1
|
Han N, Wang T, Chang S, Gao R, Wen Y, Liu Z, Xi H, Zhai J, Feng R, Li S, Yin J. A discovery in traditional Chinese medicine compatibility: Cinnabaris suppresses the Strychni Semen-induced neurotoxicity in Shang-Ke-Jie-Gu tablet. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156029. [PMID: 39276686 DOI: 10.1016/j.phymed.2024.156029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/08/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Cinnabaris, as a commonly used mineral drugs, is a classic sedative medicine. Shang-Ke-Jie-Gu tablet is a famous Chinese patent medicine with Cinnabaris, However, the function of Cin in the prescription hasn't been clarified. PURPOSE Our study evaluated the toxicity of Shang-Ke-Jie-Gu tablet (SK) with or without Cinnabaris, and illuminate the related mechanisms that why cinnabaris is necessary. METHODS The toxicity of SK and Cin free Shang-Ke-Jie-Gu tablet (CFSK) was evaluated by physical and behavioral tests and histological examinations. The detoxificaion mechanism of Cin on Strychni Semen (SS)-induced neurotoxicity in SK was performed based on the analysis of intestinal absorption, liver metabolism, serum metabolomics, and gut microbiota. The mercury accumulation of SK was assayed using human hair by ICP-MS. RESULTS Cin was found to inhibit the neurotoxicity of SS in SK. Our study shows that Cin could inhibit SS's absorption in small intestine and promote its metabolism in the liver. A serum metabolomics study showed that taurine and hypotaurine metabolism and retrograde endocannabinoid signaling pathway were associated with Cin attenuation. Association analysis with gut microbiota suggested that Cin could downregulate four key metabolites, including 12‑hydroxy arachidonic acid, GM4(d18:1/18:0), C16 sphinganine, and LysoPC(18:1(11Z)/0:0), by downregulating Lachnospiraceae_NK4A136 and upregulating Prevotella to inhibit the toxic effects of SS. In addition, the danger of mercury poisoning in a longer time administration of SK was evaluated using human hair, and no visible increase in mercury was observed. CONCLUSION As a new discovery in compatibility, Cin was proved to be capable of inhibiting the neurotoxicity not only in SK but also in Cin-SS combination, displaying vital roles in Traditional Chinese Medicines.
Collapse
Affiliation(s)
- Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Taotao Wang
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Sheng Chang
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rong Gao
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yuanyuan Wen
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haoying Xi
- Dalian Merro Chinese Traditional Medicine Factory Co., Ltd, Yingsheng Road 19, Dalian 116036 PR China
| | - Jianxiu Zhai
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ruimao Feng
- Dalian Merro Chinese Traditional Medicine Factory Co., Ltd, Yingsheng Road 19, Dalian 116036 PR China
| | - Sikai Li
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Meteria Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Zhao T, Xue X, Liu P, Hu H, Wang K, Wang Y, Wu L. Queen Bee Larva, an Edible By-Product of Royal Jelly, Alleviate D-Galactose-Induced Aging in Mouse by Regulating Gut Microbiota Structure and Amino Acid Metabolism. Antioxidants (Basel) 2024; 13:1275. [PMID: 39594417 PMCID: PMC11591118 DOI: 10.3390/antiox13111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Queen bee larva (QBL), as a by-product of royal jelly, is a kind of protein-rich edible insect. However, the development and utilization of QBL have been very limited for an extended period, resulting in considerable economic waste. Notably, QBL has substantial potential for anti-aging treatments; however, systematic studies have been scarce. The present study aimed to analyze the effects of freeze-dried QBL powder (QBLP) treatment in a D-galactose (D-gal)-induced-aging mouse and to explore the mechanisms. A behavioral test indicated that QBLP-treated mice had improved cognitive function and memory decline caused by aging compared to untreated aged mice. Furthermore, QBLP treatment improved organ index in aged mice and prevented pathological damage to the brain tissue. Concomitantly, treatment of D-gal-induced-aging mice with QBLP significantly reduced the oxidative damage of serum and increased the skin moisture content of aging mice. Finally, integrated analyses of the gut microbiota and the serum metabolome showed that QBLP supplementation altered the composition of the gut microbiota, enriched biochemical pathways associated with amino acid metabolism, and adjusted serum concentrations of beneficial free amino acids. Overall, QBLP can improve symptoms related to D-gal-induced aging in mice by regulating gut microbiota structure and amino acid metabolism.
