1
|
Zayed KM. Innate and putative adaptive immunological responses of schistosome-parasitized snails. Acta Trop 2025; 261:107503. [PMID: 39675412 DOI: 10.1016/j.actatropica.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by digenetic trematode from Schistosoma genus, as an etiological agent that uses snails as an intermediate host. In mollusc-trematode relationships, the miracidia attract in the aquatic media to a specific snail as an intermediate hosts, then penetrate its integument in the sporocyst form thereafter, the invasive sporocysts produce secreted/excreted products in order to survive and avoid the snails' immune system. The next larval stage is the cercariae that developed by sporocysts. Subsequently, the snail intermediate host suffers from biological, physiological, biochemical and immunological changes during the development of these parasite larval stages within their tissues. Snails and their parasites engage in an interactive innate and putative adaptive immune response that involves many immune mechanisms, such as the production of nitric oxide, lysozymes, phagocytosis, lectin formation and phenol oxidase activity. Schistosomes have developed a variety of strategies to evade and counteract these deliberate host reactions. These strategies include the secretion of many strong proteases, the use of an immune-resistant outer tegument, the molecular mimicry of host antigens, and the controlled release of certain immunomodulatory substances that influence immune cell activities. This review aims to characterize these important immune evasion mechanisms in order to comprehend the many immunological molecular determinants in the snail/schistosome interaction and to develop alternate management measures for schistosomiasis control.
Collapse
Affiliation(s)
- Khaled M Zayed
- Medical Malacology Department, Theodor Bilharz Research Institute, Kornaish El Nile St.,Warrak El-Haddar, Imbaba, Giza, 12411, Egypt.
| |
Collapse
|
2
|
Blouin MS, Bollmann SR, Le Clec’h W, Chevalier FD, Anderson TJC, Tennessen JA. Susceptibility of BS90 Biomphalaria glabrata snails to infection by SmLE Schistosoma mansoni segregates as a dominant allele in a cluster of polymorphic genes for single-pass transmembrane proteins. PLoS Negl Trop Dis 2024; 18:e0012474. [PMID: 39283952 PMCID: PMC11426442 DOI: 10.1371/journal.pntd.0012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/26/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
The trematodes that cause schistosomiasis in humans require aquatic snails as intermediate hosts. Identifying the genes in snails at which allelic variation controls resistance to infection by schistosomes could lead to novel ways to break the cycle of transmission. We therefore mapped genetic variation within the BS90 population of Biomphalaria glabrata snails that controls their resistance to infection by the SmLE population of Schistosoma mansoni. A marker in the PTC2 genomic region strongly associates with variation in resistance. The S-haplotype, which confers increased susceptibility, appears to be almost completely dominant to the R-haplotype, which confers increased resistance. This result suggests a model in which the parasite must match a molecule on the host side to successfully infect. The genomic region surrounding our marker shows high structural and sequence variability between haplotypes. It is also highly enriched for genes that code for single-pass transmembrane (TM1) genes. Several of the TM1 genes present on the S-haplotype lack orthologs on the R-haplotype, which makes them intriguing candidate genes in a model of dominant susceptibility. These results add to a growing body of work that suggests TM1 genes, especially those in this exceptionally diverse genomic region, may play an important role in snail-schistosome compatibility polymorphisms.
Collapse
Affiliation(s)
- Michael S. Blouin
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R. Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Winka Le Clec’h
- Host Parasite Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Frédéric D. Chevalier
- Host Parasite Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jacob A. Tennessen
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Thoma J, Grabherr R, Staudacher E. Determination, expression and characterization of an UDP-N-acetylglucosamine:α-1,3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I (GnT-I) from the Pacific oyster, Crassostrea gigas. Glycoconj J 2024; 41:151-162. [PMID: 38557922 PMCID: PMC11065688 DOI: 10.1007/s10719-024-10148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Molluscs are intermediate hosts for several parasites. The recognition processes, required to evade the host's immune response, depend on carbohydrates. Therefore, the investigation of mollusc glycosylation capacities is of high relevance to understand the interaction of parasites with their host. UDP-N-acetylglucosamine:α-1,3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I (GnT-I) is the key enzyme for the biosynthesis of hybrid and complex type N-glycans catalysing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the α-1,3 Man antenna of Man5GlcNAc2. Thereby, the enzyme produces a suitable substrate for further enzymes, such as α-mannosidase II, GlcNAc-transferase II, galactosyltransferases or fucosyltransferases. The sequence of GnT- I from the Pacific oyster, Crassostrea gigas, was obtained by homology search using the corresponding human enzyme as the template. The obtained gene codes for a 445 amino acids long type II transmembrane glycoprotein and shared typical structural elements with enzymes from other species. The enzyme was expressed in insect cells and purified by immunoprecipitation using protein A/G-plus agarose beads linked to monoclonal His-tag antibodies. GnT-I activity was determined towards the substrates Man5-PA, MM-PA and GnM-PA. The enzyme displayed highest activity at pH 7.0 and 30 °C, using Man5-PA as the substrate. Divalent cations were indispensable for the enzyme, with highest activity at 40 mM Mn2+, while the addition of EDTA or Cu2+ abolished the activity completely. The activity was also reduced by the addition of UDP, UTP or galactose. In this study we present the identification, expression and biochemical characterization of the first molluscan UDP-N-acetylglucosamine:α-1,3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I, GnT-I, from the Pacific oyster Crassostrea gigas.
Collapse
Affiliation(s)
- Julia Thoma
- Department of Chemistry (DCH), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology (DBT), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Erika Staudacher
- Department of Chemistry (DCH), University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
4
|
Abou-El-Naga IF, Mogahed NMFH. Immuno-molecular profile for Biomphalaria glabrata/Schistosoma mansoni interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105083. [PMID: 37852455 DOI: 10.1016/j.dci.2023.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The complex innate immune defense of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni, governs the successful development of the intramolluscan stages of the parasite. The interaction between the snail and the parasite involves a complex immune molecular crosstalk between several parasite antigens and the snail immune recognition receptors, evoking different signals and effector molecules. This work seeks to discuss the immune-related molecules that influence compatibility in Biomphalaria glabrata/Schistosoma mansoni interaction and the differential expression of these molecules between resistant and susceptible snails. It also includes the current understanding of the immune molecular determinants that govern the compatibility in sympatric and allopatric interactions, and the expression of these molecules after immune priming and the secondary immune response. Herein, the differences in the immune-related molecules in the interaction of other Biomphalaria species with Schistosoma mansoni compared to the Biomphalaria glabrata model snail are highlighted. Understanding the diverse immune molecular determinants in the snail/schistosome interaction can lead to alternative control strategies for schistosomiasis.
