1
|
Rathod SK, Das BK, Tandel RS, Chatterjee S, Das N, Tripathi G, Kumar S, Panda SK, Patil PK, Manna SK. Isolation and characterization of Saprolegnia parasitica from cage-reared Pangasianodon hypophthalmus and its sensitivity to different antifungal compounds. Sci Rep 2024; 14:30720. [PMID: 39730460 DOI: 10.1038/s41598-024-80075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/14/2024] [Indexed: 12/29/2024] Open
Abstract
Saprolegniasis is one of the most dangerous fungal diseases of fish, causing significant mortality in fish hatcheries and young ones. The present study aimed to isolate and characterize the causative fungus from fingerlings of Pangasianodon hypophthalmus cultured intensively in freshwater cages in Indian reservoirs and to determine minimum inhibitory concentrations of different antifungal compounds against the fungal hyphae and zoospores. The fungal isolates grown on potato dextrose agar showed an abundance of gemmae, elongated mycelia, non-septate hyphae, primary zoospores, mature zoosporangia with numerous zoospores, cysts with bundles of long hairs and were further identified as Saprolegnia parasitica following PCR amplification and sequencing of internal transcribed spacer region. S. parasitica showed temperature-sensitive optimum growth in a narrow window of 12-24 ℃, which might drive its experimental pathogenesis as well as natural infections in the winter months. In vitro sensitivity testing established negligible inhibitory activity of fluconazole, boric acid, sodium thiosulfate, and potassium permanganate while clotrimazole arrested the spore and hyphal growths at 2 mgL-1 concentration suggesting potential of the imidazole antifungal in treating S. parasitica infection in fish. The present study will serve as the baseline information for developing therapeutic and management strategies for controlling saprolegniasis in the economically significant iridescent catfish.
Collapse
Affiliation(s)
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, India
| | | | - Sohini Chatterjee
- ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, India
| | - Nilemesh Das
- ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, India
| | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | | | - Sanjib Kumar Manna
- ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, India.
| |
Collapse
|
2
|
Wang Y, Gao X, Wang T, Zhang Y, Hu K. Effects of Saprolegnia parasitica on pathological damage and metabolism of Epithelioma papulosum cyprini cell. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105311. [PMID: 39733846 DOI: 10.1016/j.dci.2024.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Saprolegniasis is a common fungal disease in aquaculture. It will form white flocculent hyphae on the skin of fish, and the hyphae may grow inward and penetrate into muscle tissue, which will reduce the immunity of the body and eventually lead to death. However, there are still some gaps in the mechanism of the fish body surface against the invasion of Saprolegnia. This study explored the defense mechanism of Epithelioma papulosum cyprini cell (EPC) in the process of Saprolegnia parasitica infection from the perspective of pathogenic bacteria and host cells, so as to provide a theoretical basis for further exploring the mechanism of host resistance to S. parasitica invasion. The EPC cell was used as the research object. The EPC cells were treated with 1 × 106 CFU/mL of S. parasitica for 0, 6, 12, 24, 48 and 72 h. Cell viability and cell membrane damage were detected, and the non-specific immune enzyme activity in the cells was detected. Based on the above research, the apoptosis genes and antioxidant genes in the cells were detected to analyze the effect of S. parasitica on the metabolism of the EPC cells. The results showed that with the prolongation of the co-culture time of S. parasitica and cells, the cell viability gradually decreased and the cell membrane integrity was destroyed, but at the same time, the activity of non-specific immune enzymes increased to resist the infection of S. parasitica. In addition, the detection of EPC apoptosis gene casp3a and CTSD showed that the relative content of casp3a gene increased significantly at 24 h and reached the maximum value of the culture time (P < 0.05). The content of CTSD gene increased significantly at 12 h and reached the maximum value (P < 0.05). The results of antioxidant immune genes serpinh1a and gpx1a were opposite to the structure of apoptotic genes. The content of serpinh1a and gpx1a genes decreased significantly at 12 h (P < 0.05), but with the prolongation of culture time, the content increased significantly at 24 h and 48 h (P < 0.05). After stimulation of EPC cells by S. parasitica, the differential metabolites were mainly concentrated in Lipids, Compounds with biological roles and Phytochemical compounds. The KEGG pathway mainly focused on ABC transporters, Glycerophospholipid metabolism, Cysteine and methionine metabolism, Glycine, serine and threonine metabolism, Purine metabolism. In general, S. parasitica can affect cell activity, destroy the cell membrane of EPC cells, and cause apoptosis. However, EPC cells can also resist the invasion of S. parasitica by regulating their own non-specific immunity and their own metabolites, thereby protecting the body from the infection of S. parasitica.