Collapse
Affiliation(s)
- Tong Zhao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (T.Z.); (P.L.)
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| | - Pingxiang Liu
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (T.Z.); (P.L.)
| | - Han Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| | - Yutao Wang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (T.Z.); (P.L.)
- Cooperative of Vegetable and Grain Cultivation, Liaocheng Yifeng Bloc, Liaocheng 252000, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| |
Collapse
|
3
|
Hao KX, Shen CY, Jiang JG. Sedative and hypnotic effects of Polygala tenuifolia willd. saponins on insomnia mice and their targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117618. [PMID: 38141791 DOI: 10.1016/j.jep.2023.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia Willd. has been widely used in the treatment of cancer, forgetfulness, depression and other diseases. AIM OF REVIEW The purpose of this study was to investigate the sleep-enhancing effect and mechanism of P. tenuifolia saponins (PTS). MATERIALS AND METHODS The total saponin (YZ-I) and purified saponin (YZ-II) fractions were extracted and ICR mice model of insomnia was established by p-chlorophenylalanine (PCPA) induction to observe anxiety and depression behaviors. Effects of YZ-I and YZ-II on the levels of neurotransmitters, hormones, and inflammation cytokines were detected by ELISA, RT-qPCR and western blotting. RESULTS The results showed that YZ-I and YZ-II reduced the immobility time of mice and prolonged the sleep time of mice and significantly increased the concentrations of 5-HT, NE, PGD2, IL-1β and TNF-α. YZ-I and YZ-II regulated GABAARα2, GABAARα3, GAD65/67, 5-HT1A and 5-HT2A, while regulated the levels of inflammatory cytokines such as DPR, PGD2, iNOS and TNF-α to exert sedative and hypnotic effects. CONCLUSION PTS are mainly achieved sedative and hypnotic effects by altering serotonergic, GABAergic and immune systems, but the effects and mechanisms of action of YZ-I were different from YZ-II.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou 510515, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Wen D, Xie J, Yuan Y, Shen L, Yang Y, Chen W. The endogenous antioxidant ability of royal jelly in Drosophila is independent of Keap1/Nrf2 by activating oxidoreductase activity. INSECT SCIENCE 2024; 31:503-523. [PMID: 37632209 DOI: 10.1111/1744-7917.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 08/27/2023]
Abstract
Royal jelly (RJ) is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees. It is widely claimed that RJ reduces oxidative stress. However, the antioxidant activity of RJ has mostly been determined by in vitro chemical detection methods or by external administration drugs that cause oxidative stress. Whether RJ can clear the endogenous production of reactive oxygen species (ROS) in cells remains largely unknown. Here, we systematically investigated the antioxidant properties of RJ using several endogenous oxidative stress models of Drosophila. We found that RJ enhanced sleep quality of aging Drosophila, which is decreased due to an increase of oxidative damage with age. RJ supplementation improved survival and suppressed ROS levels in gut cells of flies upon exposure to hydrogen peroxide or to the neurotoxic agent paraquat. Moreover, RJ supplementation moderated levels of ROS in endogenous gut cells and extended lifespan after exposure of flies to heat stress. Sleep deprivation leads to accumulation of ROS in the gut cells, and RJ attenuated the consequences of oxidative stress caused by sleep loss and prolonged lifespan. Mechanistically, RJ prevented cell oxidative damage caused by heat stress or sleep deprivation, with the antioxidant activity in vivo independent of Keap1/Nrf2 signaling. RJ supplementation activated oxidoreductase activity in the guts of flies, suggesting its ability to inhibit endogenous oxidative stress and maintain health, possibly in humans.