Collapse
|
5
|
Li M, Huang Q, Lv X, Small HJ, Li C. Integrative omics analysis highlights the immunomodulatory effects of the parasitic dinoflagellate hhematodinium on crustacean hemocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 125:35-47. [PMID: 35526798 DOI: 10.1016/j.fsi.2022.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Parasitic dinoflagellates in genus Hematodinium have caused substantial economic losses to multiple commercially valuable marine crustaceans around the world. Recent efforts to better understand the life cycle and biology of the parasite have improved our understanding of the disease ecology. However, studies on the host-parasite interaction, especially how Hematodinium parasites evade the host immune response are lacking. To address this shortfall, we used the comprehensive omics approaches (miRNA transcriptomics, iTRAQ-based proteomics) to get insights into the host-parasite interaction between hemocytes from Portunus trituberculatus and Hematodinium perezi in the present study. The parasitic dinoflagellate H. perezi remodeled the miRNome and proteome of hemocytes from challenged hosts, modulated the host immune response at both post-transcriptional and translational levels and caused post-transcriptional regulation to the host immune response. Multiple important cellular and humoral immune-related pathways (ex. Apoptosis, Endocytosis, ECM-receptor interaction, proPO activation pathway, Toll-like signaling pathway, Jak-STAT signaling pathway) were significantly affected by Hematodinium parasites. Through modulation of the host miRNome, the host immune responses of nodulation, proPO activation and antimicrobial peptides were significantly suppressed. Cellular homeostasis was imbalanced via post-transcriptional dysregulation of the phagosome and peroxisome pathways. Cellular structure and communication was seriously impacted by post-transcriptional downregulation of ECM-receptor interaction and focal adhesion pathways. In conclusion, H. perezi parasites could trigger striking changes in the miRNome and proteome of crustacean hemocytes, and this parasite exhibited multifaceted immunomodulatory effects and potential immune-suppressive mechanisms in crustacean hosts.
Collapse
Affiliation(s)
- Meng Li
- CAS Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qian Huang
- CAS Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Lv
- CAS Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hamish J Small
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA.
| | - Caiwen Li
- CAS Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Mekawey AAI, Salah AM, Yosri M. A Study on the Bio-responses of a Freshwater Snail ( Biomphalaria alexandrina) to Fungal-derived Compounds. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:139-153. [PMID: 35692160 DOI: 10.2174/2772434417666220610110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Biomphalaria alexandrina snails, as transitional hosts of schistosomiasis, plays an essential part in the spread of the illness. Control of these snails by the substance molluscicides antagonistically influences the oceanic climate, causing poisonous and cancer-causing consequences for non-target life forms. OBJECTIVE Looking for new naturally safe substances that can treat schistosomiasis disease with minimal side effects on the environment and plants, fish wealth and do not affect vital human functions. METHODS Fifty fungal species were used to evaluate their activity against Biomphalaria alexandrina. Study the effect of the fungal extract on vital functions of Biomphalaria alexandrina and fish wealth. Purification of active substances and identification of their chemical structures. RESULTS Cladosporium nigrellum and Penicillium aurantiogresium metabolites were effective against B. alexandrina snails, and the effects of promising fungal extracts sublethal concentrations (IC10 & IC25) on the levels of steroid sex hormones, liver enzymes, total protein, lipids, albumin and glucose were determined. Chemical analyses of this filtrate separated a compound effective against snails; it was identified. Protein electrophoresis showed that fungal filtrate affects the protein pattern of snails' haemolymph. Little or no mortality of Daphnia pulex individuals was observed after their exposure to sublethal concentrations of each treatment. CONCLUSION Certain compounds from fungal cultures could be safely used for biological control of Biomphalaria alexandrina snails.
Collapse
Affiliation(s)
- Amal A I Mekawey
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787, Nasr City, Cairo, Egypt
| | - Ahmed M Salah
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787, Nasr City, Cairo, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Mollusc N-glycosylation: Structures, Functions and Perspectives. Biomolecules 2021; 11:biom11121820. [PMID: 34944464 PMCID: PMC8699351 DOI: 10.3390/biom11121820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Molluscs display a sophisticated N-glycan pattern on their proteins, which is, in terms of involved structural features, even more diverse than that of vertebrates. This review summarises the current knowledge of mollusc N-glycan structures, with a focus on the functional aspects of the corresponding glycoproteins. Furthermore, the potential of mollusc-derived biomolecules for medical applications is addressed, emphasising the importance of mollusc research.
Collapse
|
8
|
Li C, Li M, Huang Q. The parasitic dinoflagellate Hematodinium infects marine crustaceans. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:313-325. [PMID: 37073297 PMCID: PMC10077234 DOI: 10.1007/s42995-020-00061-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Hematodinium is a type of parasitic dinoflagellate that infects marine crustaceans globally. The parasite lives mainly in the hemolymph or hemocoels of affected hosts, and results in mortalities due to malfunction or loss of functions of major organs. In recent years, the parasite had developed into an emerging epidemic pathogen not only affecting wild populations of economically valuable marine crustaceans in western countries but also the sustainable yield of aquaculture of major crabs in China. The epidemics of the parasitic diseases expanded recently in the coastal waters of China, and caused frequent outbreaks in aquaculture of major crab species, especially Portunus trituberculatus and Scylla paramamosain. In addition, the pathogen infected two species of co-cultured shrimps and multiple cohabitating wild crabs, implying it is a significant threat to the sustainable culture of commercially valuable marine crustaceans. In particular, the polyculture system that is widely used along the coast of China may facilitate the spread and transmission of the pathogen. Thus, to provide a better understanding of the biological and ecological characteristics of the parasitic dinoflagellate and highlight important directions for future research, we have reviewed the current knowledge on the taxonomy, life cycle, pathogenesis, transmission and epidemiology of Hematodinium spp. Moreover, ecological countermeasures have been proposed for the prevention and control of the emerging infectious disease.
Collapse
Affiliation(s)
- Caiwen Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
- Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Meng Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Qian Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
9
|
Hambrook JR, Hanington PC. Immune Evasion Strategies of Schistosomes. Front Immunol 2021; 11:624178. [PMID: 33613562 PMCID: PMC7889519 DOI: 10.3389/fimmu.2020.624178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.
