1
|
Li P, Wang J, Xie J. Excitation of Reactive Oxygen Species and Damage to the Cell Membrane, Protein, and DNA are Important Inhibition Mechanisms of CO 2 on Shewanella putrefaciens at 4 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17559-17571. [PMID: 39054619 DOI: 10.1021/acs.jafc.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
To explore whether oxidative stress caused by 100% CO2 is an inhibitory mechanism against Shewanella putrefaciens, the oxidative stress reaction, antioxidant activity, and damage to the cell membrane, protein, and DNA of CO2-incubated S. putrefaciens at 4 °C were evaluated. Research demonstrated that CO2 caused more severe reactive oxygen species (ROS) accumulation. Simultaneously, weaker •OH/H2O2/O2•--scavenging activity and decreased T-VOC and GSH content were also observed. The activities of antioxidant enzymes (SOD, POD, CAT, and GPX) continuously declined, which might be attributed to the CO2-mediated decrease in the pH value. Correspondingly, the cell membrane was damaged with hyperpolarization, increased permeability, and more severe lipid peroxidation. The expression of total and membrane protein decreased, and the synthesis and activity of extracellular protease were inhibited. DNA was also subjected to oxidative damage and expressed at a lower level. All results collaboratively confirmed that ROS excitation and inhibition of antioxidant activity were important inhibition mechanisms of CO2 on S. putrefaciens.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jinfeng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
2
|
Martins MS, Gonçalves AC, Alves G, Silva LR. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int J Mol Sci 2023; 24:12024. [PMID: 37569399 PMCID: PMC10418693 DOI: 10.3390/ijms241512024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Blackberries and mulberries are small and perishable fruits that provide significant health benefits when consumed. In reality, both are rich in phytochemicals, such as phenolics and volatile compounds, and micronutrients, such as vitamins. All the compounds are well-known thanks to their medicinal and pharmacological properties, namely antioxidant, anti-inflammatory, anti-cancer, antiviral, and cardiovascular properties. Nevertheless, variables such as genotype, production conditions, fruit ripening stage, harvesting time, post-harvest storage, and climate conditions influence their nutritional composition and economic value. Given these facts, the current review focuses on the nutritional and chemical composition, as well as the health benefits, of two blackberry species (Rubus fruticosus L., and Rubus ulmifolius Schott) and one mulberry species (Morus nigra L.).
Collapse
Affiliation(s)
- Mariana S. Martins
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
| | - Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
3
|
Chen F, Wang H, Lin Z, Hu J, Wu Y, Shi L, Wang J, Xiu Y, Lin S. Enzymatic and non-enzymatic bioactive compounds, and antioxidant and antimicrobial activities of the extract from one selected wild berry (Rubus coreanus) as novel natural agent for food preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Ribeiro ACB, Cunha AP, da Silva LMR, Mattos ALA, de Brito ES, de Souza Filho MDSM, de Azeredo HMC, Ricardo NMPS. From mango by-product to food packaging: Pectin-phenolic antioxidant films from mango peels. Int J Biol Macromol 2021; 193:1138-1150. [PMID: 34717979 DOI: 10.1016/j.ijbiomac.2021.10.131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
The objective of the study was to prepare active films based on pectin and polyphenol-rich extracts from Tommy Atkins mango peels. Aqueous and methanolic extracts showed a variety of phenolic compounds that were identified by UPLC-MS analysis, and a high content of total phenolics that were quantified by the Folin-Ciocalteau method. The methanolic extract showed better results in antioxidant tests and was more effective in inhibiting the growth of Gram-positive and Gram-negative bacteria. The pectin extracted from mango peels showed good thermal stability and a degree of methoxylation of 58.3% by 1H NMR. The films containing the phenolic extracts showed lower water vapor permeability when compared to the control film (without any phenolic extracts). The incorporation of the extracts led to an increase in elongation (ε) and a decrease in tensile strength (σ) and modulus of elasticity (Y). The films with aqueous or methanolic extracts showed higher antioxidant activity in terms of inhibition of the DPPH radical. Therefore, the films developed in this work are presented as a promising alternative for food packaging and/or coating applications.