Collapse
Affiliation(s)
- Yali Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoning Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Tianewi Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yangyang Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Kun Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Wang Y, Zhou X, Xu R, Gao X, Cui S, Zhang S, Hu K, Wu C. Structural damage and organelle destruction: Mechanisms of pseudolaric acid B against S. parasitica. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109894. [PMID: 39260528 DOI: 10.1016/j.fsi.2024.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
This study aimed to investigate the potential of Chinese herbs in treating aquatic diseases. More particularly, the antibacterial properties and mechanisms of Chinese herbs and their monomers against Saprolegnia parasitica were investigated. In vitro antibacterial testing revealed that Cortex pseudolaricis exhibited significant antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.98 mg/mL. The primary monomer responsible for this antibacterial effect was identified as pseudolaric acid B (PAB), with an MIC of 0.03 mg/mL. SEM and TEM analyses demonstrated that treatment with PAB resulted in structural damage to the cell wall and cell membrane of hyphae, leading to lysis of the cell wall and membrane of spores, organelle destruction, and vacuole formation within the cells. Analysis of the transcriptome and metabolome revealed that PAB disrupts amino acid, lipid, and nucleic acid metabolism in S. parasitica. This disruption impacts the biosynthesis and metabolism of various amino acids, including arginine, proline, glycine, serine, cysteine, methionine, glutamate, lysine, histidine, phenylalanine, tyrosine, and tryptophan. PAB also results in increased energy consumption and hindered energy generation in S. parasitica, as well as interference with the synthesis of membrane components such as DAG and phytosphingosine. Furthermore, PAB disrupts RNA, DNA, and ATP production in S. parasitica. Consequently, protein synthesis, energy supply, immune function and barrier structure in S. parasitica are weakened, and potentially leading to death. This study identifies potential antibacterial agents for environmentally friendly solutions for controlling fish saprolegniasis.
Collapse
Affiliation(s)
- Yali Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xinghong Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Ruze Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoning Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Subin Cui
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Siyu Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Kun Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
| | - Congdi Wu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Li W, Li G, Xu W, Li Z, Qu H, Ma C, Zhang H, Cai M, Bahojb Noruzi E, Quan J, Periyasami G, Li H. Visible Light-Gating Responsive Nanochannel for Controlled Release of the Fungicide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401503. [PMID: 38705860 DOI: 10.1002/smll.202401503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Fungicides have been widely used to protect crops from the disease of pythium aphanidermatum (PA). However, excessive use of synthetic fungicides can lead to fungal pathogens developing microbicide resistance. Recently, biomimetic nano-delivery systems have been used for controlled release, reducing the overuse of fungicides, and thereby protecting the environment. In this paper, inspired by chloroplast membranes, visible light biomimetic channels are constructed by using retinal, the main component of green pigment on chloroplasts in plants, which can achieve the precise controlled release of the model fungicide methylene blue (MB). The experimental results show that the biomimetic channels have good circularity after and before light conditions. In addition, it is also found that the release of MB in visible light by the retinal-modified channels is 8.78 µmol·m-2·h-1, which is four times higher than that in the before light conditions. Furthermore, MB, a bactericide drug model released under visible light, can effectively inhibit the growth of PA, reaching a 97% inhibition effect. The biomimetic nanochannels can realize the controlled release of the fungicide MB, which provides a new way for the treatment of PA on the leaves surface of cucumber, further expanding the application field of biomimetic nanomembrane carrier materials.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Guang Li
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weiwei Xu
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ziheng Li
- Hubei Central China Normal University Overseas Study Service Center, Central China Normal University, Wuhan, 430079, P. R. China
| | - Haonan Qu
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Cuiguang Ma
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Haifan Zhang
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meng Cai
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ehsan Bahojb Noruzi