Collapse
Affiliation(s)
- Jacob R Hambrook
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
10
|
Lu L, Loker ES, Adema CM, Zhang SM, Bu L. Genomic and transcriptional analysis of genes containing fibrinogen and IgSF domains in the schistosome vector Biomphalaria glabrata, with emphasis on the differential responses of snails susceptible or resistant to Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008780. [PMID: 33052953 PMCID: PMC7588048 DOI: 10.1371/journal.pntd.0008780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Achieving a deeper understanding of the factors controlling the defense responses of invertebrate vectors to the human-infecting pathogens they transmit will provide needed new leads to pursue for control. Consequently, we provide new genomic and transcriptomic insights regarding FReDs (containing a fibrinogen domain) and FREPs (fibrinogen domain and one or two IgSF domains) from the planorbid snail Biomphalaria glabrata, a Neotropical vector of Schistosoma mansoni, causative agent of human intestinal schistosomiasis. Using new bioinformatics approaches to improve annotation applied to both genome and RNA-Seq data, we identify 73 FReD genes, 39 of which are FREPs. We provide details of domain structure and consider relationships and homologies of B. glabrata FBG and IgSF domains. We note that schistosome-resistant (BS-90) snails mount complex FREP responses following exposure to S. mansoni infection whereas schistosome-susceptible (M line) snails do not. We also identify several coding differences between BS-90 and M line snails in three FREPs (2, 3.1 and 3.2) repeatedly implicated in other studies of anti-schistosome responses. In combination with other results, our study provides a strong impetus to pursue particular FREPs (2, 3.1, 3.2 and 4) as candidate resistance factors to be considered more broadly with respect to schistosome control efforts, including involving other Biomphalaria species vectoring S. mansoni in endemic areas in Africa.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Coen M. Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
11
|
Pham J, Hernandez A, Cioce A, Achilli S, Goti G, Vivès C, Thepaut M, Bernardi A, Fieschi F, Reichardt NC. Chemo-Enzymatic Synthesis of S. mansoni O-Glycans and Their Evaluation as Ligands for C-Type Lectin Receptors MGL, DC-SIGN, and DC-SIGNR. Chemistry 2020; 26:12818-12830. [PMID: 32939912 DOI: 10.1002/chem.202000291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR.
Collapse
Affiliation(s)
- Julie Pham
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Alvaro Hernandez
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,Asparia Glycomics S.L., Mikeletegi 83, 20009, San Sebastian, Spain
| | - Anna Cioce
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Silvia Achilli
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France.,Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Giulio Goti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Michel Thepaut
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,CIBER-BBN, Paseo Miramón 182, 20014, San Sebastian, Spain.,Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, San Sebastian, Spain
| |
Collapse
|
12
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
13
|
Alba A, Duval D, Sánchez J, Pérez AB, Pinaud S, Galinier R, Vázquez AA, Gourbal B. The immunobiological interplay between Pseudosuccinea columella resistant/susceptible snails with Fasciola hepatica: Hemocytes in the spotlight. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103485. [PMID: 31461636 DOI: 10.1016/j.dci.2019.103485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The Fasciola hepatica/Pseudosuccinea columella interaction in Cuba involves a unique pattern of phenotypes; while most snails are susceptible, some field populations are naturally resistant to infection and parasites are encapsulated by snail hemocytes. Thus, we investigated the hemocytes of resistant (R) and susceptible (S) P. columella, in particular morphology, abundance, proliferation and in vitro encapsulation activity following exposure to F. hepatica. Compared to susceptible P. columella, hemocytes from exposed resistant snails showed increased levels of spreading and aggregation (large adherent cells), proliferation of circulating blast-like cells and encapsulation activity of the hemocytes, along with a higher expression of the cytokine granulin. By contrast, there was evidence of a putative F. hepatica-driven inhibition of host immunity, only in susceptible snails. Additionally, (pre-)incubation of naïve hemocytes from P. columella (R and S) with different monosaccharides was associated with lower encapsulation activity of F. hepatica larvae. This suggests the involvement in this host-parasite interaction of lectins and lectins receptors (particularly related to mannose and fucose sensing) in association with hemocyte activation and/or binding to F. hepatica.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba; University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - David Duval
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Ana B Pérez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Silvain Pinaud
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Richard Galinier
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Antonio A Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Benjamin Gourbal
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
14
|
de Melo ES, Brayner FA, Junior NCP, França IRS, Alves LC. Investigation of defense response and immune priming in Biomphalaria glabrata and Biomphalaria straminea, two species with different susceptibility to Schistosoma mansoni. Parasitol Res 2019; 119:189-201. [DOI: 10.1007/s00436-019-06495-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
15
|
Molecular context of Schistosoma mansoni transmission in the molluscan environments: A mini-review. Acta Trop 2017; 176:98-104. [PMID: 28754250 DOI: 10.1016/j.actatropica.2017.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022]
Abstract
Schistosoma mansoni, being transmitted by some freshwater Biomphalaria snails, is a major causative agent of human schistosomiasis. In the absence of effective vaccine and alternative drug designs to fight against the disease, and with the limitations of molluscicide application, developing more efficient strategies to interrupt the snail-mediated parasite transmission is being emphasized as potentially instrumental in the efforts toward schistosomiasis elimination, hence, necessitating thorough and comprehensive understanding of the fundamental mechanisms involved in the transmission process. Based on the current advances, this paper presents a concise exposition of the cellular, biochemical, genetic and immunological dynamics of the complex and statge-by-stage interactions between the parasite and its vector in their aquatic environment. It also highlights the possible crosstalk between the parasite's intracellular cyclic adenosine monophosphate (cAMP) and p38 mitogen-activated protein kinase (p38 MAPK) during the intramolluscan stage. Undoubtedly, decades of intensive investigation have untangled many S. mansoni-B. glabrata complexities, yet many aspects of the parasite-vector cycle which can help define potential control clues await further elucidation.
Collapse
|
16
|
Pila EA, Li H, Hambrook JR, Wu X, Hanington PC. Schistosomiasis from a Snail's Perspective: Advances in Snail Immunity. Trends Parasitol 2017; 33:845-857. [PMID: 28803793 DOI: 10.1016/j.pt.2017.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
The snail's immune response is an important determinant of schistosome infection success, acting in concert with host, parasite, and environmental factors. Coordinated by haemocytes and humoral factors, it possesses immunological hallmarks such as pattern recognition receptors, and predicted gastropod-unique factors like the immunoglobulin superfamily domain-containing fibrinogen-related proteins. Investigations into mechanisms that underpin snail-schistosome compatibility have advanced quickly, contributing functional insight to many observational studies. While the snail's immune response is important to continue studying from the perspective of evolutionary immunology, as the foundational determinants of snail-schistosome compatibility continue to be discovered, the possibility of exploiting the snail for schistosomiasis control moves closer into reach. Here, we review the current understanding of immune mechanisms that influence compatibility between Schistosoma mansoni and Biomphalaria glabrata.