Collapse
Affiliation(s)
- Dongjing Wen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiayu Xie
- School of Medicine, Chongqing University, Chongqing, China
| | - Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lirong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufeng Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
5
|
Li T, Wang W, Guo Q, Li J, Tang T, Wang Y, Liu D, Yang K, Li J, Deng K, Wang F, Li H, Wu Z, Guo J, Guo D, Shi Y, Zou J, Sun J, Zhang X, Yang M. Rosemary (Rosmarinus officinalis L.) hydrosol based on serotonergic synapse for insomnia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116984. [PMID: 37532071 DOI: 10.1016/j.jep.2023.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosemary (Rosmarinus officinalis L.) has been widely used as a traditional remedy for insomnia, depression and anxiety in China and Western countries. Modern pharmacological studies have shown that rosemary has important applications in neurological disorders. However, the mechanism of action of rosemary hydrosol in the treatment of insomnia is not known. AIMS OF THE STUDY Insomnia is closely linked to anxiety and depression, and its pathogenesis is related to biology, psychology, and sociology. Rosemary is a natural plant that has been used to treat insomnia and depression and has good biological activity, but its material basis and mechanism for the treatment of insomnia are not clear. Here, we report on the role of aqueous extracts of rosemary in the treatment of insomnia. MATERIALS AND METHODS The study was based on network pharmacology, using a combination of RNA-sequencing, "quantity-effect" weighting coefficients, and pharmacodynamic experiments. DL-4-chlorophenylalanine (PCPA) was intraperitoneally injected into SD rats to replicate the insomnia model with a blank, model, diazepam, and rosemary hydrosol low-, medium-, and high-dose groups were set up for the experiment. The key pathways in the treatment of insomnia with rosemary hydrosol were analyzed by molecular docking, open field assay, ELISA, western-Blot, Rt-PCR, and immunohistochemical assay. RESULTS Rosemary hydrosol was analyzed by GC-MS to identify 19 components. 1579 differential genes were obtained by RNA-Seq analysis, 533 targets for rosemary hydrosol and 2705 targets for insomnia, and 29 key targets were obtained by intersection. The KEGG results were ranked by "quantity-effect" weighting coefficients, resulting in serotonergic synapse was the key pathway for the treatment of insomnia with rosemary hydrosol. Molecular docking results showed that 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, 3-methyl-4-isopropylphenol, caryophyllene, and citronellol of rosemary hydrosol acted synergistically to achieve a therapeutic effect on insomnia. Caryophyllene acts on the HTR1A target by upregulating 5-HT1AR, leading to increased 5-HT release, and upregulation of ADCY5, cAMP, PKA and GABAA at serotonergic synapses; citronellol upregulated ADCY5 and 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, and 3-methyl-4-isopropylphenol up-regulated GABAA to improve insomnia symptoms. In open-field experiments, ELISA kits (5-HT, GABA, and DA), Western-blotting, Rt-PCR and immunohistochemical assay experiments, insomnia rats in the low-, medium- and high-dose groups of rosemary hydrosol showed different degrees of improvement compared with the model group. CONCLUSIONS It was shown that rosemary hydrosol may exert its therapeutic effects on insomnia through serotonergic synapses by combining RNA-Seq, "quantity-effect" weighting coefficients network pharmacology and pharmacodynamic experiments. We have provided a preliminary theoretical study for the development of rosemary hydrosol additive into a beverage for the treatment of insomnia, but it needs to be studied in depth. This study was conducted in rats and the results have limitations and may not apply to humans.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Wenfei Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Qiuting Guo
- Xianyang Vocational Technical College, Xianyang, 712000, Shaanxi, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Ding Liu
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Kai Yang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jiayi Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Kaixue Deng
- Shaanxi Jianchi Biological Pharmaceutical Co., Ltd, Xianyang, 712000, Shaanxi, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jianbo Guo