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jiaxin Quan
- Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, P. R. China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Haibing Li
- State Key Laboratory of Green Pesticide (CCNU) , College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
5
|
Pavić D, Geček S, Miljanović A, Grbin D, Bielen A. Characterization of Bacterial Communities on Trout Skin and Eggs in Relation to Saprolegnia parasitica Infection Status. Microorganisms 2024; 12:1733. [PMID: 39203577 PMCID: PMC11357440 DOI: 10.3390/microorganisms12081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
We have investigated the changes in the microbial communities on the surface of trout eggs and the skin of adult trout in relation to the presence of Saprolegnia parasitica. This pathogen causes saprolegniosis, a disease responsible for significant losses in salmonid farms and hatcheries. It is known from other disease systems that the host-associated microbiome plays a crucial role in the defence against pathogens, but if the pathogen predominates, this can lead to dysbiosis. However, analyses of the effects of S. parasitica on the diversity, composition, and function of microbial communities on fish skin and eggs are scarce. Thus, we have collected skin swabs from injured and healthy trout (N = 12), which differed in S. parasitica load, from three different fish farms in Croatia (Kostanjevac, Radovan, and Solin), while trout egg samples (N = 12) were infected with S. parasitica in the laboratory. Illumina sequencing of the V4 region of the 16S rRNA marker gene showed that infection with S. parasitica reduced the microbial diversity on the surface of the eggs, as evidenced by decreased Pielou's evenness and Shannon's indices. We further determined whether the bacterial genera with a relative abundance of >5.0% in the egg/skin samples were present at significantly different abundances in relation to the presence of S. parasitica. The results have shown that some genera, such as Pseudomonas and Flavobacterium, decreased significantly in the presence of the pathogen on the egg surface. On the other hand, some bacterial taxa, such as Acinetobacter and Janthinobacterium, as well as Aeromonas, were more abundant on the diseased eggs and the injured trout skin, respectively. Finally, beta diversity analyses (weighted UniFrac, unweighted UniFrac, Bray-Curtis) have shown that the sampling location (i.e., fish farm), along with S. parasitica infection status, also has a significant influence on the microbial communities' composition on the trout skin and eggs, demonstrating the strong influence of the environment on the shaping of the host surface microbiome. Overall, we have shown that the presence of S. parasitica was associated with changes in the diversity and structure of the trout skin/egg microbiome. The results obtained could support the development of new strategies for the management of saprolegniosis in aquaculture.
Collapse
Affiliation(s)
- Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| | - Sunčana Geček
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| | - Dorotea Grbin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| |
Collapse
|
6
|
Timanikova N, Fletcher K, Han JW, van West P, Woodward S, Kim GH, Küpper FC, Wenzel M. Macroalgal eukaryotic microbiome composition indicates novel phylogenetic diversity and broad host spectrum of oomycete pathogens. Environ Microbiol 2024; 26:e16656. [PMID: 38818657 DOI: 10.1111/1462-2920.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Seaweeds are important components of marine ecosystems with emerging potential in aquaculture and as sources of biofuel, food products and pharmacological compounds. However, an increasingly recognised threat to natural and industrial seaweed populations is infection with parasitic single-celled eukaryotes from the relatively understudied oomycete lineage. Here we examine the eukaryomes of diverse brown, red and green marine macroalgae collected from polar (Baffin Island), cold-temperate (Falkland Islands) and tropical (Ascension Island) locations, with a focus on oomycete and closely related diatom taxa. Using 18S rRNA gene amplicon sequencing, we show unexpected genetic and taxonomic diversity of the eukaryomes, a strong broad-brush association between eukaryome composition and geographic location, and some evidence of association between eukaryome structure and macroalgal phylogenetic relationships (phylosymbiosis). However, the oomycete fraction of the eukaryome showed disparate patterns of diversity and structure, highlighting much weaker association with geography and no evidence of phylosymbiosis. We present several novel haplotypes of the most common oomycete Eurychasma dicksonii and report for the first time a cosmopolitan distribution and absence of host specificity of this important pathogen. This indicates rich diversity in macroalgal oomycete pathogens and highlights that these pathogens may be generalist and highly adaptable to diverse environmental conditions.