Collapse
Affiliation(s)
- Emmanuel A Pila
- School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada; These authors contributed equally to this manuscript
| | - Hongyu Li
- School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada; Ocean College, Qinzhou University, Qinzhou, Guangxi 535099, China; These authors contributed equally to this manuscript
| | - Jacob R Hambrook
- School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada; These authors contributed equally to this manuscript
| | - Xinzhong Wu
- Ocean College, Qinzhou University, Qinzhou, Guangxi 535099, China
| | - Patrick C Hanington
- School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada.
| |
Collapse
|
17
|
Wu XJ, Dinguirard N, Sabat G, Lui HD, Gonzalez L, Gehring M, Bickham-Wright U, Yoshino TP. Proteomic analysis of Biomphalaria glabrata plasma proteins with binding affinity to those expressed by early developing larval Schistosoma mansoni. PLoS Pathog 2017; 13:e1006081. [PMID: 28520808 PMCID: PMC5433772 DOI: 10.1371/journal.ppat.1006081] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/20/2016] [Indexed: 11/19/2022] Open
Abstract
Interactions between early developing Schistosoma mansoni larval stages and the hemolymph of its snail intermediate host represent the first molecular encounter with the snail’s immune system. To gain a more comprehensive understanding of this early parasite-host interaction, biotinylated sporocyst tegumental membrane (Mem) proteins and larval transformation proteins (LTP) were affixed to streptavidin-agarose beads and used as affinity matrices to enrich for larval-reactive plasma proteins from susceptible (NMRI) and resistant (BS-90) strains of the snail Biomphalaria glabrata. Nano-LC/MS-MS proteomic analyses of isolated plasma proteins revealed a diverse array of 94 immune-and nonimmune-related plasma proteins. Included among the immune-related subset were pattern recognition receptors (lectins, LPS-binding protein, thioester-containing proteins-TEPs), stress proteins (HSP60 and 70), adhesion proteins (dermatopontins), metalloproteases (A Disintegrin And Metalloproteinase (ADAM), ADAM-related Zn proteinases), cytotoxins (biomphalysin) and a Ca2+-binding protein (neo-calmodulin). Variable immunoglobulin and lectin domain (VIgL) gene family members, including fibrinogen-related proteins (FREPs), galectin-related proteins (GREPs) and C-type lectin-related proteins (CREPs), were the most prevalent of larval-reactive immune lectins present in plasma. FREPs were highly represented, although only a subset of FREP subfamilies (FREP 2, 3 and 12) were identified, suggesting potential selectivity in the repertoire of plasma lectins recognizing larval glycoconjugates. Other larval-binding FREP-like and CREP-like proteins possessing a C-terminal fibrinogen-related domain (FReD) or C-type lectin binding domain, respectively, and an Ig-fold domain also were identified as predicted proteins from the B. glabrata genome, although incomplete sequence data precluded their placement into specific FREP/CREP subfamilies. Similarly, a group of FReD-containing proteins (angiopoeitin-4, ficolin-2) that lacked N-terminal Ig-fold(s) were identified as a distinct group of FREP-like proteins, separate from the VIgL lectin family. Finally, differential appearance of GREPs in BS-90 plasma eluates, and others proteins exclusively found in eluates of the NMRI strain, suggested snail strain differences in the expression of select larval-reactive immune proteins. This hypothesis was supported by the finding that differential gene expression of the GREP in BS-90 and ADAM in NMRI snail strains generally correlated with their patterns of protein expression. In summary, this study is the first to provide a global comparative proteomic analysis of constitutively expressed plasma proteins from susceptible and resistant B. glabrata strains capable of binding early-expressed larval S. mansoni proteins. Identified proteins, especially those exhibiting differential expression, may play a role in determining immune compatibility in this snail host-parasite system. A complete listing of raw peptide data are available via ProteomeXchange using identifier PXD004942. Transmission of the human blood fluke Schistosoma mansoni critically depends on the successful establishment of infections within species of its snail intermediate host, Biomphalaria. One of the most important barriers to infection is the host’s innate immune system, comprised of plasma proteins and immunocytes (hemocytes) circulating in the hemolymph. Although expression of plasma lectin genes appears to be associated with larval resistance in B. glabrata, few studies have attempted an in depth analysis of gene-encoded lectins, and other immune proteins, that are capable of directly binding schistosome larvae. Using affinity matrices linked to schistosome proteins expressed during early larval development, we identified and compared the parasite-reactive plasma proteins from the susceptible NMRI and resistant BS-90 strains of B. glabrata. Proteomic analyses of isolated plasma proteins revealed a diversity immune-related proteins including lectins, pathogen recognition receptors, cytotoxins, adhesion proteins, metalloproteinases, and Ca2+-binding proteins. Of the lectins, the variable immunoglobulin and lectin domain (VIgL) gene family of proteins comprised of fibrinogen-related proteins (FREPs), galectin-related proteins (GREPs) and C-type lectin-related proteins (CREPs), were highly represented, and consistent with their role in host immunity. Two proteins (GREP and a Zn-metalloproteinase) exhibited snail strain-associated protein and gene expression patterns suggesting their involvement in innate immune responses to larval infection. This comparative proteomic analysis of larval S. mansoni-reactive plasma proteins from susceptible and resistant B. glabrata strains represents the first of its kind and provides valuable insights into possible pathogen recognition receptors and other immune factors regulating parasite-host compatibility in this model system.
Collapse
Affiliation(s)
- Xiao-Jun Wu
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Grzegorz Sabat
- Biotechnology Center, Mass Spectrometry/Proteomics Facility, University of Wisconsin, Madison, WI, United States of America
| | - Hong-di Lui
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Laura Gonzalez
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Michael Gehring
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Utibe Bickham-Wright
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
18
|
Lange MK, Penagos-Tabares F, Muñoz-Caro T, Gärtner U, Mejer H, Schaper R, Hermosilla C, Taubert A. Gastropod-derived haemocyte extracellular traps entrap metastrongyloid larval stages of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior. Parasit Vectors 2017; 10:50. [PMID: 28143510 PMCID: PMC5282800 DOI: 10.1186/s13071-016-1961-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/28/2016] [Indexed: 01/06/2023] Open
Abstract
Background Phagocyte-derived extracellular traps (ETs) were recently demonstrated mainly in vertebrate hosts as an important effector mechanism against invading parasites. In the present study we aimed to characterize gastropod-derived invertebrate extracellular phagocyte trap (InEPT) formation in response to larval stages of important canine and feline metastrongyloid lungworms. Gastropod haemocytes were isolated from the slug species Arion lusitanicus and Limax maximus, and the snail Achatina fulica, and exposed to larval stages of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior and investigated for gastropod-derived InEPT formation. Results Phase contrast as well as scanning electron microscopy (SEM) analyses of lungworm larvae-exposed haemocytes revealed ET-like structures to be extruded by haemocytes thereby contacting and ensnaring the parasites. Co-localization studies of haemocyte-derived extracellular DNA with histones and myeloperoxidase in larvae-entrapping structures confirmed classical characteristics of ETs. In vivo exposure of slugs to A. vasorum larvae resulted in InEPTs being extruded from haemocytes in the slug mucous extrapallial space emphasizing the pivotal role of this effector mechanism against invasive larvae. Functional larval entrapment assays demonstrated that almost half of the haemocyte-exposed larvae were contacted or even immobilized by released InEPTs. Overall, as reported for mammalian-derived ETs, different types of InEPTs were here observed, i.e. aggregated, spread and diffused InEPTs. Conclusions To our knowledge, this study represents the first report on metastrongyloid lungworm-triggered ETosis in gastropods thereby providing evidence of early mollusc host innate immune reactions against invading larvae. These findings will contribute to the better understanding on complex parasite-intermediate host interactions since different gastropod species bear different transmitting capacities for metastrongyloid infections. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1961-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malin K Lange
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, 35392, Germany.
| | | | - Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Helena Mejer
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | | | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, 35392, Germany
| |
Collapse
|
19
|
Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite interactions. Mol Biochem Parasitol 2016; 215:47-57. [PMID: 27939587 DOI: 10.1016/j.molbiopara.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
Abstract
Glycoproteins and glycolipids of parasitic helminths play important roles in biology and host-parasite interaction. This review discusses recent helminth glycomics studies that have been expanding our insights into the glycan repertoire of helminths. Structural data are integrated with biological and immunological observations to highlight how glycomics advances our understanding of the critical roles that glycans and glycan motifs play in helminth infection biology. Prospects and challenges in helminth glycomics and glycobiology are discussed.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Angela van Diepen
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Jiménez-Castells C, Vanbeselaere J, Kohlhuber S, Ruttkowski B, Joachim A, Paschinger K. Gender and developmental specific N-glycomes of the porcine parasite Oesophagostomum dentatum. Biochim Biophys Acta Gen Subj 2016; 1861:418-430. [PMID: 27751954 DOI: 10.1016/j.bbagen.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND The porcine nodule worm Oesophagostomum dentatum is a strongylid class V nematode rather closely related to the model organism Caenorhabditis elegans. However, in contrast to the non-parasitic C. elegans, the parasitic O. dentatum is an obligate sexual organism, which makes both a gender and developmental glycomic comparison possible. METHODS Different enzymatic and chemical methods were used to release N-glycans from male and female O. dentatum as well as from L3 and L4 larvae. Glycans were analysed by MALDI-TOF MS after either 2D-HPLC (normal then reversed phase) or fused core RP-HPLC. RESULTS Whereas the L3 N-glycome was simpler and more dominated by phosphorylcholine-modified structures, the male and female worms express a wide range of core fucosylated N-glycans with up to three fucose residues. Seemingly, simple methylated paucimannosidic structures can be considered 'male', while methylation of fucosylated glycans was more pronounced in females. On the other hand, while many of the fucosylated paucimannosidic glycans are identical with examples from other nematode species, but simpler than the tetrafucosylated glycans of C. elegans, there is a wide range of phosphorylcholine-modified glycans with extended HexNAc2-4PC2-4 motifs not observed in our previous studies on other nematodes. CONCLUSION The interspecies tendency of class V nematodes to share most, but not all, N-glycans applies also to O. dentatum; furthermore, we establish, for the first time in a parasitic nematode, that glycomes vary upon development and sexual differentiation. GENERAL SIGNIFICANCE Unusual methylated, core fucosylated and phosphorylcholine-containing N-glycans vary between stages and genders in a parasitic nematode.
Collapse
Affiliation(s)
| | | | - Sonja Kohlhuber
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Bärbel Ruttkowski
- Institut für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Anja Joachim
- Institut für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | | |
Collapse
|
21
|
Georgieva K, Georgieva L, Mizinska-Boevska Y, Stoitsova SR. Study of surface carbohydrates in Galba truncatula tissues before and after infection with Fasciola hepatica. Mem Inst Oswaldo Cruz 2016; 111:475-83. [PMID: 27384082 PMCID: PMC4957501 DOI: 10.1590/0074-02760160141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/30/2016] [Indexed: 11/21/2022] Open
Abstract
The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed.
Collapse
Affiliation(s)
- Katya Georgieva
- Bulgarian Academy of Sciences, Institute of Biodiversity and Ecosystem Research, Department of Animal Diversity and Resources, Sofia, Bulgaria
| | - Liliya Georgieva
- Bulgarian Academy of Sciences, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Yana Mizinska-Boevska
- Bulgarian Academy of Sciences, Institute of Biodiversity and Ecosystem Research, Department of Animal Diversity and Resources, Sofia, Bulgaria
| | | |
Collapse
|
22
|
Pila EA, Sullivan JT, Wu XZ, Fang J, Rudko SP, Gordy MA, Hanington PC. Haematopoiesis in molluscs: A review of haemocyte development and function in gastropods, cephalopods and bivalves. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:119-28. [PMID: 26592965 PMCID: PMC4775334 DOI: 10.1016/j.dci.2015.11.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 05/23/2023]
Abstract
Haematopoiesis is a process that is responsible for generating sufficient numbers of blood cells in the circulation and in tissues. It is central to maintenance of homeostasis within an animal, and is critical for defense against infection. While haematopoiesis is common to all animals possessing a circulatory system, the specific mechanisms and ultimate products of haematopoietic events vary greatly. Our understanding of this process in non-vertebrate organisms is primarily derived from those species that serve as developmental and immunological models, with sparse investigations having been carried out in other organisms spanning the metazoa. As research into the regulation of immune and blood cell development advances, we have begun to gain insight into haematopoietic events in a wider array of animals, including the molluscs. What began in the early 1900's as observational studies on the morphological characteristics of circulating immune cells has now advanced to mechanistic investigations of the cytokines, growth factors, receptors, signalling pathways, and patterns of gene expression that regulate molluscan haemocyte development. Emerging is a picture of an incredible diversity of developmental processes and outcomes that parallels the biological diversity observed within the different classes of the phylum Mollusca. However, our understanding of haematopoiesis in molluscs stems primarily from the three most-studied classes, the Gastropoda, Cephalopoda and Bivalvia. While these represent perhaps the molluscs of greatest economic and medical importance, the fact that our information is limited to only 3 of the 9 extant classes in the phylum highlights the need for further investigation in this area. In this review, we summarize the existing literature that defines haematopoiesis and its products in gastropods, cephalopods and bivalves.
Collapse
Affiliation(s)
- E A Pila
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G7, Canada
| | - J T Sullivan
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA, 94117, USA
| | - X Z Wu
- Ocean College, Qinzhou University, Qinzhou, 535099, Guangxi, PR China
| | - J Fang
- Ocean College, Qinzhou University, Qinzhou, 535099, Guangxi, PR China
| | - S P Rudko
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G7, Canada
| | - M A Gordy
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G7, Canada
| | - P C Hanington
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G2G7, Canada.
| |
Collapse
|
23
|
Mickum ML, Rojsajjakul T, Yu Y, Cummings RD. Schistosoma mansoni α1,3-fucosyltransferase-F generates the Lewis X antigen. Glycobiology 2015; 26:270-85. [PMID: 26582608 DOI: 10.1093/glycob/cwv103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/01/2015] [Indexed: 02/03/2023] Open
Abstract
Genetic evidence suggests that the Schistosoma mansoni genome contains six genes that encode α1,3-fucosyltransferases (smFuTs). To date, the activities and specificities of these putative fucosyltransferases are unknown. As Schistosoma express a variety of fucosylated glycans, including the Lewis X antigen Galβ1-4(Fucα1-3)GlcNAcβ-R, it is likely that this family of genes encode enzymes that are partly responsible for the generation of those structures. Here, we report the molecular cloning of fucosyltransferase-F (smFuT-F) from S. mansoni, as a soluble, green fluorescent protein fusion protein and its acceptor specificity. The gene smFuT-F was expressed in HEK freestyle cells, purified by affinity chromatography, and analyzed toward a broad panel of glycan acceptors. The enzyme product of smFuT-F effectively utilizes a type II chain acceptor Galβ1-4GlcNAc-R, but notably not the LDN sequence GalNAcβ1-4GlcNAc-R, to generate Lewis X type-glycans, and smFuT-F transcripts are present in all intramammalian life stages.
