1
|
Manikantan V, Ripley NE, Nielsen MK, Dangoudoubiyam S. Protein profile of extracellular vesicles derived from adult Parascaris spp. Parasit Vectors 2024; 17:426. [PMID: 39390471 PMCID: PMC11468347 DOI: 10.1186/s13071-024-06502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Parascaris spp. represent a significant threat to equine health worldwide, particularly in foals. The long-term survival of parasites in the host necessitates persistent modulation of the host immune response. Intercellular communication achieved through the exchange of molecules via extracellular vesicles (EVs) released from the parasite could be a crucial factor in this regard. This study aimed to isolate and characterize EVs released by adult male and female Parascaris worms and conduct a proteomic analysis to identify sex-specific proteins and potential immunomodulatory factors. METHODS Live adult Parascaris worms were collected, and EVs were isolated from spent culture media using differential ultracentrifugation. Nanoparticle tracking analysis and transmission electron microscopy confirmed the size, concentration, and morphology of the isolated EVs. Proteins within the isolated EVs were analyzed using mass spectrometry-based proteomics (LC-MS/MS). RESULTS Proteomic analysis revealed a total of 113 proteins in Parascaris EVs, with several proteins showing homology to known helminth exosome proteins and exhibiting immunomodulatory functions. Sex-specific differences in EV protein composition were observed, with a distinct abundance of C-type lectins in female EVs, suggesting potential sex-specific roles or regulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed metabolic pathways shared between male and female Parascaris EVs, as well as differences in signal transduction, and cell growth and death pathways, indicating sex-specific variations. CONCLUSIONS These findings imply that Parascaris EVs and their protein cargo are complex. This data potentially opens avenues for discovering innovative approaches to managing and understanding helminth infection.
Collapse
Affiliation(s)
- Vishnu Manikantan
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Nichol E Ripley
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Sriveny Dangoudoubiyam
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Roldán Gonzáles WH, Coelho GR, Pimenta DC, de Paula FM, Gryschek RCB. Proteomic analysis of the excretory-secretory products from Strongyloides venezuelensis infective larvae: new insights for the immunodiagnosis of human strongyloidiasis. Parasitol Res 2022; 121:3155-3170. [PMID: 36044090 DOI: 10.1007/s00436-022-07636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Serodiagnosis of human strongyloidiasis is a practical alternative to parasitological methods due to its high sensitivity. However, cross-reactivity with other helminth infections limits its utility, and this problem is due to the use of homologous or heterologous somatic extracts of the parasite as an antigen source. Excretory-secretory (E/S) products from Strongyloides infective larvae can be used to improve the serodiagnosis. The combined use of western blot and proteomics became an interesting strategy to identify immunological markers for the serodiagnosis of strongyloidiasis. The present study describes the proteomic analysis of the antigenic components from E/S products of S. venezuelensis infective larvae that were recognized by IgG antibodies from patients with strongyloidiasis. Our results showed that IgG antibodies from patients with strongyloidiasis recognized between 15 and 16 antigenic bands in the E/S products from S. venezuelensis that were incubated in PBS or in RPMI culture medium, respectively. Overall, antigenic bands of low and high molecular weight were more specific than those of intermediate molecular weight, which were cross-reactive. A 36-kDa antigenic band was 93% sensitive and 100% specific (a probably arginine kinase of 37 kDa), while other antigenic bands were highly sensitive but low specific. Proteomic analysis revealed differences between the protein profiles from E/S-RPMI and E/S-PBS since only one-third of all proteins identified were common in both types of E/S products. Bioinformatic analysis showed that more than 50% of the proteins from E/S products are secreted within extracellular vesicles and only a small percentage of them are actually released by the classical secretory pathway. Several components from the E/S products were identified as plasminogen-binding proteins, probably used as an immune evasion mechanism. The data provided here provide valuable information to increase understanding of E/S products from S. venezuelensis infective larvae. This may help us to find new targets for the immunodiagnosis of human strongyloidiasis.