Collapse
Affiliation(s)
- Ana Carolina Barbosa Ribeiro
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil
| | - Arcelina Pacheco Cunha
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil
| | | | | | - Edy Sousa de Brito
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Henriette Monteiro Cordeiro de Azeredo
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil; Embrapa Instrumentação, R. XV de Novembro, 2452, 13560-970 São Carlos, SP, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
High oxygen concentrations inhibit Acanthamoeba spp. Parasitol Res 2021; 120:3001-3005. [DOI: 10.1007/s00436-021-07219-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
|
6
|
Fraga-Corral M, Otero P, Cassani L, Echave J, Garcia-Oliveira P, Carpena M, Chamorro F, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021; 10:251. [PMID: 33530516 PMCID: PMC7912241 DOI: 10.3390/foods10020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tannins are polyphenolic compounds historically utilized in textile and adhesive industries, but also in traditional human and animal medicines or foodstuffs. Since 20th-century, advances in analytical chemistry have allowed disclosure of the chemical nature of these molecules. The chemical profile of extracts obtained from previously selected species was investigated to try to establish a bridge between traditional background and scientific data. The study of the chemical composition of these extracts has permitted us to correlate the presence of tannins and other related molecules with the effectiveness of their apparent uses. The revision of traditional knowledge paired with scientific evidence may provide a supporting background on their use and the basis for developing innovative pharmacology and food applications based on formulations using natural sources of tannins. This traditional-scientific approach can result useful due to the raising consumers' demand for natural products in markets, to which tannin-rich extracts may pose an attractive alternative. Therefore, it is of interest to back traditional applications with accurate data while meeting consumer's acceptance. In this review, several species known to contain high amounts of tannins have been selected as a starting point to establish a correlation between their alleged traditional use, tannins content and composition and potential bioaccessibility.
Collapse
Affiliation(s)
- Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Research Group of Food Engineering, Faculty of Engineering, National University of Mar del Plata, Mar del Plata RA7600, Argentina
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| |
Collapse
|
7
|
Fraga-Corral M, Otero P, Echave J, Garcia-Oliveira P, Carpena M, Jarboui A, Nuñez-Estevez B, Simal-Gandara J, Prieto MA. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins' Biological Activities and Their Potential for Valorization. Foods 2021; 10:137. [PMID: 33440730 PMCID: PMC7827785 DOI: 10.3390/foods10010137] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
During recent decades, consumers have been continuously moving towards the substitution of synthetic ingredients of the food industry by natural products, obtained from vegetal, animal or microbial sources. Additionally, a circular economy has been proposed as the most efficient production system since it allows for reducing and reutilizing different wastes. Current agriculture is responsible for producing high quantities of organic agricultural waste (e.g., discarded fruits and vegetables, peels, leaves, seeds or forestall residues), that usually ends up underutilized and accumulated, causing environmental problems. Interestingly, these agri-food by-products are potential sources of valuable bioactive molecules such as tannins. Tannins are phenolic compounds, secondary metabolites of plants widespread in terrestrial and aquatic natural environments. As they can be found in plenty of plants and herbs, they have been traditionally used for medicinal and other purposes, such as the leather industry. This fact is explained by the fact that they exert plenty of different biological activities and, thus, they entail a great potential to be used in the food, nutraceutical and pharmaceutical industry. Consequently, this review article is directed towards the description of the biological activities exerted by tannins as they could be further extracted from by-products of the agri-food industry to produce high-added-value products.
Collapse
Affiliation(s)
- María Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Amira Jarboui
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Bernabé Nuñez-Estevez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
|
9
|
da Silva LP, Pereira E, Pires TCSP, Alves MJ, Pereira OR, Barros L, Ferreira ICFR. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res Int 2019; 119:34-43. [PMID: 30884664 DOI: 10.1016/j.foodres.2019.01.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
There is a growing interest in wild edible species that represent a source of several health-promoting compounds, providing a potential strategy to diversify and enrich the daily diet. The aim of the present work was to characterize the nutritional and chemical composition of Rubus ulmifolius Schott fruits. Furthermore, their antimicrobial activity, non-anthocyanin and anthocyanin phenolic profile were also determined. According to the obtained results, R. ulmifolius fruits exhibited a high concentration in carbohydrates and a low fat content, in comparison with the other nutrients and non-nutrients detected in this sample. The colour parameters demonstrated differences in a* and b* parameters after lyophilisation process. Glucose and fructose were the most abundant free sugars detected and quinic acid showed the highest content compared to the other five organic acids identified. The fatty acids profile revealed 25 compounds, being mostly represented by polyunsaturated fatty acids and evidencing linolenic and α-linolenic acid as the most abundant. All tocopherol isoforms were detected, revealing γ-tocopherol with highest amount. Cyanidin-3-O-glucoside, ellagic acid pentoside, ellagic acid glucuronide and sanguiin H-10 were the main phenolic compounds present, which could be related to the antimicrobial activity (MIC values ranging between 5 and 20 mg/mL) revealed by R. ulmifolius fruits. These results showed that this fruit is a good source of nutrients as also non-nutrient compounds, with human health benefits.
