
|
Adhikari N, Kashyap A, Shakya A, Ghosh SK, Bhattacharyya DR, Bhat HR, Singh UP. Microwave assisted synthesis, docking and antimalarial evaluation of hybrid PABA‐substituted 1,3,5‐triazine derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nayana Adhikari
- Department of Pharmaceutical SciencesDibrugarh University Dibrugarh India
| | - Ankita Kashyap
- Department of Pharmaceutical SciencesDibrugarh University Dibrugarh India
| | - Anshul Shakya
- Department of Pharmaceutical SciencesDibrugarh University Dibrugarh India
| | | | | | - Hans Raj Bhat
- Department of Pharmaceutical SciencesDibrugarh University Dibrugarh India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical SciencesSam Higginbottom University of Agriculture, Technology & Sciences Allahabad India
| |
Collapse
|
23
|
Diab HM, Salem ME, Abdelhamid IA, Elwahy AHM. Synthesis of novel star-shaped molecules based on a 1,3,5-triazine core linked to different heterocyclic systems as novel hybrid molecules. RSC Adv 2020; 10:44066-44078. [PMID: 35517173 PMCID: PMC9058422 DOI: 10.1039/d0ra09025e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The synthesis of novel star-shaped compounds based on an s-triazine core and linked to hexahydroacridinediones, pyrimido[4,5-b]quinolones, 1H-isoquinolino[2,1-a]quinolines, tetrahydro-4H-chromenes, dihydropyrano[2,3-c]pyrazoles, thiazole, or benzothiazole as new hybrid molecules through Michael and Hantzsch reactions is reported. For this purpose, 2,4,6-tris(4-formylphenoxy)benzaldehyde was used as a versatile precursor. The synthesis of novel star-shaped compounds based on an s-triazine core and linked to different heterocycles as new hybrid molecules through Michael and Hantzsch reactions is reported.![]()
Collapse
Affiliation(s)
- Hadeer M. Diab
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | - Mostafa E. Salem
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | | | - Ahmed H. M. Elwahy
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| |
Collapse
|
24
|
Sahu S, Ghosh SK, Kalita JM, Ginjupalli MC, K KR. Discovery of potential 1,3,5-Triazine compounds against strains of Plasmodium falciparum using supervised machine learning models. Eur J Pharm Sci 2019; 144:105208. [PMID: 31883446 DOI: 10.1016/j.ejps.2019.105208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/22/2019] [Indexed: 01/14/2023]
Abstract
The Malaria burden was an escalating global encumbrance and need to be addressed with critical care. Anti-malarial drug discovery was integrated with supervised machine learning (ML) models to identify potent thiazolyl-traizine derivatives. This assimilated approach of Direct Kernel-based Partial Least Squares regression (DKPLS) with molprint 2D fingerprints in Quantitative Structure Activity Relationship models was utilized to map the knowledge of known actives and to design novel molecules. This QSAR study had revealed the structural features required for better antimalarial activity. Two of the molecules which were designed based on the results of this QSAR study, had shown good percentage of parasitemia against both chloroquine sensitive (3D7) and chloroquine resistant (Dd2) strains of Plasmodium falciparum respectively. The IC50 of 201D and 204D was 3.02 and 2.17 µM against chloroquine resistant Dd2 strain of Plasmodium falciparum. This result had proved the efficiency of a multidisciplinary approach of medicinal chemistry and machine learning for the design of novel potent anti-malarial compounds.
Collapse
Affiliation(s)
- Supriya Sahu
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004 Assam, India.