Collapse
Affiliation(s)
- William Henry Roldán Gonzáles
- Laboratório de Investigação Médica (LIM/06), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | - Fabiana Martins de Paula
- Laboratório de Investigação Médica (LIM/06), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
| | - Ronaldo Cesar Borges Gryschek
- Laboratório de Investigação Médica (LIM/06), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
3
|
Tian X, Lu M, Bu Y, Zhang Y, Aimulajiang K, Liang M, Li C, Yan R, Xu L, Song X, Li X. Immunization With Recombinant Haemonchus contortus Y75B8A.8 Partially Protects Local Crossbred Female Goats From Haemonchus contortus Infection. Front Vet Sci 2022; 9:765700. [PMID: 35445096 PMCID: PMC9014092 DOI: 10.3389/fvets.2022.765700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Haemonchus contortus Y75B8A.8 (Hc8) derived from H. contortus excretory–secretory (ES) products was identified as a functional inhibitor of goat interleukin 2 (IL-2). It may act as a vaccine candidate for the development of therapeutic strategies against H. contortus infection. In this research, recombinant Hc8 (rHc8) and goat anti-rHc8 polyclonal antibodies were employed to evaluate the protective capacities of Hc8 antigen against H. contortus infections via active and passive immunization trials, respectively. In both trials, local crossbred female goats aged 9–12 months old were randomly divided into three groups, five in each group, respectively. Parasitological examinations, including fecal egg counts (FEC), cumulative FEC (cFEC), and worm burdens, were performed. In addition, antibody levels in mucosal homogenate (MH) samples and hematological and immunological parameters were detected. In the passive trial, goats were intravenously immunized with 5 mg total IgG containing anti-rHc8 goat polyclonal antibodies. After twice immunization, compared with the challenged control group, cFEC was reduced by 39%. In addition, there was a 46% reduction of worm burdens compared with the challenged controls. In the active immunization trials, 500 μg of recombinant Hc8 protein was given subcutaneously twice to 9–12-month-old local crossbred female goats with a 2-week interval, resulting in the generation of high levels of antigen-specific circulating antibodies. Besides, cFEC and abomasal worm burden were reduced by 70 and 55%, respectively, compared with the challenged control group. In addition, immunized goats had higher mucosal homogenate IgA and hemoglobin levels than the challenged controls in both passive and active immunization trials. These preliminary results demonstrated the immunoprophylactic effects of Hc8 antigen and will inform new studies on ES proteins in developing subunit recombinant vaccines against H. contortus.
Collapse
Affiliation(s)
- Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongqian Bu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Ehsan M, Hu RS, Liang QL, Hou JL, Song X, Yan R, Zhu XQ, Li X. Advances in the Development of Anti- Haemonchus contortus Vaccines: Challenges, Opportunities, and Perspectives. Vaccines (Basel) 2020; 8:vaccines8030555. [PMID: 32971770 PMCID: PMC7565421 DOI: 10.3390/vaccines8030555] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal nematode parasite Haemonchus contortus (H. contortus) is a resident of tropical and subtropical regions worldwide that imposes significant production losses, economic losses, and animal health issues in the small ruminant industry, particularly sheep and goats. Considerable efforts have been made to understand how immunity is elicited against H. contortus infection. Various potential vaccine antigens have been tested by different methods and strategies applied in animal models, and significant progress has been made in the development of vaccines against H. contortus. This review highlighted and shared the knowledge about the current understanding of host immune responses to H. contortus and ongoing challenges in the development of a protective, effective, and long-lasting vaccine against H. contortus infection. We have also pinpointed some achievements and failures in the development and testing of vaccines, which will establish a road map for future research directions to explore new effective vaccine candidates for controlling and preventing H. contortus infection.
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
- Correspondence: or ; Tel.: +86-354-628-8993
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| |
Collapse
|
5
|
Immunization with a Recombinant Protein of Trichinella britovi 14-3-3 Triggers an Immune Response but No Protection in Mice. Vaccines (Basel) 2020; 8:vaccines8030515. [PMID: 32916868 PMCID: PMC7564242 DOI: 10.3390/vaccines8030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
14-3-3 proteins are present in all eukaryotic organisms and are ubiquitously expressed in a broad range of tissues and cellular compartments. They are regulatory adapter proteins that play key roles in a variety of signaling pathways, and have been proposed as suitable targets for the control and detection of certain parasites. Trichinella britovi is a widely-distributed parasitic nematode, transmitted through ingestion of meat products containing invasive larvae. The present study describes the cloning and expression of Tb14-3-3, and investigates the immunological and protective potential of the recombinant protein. Immunization of mice with rTb14-3-3 triggered an IgG response, and significant differences, in the profiles of secreted cytokines observed in vitro, between experimental groups. Nonetheless, neither specific antibodies, nor increased secretion of IFNγ, IL-4, and IL-10 cytokines, conferred greater protection against infection. No reduction in larval burden was observed during recovery at 48 dpi. Additionally, rTb14-3-3 was not recognized by sera from the infected control mice, except for one, suggesting some mismatch between native and recombinant Tb14-3-3 antigenic sites. Therefore, before 14-3-3 can be considered a potential tool for Trichinella detection and vaccination, more research regarding its target proteins, and actual specific function, is needed.
