1
|
Slama M, Slougui N, Ounnas D, Benaissa A, Bataiche I. Hydrodistillation Optimization for Borago officinalis L. Essential Oil and Its Chemical Composition Analysis. Chem Biodivers 2024:e202402478. [PMID: 39607867 DOI: 10.1002/cbdv.202402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
The essential oil extracted from Borago officinalis L. aerial parts using hydrodistillation contains several compounds, although it yields low amounts. For the first time, this study investigated the effects of hydrodistillation parameters and optimized conditions to maximize the yield of B. officinalis essential oil while characterizing its chemical composition using gas chromatography-mass spectrometry. A single-factor evaluation of three extraction parameters-extraction time, liquid-to-solid ratio, and soaking time-revealed optimal conditions of 4 h, 10:1 mL/g, and 2 h, respectively. Subsequently, the Box-Behnken response surface method produced a significant polynomial model, determining optimal conditions of an extraction time of 5 h, a liquid-to-solid ratio of 11.06:1 mL/g, and a soaking time of 2 h, 17 min, and 34 s, resulting in an essential oil yield of 0.42%. A total of 21 compounds were identified in B. officinalis essential oil, predominantly nonacosane (29.15%) and phytol (27.92%).
Collapse
Affiliation(s)
- Meriem Slama
- Département de génie des procédés, école nationale polytechnique de Constantine, Ville Universitaire Ali Mendjeli, Ali Mendjli, Constantine, Algeria
| | - Nabila Slougui
- Ecole Nationale Polytechnique de Constantine, Ali Mendjli, Constantine, Algeria
- Unité de Recherche Valorisation des ressources naturelles, Molécules Bioactives et Analyses Physico-Chimiques et biologiques Université des Frères Mentouri Constantine, Ali Mendjli, Constantine, Algeria
| | - Dounia Ounnas
- Département de génie des procédés, école nationale polytechnique de Constantine, Ville Universitaire Ali Mendjeli, Ali Mendjli, Constantine, Algeria
| | - Akila Benaissa
- Département de génie pharmaceutique, laboratoire de recherche pharmaceutique et développement durable (ReMeDD), Université de Constantine 3, Ali Mendjli, Constantine, Algeria
| | - Insaf Bataiche
- Département de biologie appliquée, Laboratoire de mycologie, de biotechnologie et de l'activité microbienne, Université des frères Mentouri-Constantine, Ali Mendjli, Constantine, Algeria
| |
Collapse
|
2
|
Oaikhena EE, Yahaya UA, Abdulsalami SM, Egbe NL, Adeyemi MM, Ungogo MA, Ebiloma GU, Zoiku FK, Fordjour PA, Elati HAA, Quashie NB, Igoli JO, Gray AI, Lawson C, Ferro VA, de Koning HP. The activities of suaveolol and other compounds from Hyptis suaveolens and Momordica charantia against the aetiological agents of African trypanosomiasis, leishmaniasis and malaria. Exp Parasitol 2024; 263-264:108807. [PMID: 39043327 DOI: 10.1016/j.exppara.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/24/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
African trypanosomiasis and malaria are among the most severe health challenges to humans and livestock in Africa and new drugs are needed. Leaves of Hyptis suaveolens Kuntze (Lamiaceae) and Momordica charantia L. (Cucurbitaceae) were extracted with hexane, ethyl acetate, and then methanol, and subjected to silica gel column chromatography. Structures of six isolated compounds were elucidated through NMR and HR-EIMS spectrometry. Callistrisic acid, dehydroabietinol, suaveolic acid, suaveolol, and a mixture of suaveolol and suaveolic acid (SSA) were obtained from H. suaveolens, while karavilagenin D and momordicin I acetate were obtained from M. charantia. The isolated biomolecules were tested against trypomastigotes of Trypanosoma brucei brucei and T. congolense, and against Plasmodium falciparum. The most promising EC50 values were obtained for the purified suaveolol fraction, at 2.71 ± 0.36 μg/mL, and SSA, exhibiting an EC50 of 1.56 ± 0.17 μg/mL against T. b. brucei trypomastigotes. Suaveolic acid had low activity against T. b. brucei but displayed moderate activity against T. congolense trypomastigotes at 11.1 ± 0.5 μg/mL. Suaveolol and SSA were also tested against T. evansi, T. equiperdum, Leishmania major and L. mexicana but the antileishmanial activity was low. Neither of the active compounds, nor the mixture of the two, displayed any cytotoxic effect on human foreskin fibroblast (HFF) cells at even the highest concentration tested, being 200 μg/mL. We conclude that suaveolol and its mixture possessed significant and selective trypanocidal activity.