Collapse
Affiliation(s)
- Megan L Mickum
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Teerapat Rojsajjakul
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ying Yu
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Gordy MA, Pila EA, Hanington PC. The role of fibrinogen-related proteins in the gastropod immune response. FISH & SHELLFISH IMMUNOLOGY 2015; 46:39-49. [PMID: 25765166 DOI: 10.1016/j.fsi.2015.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 05/16/2023]
Abstract
Fibrinogen-related proteins or FREPs constitute a large family of molecules, defined by the presence of a fibrinogen-related domain (FReD). These molecules are found in all animals and are diverse in both form and function. Here, we review the current understanding of gastropod FREPs, which are characterized by the presence of a fibrinogen domain connected to one or two immunoglobulin superfamily domains by way of a short interceding region. We present a historical perspective on the discovery of FREPs in gastropods followed by a summary of advances made in the nearly two decades of research focused on the characterization of FREPs in Biomphalaria glabrata (BgFREPs). Topics covered include BgFREP genomic architecture, predicted structure and known functions, structural comparisons between BgFREPs, and evidence of somatic diversification. Also examined are the expression patterns of BgFREPs during snail development and immunological challenges. Recent functional characterization of the role BgFREPs play in the defence response against digenean trematodes is also presented, as well as new data investigating the nucleotide-level genomic conservation of FREPs among Pulmonate gastropods. Finally, we identify areas in need of further research. These include confirming and identifying the specific binding targets of BgFREPs and elucidating how they later engage snail haemocytes to elicit an immunological response, precise mechanisms and importance of BgFREP diversification, characterizing the tissue expression patterns of BgFREPs, as well as addressing whether gastropod FREPs retain immunological importance in alternative snail-trematode associations or more broadly in snail-pathogen interactions.
Collapse
Affiliation(s)
- Michelle A Gordy
- The School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada.
| | - Emmanuel A Pila
- The School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada.
| | - Patrick C Hanington
- The School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada.
| |
Collapse
|
25
|
Coustau C, Gourbal B, Duval D, Yoshino TP, Adema CM, Mitta G. Advances in gastropod immunity from the study of the interaction between the snail Biomphalaria glabrata and its parasites: A review of research progress over the last decade. FISH & SHELLFISH IMMUNOLOGY 2015; 46:5-16. [PMID: 25662712 DOI: 10.1016/j.fsi.2015.01.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 05/16/2023]
Abstract
This review summarizes the research progress made over the past decade in the field of gastropod immunity resulting from investigations of the interaction between the snail Biomphalaria glabrata and its trematode parasites. A combination of integrated approaches, including cellular, genetic and comparative molecular and proteomic approaches have revealed novel molecular components involved in mediating Biomphalaria immune responses that provide insights into the nature of host-parasite compatibility and the mechanisms involved in parasite recognition and killing. The current overview emphasizes that the interaction between B. glabrata and its trematode parasites involves a complex molecular crosstalk between numerous antigens, immune receptors, effectors and anti-effector systems that are highly diverse structurally and extremely variable in expression between and within host and parasite populations. Ultimately, integration of these molecular signals will determine the outcome of a specific interaction between a B. glabrata individual and its interacting trematodes. Understanding these complex molecular interactions and identifying key factors that may be targeted to impairment of schistosome development in the snail host is crucial to generating new alternative schistosomiasis control strategies.
Collapse
Affiliation(s)
- C Coustau
- Sophia Agrobiotech Institute, INRA-CNRS-UNS, Sophia Antipolis, France
| | - B Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - D Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - T P Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - C M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - G Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France.
| |
Collapse
|
26
|
Mucin-Type O-Glycosylation in Invertebrates. Molecules 2015; 20:10622-40. [PMID: 26065637 PMCID: PMC6272458 DOI: 10.3390/molecules200610622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especially in correlation with cancer or developmental abnormalities, are still under investigation. The knowledge of the correlating invertebrate systems and evolutionary aspects of these highly conserved biosynthetic events may help improve the understanding of the regulatory factors of this pathway. Invertebrates display a broad spectrum of glycosylation varieties, providing an enormous potential for glycan modifications which may be used for the design of new pharmaceutically active substances. Here, overviews of the present knowledge of invertebrate mucin-type O-glycan structures and the currently identified enzymes responsible for the biosynthesis of these oligosaccharides are presented, and the few data dealing with functional aspects of O-glycans are summarised.
Collapse
|
27
|
Rowley AF, Smith AL, Davies CE. How does the dinoflagellate parasite Hematodinium outsmart the immune system of its crustacean hosts? PLoS Pathog 2015; 11:e1004724. [PMID: 25951086 PMCID: PMC4423953 DOI: 10.1371/journal.ppat.1004724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Andrew F. Rowley
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| | - Amanda L. Smith
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| | - Charlotte E. Davies
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
28
|
Smit CH, van Diepen A, Nguyen DL, Wuhrer M, Hoffmann KF, Deelder AM, Hokke CH. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs. Mol Cell Proteomics 2015; 14:1750-69. [PMID: 25883177 PMCID: PMC4587318 DOI: 10.1074/mcp.m115.048280] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/30/2022] Open
Abstract
Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galβ1–4(Fucα1–3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcβ1–4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galβ1–3(Galβ1–6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly fucosylated stretches enriched in mature eggs and miracidia. This global analysis of the developing schistosome's glycome provides new insights into how stage-specifically expressed glycans may contribute to different aspects of schistosome-host interactions.