Collapse
|
6
|
Bu Y, Cao M, Tian X, Lu M, Li J, Mao D, Yu L, Memon MA, Li C, Xu L, Song X, Yan R, Li X. HcFAR, a functional inhibitor of goat TGF-β1 identified from excretory and secretory products of Haemonchus contortus. Vet Parasitol 2020; 286:109236. [PMID: 32961509 DOI: 10.1016/j.vetpar.2020.109236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/14/2023]
Abstract
Haemonchus contortus has developed complexed and multifaceted mechanisms of immune evasion to enable the survival in the host. Generating excretion and secretion products (ESPs) to subvert or suppress the functions of host cytokines is a newly immune regulatory pattern found during recent years. Transforming growth factor-β (TGF-β) has critical immune regulatory functions in nematode infections. In this study, co-immunoprecipitation (co-IP) assay was used to identify the goat TGF-β1 binding proteins from HcESPs. The interaction between TGF-β1 and nematode fatty acid retinoid binding domain containing protein of H. contortus (HcFAR) was analyzed by glutathione S-transferase (GST)-pull down assay. The suppressive effect of rHcFAR on TGF-β1-induced immunoglobulin A (IgA) secretion was observed by co-incubation of rHcFAR and TGF-β1 with goat peripheral blood mononuclear cells (PBMCs). The IgA concentrations were determined using enzyme linked immunosorbent assay (ELISA) kit. Meanwhile, the suppressive effect of rHcFAR on TGF-β1-induced T helper (Th) 9 differentiation was investigated by co-incubation of rHcFAR, TGF-β1 and interleukin (IL)-4 with goats PBMCs. In parallel, IL-4 was replaced by IL-6 to determine the effects on the Th17 differentiation. The transcriptions of IL-9 and IL-17 in PBMCs were then evaluated by real-time PCR. Finally, we found that HcFAR from HcESPs could bind to goat TGF-β1 in vitro. The ELISA results of IgA showed that 40 μg/mL rHcFAR could suppress the IgA secretion of PBMCs induced by TGF-β1. Additionally, rHcFAR (at 10 μg/mL and 20 μg/mL) could inhibit the mRNA transcription of IL-9 induced by TGF-β1 and IL-4. Meanwhile, rHcFAR could also downregulate the transcription of IL-17 induced by TGF-β1 and IL-6 in a dose-dependent manner. These results indicated that HcFAR was a functional inhibitor of goat TGF-β1 and this information may help contribute to understanding of the relationship between the ESPs and host cytokines.
Collapse
Affiliation(s)
- Yongqian Bu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Man Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Junjie Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Dingyi Mao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Lin Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States; Department of Agriculture, Beltsville, MD 20705, United States.
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
Ahmad F, Kumar R, Gupta S, Rathaur S. Identification of a HSP14-3-3 in Setaria cervi and its cross-reactivity with W bancrofti-infected human sera. Parasite Immunol 2020; 42:e12777. [PMID: 32681576 DOI: 10.1111/pim.12777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022]
Abstract
AIM Identification of a 29 kDa heat stress protein in filarial parasite Setaria cervi and evaluation of its diagnostic potential against lymphatic filariasis. METHODS AND RESULTS The Heat shock proteins (HSPs) were induced in filarial parasite S cervi by incubated at 42°C for 2 hours. The 10% SDS-PAGE of cytosolic extract showed several over-expressed bands. The MALDI-LC/MS analysis of 29 kDa band showed 100% similarity with Bm14-3-3 like protein 2. Multiple sequence alignment of Bm14-3-3 like protein 2 sequence with W bancrofti, Caenorhabditis elegans; Loa loa and Homo sapiens showed 100%, 86%, 83% and 78%, sequence similarity respectively. The antigenic efficacy of Sc14-3-3 protein was evaluated with different filarial sera using ELISA which showed cross-reactivity in order to Endemic Normal (EN) < Microfilaraemic (MF) < Chronic(CH) with IgG1 and EN < CH < MF in IgG4 ELISA. IgG1- and IgG4-specific immunoblotting with CH and MF sera further explicated its specific antigenic cross-reactivity. CONCLUSION A 29 kDa heat shock protein of S cervi was identified as 14-3-3 protein having 100% homology to human filarial parasite B malayi. It showed strong reactivity with IgG1 and IgG4 subclass antibodies of W bancrofti-infected human sera suggesting that 14-3-3 protein could be used as a vaccine/ diagnostic marker.