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004 Assam, India
| | - Jun Moni Kalita
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004 Assam, India
| | - Murali C Ginjupalli
- CaroCure Discovery Solutions Pvt. Ltd., 2897 Churchhill Lane Saginaw MI 48603, USA
| | - Kranthi Raj K
- CaroCure Discovery Solutions Pvt. Ltd., IKP Knowledge Park, Genome Valley, Shamirpet, Hyderabad-500 101 Telangana India
| |
Collapse
|
25
|
Marella A, Verma G, Shaquiquzzaman M, Khan MF, Akhtar W, Alam MM. Malaria Hybrids: A Chronological Evolution. Mini Rev Med Chem 2019; 19:1144-1177. [PMID: 30887923 DOI: 10.2174/1389557519666190315100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/27/2018] [Accepted: 11/03/2018] [Indexed: 01/13/2023]
Abstract
Malaria, an upsetting malaise caused by a diverse class of Plasmodium species affects about 40% of the world's population. The distress associated with it has reached colossal scales owing to the development of resistance to most of the clinically available agents. Hence, the search for newer molecules for malaria treatment and cure is an incessant process. After the era of a single molecule for malaria treatment ended, there was an advent of combination therapy. However, lately there had been reports of the development of resistance to many of these agents as well. Subsequently, at present most of the peer groups working on malaria treatment aim to develop novel molecules, which may act on more than one biological processes of the parasite life cycle, and these scaffolds have been aptly termed as Hybrid Molecules or Double Drugs. These molecules may hold the key to hitherto unknown ways of showing a detrimental effect on the parasite. This review enlists a few of the recent advances made in malaria treatment by these hybrid molecules in a sequential manner.
Collapse
Affiliation(s)
| | - Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| |
Collapse
|
26
|
Sahu S, Ghosh SK, Gahtori P, Pratap Singh U, Bhattacharyya DR, Bhat HR. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol Rep 2019; 71:762-767. [PMID: 31351317 DOI: 10.1016/j.pharep.2019.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Plasmodium falciparum dihydrofolate reductase (Pf-DHFR) is an essential enzyme in the folate pathway and is an important target for antimalarial drug discovery. In this study a modern approach has been undertaken to identify new hits of thiazole-1,3,5-triazine derivatives as antimalarials targeting Pf-DHFR. METHODS The library of 378 thiazole-1,3,5-triazines were designed and subjected to ADME analysis. The compounds having optimal ADME score, was then evaluated by docking against wild and mutant Pf-DHFR complex. The resultant compound after screening from above these two methods were synthesized, and assayed for in vitro antimalarial against chloroquine-sensitive (3D-7) and chloroquine resistant (Dd-2) strains of P. falciparum. RESULTS Twenty compounds were identified from the dataset based on considerable AlogP98 vs. PSA_2D confidence ellipse, ADME filter and TOPKAT toxicity analysis. Majority of compounds showed interaction with Asp54, Arg59, Arg122 and Ile 164 in docking analysis. Entire set of tested derivatives exhibited considerable activity at the tested dose against sensitive strain with IC50 values varying from 10.03 to 54.58 μg/ml. Furthermore, against chloroquine resistant strain, eight compounds showed IC50 from 11.29 to 40.92 μg/ml. Compound A5 and H16 were found to be the most potent against both the strains of P. Falciparum. CONCLUSION Results of the study suggested the possible utility of thiazole-1,3,5-triazines as new lead for identifying new class of Pf-DHFR inhibitor.
Collapse
Affiliation(s)
- Supriya Sahu
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun, Uttarakhand, India
| | - Udaya Pratap Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, India
| | | | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India.
| |
Collapse
|
27
|
Zhang P, Ma S. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents. MEDCHEMCOMM 2019; 10:1329-1341. [PMID: 31534653 PMCID: PMC6727470 DOI: 10.1039/c9md00139e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) widely exist in organisms and mediate protein synthesis. Inhibiting these synthetases can lead to the termination of protein synthesis and subsequently achieve antibacterial and antiparasitic purposes. Moreover, the structures of aaRSs found in eukaryotes have considerable structural differences compared to those in prokaryotes, based on which it is possible to develop highly selective inhibitors. Leucyl-tRNA synthetase (LeuRS) with unique synthesis and editing sites is one of 20 kinds of aaRSs. Many inhibitors targeting LeuRS have been designed and synthesized, some of which have entered clinical use. For example, the benzoxaborole compound AN2690 has been approved by the FDA for the treatment of onychomycosis. AN3365 is suspended in the phase II clinical trial due to the rapid development of AN3365 resistance, but it may be used in combination with other antibiotics. The aaRSs, especially LeuRS, are being considered as targets of new potential anti-infective drugs for the treatment of not only bacterial or fungal infections but also infections by trypanosomes and malaria parasites. This review mainly describes the development of LeuRS inhibitors, focusing on their mechanisms of action, structure-activity relationships (SARs), and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology , Ministry of Education , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P. R. China . E mail:
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology , Ministry of Education , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P. R. China . E mail:
| |
Collapse
|
28
|