Collapse
Affiliation(s)
- Enimie E Oaikhena
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Umar A Yahaya
- Department of Biological Sciences, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Sani M Abdulsalami
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Nkechi L Egbe
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Modupe M Adeyemi
- Department of Chemistry, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
| | - Marzuq A Ungogo
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH8 PYL, UK
| | - Godwin U Ebiloma
- School of Science, Engineering & Environment, University of Salford, M5 4NT, Manchester, UK
| | - Felix K Zoiku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince A Fordjour
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hamza A A Elati
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacology and Toxicology, Pharmacy College, University of Elmergib, Al Khums, Libya
| | - Neils B Quashie
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Ghana; Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Ghana
| | - John O Igoli
- Department of Chemistry, Joseph Sarwuan Tarka University, PMB 2373, Makurdi, Benue State, Nigeria; Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Alexander I Gray
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Christopher Lawson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Ibrahim A, Aminu S, Nzelibe HC, Chechet GD, Ibrahim MA. Mitigation of Trypanosoma congolense-Associated Anemia and Expression of Trans-sialidase (TconTS) Gene Variants by Eugenol. Acta Parasitol 2024; 69:384-395. [PMID: 38147296 DOI: 10.1007/s11686-023-00750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE African Animal Trypanosomosis (AAT) caused by Trypanosoma congolense is a parasitic disease affecting the livestock industry in sub-Saharan Africa and usually results in severe anemia, organ damage, and ultimately the death of the infected host. The present study was designed to investigate the possible chemotherapeutic effect of eugenol on T. congolense infections and its inhibitory effect on the trans-sialidase (TconTS) gene expression. METHODS Animals were infected with T. congolense and treated with 15 and 30 mg/kg body weight (BW) of eugenol for ten (10) days. RESULTS The eugenol (15 mg/kg BW) significantly (P < 0.05) reduced the T. congolense proliferation, increased animal survival, and reduced serum urea level. However, both dosages of eugenol significantly (P < 0.05) ameliorated T. congolense-induced anemia, renal hypertrophy, splenomegaly, and reduced total damage score in the liver and kidney of infected animals. In addition, the compound significantly (P < 0.05) downregulated the expression levels of TconTS1, TconTS2, TconTS3, and TconTS4 but the effect was more pronounced (sevenfold reduction) on TconTS1. CONCLUSIONS The oral administration of eugenol suppressed T. congolense proliferation and prevented some major pathologies associated with trypanosomiasis infection. The reversal of renal hypertrophy and splenomegaly by the compound in addition to the reduction in the expression level of the TconTS gene variants could explain the observed anemia ameliorative potential of the compound.
Collapse
Affiliation(s)
- Aisha Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Gloria Dada Chechet
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Mohammed Auwal Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| |
Collapse
|
4
|
Aminu S, Chechet GD, Alkhalil SS, Sobeh M, Daoud R, Simelane MB, Onyike E, Ibrahim MA. Therapeutic efficacy of β-sitosterol treatment on Trypanosoma congolense infection, anemia development, and trans-sialidase ( TconTS1) gene expression. Front Microbiol 2023; 14:1282257. [PMID: 37886075 PMCID: PMC10598747 DOI: 10.3389/fmicb.2023.1282257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
Background African animal trypanosomiasis hinders sustainable livestock productivity in sub-Saharan Africa. About 17 million infected cattle are treated with trypanocides annually but most of the drugs are associated with drawbacks, necessitating the search for a promising chemotherapeutic agent. Objectives In this study, the effects of β-sitosterol on Trypanosoma congolense infection were investigated along with its effect on the trans-sialidase gene expressions. Results Oral treatment with β-sitosterol at 15 and 30 mg/kg body weight (BW) for 14 days significantly (p < 0.05) reduced parasitemia and ameliorated the parasite-induced anemia. Also, the parasite-induced increase in serum urea level and renal histopathological damage scores in addition to renal hypertrophy was significantly (p < 0.05) reverted following treatment with 30 mg/kg BW β-sitosterol. The compound also significantly (p < 0.05) down-regulated the expression of TconTS1 but not TconTS2, TconTS3, and TconTS4. Correlation analysis between free serum sialic acid with the TconTS1 and TconTS2 gene variants revealed negative correlations in the β-sitosterol-treated groups although they were non-significant (p > 0.05) in the group treated with 15 mg/kg BW β-sitosterol. Similarly, a non-significant negative (p > 0.05) correlation between the biomolecule and the TconTS3 and TconTS4 gene variants was observed in the β-sitosterol-treated groups while positive correlations were observed in the infected untreated control group. Conclusion The observed effect of β-sitosterol on T. congolense infection could make the compound a possible template for the design of novel trypanocides.