Collapse
Affiliation(s)
- Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ranjeet Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarika Gupta
- National institute of Immunology, New Delhi, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Ehsan M, Gadahi JA, Liu T, Lu M, Wang Y, Hasan MW, Haseeb M, Yan R, Xu L, Song X, Zhu XQ, Li X. Identification of a novel methyltransferase-type 12 protein from Haemonchus contortus and its effects on functions of goat PBMCs. Parasit Vectors 2020; 13:154. [PMID: 32228657 PMCID: PMC7106832 DOI: 10.1186/s13071-020-04028-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Background Methyltransferases (MTFs) are broad range of enzymes, which are ubiquitously expressed in diverse organisms ranging from bacteria to animals. MTFs proteins have been associated with various biological/cellular processes including transcriptional regulation, subcellular protein and RNA localization, signal transduction and DNA-damage repair. However, the role of MTFs in immune mechanism during host–parasite interaction has not been addressed yet. Results An open reading frame (764 bp) of methyltransferase-type 12 gene of H. contortus denoted as HcMTF-12, was successfully cloned using reverse transcriptase-polymerase chain reaction (RT-PCR) followed by prokaryotic expression in Escherichia coli BL21 (DE3 strain). The recombinant HcMTF-12 protein (rHcMTF-12) was about 47 kDa along with a fusion vector protein of 18 kDa. Immunoblot results identified the native protein MTF-12 with antibodies produced in rats against rHcMT-12, whereas rHcMTF-12 protein was recognized with sera of goat experimentally infected with H. contortus. Immunohistochemical analysis revealed that the native MTF-12 protein was mainly located in the periphery (cuticle) of parasite sections as well as within the pharynx and intestinal region. An immunofluorescence assay validated that rHcMTF-12 attached to the surface of goat PBMCs. Furthermore, the cytokines transcription of IL-2, IFN-γ and IL-4 transcripts of PBMCs incubated with rHcMTF-12 were enhanced in a dose-dependent manner. The secretion of TGF-β1 and IL-10 was significantly decreased. However, IL-6 production was not significantly different as compared to the control groups. Moreover, the migration activity and nitric oxide (NO) production by PBMCs were induced considerably, whereas the proliferation of PBMCs cells was negatively affected when incubated with the rHcMTF-12 protein. Conclusions Our findings suggest that HcMTF-12 significantly mediated the functions of PBMCs, and it might be a potential candidate for therapeutic interventions against haemonchosis.![]()
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Javaid A Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Tingqi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yujian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad W Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Ehsan M, Haseeb M, Hu R, Ali H, Memon MA, Yan R, Xu L, Song X, Zhu X, Li X. Tropomyosin: An Excretory/Secretory Protein from Haemonchus contortus Mediates the Immuno-Suppressive Potential of Goat Peripheral Blood Mononuclear Cells In Vitro. Vaccines (Basel) 2020; 8:vaccines8010109. [PMID: 32121527 PMCID: PMC7157511 DOI: 10.3390/vaccines8010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
During host-parasite interactions, binding of excretory/secretory proteins (ESPs) on the host immune cells is considered the fundamental phase for regulation of immune responses. In this study, gene encoding Haemonchus contortus tropomyosin (Hc-TpMy), was successfully cloned and expressed, and the recombinant protein after host cell surface attachment was evaluated for immune functional analysis with goat peripheral blood mononuclear cells (PBMCs) in vitro. The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant protein was successfully recognized by the sera of rat experimentally infected with rHc-TpMy. The immunofluorescence assay detected attachment of rHc-TpMy on the surface of host PBMCs. Furthermore, immunoregulatory roles of rHc-TpMy on cytokines expression, PBMC proliferation, migration, nitric oxide (NO) production, apoptosis and monocytes phagocytosis were observed. The results showed that expression of IL-4 and IFN-γ cytokines, cell proliferation, NO production and PBMC migration were significantly suppressed by goat PBMCs after co-incubation with rHc-TpMy protein. However, the productions of IL-10, IL-17 and TGF-β1 cytokines, PBMCs apoptosis and monocytes phagocytosis were elevated at dose dependent manner. Our findings indicated that rHc-TpMy is an important ES binding protein exhibit distinct immuno-suppressive roles on goat PBMCs which might be a potential molecular target to control haemonchosis in future.
Collapse
Affiliation(s)
- Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Ruisi Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Haider Ali
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Xingquan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
- Correspondence: ; Tel.: +86-25-8439-9000; Fax: +86-25-8439-9000
| |
Collapse
|
10
|
Ehsan M, Gadahi JA, Lu M, Yan R, Xu L, Song X, Zhu XQ, Du A, Hu M, Li X. Recombinant elongation factor 1 alpha of Haemonchus contortus affects the functions of goat PBMCs. Parasite Immunol 2020; 42:e12703. [PMID: 32043596 PMCID: PMC7187238 DOI: 10.1111/pim.12703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Excretory/secretory proteins of Haemonchus contortus (HcESPs) intermingle comprehensively with host immune cells and modulate host immune responses. In this study, H contortus ES antigen named as elongation factor 1 alpha (HcEF‐1α) was cloned and expressed. The influences of recombinant HcEF‐1α on multiple functions of goat peripheral blood mononuclear cells (PBMCs) were observed in vitro. Immunoblot analysis revealed that rHcEF‐1α was recognized by the serum of goat infected with H contortus. Immunofluorescence analysis indicated that rHcEF‐1α was bound on surface of PBMCs. Moreover, the productions of IL‐4, TGF‐β1, IFN‐γ and IL‐17 of cells were significantly modulated by the incubation with rHcEF‐1α. The production of interleukin IL‐10 was decreased. Cell migration, cell proliferation and cell apoptosis were significantly increased; however, nitric oxide production (NO) was significantly decreased. The MHC II molecule expression of cells incubated with rHcEF‐1α was increased significantly, whereas MHC‐I was not changed as compared to the control groups (PBS control and pET32a). These findings indicated that rHcEF‐1α protein might play essential roles in functional regulations of HcESPs on goat PBMC and mediate the immune responses of the host during host‐parasite relationship.