Gunasekaran P, Rajasekaran G, Han EH, Chung YH, Choi YJ, Yang YJ, Lee JE, Kim HN, Lee K, Kim JS, Lee HJ, Choi EJ, Kim EK, Shin SY, Bang JK. Cationic Amphipathic Triazines with Potent Anti-bacterial, Anti-inflammatory and Anti-atopic Dermatitis Properties. Sci Rep 2019; 9:1292. [PMID: 30718691 PMCID: PMC6361992 DOI: 10.1038/s41598-018-37785-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
The emergence of multi-drug resistant bacteria forces the therapeutic world into a position, where the development of new and alternative kind of antibiotics is highly important. Herein, we report the development of triazine-based amphiphilic small molecular antibacterial agents as mimics of lysine- and arginine-based cationic peptide antibiotics (CPAs). These compounds were screened against a panel of both Gram-positive and Gram-negative bacterial strains. Further, anti-inflammatory evaluation of these compounds led to the identification of four efficient compounds, DG-5, DG-6, DL-5, and DL-6. These compounds displayed significant potency against drug-resistant bacteria, including methicillin-resistant S. aureus (MRSA), multidrug-resistant P. aeruginosa (MDRPA), and vancomycin-resistant E. faecium (VREF). Mechanistic studies, including cytoplasmic membrane depolarization, confocal imaging and flow cytometry suggest that DG-5, DG-6, and DL-5 kill bacteria by targeting bacterial membrane, while DL-6 follows intracellular targeting mechanism. We also demonstrate that these molecules have therapeutic potential by showing the efficiency of DG-5 in preventing the lung inflammation of lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. More interestingly, DL-6 exhibited impressive potency on atopic dermatitis (AD)-like skin lesions in BALB/c mice model by suppressing pro-inflammatory cytokines. Collectively, these results suggest that they can serve a new class of antimicrobial, anti-inflammatory and anti-atopic agents with promising therapeutic potential.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ganesan Rajasekaran
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Young-Ho Chung
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Young-Jin Choi
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea
| | - Yu Jin Yang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ji Eun Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Kiram Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jin-Seok Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea
| | - Eun-Kyung Kim
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
29
|
Ewida MA, Abou El Ella DA, Lasheen DS, Ewida HA, El-Gazzar YI, El-Subbagh HI. Imidazo[2',1':2,3]thiazolo[4,5-d]pyridazinone as a new scaffold of DHFR inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg Chem 2018; 80:11-23. [PMID: 29864684 DOI: 10.1016/j.bioorg.2018.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/31/2023]
Abstract
New series of thiazolo[4,5-d]pyridazin and imidazo[2',1':2,3]thiazolo[4,5-d]pyridazin analogues were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activity. Compounds 13 and 43 proved to be DHFR inhibitors with IC50 0.05 and 0.06 μM, respectively. 43 proved lethal to OVCAR-3 Ovarian cancer and MDA-MB-435 Melanoma at IC50 0.32 and 0.46 μM, respectively. The active compounds formed hydrogen bond at DHFR binding site between N1-nitrogen of the pyridazine ring with Glu30; the carbonyl group with Trp24, Arg70 or Lys64; π-cation interaction with Arg22 and π-π interaction with Phe31 residues. Ring annexation of the active 1,3-thiazole ring analogue 13 into the bicyclic thiazolo[4,5-d]pyridazine (18,19) or imidazo[2,1-b]thiazoles (23-25) decreased the DHFR inhibition activity; while the formation of the tricyclic imidazo[2',1':2,3]-thiazolo[4,5-d]pyridazine (43-54) increased potency. The obtained model could be useful for the development of new class of DHFR inhibitors.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, 62511 Benisuef, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Yomna I El-Gazzar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
30
|
Mewada NS, Shah DR, Lakum HP, Chikhalia KH. Synthesis and biological evaluation of novel s-triazine based aryl/heteroaryl entities: Design, rationale and comparative study. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jaubas.2014.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nirali S. Mewada
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat India
| | - Dhruvin R. Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat India
| | - Harshad P. Lakum
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat India
| |
Collapse
|
31
|
Wang X, Yi Y, Lv Q, Zhang J, Wu K, Wu W, Zhang W. Novel 1,3,5-triazine derivatives exert potent anti-cervical cancer effects by modulating Bax, Bcl2 and Caspases expression. Chem Biol Drug Des 2017; 91:728-734. [PMID: 29068538 DOI: 10.1111/cbdd.13133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/26/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022]
Abstract
This study aimed to develop novel 1,3,5-triazine derivatives as potent anti-cervical cancer agents. The compounds were synthesized in short steps with an excellent yield and characterized via various spectroscopic and analytical methods. A structure-activity relationship study suggested that electron-withdrawing substituents showed greater anticancer activity than electron-donating groups. Compound 7p (p-fluoro) showed the highest activity against cervical cancer cells. In a nude mouse xenograft model inoculated with HeLa cells, 7p showed dose-dependent inhibition of cervical tumour growth. Histopathological examination of excised tumour-bearing tissues showed that 7p improved the microstructure in a dose-dependent manner. Compound 7p also increased the proportions of HeLa cells in G0/G1 and S-phase and significantly decreased that of G2/M-phase. The effects of 7p on C-caspase-3, C-caspase-9, Bcl-2 and Bax expression in HeLa cells were also determined.