- Shaanxi Province Food and Drug Safety Monitoring Key Laboratory, Shaanxi Institute of Food and Drug Control, Xi'an, 710000, Shaanxi, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
6
|
Liu D, Zhang J, Chen J, Zhang C, Yi H, Liu D. Carrot-based fermentation juice rich in sleep-promoting components improved sleep in mice. Front Nutr 2022; 9:1043055. [PMID: 36523330 PMCID: PMC9745110 DOI: 10.3389/fnut.2022.1043055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
The impact of fermentation by Levilactobacillus brevis YSJ3 on sleep-promoting components (SPCs) of carrot juice was evaluated. The contents of acetic acid, isovaleric acid, butyric acid, and γ-aminobutyric acid (GABA) significantly increased after fermentation. The beneficial effects of fermented carrot juice (FCJ) on sleep were evaluated in animal experiments. Behavioral test reveal SPCs-enriched FCJ could effectively relieve anxiety. The sleep duration in the FCJ group were extended compared to the control (NC) group and the unfermented carrot juice (UCJ) group. Moreover, the relative abundances of Ruminiclostridium and Akkermansia in the FCJ group and PC group, respectively, increased significantly, compared to the NC group the UCJ group. The contents of gut short-chain fatty acids in the FCJ group were significantly higher than that in the NC group and the UCJ group. The levels of GABA and 5-hydroxytryptamine in the brain for the FCJ group also increased significantly, compared to the NC group and the UCJ group. It indicated that SPCs-enriched FCJ effectively improved sleep in mice, which might be related to the fermentation of carrot juice and the compounds produced during the fermentation.
Collapse
Affiliation(s)
- Daiyao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Juan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chengcheng Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Daqun Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Xin WG, Li XD, Lin YC, Jiang YH, Xu MY, Zhang QL, Wang F, Lin LB. Whole genome analysis of host-associated lactobacillus salivarius and the effects on hepatic antioxidant enzymes and gut microorganisms of Sinocyclocheilus grahami. Front Microbiol 2022; 13:1014970. [PMID: 36386721 PMCID: PMC9648147 DOI: 10.3389/fmicb.2022.1014970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
As a fish unique to Yunnan Province in China, Sinocyclocheilus grahami hosts abundant potential probiotic resources in its intestinal tract. However, the genomic characteristics of the probiotic potential bacteria in its intestine and their effects on S. grahami have not yet been established. In this study, we investigated the functional genomics and host response of a strain, Lactobacillus salivarius S01, isolated from the intestine of S. grahami (bred in captivity). The results revealed that the total length of the genome was 1,737,623 bp (GC content, 33.09%), comprised of 1895 genes, including 22 rRNA operons and 78 transfer RNA genes. Three clusters of antibacterial substances related genes were identified using antiSMASH and BAGEL4 database predictions. In addition, manual examination confirmed the presence of functional genes related to stress resistance, adhesion, immunity, and other genes responsible for probiotic potential in the genome of L. salivarius S01. Subsequently, the probiotic effect of L. salivarius S01 was investigated in vivo by feeding S. grahami a diet with bacterial supplementation. The results showed that potential probiotic supplementation increased the activity of antioxidant enzymes (SOD, CAT, and POD) in the hepar and reduced oxidative damage (MDA). Furthermore, the gut microbial community and diversity of S. grahami from different treatment groups were compared using high-throughput sequencing. The diversity index of the gut microbial community in the group supplemented with potential probiotics was higher than that in the control group, indicating that supplementation with potential probiotics increased gut microbial diversity. At the phylum level, the abundance of Proteobacteria decreased with potential probiotic supplementation, while the abundance of Firmicutes, Actinobacteriota, and Bacteroidota increased. At the genus level, there was a decrease in the abundance of the pathogenic bacterium Aeromonas and an increase in the abundance of the potential probiotic bacterium Bifidobacterium. The results of this study suggest that L. salivarius S01 is a promising potential probiotic candidate that provides multiple benefits for the microbiome of S. grahami.