Collapse
Affiliation(s)
- Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Javaid Ali Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - MingMin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - AiFang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Characterization of Haemonchus contortus Excretory/Secretory Antigen (ES-15) and Its Modulatory Functions on Goat Immune Cells In Vitro. Pathogens 2020; 9:pathogens9030162. [PMID: 32120801 PMCID: PMC7157690 DOI: 10.3390/pathogens9030162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/11/2023] Open
Abstract
Small size excretory/secretory (ES) antigens of the Haemonchus contortus parasite have intense interest among researchers for understanding the molecular basis of helminths immune regulation in term of control strategies. Immunomodulatory roles of H. contortus ES-15 kDa (HcES-15) on host immune cells during host–parasite interactions are unknown. In this study, the HcES-15 gene was cloned and expression of recombinant protein (rHcES-15) was induced by isopropyl-ß-d-thiogalactopyranoside (IPTG). Binding activity of rHcES-15 to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immunofluorescence assay (IFA) and immunohistochemical analysis showed that H. contortus 15 kDa protein localized in the outer and inner structure of the adult worm, clearly indicated as the parasite’s ES antigen. The immunoregulatory role on cytokines production, cell proliferation, cell migration, nitric oxide (NO) production, apoptosis, and phagocytosis were observed by co-incubation of rHcES-15 with goat PBMCs. The results showed that cytokines IL-4, IL-10, IL-17, the production of nitric oxide (NO), PBMCs apoptosis, and monocytes phagocytosis were all elevated after cells incubated with rHcES-15 at differential protein concentrations. We also found that IFN-γ, TGF-β1, cells proliferation and migration were significantly suppressed with the interaction of rHcES-15 protein. Our findings indicated that low molecular ES antigens of H. contortus possessed discrete immunoregulatory roles, which will help to understand the mechanisms involved in immune evasion by the parasite during host–parasite interactions.
Collapse
|
12
|
Tian X, Lu M, Jia C, Bu Y, Aimulajiang K, Zhang Y, Li C, Yan R, Xu L, Song X, Li X. Haemonchus contortus transthyretin domain - containing protein (HcTTR): A promising vaccine candidate against Haemonchus contortus infection. Vet Parasitol 2020; 279:109045. [PMID: 32045836 DOI: 10.1016/j.vetpar.2020.109045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
Haemonchus contortus transthyretin domain-containing protein (HcTTR) with 136 amino acids belongs to a transthyretin-like (TTL) family member. In our previous study, it was reported that HcTTR was a novel antagonist of the goat cytokine Interleukin 4 (IL-4), and was involved in the regulation of host immune responses, implying that it might be applied for therapeutic strategies or vaccine development against the infection of H. contortus. Thus, the protective capacities of HcTTR against H. contortus infections via active and passive immunization trials were examined. For the passive protection trials, H. contortus-infected goats were intravenously immunized twice with 5 mg of total IgG containing anti-rHcTTR goat polyclonal antibodies. The results showed that the significant rates of reduction in egg shedding and worm burden was 58.12% and 64.61%, respectively, as compared with the positive control group. For the active protection trials, local goats were vaccinated twice with 500 μg of recombinant HcTTR to generate antigen-specific circulating antibodies, resulting in 63.7% reduction in eggs shedding and 66.4% reduction in worm burdens after H. contortus challenge. In both passive and active trials, the immunized goats displayed higher mucosal IgA levels and less anaemic compared to the challenged positive controls. Pen trials indicated that HcTTR generated partial immune protective effects against H. contortus challenge and it could be a promising vaccine candidate for development of effective strategy to control H. contortus.
Collapse
Affiliation(s)
- Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Caiwen Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yongqian Bu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA.
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Immunization of Goats with Recombinant Protein 14-3-3 Isoform 2(rHcftt-2) Induced Moderate Protection against Haemonchus contortus Challenge. Pathogens 2020; 9:pathogens9010046. [PMID: 31935869 PMCID: PMC7168593 DOI: 10.3390/pathogens9010046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
A previous study identified that isoform 2 (Hcftt-2) of the 14-3-3 protein of Haemonchus contortus (H. contortus) could suppress immune functions of goat peripheral blood mononuclear cells (PBMCs) and might be a potential vaccine target, as neutralization of the protein function may enhance anti-parasite immunity. In this research, the recombinant Hcftt-2 was evaluated for its immunoprotective efficacy against H. contortus infection in goats. Five experimental goats were immunized twice with rHcftt-2 along with Freund’s adjuvant. The five immunized goats and five nonimmunized goats (adjuvant only) were challenged with 5000 L3-stage H. contortus larvae after 14 days of second immunization. Five nonimmunized and uninfected goats (adjuvant only) were set as the uninfected group. A significant increase in the serum immunoglobin G(IgG) and serum IgA levels were identified in the rHcftt-2 immunized animals. The mean eggs per gram in feces (EPG) and the worm burdens of rHcftt-2 immunized group were reduced by 26.46% (p < 0.05) and 32.33%, respectively. In brief, immunization of goats with rHcftt-2 induced moderate protection against H. contortus challenge.