Collapse
Affiliation(s)
- Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiongying Lv
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wanrong Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Shasheva EY, Vikrishchuk NI, Popov LD, Borodkin SA. New functionalized amino derivatives of 2-hydroxyphenyl-1,3,5-triazines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s107042801710013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Ewida MA, Abou El Ella DA, Lasheen DS, Ewida HA, El-Gazzar YI, El-Subbagh HI. Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg Chem 2017; 74:228-237. [PMID: 28865294 DOI: 10.1016/j.bioorg.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/12/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
A new series of 1,3-thiazoles and thiazolo[4,5-d]pyridazine both bearing the 2-thioureido function were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activities. Compound 26 proved to be the most active DHFR inhibitor (IC50 of 0.06μM). Compound 4, 20 and 21 showed in vitro antitumor activity against a collection of cancer cell lines. Compound 26 proved lethal to HS 578T breast cancer cell line with IC50 value of 0.8μM, inducing cell cycle arrest and apoptosis. Molecular modeling studies concluded that recognition with key amino acids Phe 31 and Arg 22 is essential for DHFR binding. The obtained model could be useful for the development of new class of DHFR inhibitors.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Yomna I El-Gazzar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
34
|
Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase. Sci Rep 2017; 7:5851. [PMID: 28724908 PMCID: PMC5517562 DOI: 10.1038/s41598-017-05934-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
A novel series of hybrid analogues of monastrol-1,3,5-triazine were designed and developed via one-pot synthesis using Bi(NO3)3 as a catalyst. Entire compounds were evaluated for their anticancer activity against HeLa (cervical cancer), MCF-7 (breast cancer), HL-60 (Human promyelocytic leukemia), HepG2 (Hepatocellular carcinoma) and MCF 12A (normal epithelial breast cell line) using MTT assay, where they showed highest inhibitory activity against MCF-7. The molecules were also found to be non-toxic to MCF 12A cells. These molecules showed considerable inhibitory percentage against Epidermal Growth Factor Receptor tyrosine kinase (EGFR-TK), in in-vitro assay. Molecular docking study was carried out on the analogs and reference compound (Erlotinib) into the ATP binding site of EGFR-TK domain (PDB ID:1M17) to elucidate vital structural residues necessary for bioactivity. The effect of most active compound 7l was also estimated in-vivo in DMBA induced mammary tumor in female Sprague-Dawley rats. The effect of anti-breast cancer effect of 7l was quantified on the basis of tumour incidence, body weight and tumor volume in DMBA-induced rats. Its effect on biochemical parameters, such as antioxidant status (SOD, CAT, GPX and GSH) and lipid peroxidation was also studied. The compound 7l showed inhibition of EGFR downstream signalling in the western blot analysis.