Collapse
Affiliation(s)
- Suleiman Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Gloria Dada Chechet
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- African Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Saudi Arabia
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Elewechi Onyike
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Auwal Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- African Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
5
|
Aminu S, Danazumi AU, Alhafiz ZA, Gorna MW, Ibrahim MA. β-Sitosterol could serve as a dual inhibitor of Trypanosoma congolense sialidase and phospholipase A 2: in vitro kinetic analyses and molecular dynamic simulations. Mol Divers 2023; 27:1645-1660. [PMID: 36042119 DOI: 10.1007/s11030-022-10517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The involvement of Trypanosoma congolense sialidase alongside phospholipase A2 has been widely accepted as the major contributing factor to anemia during African animal trypanosomiasis. The enzymes aid the parasite in scavenging sialic acid and fatty acids necessary for survival in the infected host, but there are no specific drug candidates against the two enzymes. This study investigated the inhibitory effects of β-sitosterol on the partially purified T. congolense sialidase and phospholipase A2. Purification of the enzymes using DEAE cellulose column led to fractions with highest specific activities of 8016.41 and 39.26 µmol/min/mg for sialidase and phospholipase A2, respectively. Inhibition kinetics studies showed that β-sitosterol is non-competitive and an uncompetitive inhibitor of sialidase and phospholipase A2 with inhibition binding constants of 0.368 and 0.549 µM, respectively. Molecular docking of the compound revealed binding energies of - 8.0 and - 8.6 kcal/mol against the sialidase and phospholipase A2, respectively. Furthermore, 100 ns molecular dynamics simulation using GROMACS revealed stable interaction of β-sitosterol with both enzymes. Hydrogen bond interactions between the ligand and Glu284 and Leu102 residues of the sialidase and phospholipase A2, respectively, were found to be the major stabilizing forces. In conclusion, β-sitosterol could serve as a dual inhibitor of T. congolense sialidase and phospholipase A2; hence, the compound could be exploited further in the search for newer trypanocides.
Collapse
Affiliation(s)
- Suleiman Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Ammar Usman Danazumi
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Zainab Aliyu Alhafiz
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Federal University, Gusau, Nigeria
| | - Maria Wiktoria Gorna
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
6
|
Aminu S, Ibrahim MA, Dada Chechet G, Onyike E. Chemotherapeutic potentials of β-ionone against Trypanosoma congolense infection: Inhibition of parasite proliferation, anemia development, trans-sialidase (TconTS3 and TconTS4) gene expressions, and phospholipase A 2. Chem Biol Drug Des 2022; 99:908-922. [PMID: 35353953 DOI: 10.1111/cbdd.14048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 11/26/2022]
Abstract
Trypanosoma congolense is a pathogenic African animal trypanosome species causing devastating conditions leading to death of an infected host. The drawbacks of the existing trypanocidal drugs have led to the search for new drug candidates. In this study, β-ionone at 15 and 30 mg/kg body weight (BW) was orally administered to T. congolense infected rats for 14 days followed by an assessment of anemia, organ damages, and the expression of T. congolense trans-sialidase gene variants. A significant decrease in parasitemia (p < .05) was observed in the animals treated with 15 mg/kg BW β-ionone besides increased animal survival rate. A trypanosome-induced decrease in packed cell volume (PCV) and histopathological changes across tissues was significantly (p < .05) ameliorated following treatment with both doses of β-ionone. This is in addition to reversing the parasite-induced upsurge in free serum sialic acid (FSA) and expression of T. congolense trans-sialidase gene variants (TconTS1, TconTS3, and TconTS4). Correlation analysis revealed a positive correlation (p > .05) between FSA with the TconTS gene expressions. In addition, the compound inhibited partially purified T. congolense sialidase and phospholipase A2 via mixed inhibition pattern with inhibition binding constants of 25.325 and 4.550 µM, respectively, while molecular docking predicted binding energies of -5.6 kcal/mol for both enzymes. In conclusion, treatment with β-ionone suppressed T. congolense proliferation and protected the animals against some of the parasite-induced pathologies whilst the effect on anemia development might be due to inhibition of sialidase and PLA2 activities as well as the expression levels of TconTS3 and TconTS4.