Collapse
|
14
|
Adhesion-Regulating Molecule from Haemonchus contortus: Potential Antigen for Diagnosis of Early Infection in Goats. Pathogens 2019; 9:pathogens9010034. [PMID: 31905914 PMCID: PMC7168579 DOI: 10.3390/pathogens9010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Haemonchus contortus, a blood-sucking nematode of ruminants, causes large economic losses worldwide. Diagnosis of infection mainly depends on the evaluation of clinical signs and fecal examination. However, this has limitations for the diagnosis of early or light infections, where serological diagnosis seems to be more accurate and reliable. In this study, the recombinant H. contortus adhesion-regulating molecule protein (rHCADRM) was expressed and purified, and its diagnostic potential was evaluated. Serum samples from goats experimentally infected with H. contortus (n = 5) were collected at 0 (before infection, negative control), 7, 14, 21, 35, 49, 63, 85, and 103 days post-infection (DPI). The reactions between rHcADRM and goat serum were tested using Western blot (WB) analysis. The results show that rHcADRM can be recognized in the serum as early as 14 DPI, and the antibody against rHcADRM in infected goat could be maintained for over 89 days. No reaction was found between rHcADRM and antibodies against Trichinella spiralis, Fasciola hepatica, or Toxoplasma gondii. An indirect enzyme-linked immune sorbent assay (ELISA) was developed based on rHcADRM. The optimal coating antigen (279 ng of rHcADRM/well) and serum dilutions (1:50) were determined by checkerboard titration. A total of 64 serum samples, including 32 from H. contortus infection goats and 32 from helminth-free goats, were used to determine the positive (0.362) and negative (0.306) cut-off values for the ELISA. The results show this serological diagnosis method is highly sensitive (90.6%) and specific (93.75%). The coefficient of variation within run and between runs was less than 11%. To apply this indirect ELISA during field examination, 51 serum samples were randomly collected from goat farms and tested using this method. The result showed that 19.6% (10/51) of goats were infected with H. contortus, which was 100% consistent with the necropsy result, higher than that of fecal examination (15.7%, 8/51). These results indicate that rHcADRM could be a potential antigen for diagnosis of H. contortus infection in goats.
Collapse
|
15
|
Tian X, Lu M, Wang W, Jia C, Muhammad E, Yan R, Xu L, Song X, Li X. HcTTR: a novel antagonist against goat interleukin 4 derived from the excretory and secretory products of Haemonchus contortus. Vet Res 2019; 50:42. [PMID: 31164173 PMCID: PMC6549353 DOI: 10.1186/s13567-019-0661-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
Haemonchus contortus (H. contortus) has evolved sophisticated evasion mechanisms to ensure their survival, including generating excretion and secretion products (ESPs) to regulate the secretion of host cytokines. Interleukin 4 (IL4) is a classic T-helper cell type 2 (Th2)-type cytokine that plays an irreplaceable role against nematode infection. In this study, three proteins, glutathione S-transferase domain containing protein (HcGST), transthyretin domain containing protein (HcTTR) and calponin actin-binding domain containing protein (HcCab), were identified to bind to goat IL4 by co-immunoprecipitation (Co-IP) assays and yeast two-hybrid screening. Additionally, cell proliferation analysis showed that HcTTR blocked the IL4-induced proliferation of peripheral blood mononuclear cells in goats, while HcGST and HcCab did not. In addition, HcTTR could also downregulate the transcription of candidate genes in the IL4-induced JAK/STAT pathway. These results indicated that HcTTR is a novel antagonist against goat IL4 from HcESPs, and this information could improve our understanding of the relationship between host cytokines and parasite infections.
Collapse
Affiliation(s)
- XiaoWei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - MingMin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - WenJuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - CaiWen Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ehsan Muhammad
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
16
|
Wang Q, Wu L, Hasan MW, Lu M, Wang W, Yan R, Xu L, Song X, Li X. Hepatocellular carcinoma-associated antigen 59 of Haemonchus contortus modulates the functions of PBMCs and the differentiation and maturation of monocyte-derived dendritic cells of goats in vitro. Parasit Vectors 2019; 12:105. [PMID: 30871600 PMCID: PMC6416944 DOI: 10.1186/s13071-019-3375-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma-associated antigen 59 (HCA59), which is one of the most important excretory/secretory products of Haemonchus contortus (HcESPs), is known to have antigenic functions. However, its immunomodulatory effects on host cells are poorly understood. METHODS Here, we cloned the HCA59 gene and expressed the recombinant protein of HCA59 (rHCA59). Binding activities of rHCA59 to goat peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs) were checked by immunofluorescence assay (IFA) and the immunoregulatory effects of rHCA59 on cytokine secretions, cell migration, cell proliferation, nitric oxide production, and changes in expression of genes in related pathways were observed by co-incubation of rHCA59 with goat PBMCs and DCs. Monocyte phagocytosis and characterization of goat blood DC subsets were detected by flow cytometry. RESULTS The IFA results revealed that rHCA59 could bind to PBMCs and DCs. Treatment of PBMCs with rHCA59 significantly increased cellular proliferation and NO production in a dose-dependent manner, while cell migration was vigorously blocked. Treatment with rHCA59 significantly suppressed monocytes phagocytosis. The quantity of surface marker CD80 on DCs increased significantly after rHCA59 treatment. In addition, the expression of genes included in the WNT pathway was related to the differentiation and maturation of DCs, and the production of IL-10 and IL-17 produced by PBMCs was altered. CONCLUSIONS Our findings illustrated that rHCA59 could enhance host immune responses by regulating the functions of goat PBMCs and DCs, which would benefit our understanding of HCA59 from parasitic nematodes contributing to the mechanism of parasitic immune evasion.