Collapse
|
35
|
Rational design and microwave assisted synthesis of some novel phenyl thiazolyl clubbed s-triazine derivatives as antimalarial antifolate. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2017. [DOI: 10.1016/j.fjps.2016.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
El-Gazzar YI, Georgey HH, El-Messery SM, Ewida HA, Hassan GS, Raafat MM, Ewida MA, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3 H )-one as DHFR inhibitors. Bioorg Chem 2017; 72:282-292. [DOI: 10.1016/j.bioorg.2017.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
37
|
Jameel E, Meena P, Maqbool M, Kumar J, Ahmed W, Mumtazuddin S, Tiwari M, Hoda N, Jayaram B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur J Med Chem 2017; 136:36-51. [PMID: 28478343 DOI: 10.1016/j.ejmech.2017.04.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/02/2017] [Accepted: 04/23/2017] [Indexed: 12/22/2022]
Abstract
In our endeavor towards the development of potent multitarget ligands for the treatment of Alzheimer's disease, a series of triazine-triazolopyrimidine hybrids were designed, synthesized and characterized by various spectral techniques. Docking and scoring techniques were used to design the inhibitors and to display their interaction with key residues of active site. Organic synthesis relied upon convergent synthetic routes were mono and di-substituted triazines were connected with triazolopyrimidine using piperazine as a linker. In total, seventeen compounds were synthesized in which the di-substituted triazine-triazolopyrimidine derivatives 9a-d showed better acetylcholinesterase (AChE) inhibitory activity than the corresponding tri-substituted triazine-triazolopyrimidine derivatives 10a-f. Out of the disubstituted triazine-triazolopyrimidine based compounds, 9a and 9b showed encouraging inhibitory activity on AChE with IC50 values 0.065 and 0.092 μM, respectively. Interestingly, 9a and 9b also demonstrated good inhibition selectivity towards AChE over BuChE by ∼28 folds. Furthermore, kinetic analysis and molecular modeling studies showed that 9a and 9b target both catalytic active site as well as peripheral anionic site of AChE. In addition, these derivatives effectively modulated Aβ self-aggregation as investigated through CD spectroscopy, ThT fluorescence assay and electron microscopy. Besides, these compounds exhibited potential antioxidants (2.15 and 2.91 trolox equivalent by ORAC assay) and metal chelating properties. In silico ADMET profiling highlighted that, these novel triazine derivatives have appropriate drug like properties and possess very low toxic effects in the primarily pharmacokinetic study. Overall, the multitarget profile exerted by these novel triazine molecules qualified them as potential anti-Alzheimer drug candidates in AD therapy.
Collapse
Affiliation(s)
- Ehtesham Jameel
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Poonam Meena
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Mudasir Maqbool
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Jitendra Kumar
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Waqar Ahmed
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Syed Mumtazuddin
- Department of Chemistry, B. R. Ambedkar Bihar University, Muzaffarpur 842001, Bihar, India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India.
| | - Nasimul Hoda
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India.
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India; Supercomputing Facility for Bioinformatics & Computational Biology, IIT Delhi, New Delhi 110016, India
| |
Collapse
|
38
|
Vijayaraghavan S, Mahajan S. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives. Bioorg Med Chem Lett 2017; 27:1693-1697. [PMID: 28318947 DOI: 10.1016/j.bmcl.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022]
Abstract
A series of 4-anilinoquinoline triazine derivatives were designed, synthesized and screened for in vivo antimalarial activity against a chloroquine-sensitive strain of Plasmodium berghei. The compounds were further subjected to in vitro antimalarial activity against chloroquine-resistant W2 strain of Plasmodium falciparum and β-haematin inhibition studies. All the compounds exhibited in vivo antimalarial activity better than that shown by the standard drug, chloroquine. Twelve out of fifteen compounds showed better inhibition than that of chloroquine against chloroquine-resistant W2 strain of Plasmodium falciparum. Ten compounds showed β-haematin inhibition, better than that of chloroquine, with IC50 values in the range of 18-25µM. One compound, 3k, was found to be better than artemisinin against W2 strain of Plasmodium falciparum and also displayed the best β-haematin inhibitory activity, thereby becoming eligible to be explored as a potential lead for antimalarial chemotherapy.