Collapse
Affiliation(s)
- Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Auwal Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Gloria Dada Chechet
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Elewechi Onyike
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
7
|
Abdulrashid NI, Aminu S, Adamu RM, Tajuddeen N, Isah MB, Jatau ID, Aliyu AB, Simelane MBC, Onyike E, Ibrahim MA. Phloroglucinol as a Potential Candidate against Trypanosoma congolense Infection: Insights from In Vivo, In Vitro, Molecular Docking and Molecular Dynamic Simulation Analyses. Molecules 2022; 27:469. [PMID: 35056785 PMCID: PMC8781988 DOI: 10.3390/molecules27020469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Sub-Saharan Africa is profoundly challenged with African Animal Trypanosomiasis and the available trypanocides are faced with drawbacks, necessitating the search for novel agents. Herein, the chemotherapeutic potential of phloroglucinol on T. congolense infection and its inhibitory effects on the partially purified T. congolense sialidase and phospholipase A2 (PLA2) were investigated. Treatment with phloroglucinol for 14 days significantly (p < 0.05) suppressed T. congolense proliferation, increased animal survival and ameliorated anemia induced by the parasite. Using biochemical and histopathological analyses, phloroglucinol was found to prevent renal damages and splenomegaly, besides its protection against T. congolense-associated increase in free serum sialic acids in infected animals. Moreover, the compound inhibited bloodstream T. congolense sialidase via mixed inhibition pattern with inhibition binding constant (Ki) of 0.181 µM, but a very low uncompetitive inhibitory effects against PLA2 (Ki > 9000 µM) was recorded. Molecular docking studies revealed binding energies of -4.9 and -5.3 kcal/mol between phloroglucinol with modeled sialidase and PLA2 respectively, while a 50 ns molecular dynamics simulation using GROMACS revealed the sialidase-phloroglucinol complex to be more compact and stable with higher free binding energy (-67.84 ± 0.50 kJ/mol) than PLA2-phloroglucinol complex (-77.17 ± 0.52 kJ/mol), based on MM-PBSA analysis. The sialidase-phloroglucinol complex had a single hydrogen bond interaction with Ser453 while none was observed for the PLA2-phloroglucinol complex. In conclusion, phloroglucinol showed moderate trypanostatic activity with great potential in ameliorating some of the parasite-induced pathologies and its anti-anemic effects might be linked to inhibition of sialidase rather than PLA2.
Collapse
Affiliation(s)
| | - Suleiman Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria 810241, Nigeria; (N.I.A.); (S.A.); (E.O.)
| | - Rahma Muhammad Adamu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University, Zaria 810241, Nigeria; (N.T.); (A.B.A.)
| | - Murtala Bindawa Isah
- Department of Biochemistry, Umaru Musa Yar’adua University, Katsina 820241, Nigeria;
| | - Isa Danladi Jatau
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria 810241, Nigeria;
| | - Abubakar Babando Aliyu
- Department of Chemistry, Ahmadu Bello University, Zaria 810241, Nigeria; (N.T.); (A.B.A.)
| | | | - Elewechi Onyike
- Department of Biochemistry, Ahmadu Bello University, Zaria 810241, Nigeria; (N.I.A.); (S.A.); (E.O.)
| | - Mohammed Auwal Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria 810241, Nigeria; (N.I.A.); (S.A.); (E.O.)
| |
Collapse
|
8
|
Moura YAS, da Silva Júnior JN, Lorena VMBD, Amorim APD, Porto ALF, Marques DDAV, Bezerra RP. Effects of algae bioactive compounds on Trypanosoma cruzi: A systematic review. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Usman MA, Usman FI, Abubakar MS, Salman AA, Adamu A, Ibrahim MA. Phytol suppresses parasitemia and ameliorates anaemia and oxidative brain damage in mice infected with Plasmodium berghei. Exp Parasitol 2021; 224:108097. [PMID: 33736972 DOI: 10.1016/j.exppara.2021.108097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 01/15/2023]
Abstract
The quest for the development of a novel antimalarial drug informed the decision to subject phytol to in vivo trials following a demonstration of therapeutic potential against chloroquine sensitive strain of Plasmodium falciparum under in vitro condition. On this basis, the in vivo anti-Plasmodium berghei activity of phytol including the ameliorative effects of the compound on P. berghei-associated anaemia and organ damage were investigated. Mice were infected with chloroquine-sensitive strain of P. berghei and were treated with phytol at a dose of 10 and 20 mg/kg body weight (BW) for four days. The levels of parasitemia, packed cell volume and redox sensitive biomarkers of liver, brain and spleen tissues were determined. Our result revealed that phytol significantly (p < 0.05) suppressed the multiplication of P. berghei in a dose-dependent manner. Additionally, the phytol significantly (p < 0.05) ameliorated the P. berghei-induced anaemia and brain damage. Data from the present study demonstrated that phytol has suppressive effect on P. berghei and could ameliorate some P. berghei-induced pathological changes.
Collapse
Affiliation(s)
| | | | | | | | - Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|