Collapse
Affiliation(s)
- QiangQiang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - LingYan Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - MingMin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - WenJuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
17
|
Ehsan M, Wang W, Gadahi JA, Hasan MW, Lu M, Wang Y, Liu X, Haseeb M, Yan R, Xu L, Song X, Li X. The Serine/Threonine-Protein Phosphatase 1 From Haemonchus contortus Is Actively Involved in Suppressive Regulatory Roles on Immune Functions of Goat Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:1627. [PMID: 30061894 PMCID: PMC6054924 DOI: 10.3389/fimmu.2018.01627] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Serine/threonine-protein phosphatases (STPs), as integral constituents of parasitic excretory/secretory proteins, are assumed to be released during the host–parasite interactions. However, knowledge about these phosphatases and their immunoregulatory and immune protective efficiencies with host peripheral blood mononuclear cells (PBMCs) is scant. In this study, an open reading frame of STP from Haemonchus contortus designated as HcSTP-1 was amplified and cloned using reverse-transcription-polymerase chain reaction (RT-PCR) method. The 951-bp nucleotides sequence was encoded to a protein of 316 amino acid residues, conserved in characteristics motifs GDXHG, GDYVDRG, GNHE, HGG, RG, and H. The HcSTP-1 protein was detected at approximately 35 kDa as recombinant protein fused in an expression vector system and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunohistochemically, HcSTP-1 was found to be localized in both male and female adult worm sections. Using immunofluorescence assay, the binding activity of rHcSTP-1 was confirmed on surface of goat PBMCs, which resulted in expression of multiple cytokines and various immunoregulatory activities in vitro. The RT-PCR results showed that mRNA level of interleukin-2, TGF-β1, IFN-γ, and IL-17 (with 10 µg/ml) was upregulated and IL-10 was decreased. However, IL-6 showed no change after PBMCs incubated with rHcSTP-1 protein. Further functional analysis showed that migratory activity of cells, intracellular nitrite production (NO), and apoptotic efficiency of PBMCs were elevated at significant level, whereas the proliferation of goat PBMCs and monocytes-associated major histocompatibility complex (MHC)-I and MHC-II expressions were decreased significantly at concentration-dependent fashion. Our results showed that the HcSTP-1 protein engaged in vital suppressive regulatory roles on host immune cells, which might represent a potential molecular target for controlling H. contortus infection in future.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - WenJuan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Javaid Ali Gadahi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Waqqas Hasan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - MingMin Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - YuJian Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XinChao Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Haseeb
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiangRui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Tian AL, Lu M, Calderón-Mantilla G, Petsalaki E, Dottorini T, Tian X, Wang Y, Huang SY, Hou JL, Li X, Elsheikha HM, Zhu XQ. A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells. Parasit Vectors 2018; 11:152. [PMID: 29510740 PMCID: PMC5840819 DOI: 10.1186/s13071-018-2745-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background The molecular structure of Fasciola gigantica 14-3-3 protein has been characterized. However, the involvement of this protein in parasite pathogenesis remains elusive and its effect on the functions of innate immune cells is unknown. We report on the cloning and expression of a recombinant F. gigantica 14-3-3 epsilon protein (rFg14-3-3e), and testing its effects on specific functions of goat peripheral blood mononuclear cells (PBMCs). Methods rFg14-3-3e protein was expressed in Pichia pastoris. Western blot and immunofluorescence assay (IFA) were used to examine the reactivity of rFg14-3-3e protein to anti-F. gigantica and anti-rFg14-3-3e antibodies, respectively. Various assays were used to investigate the stimulatory effects of the purified rFg14-3-3e protein on specific functions of goat PBMCs, including cytokine secretion, proliferation, migration, nitric oxide (NO) production, phagocytosis, and apoptotic capabilities. Potential protein interactors of rFg14-3-3e were identified by querying the databases Intact, String, BioPlex and BioGrid. A Total Energy analysis of each of the identified interaction was performed. Gene Ontology (GO) enrichment analysis was conducted using Funcassociate 3.0. Results Sequence analysis revealed that rFg14-3-3e protein had 100% identity to 14-3-3 protein from Fasciola hepatica. Western blot analysis showed that rFg14-3-3e protein is recognized by sera from goats experimentally infected with F. gigantica and immunofluorescence staining using rat anti-rFg14-3-3e antibodies demonstrated the specific binding of rFg14-3-3e protein to the surface of goat PBMCs. rFg14-3-3e protein stimulated goat PBMCs to produce interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), corresponding with low levels of IL-4 and interferon gamma (IFN-γ). Also, this recombinant protein promoted the release of NO and cell apoptosis, and inhibited the proliferation and migration of goat PBMCs and suppressed monocyte phagocytosis. Homology modelling revealed 65% identity between rFg14-3-3e and human 14-3-3 protein YWHAE. GO enrichment analysis of the interacting proteins identified terms related to apoptosis, protein binding, locomotion, hippo signalling and leukocyte and lymphocyte differentiation, supporting the experimental findings. Conclusions Our data suggest that rFg14-3-3e protein can influence various cellular and immunological functions of goat PBMCs in vitro and may be involved in mediating F. gigantica pathogenesis. Because of its involvement in F. gigantica recognition by innate immune cells, rFg14-3-3e protein may have applications for development of diagnostics and therapeutic interventions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2745-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guillermo Calderón-Mantilla