Collapse
Affiliation(s)
- Shilpa Vijayaraghavan
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Sir Vithaldas Vidyavihar, Santacruz (W), Mumbai 400049, India.
| | - Supriya Mahajan
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Sir Vithaldas Vidyavihar, Santacruz (W), Mumbai 400049, India
| |
Collapse
|
39
|
Sahu S, Ghosh SK, Ghoshal A, Kalita J, Gahtori P, Bhattacharyya DR. Microwave assisted synthesis, antimalarial screening and structure–activity-relationship exploration of some phenylthiazolyl-triazine derivatives against dihydrofolate reductase. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1714-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Bekhit AA, Hassan AM, Abd El Razik HA, El-Miligy MM, El-Agroudy EJ, Bekhit AEDA. New heterocyclic hybrids of pyrazole and its bioisosteres: Design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur J Med Chem 2015; 94:30-44. [DOI: 10.1016/j.ejmech.2015.02.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/01/2014] [Accepted: 02/19/2015] [Indexed: 10/24/2022]
|
41
|
Antileishmanial activity of quinazoline derivatives: Synthesis, docking screens, molecular dynamic simulations and electrochemical studies. Eur J Med Chem 2015; 92:314-31. [DOI: 10.1016/j.ejmech.2014.12.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/23/2014] [Accepted: 12/28/2014] [Indexed: 12/31/2022]
|
42
|
Srivastava JK, Dubey P, Singh S, Bhat HR, Kumawat MK, Singh UP. Discovery of novel 1,3,5-triazine-thiazolidine-2,4-diones as dipeptidyl peptidase-4 inhibitors with antibacterial activity targeting the S1 pocket for the treatment of type 2 diabetes. RSC Adv 2015. [DOI: 10.1039/c4ra16903d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel series of 1,3,5-triazine-thiazolidine-2,4-diones was synthesized and characterized by a number of analytical and spectroscopic techniques.
Collapse
Affiliation(s)
- Jitendra Kumar Srivastava
- Drug Design & Discovery Laboratory
- Department of Pharmaceutical Sciences
- Sam Higginbottom Institute of Agriculture, Technology & Sciences
- Allahabad
- India
| | - Pragya Dubey
- Drug Design & Discovery Laboratory
- Department of Pharmaceutical Sciences
- Sam Higginbottom Institute of Agriculture, Technology & Sciences
- Allahabad
- India
| | - Saumya Singh
- Drug Design & Discovery Laboratory
- Department of Pharmaceutical Sciences
- Sam Higginbottom Institute of Agriculture, Technology & Sciences
- Allahabad
- India
| | - Hans Raj Bhat
- Drug Design & Discovery Laboratory
- Department of Pharmaceutical Sciences
- Sam Higginbottom Institute of Agriculture, Technology & Sciences
- Allahabad
- India
| | | | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory
- Department of Pharmaceutical Sciences
- Sam Higginbottom Institute of Agriculture, Technology & Sciences
- Allahabad
- India
| |
Collapse
|
43
|
Srivastava JK, Awatade NT, Bhat HR, Kmit A, Mendes K, Ramos M, Amaral MD, Singh UP. Pharmacological evaluation of hybrid thiazolidin-4-one-1,3,5-triazines for NF-κB, biofilm and CFTR activity. RSC Adv 2015. [DOI: 10.1039/c5ra09250g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A series of hybrid thiazolidin-4-one-1,3,5-triazines was evaluated for NF-κB, biofilm and CFTR activity.
Collapse
Affiliation(s)
- Jitendra Kumar Srivastava
- Drug Design & Discovery Laboratory
- Department of Pharmaceutical Sciences
- Sam Higginbottom Institute of Agriculture, Technology & Sciences
- Allahabad
- India
| | - Nikhil T. Awatade
- University of Lisboa
- Faculty of Sciences
- BioISI – Biosystems & Integrative Sciences Institute
- 1749-016 Lisboa
- Portugal
| | - Hans Raj Bhat
- Drug Design & Discovery Laboratory
- Department of Pharmaceutical Sciences
- Sam Higginbottom Institute of Agriculture, Technology & Sciences
- Allahabad
- India
| | - Arthur Kmit
- Faculdade de Ciências Médicas - Universidade Estadual de Campinas R. Tessália Vieira de Camargo
- Campinas
- Brazil
| | - Karina Mendes
- University of Lisboa
- Faculty of Sciences
- BioISI – Biosystems & Integrative Sciences Institute
- 1749-016 Lisboa
- Portugal
| | - Margarida Ramos
- University of Lisboa
- Faculty of Sciences
- BioISI – Biosystems & Integrative Sciences Institute
- 1749-016 Lisboa
- Portugal
| | - Margarida D. Amaral
- University of Lisboa
- Faculty of Sciences
- BioISI – Biosystems & Integrative Sciences Institute
- 1749-016 Lisboa
- Portugal
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory
- Department of Pharmaceutical Sciences
- Sam Higginbottom Institute of Agriculture, Technology & Sciences
- Allahabad
- India
| |
Collapse
|
44
|
Lilburn TG, Cai H, Gu J, Zhou Z, Wang Y. Exploring systems affected by the heat shock response in Plasmodium falciparum via protein association networks. ACTA ACUST UNITED AC 2014; 7:369-83. [PMID: 25539848 DOI: 10.1504/ijcbdd.2014.066554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The heat shock response is a general mechanism by which organisms deal with physical insults such as sudden changes in temperature, osmotic and oxidative stresses, and exposure to toxic substances. Plasmodium falciparum is exposed to drastic temperature changes as a part of its life cycle and maintains an extensive repertoire of heat shock response-related proteins. As these proteins serve to maintain the parasite in the face of anti-malarial drugs as well, better understanding of the heat shock-related systems in the malaria parasite will lead to therapeutic approaches that frustrate these systems, leading to more effective use of anti-malarials. Here we use protein association networks to broaden our understanding of the systems impacted by and/or implicated in the heat shock response.