Collapse
Affiliation(s)
- Cornelis H Smit
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Angela van Diepen
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - D Linh Nguyen
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- §Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Karl F Hoffmann
- ¶Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3FG, United Kingdom
| | - André M Deelder
- §Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cornelis H Hokke
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
29
|
Adema CM, Loker ES. Digenean-gastropod host associations inform on aspects of specific immunity in snails. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:275-83. [PMID: 25034871 PMCID: PMC4258543 DOI: 10.1016/j.dci.2014.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 05/16/2023]
Abstract
Gastropod immunology is informed importantly by the study of the frequent encounters snails endure with digeneans (digenetic trematodes). One of the hallmarks of gastropod-digenean associations is their specificity: any particular digenean parasite species is transmitted by a limited subset of snail taxa. We discuss the nature of this specificity, including its immunological basis. We then review studies of the model gastropod Biomphalaria glabrata indicating that the baseline responses of snails to digeneans can be elevated in a specific manner. Studies incorporating molecular and functional approaches are then highlighted, and are further suggestive of the capacity for specific gastropod immune responses. These studies have led to the compatibility polymorphism hypothesis: the interactions between diversified fibrinogen-related proteins (FREPs) and diverse carbohydrate-decorated polymorphic parasite antigens determine recognition and trigger specific immunity. Complex glycan structures are also likely to play a role in the host specificity typifying snail-digenean interactions. We conclude by noting the dynamic and consequential interactions between snails and digeneans can be considered as drivers of diversification of digenean parasites and in the development and maintenance of specific immunity in gastropods.
Collapse
Affiliation(s)
- C M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - E S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
30
|
Mickum ML, Prasanphanich NS, Heimburg-Molinaro J, Leon KE, Cummings RD. Deciphering the glycogenome of schistosomes. Front Genet 2014; 5:262. [PMID: 25147556 PMCID: PMC4122909 DOI: 10.3389/fgene.2014.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Schistosoma mansoni and other Schistosoma sp. are multicellular parasitic helminths (worms) that infect humans and mammals worldwide. Infection by these parasites, which results in developmental maturation and sexual differentiation of the worms over a period of 5–6 weeks, induces antibodies to glycan antigens expressed in surface and secreted glycoproteins and glycolipids. There is growing interest in defining these unusual parasite-synthesized glycan antigens and using them to understand immune responses, their roles in immunomodulation, and in using glycan antigens as potential vaccine targets. A key problem in this area, however, has been the lack of information about the enzymes involved in elaborating the complex repertoire of glycans represented by the schistosome glycome. Recent availability of the nuclear genome sequences for Schistosoma sp. has created the opportunity to define the glycogenome, which represents the specific genes and cognate enzymes that generate the glycome. Here we describe the current state of information in regard to the schistosome glycogenome and glycome and highlight the important classes of glycans and glycogenes that may be important in their generation.
Collapse
Affiliation(s)
- Megan L Mickum
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Nina S Prasanphanich
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | | | - Kristoffer E Leon
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
31
|
Knight M, Arican-Goktas HD, Ittiprasert W, Odoemelam EC, Miller AN, Bridger JM. Schistosomes and snails: a molecular encounter. Front Genet 2014; 5:230. [PMID: 25101114 PMCID: PMC4104801 DOI: 10.3389/fgene.2014.00230] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/30/2014] [Indexed: 11/13/2022] Open
Abstract
Biomphalaria glabrata snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis in the Western hemisphere. For the past two decades, tremendous advances have been made in research aimed at elucidating the molecular basis of the snail/parasite interaction. The growing concern that there is no vaccine to prevent schistosomiasis and only one effective drug in existence provides the impetus to develop new control strategies based on eliminating schistosomes at the snail-stage of the life cycle. To elucidate why a given snail is not always compatible to each and every schistosome it encounters, B. glabrata that are either resistant or susceptible to a given strain of S. mansoni have been employed to track molecular mechanisms governing the snail/schistosome relationship. With such snails, genetic markers for resistance and susceptibility were identified. Additionally, differential gene expression studies have led to the identification of genes that underlie these phenotypes. Lately, the role of schistosomes in mediating non-random relocation of gene loci has been identified for the first time, making B. glabrata a model organism where chromatin regulation by changes in nuclear architecture, known as spatial epigenetics, orchestrated by a major human parasite can now be investigated. This review will highlight the progress that has been made in using molecular approaches to describe snail/schistosome compatibility issues. Uncovering the signaling networks triggered by schistosomes that provide the impulse to turn genes on and off in the snail host, thereby controlling the outcome of infection, could also yield new insights into anti-parasite mechanism(s) that operate in the human host as well.
Collapse
Affiliation(s)
- Matty Knight
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Washington, DC, USA
| | | | | | - Edwin C Odoemelam
- Biosciences, Health Sciences and Social Care, Brunel University London London, UK
| | - André N Miller
- Schistosomiasis, Biomedical Research Institute Rockville, MD, USA
| | - Joanna M Bridger
- Biosciences, Health Sciences and Social Care, Brunel University London London, UK
| |
Collapse
|
32
|
Alba A, Hernández HM, Marcet R, Gil AL, Vázquez AA, Figueredo M, Sánchez J, Garay HE, Sarracent J. Exploring the antigenic features of Fasciola hepatica rediae (Trematoda: Digenea) through the evaluation of different antigenic candidates for further monoclonal antibody generation. Parasitol Res 2014; 113:3185-93. [PMID: 24924436 DOI: 10.1007/s00436-014-3981-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
The control of fasciolosis, as that of other vector-borne diseases, must be related to the control of the lymnaeid snails, the intermediate hosts of the parasite. Thus, an accurate epidemiological surveillance of the transmission foci where the infected mollusks occur is essential. For this purpose, immunoassays could be a useful tool. However, information regarding specific proteins of intramolluscan larvae and previous studies concerning monoclonal antibody generation against asexual stages of trematodes are scarce. Therefore, we explored the antigenic features of intramolluscan rediae of Fasciola hepatica to evaluate three antigenic preparations in order to use the most promising one for developing specific monoclonal antibodies. Mouse antiserum was generated against each antigen for assessing the polyclonal antibody response against the crude extract of rediae and the cross-reactivity against lymnaeids. The specific C-terminal of F. hepatica cytochrome c oxidase subunit I (first antigen), selected by in silico analyses, might not be the appropriate target for immunoassay detection of infected snails, due to its low representation in the total extract of rediae. The majoritarian mixture of low-molecular-weight proteins (<30 kDa) from the rediae homogenate (second antigen) revealed a significant cross-reactivity with lymnaeids. Evidence of the existence of mimetic immunogenic epitopes in this fraction of F. hepatica rediae was achieved. High immunogenicity of the crude extract of rediae (third antigen), mainly related to parasite's specific epitopes, was regarded. Therefore, the rediae homogenate is stated as the most promising antigen from those evaluated, for monoclonal antibody development with potentialities for detecting F. hepatica-infected snails.