Collapse
Affiliation(s)
- Liliana Primo da Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C S P Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Olívia R Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
10
|
Schulz M, Seraglio SKT, Della Betta F, Nehring P, Valese AC, Daguer H, Gonzaga LV, Costa ACO, Fett R. Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res Int 2019; 122:627-634. [PMID: 31229121 DOI: 10.1016/j.foodres.2019.01.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/09/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
Abstract
The berries of the genus Rubus has been highlighted as important source of bioactive and health promoting constituents, however, information about chemical composition and antioxidant potential of the specie Rubus ulmifolius are still scarce. In this regard, this study aimed to assess the physicochemical characteristics, total monomeric anthocyanins (TMA), individual phenolics, minerals, sugars, and antioxidant properties of mature and fully mature R. ulmifolius. With the advance of maturation, changes in the physicochemical composition suggest pleasant characteristics for consumption especially in the fully mature stage. High levels of TMA and sugars (fructose and glucose) were also verified in the fully mature stage, as well as, expressive antioxidant potential, with values of 241.06 μM Fe+2 g-1 for ferric reducing antioxidant power and 28.22 mg gallic acid equivalent g-1 for Folin-Ciocalteu reducing capacity (all expressed in dry matter, DM). In contrast, minerals (potassium, calcium, sodium) and most of the studied phenolic compounds showed the highest concentrations in mature fruits. Among the phenolics investigated, 26 compounds were identified and quercetin and isoquercitrin were the predominant phenolic compounds in the fruit. The results reinforce the nutritive and antioxidant potential of Rubus ulmifolius in both maturation stages studied.
Collapse
Affiliation(s)
- Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil.
| | | | - Fabiana Della Betta
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Priscila Nehring
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Andressa Camargo Valese
- National Agricultural Laboratory (LANAGRO-RS), Ministry of Agriculture, Livestock and Food Supply, 88102-600, São José, SC, Brazil
| | - Heitor Daguer
- National Agricultural Laboratory (LANAGRO-RS), Ministry of Agriculture, Livestock and Food Supply, 88102-600, São José, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Betta FD, Nehring P, Seraglio SKT, Schulz M, Valese AC, Daguer H, Gonzaga LV, Fett R, Costa ACO. Phenolic Compounds Determined by LC-MS/MS and In Vitro Antioxidant Capacity of Brazilian Fruits in Two Edible Ripening Stages. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:302-307. [PMID: 30218257 DOI: 10.1007/s11130-018-0690-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate the free individual phenolics and the in vitro antioxidant capacity of blackberry, acerola, yellow guava, guabiju, jambolan and jabuticaba fruits in two edible stages. Of the thirty-three phenolics investigated by liquid chromatography - tandem mass spectrometry (LC-MS/MS), twenty-five were quantified and the major ones were catechin, isoquercitrin, epicatechin and gallic acid. The highest values for the total phenolic content (in dry matter) were observed for acerola (83.6 to 97.7 mg gallic acid equivalents g-1 DM) and blackberry (18.9 to 28.3 mg gallic acid equivalents g-1 DM); however, acerola, jabuticaba, and blackberry showed the highest antioxidant capacities (134.6 to 1120.4 mg Trolox equivalents g-1 for 2,2-diphenyl-1-picrylhydrazyl and 43.6 to 501.8 μmol Trolox equivalents g-1 for ferric reducing antioxidant power). For most fruits, the antioxidant capacity decreased during the ripening, possibly due to a decrease in the concentration of most of the phenolics.
Collapse
Affiliation(s)
- Fabiana Della Betta
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Priscila Nehring
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | | | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Andressa Camargo Valese
- National Agricultural Laboratory (SLAV/SC/LANAGRO-RS), Ministry of Agriculture, Livestock and Food Supply, São José, SC, 88102-600, Brazil
| | - Heitor Daguer
- National Agricultural Laboratory (SLAV/SC/LANAGRO-RS), Ministry of Agriculture, Livestock and Food Supply, São José, SC, 88102-600, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil.
| |
Collapse
|