Collapse
Affiliation(s)
| | - Hong Cai
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Zhan Zhou
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yufeng Wang
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
45
|
Abbat S, Jain V, Bharatam PV. Origins of the specificity of inhibitor P218 toward wild-type and mutantPfDHFR: a molecular dynamics analysis. J Biomol Struct Dyn 2014; 33:1913-28. [DOI: 10.1080/07391102.2014.979231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Abstract
This review summarizes recent reports on s-triazine and its respective analogs from the medicinal chemistry angle. Due to its high reactivity and binding characteristic towards various enzymes, s-triazine has attracted attention. This is combined with facile synthesis and interesting pharmacology. The triazine class demonstrates wide biological applications - including antimicrobial, antituberculosis, anticancer, antiviral and antimalarial. In this article the library of s-triazine-based molecular designs has been collated with respective bioactivity. Compounds are further compared with other heterocyclic/nontriazine moieties to correlate the efficiency of privileged s-triazine. We hope this article may assist chemists in their drug design and discovery efforts.
Collapse
|
47
|
Facile and efficient preparation of hybrid phenylthiazolyl-1,3,5-triazines and their antidepressant-like effect in mice. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Cloete TT, de Kock C, Smith PJ, N'Da DD. Synthesis, in vitro antiplasmodial activity and cytotoxicity of a series of artemisinin–triazine hybrids and hybrid-dimers. Eur J Med Chem 2014; 76:470-81. [DOI: 10.1016/j.ejmech.2014.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/11/2022]
|
49
|
Hassan GS, El-Messery SM, Al-Omary FAM, Al-Rashood ST, Shabayek MI, Abulfadl YS, Habib ESE, El-Hallouty SM, Fayad W, Mohamed KM, El-Menshawi BS, El-Subbagh HI. Nonclassical antifolates, part 4. 5-(2-aminothiazol-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiols as a new class of DHFR inhibitors: synthesis, biological evaluation and molecular modeling study. Eur J Med Chem 2013; 66:135-45. [PMID: 23792351 DOI: 10.1016/j.ejmech.2013.05.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/19/2013] [Accepted: 05/25/2013] [Indexed: 11/18/2022]
Abstract
A new series of compounds possessing 5-(2-aminothiazol-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol skeleton was designed, synthesized, and evaluated for their in vitro DHFR inhibition, antimicrobial, antitumor and schistosomicidal activities. Four active compounds were allocated, the antibacterial 22 (comparable to gentamicin and ciprofloxacin), the schistosomicidal 29 (comparable to praziquantel), the DHFR inhibitor 34 (IC₅₀ 0.03 μM, 2.7 fold more active than MTX), and the antitumor 36 (comparable to doxorubicin). Molecular modeling studies concluded that recognition with key amino acid Leu4 and Val1 is essential for DHFR binding. Flexible alignment and surface mapping revealed that the obtained model could be useful for the development of new class of DHFR inhibitors.
Collapse
Affiliation(s)
- Ghada S Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Folate metabolism in human malaria parasites—75 years on. Mol Biochem Parasitol 2013; 188:63-77. [DOI: 10.1016/j.molbiopara.2013.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 12/21/2022]
|