Collapse
Affiliation(s)
- Annia Alba
- Laboratorio de Anticuerpos Monoclonales, Departamento de Parasitología, Instituto de Medicina Tropical "Pedro Kourí", Ave Novia del Mediodía km 6 ½, AP 601, Havana, Cuba,
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Prasopdee S, Sotillo J, Tesana S, Laha T, Kulsantiwong J, Nolan MJ, Loukas A, Cantacessi C. RNA-Seq reveals infection-induced gene expression changes in the snail intermediate host of the carcinogenic liver fluke, Opisthorchis viverrini. PLoS Negl Trop Dis 2014; 8:e2765. [PMID: 24676090 PMCID: PMC3967946 DOI: 10.1371/journal.pntd.0002765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/16/2014] [Indexed: 01/29/2023] Open
Abstract
Background Bithynia siamensis goniomphalos is the snail intermediate host of the liver fluke, Opisthorchis viverrini, the leading cause of cholangiocarcinoma (CCA) in the Greater Mekong sub-region of Thailand. Despite the severe public health impact of Opisthorchis-induced CCA, knowledge of the molecular interactions occurring between the parasite and its snail intermediate host is scant. The examination of differences in gene expression profiling between uninfected and O. viverrini-infected B. siamensis goniomphalos could provide clues on fundamental pathways involved in the regulation of snail-parasite interplay. Methodology/Principal Findings Using high-throughput (Illumina) sequencing and extensive bioinformatic analyses, we characterized the transcriptomes of uninfected and O. viverrini-infected B. siamensis goniomphalos. Comparative analyses of gene expression profiling allowed the identification of 7,655 differentially expressed genes (DEGs), associated to 43 distinct biological pathways, including pathways associated with immune defense mechanisms against parasites. Amongst the DEGs with immune functions, transcripts encoding distinct proteases displayed the highest down-regulation in Bithynia specimens infected by O. viverrini; conversely, transcription of genes encoding heat-shock proteins and actins was significantly up-regulated in parasite-infected snails when compared to the uninfected counterparts. Conclusions/Significance The present study lays the foundation for functional studies of genes and gene products potentially involved in immune-molecular mechanisms implicated in the ability of the parasite to successfully colonize its snail intermediate host. The annotated dataset provided herein represents a ready-to-use molecular resource for the discovery of molecular pathways underlying susceptibility and resistance mechanisms of B. siamensis goniomphalos to O. viverrini and for comparative analyses with pulmonate snail intermediate hosts of other platyhelminths including schistosomes. Despite recent significant advances in knowledge of the fundamental biology of the carcinogenic liver fluke Opisthorchis viverrini, little is known of the complement of molecular interactions occurring between this parasite and its prosobranch snail intermediate host, Bithynia siamensis goniomphalos. The determination of such interactions is a key, necessary component of the development of future integrated control strategies for liver fluke infection and associated bile duct cancer. Here, we use cutting-edge high-throughput sequencing technologies and advanced bioinformatic analyses to characterize, for the first time, qualitative and quantitative differences in gene expression between uninfected and O. viverrini-infected B. siamensis goniomphalos collected from an endemic region of Northeast Thailand. The analyses led to the identification of a number of molecules putatively involved in immune defense pathways against invading O. viverrini, and of key biological mechanisms potentially implicated in the ability of the parasite to successfully colonize its snail intermediate host. We believe that this ready-to-use molecular resource will provide the scientific community with new tools for the development of strategies to control the spread of liver fluke infection and the resulting bile duct cancer.
Collapse
Affiliation(s)
- Sattrachai Prasopdee
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thewarach Laha
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutharat Kulsantiwong
- Department of Biology, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, Thailand
| | - Matthew J. Nolan
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Cinzia Cantacessi
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Kawasaki M, Delamare-Deboutteville J, Dang C, Barnes AC. Hemiuroid trematode sporocysts are undetected by hemocytes of their intermediate host, the ark cockle Anadara trapezia: potential role of surface carbohydrates in successful parasitism. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1937-1947. [PMID: 24161777 DOI: 10.1016/j.fsi.2013.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 06/02/2023]
Abstract
In order to establish a successful relationship with their hosts, parasites must subvert or evade immune defences. Cockle Anadara trapezia and Sydney Rock oyster (SRO) Saccostrea glomerata live in the same location but only ark cockles are infected by sporocysts of hemiuroid trematode. This provides an opportunity to explore differing interactions between the parasite and the immune system of susceptible and refractive hosts. Rapid migration and encapsulation of sporocysts was observed by SRO hemocytes but not by cockle hemocytes. This migration/encapsulation was inhibited by N-acetylglucosamine or N-acetylgalactosamine but not by the other sugars, implicating specific surface carbohydrates in immune detection. Effector responses of hemocytes were investigated in vitro in terms of production of reactive oxygen production (ROS). Hemocytes of both species strongly reacted to Zymosan, but only SRO hemocytes responded to live sporocysts. Neither species' hemocytes produced ROS in the presence of dead/fixed sporocysts, and there was no suppression of Zymosan-induced respiratory burst by sporocysts. This suggests that immune escape is mediated by avoiding encapsulation, perhaps through molecular mimicry. Membrane-shaving with proteases indicated that sporocyst surface proteins are not a key factors in hemocytic detection. Surface carbohydrates of SRO and cockle hemocytes and of sporocysts were profiled with a panel of biotinylated lectins. This revealed substantial differences between cockle and SRO hemocytes, but greater similarity between cockle hemocytes and sporocysts. Results suggest that surface carbohydrates play an integral role in hemocyte immunorecognition and that surface carbohydrate molecular mimicry is a potential strategy for immune evasion in cockles by hemiuroid trematode sporocysts.
Collapse
Affiliation(s)
- Minami Kawasaki
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
35
|
Kurz S, Jin C, Hykollari A, Gregorich D, Giomarelli B, Vasta GR, Wilson IBH, Paschinger K. Hemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulfated and blood group A-modified N-glycans. J Biol Chem 2013; 288:24410-28. [PMID: 23824194 DOI: 10.1074/jbc.m113.478933] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eastern oyster (Crassostrea virginica) has become a useful model system for glycan-dependent host-parasite interactions due to the hijacking of the oyster galectin CvGal1 for host entry by the protozoan parasite Perkinsus marinus, the causative agent of Dermo disease. In this study, we examined the N-glycans of both the hemocytes, which via CvGal1 are the target of the parasite, and the plasma of the oyster. In combination with HPLC fractionation, exoglycosidase digestion, and fragmentation of the glycans, mass spectrometry revealed that the major N-glycans of plasma are simple hybrid structures, sometimes methylated and core α1,6-fucosylated, with terminal β1,3-linked galactose; a remarkable high degree of sulfation of such glycans was observed. Hemocytes express a larger range of glycans, including core-difucosylated paucimannosidic forms, whereas bi- and triantennary glycans were found in both sources, including structures carrying sulfated and methylated variants of the histo-blood group A epitope. The primary features of the oyster whole hemocyte N-glycome were also found in dominin, the major plasma glycoprotein, which had also been identified as a CvGal1 glycoprotein ligand associated with hemocytes. The occurrence of terminal blood group moieties on oyster dominin and on hemocyte surfaces can account in part for their affinity for the endogenous CvGal1.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|