Collapse
Affiliation(s)
- Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Mei-Yu Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| |
Collapse
|
8
|
Supplementation with Queen Bee Larva Powder Extended the Longevity of Caenorhabditis elegans. Nutrients 2022; 14:nu14193976. [PMID: 36235629 PMCID: PMC9573043 DOI: 10.3390/nu14193976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Queen bee larva (QBL) is one kind of important edible insect that is harvested during royal jelly production process. QBL has many physiological functions; however, limited information is available regarding its antiaging effects. In this study, the antiaging function of freeze-dried QBL powder (QBLP) was investigated by combining the Caenorhabditis elegans (C. elegans) model and transcriptomics. The administration of QBLP to C. elegans was shown to improve lifespan parameters. Additionally, QBLP improved the mobility of nematodes. Transcriptome analysis showed the differentially expressed genes (DEGs) were significantly enriched in Gene Ontology (GO) terms that were almost all related to the biological functions of cell metabolism and stress, which are associated with lifespan. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the lifespan of C. elegans was related to the longevity regulating pathway-worm. The expression levels of the key genes sod-3, gst-6, hsp-12.6, lips-7, ins-8, and lips-17 were upregulated. sod-3, hsp-12.6, lips-7, and lips-17 are downstream targets of DAF-16, which is an important transcription factor related to lifespan extension. CF1038 (daf-16(mu86)) supplemented with QBLP did not show a life-prolonging. This indicates that the antiaging function of QBLP is closely related to daf-16. Thus, QBLP is a component that could potentially be used as a functional material to ameliorate aging and aging-related symptoms.
Collapse
|
9
|
Chen Z, Feng Y, Li S, Hua K, Fu S, Chen F, Chen H, Pan L, Wu C, Jiang G. Altered functional connectivity strength in chronic insomnia associated with gut microbiota composition and sleep efficiency. Front Psychiatry 2022; 13:1050403. [PMID: 36483137 PMCID: PMC9722753 DOI: 10.3389/fpsyt.2022.1050403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There is limited evidence on the link between gut microbiota (GM) and resting-state brain activity in patients with chronic insomnia (CI). This study aimed to explore the alterations in brain functional connectivity strength (FCS) in CI and the potential associations among altered FCS, GM composition, and neuropsychological performance indicators. MATERIALS AND METHODS Thirty CI patients and 34 age- and gender-matched healthy controls (HCs) were recruited. Each participant underwent resting-state functional magnetic resonance imaging (rs-fMRI) for the evaluation of brain FCS and was administered sleep-, mood-, and cognitive-related questionnaires for the evaluation of neuropsychological performance. Stool samples of CI patients were collected and subjected to 16S rDNA amplicon sequencing to assess the relative abundance (RA) of GM. Redundancy analysis or canonical correspondence analysis (RDA or CCA, respectively) was used to investigate the relationships between GM composition and neuropsychological performance indicators. Spearman correlation was further performed to analyze the associations among alterations in FCS, GM composition, and neuropsychological performance indicators. RESULTS The CI group showed a reduction in FCS in the left superior parietal gyrus (SPG) compared to the HC group. The correlation analysis showed that the FCS in the left SPG was correlated with sleep efficiency and some specific bacterial genera. The results of CCA and RDA showed that 38.21% (RDA) and 24.62% (CCA) of the GM composition variation could be interpreted by neuropsychological performance indicators. Furthermore, we found complex relationships between Alloprevotella, specific members of the family Lachnospiraceae, Faecalicoccus, and the FCS alteration, and neuropsychological performance indicators. CONCLUSION The brain FCS alteration of patients with CI was related to their GM composition and neuropsychological performance indicators, and there was also an association to some extent between the latter two, suggesting a specific interaction pattern among the three aspects: brain FCS alteration, GM composition, and neuropsychological performance indicators.
Collapse
Affiliation(s)
- Ziwei Chen
- Jinan University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Feng
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shumei Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kelei Hua
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huiyu Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | | | - Caojun Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,Jinan University, Guangzhou, China
| |
Collapse
|