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Tania Dottorini
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
19
|
Wang C, Li F, Zhang Z, Yang X, Ahmad AA, Li X, Du A, Hu M. Recent Research Progress in China on Haemonchus contortus. Front Microbiol 2017; 8:1509. [PMID: 28883809 PMCID: PMC5574212 DOI: 10.3389/fmicb.2017.01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/27/2017] [Indexed: 11/23/2022] Open
Abstract
Haemonchus contortus is one of the most important parasites of ruminants with worldwide distribution that can bring huge economic losses to the breeding industry of cattle, sheep, and goats. In recent 20 years, studies on H. contortus in China mainly focused on the epidemiology, population genetics, anthelmintic resistance, structural and functional studies of important genes regulating the development of this parasite, interaction between parasite molecules and host cells and vaccine development against haemonchosis, and achieved good progress. However, there is no systematic review about the studies by Chinese researchers on H. contortus in China. The purpose of this review is to bring together the findings from the studies on H. contortus in China in order to obtain the knowledge gained from the recent studies in China and provide foundation for identifying future research directions to establish novel diagnostic methods, discover new drug targets and vaccine candidates for use in preventing and controlling H. contortus in China.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zongze Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Awais A. Ahmad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang UniversityHangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
20
|
Ehsan M, Gao W, Gadahi JA, Lu M, Liu X, Wang Y, Yan R, Xu L, Song X, Li X. Arginine kinase from Haemonchus contortus decreased the proliferation and increased the apoptosis of goat PBMCs in vitro. Parasit Vectors 2017. [PMID: 28651566 PMCID: PMC5485575 DOI: 10.1186/s13071-017-2244-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arginine kinase (AK), an important member of phosphagen kinase family has been extensively studied in various vertebrates and invertebrates. Immunologically, AKs are important constituents of different body parts, involved in various biological and cellular functions, and considered as immune-modulator and effector for pro-inflammatory cytokines. However, immunoregulatory changes of host cells triggered by AK protein of Haemonchus contortus, a parasitic nematode of ruminants, are still unknown. The current study was focused on cloning and characterisation of Hc-AK, and its regulatory effects on cytokines level, cell migration, cell proliferation, nitric oxide production and apoptosis of goat peripheral blood mononuclear cells (PBMCs) were observed. METHODS The full-length sequence of the Hc-AK gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sub-cloned into the prokaryotic expression vector pET-32a. The biochemical characteristics of recombinant protein Hc-AK, which was purified by affinity chromatography, were performed based on the enzymatic assay. Binding of rHc-AK with PBMCs was confirmed by immunofluorescence assay (IFA). Immunohistochemical analysis was used to detect localisation of Hc-AK within adult worms sections. The immunoregulatory effects of rHc-AK on cytokine secretions, cell proliferation, cell migration, nitric oxide production and apoptosis were determined by co-incubation of rHc-AK with goat PBMCs. RESULTS The full-length ORF (1080 bp) of the Hc-AK gene was successfully cloned, and His-tagged AK protein was expressed in the Escherichia coli strain BL21. The recombinant protein of Hc-AK (rHc-AK) was about 58.5 kDa together with the fused vector protein of 18 kDa. The biochemical assay showed that the protein encoded by the Hc-ak exhibited enzymatic activity. Western blot analysis confirmed that the rHc-AK was recognised by the sera from rat (rat-antiHc-AK). The IFA results showed that rHc-AK could bind on the surface of goat PBMCs. Immunohistochemically, Hc-AK was localised at the inner and outer membrane as well as in the gut region of adult worms. The binding of rHc-AK to host cells increased the levels of IL-4, IL-10, IL-17, IFN-γ, nitric oxide (NO) production and cell apoptosis of goat PBMCs, whereas, TGF-β1 levels, cell proliferation and PBMCs migration were significantly decreased in a dose dependent manner. CONCLUSIONS Our findings suggested that rHc-AK is an important excretory and secretory (ES) protein involved in host immune responses and exhibit distinct immunomodulatory properties during interaction with goat PBMCs.
Collapse
Affiliation(s)
- Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - WenXiang Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XinChao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|