Collapse
Affiliation(s)
| | - Kyle Fletcher
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Oceanlab, University of Aberdeen, Newburgh, UK
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jon-Wong Han
- Kongju National University, Gongju, South Chungcheong Province, South Korea
| | - Pieter van West
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Steve Woodward
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Gwang-Hoon Kim
- Kongju National University, Gongju, South Chungcheong Province, South Korea
| | - Frithjof C Küpper
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Kongju National University, Gongju, South Chungcheong Province, South Korea
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, UK
- Department of Chemistry and Biochemistry, San Diego State University, California, San Diego, California, USA
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Verebélyi V, Erdei N, Hardy T, Eszterbauer E. Description of Saprolegnia velencensis sp. n. (Oomycota), a novel water mold species from Lake Velence, Hungary. PLoS One 2024; 19:e0298814. [PMID: 38507310 PMCID: PMC10954141 DOI: 10.1371/journal.pone.0298814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/22/2024] Open
Abstract
Here, we describe a novel water mold species, Saprolegnia velencensis sp. n. from Lake Velence, in Hungary. Two strains (SAP239 and SAP241) were isolated from lake water, and characterized using morphological and molecular markers. In addition, phylogenetic analyses based on ITS-rDNA regions and on the RNA polymerase II B subunit (RPB2) gene complemented the study. The ITS-rDNA of the two strains was 100% identical, showed the highest similarity to that of S. ferax (with 94.4% identity), and they formed a separate cluster in both the ITS-rDNA and RPB2-based maximum likelihood phylogenetic trees with high bootstrap support. Although mature oogonia and antheridia were not seen under in vitro conditions, the S. velencensis sp. n. could be clearly distinguished from its closest relative, S. ferax, by the length and width of sporangia, as the new species had shorter and narrower sporangia (163.33±70.07 and 36.69±8.27 μm, respectively) than those of S. ferax. The two species also differed in the size of the secondary cysts (11.63±1.77 μm), which were slightly smaller in S. ferax. Our results showed that S. velencensis sp. n. could not be identified with any of the previously described water mold species, justifying its description as a new species.
Collapse
Affiliation(s)
| | - Noémi Erdei
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - Tímea Hardy
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - Edit Eszterbauer
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| |
Collapse
|
8
|
Markovskaja S, Iršėnaitė R, Kačergius A, Sauliutė G, Stankevičiūtė M. Diversity of fungus-like stramenopilous organisms (Oomycota) in Lithuanian freshwater aquaculture: Morphological and molecular analysis, risk to fish health. JOURNAL OF FISH DISEASES 2024; 47:e13903. [PMID: 38087880 DOI: 10.1111/jfd.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024]
Abstract
The present work is the first comprehensive study of fungus-like stramenopilous organisms (Oomycota) diversity in Lithuanian fish farms aimed at proper identification of saprolegniasis pathogens, which is important for water quality control, monitoring infection levels and choosing more effective treatments for this disease in aquaculture. Pathogenic to fish, Saprolegnia and other potentially pathogenic water moulds were isolated from adult fish, their eggs, fry and from water samples. All detected isolates were examined morphologically and confirmed by sequence-based molecular methods. A total of eight species belonging to the genera Saprolegnia, Achlya, Newbya and Pythium were identified. Four species (S. parasitica, S. ferax, S. australis and S. diclina) were found to be the main causative agents of saprolegniasis in Lithuania. S. parasitica and S. ferax dominated both in hatcheries and open fishponds, accounting for 66.2% of all isolates. S. parasitica was isolated from all farmed salmonid fish species as well as from the skin of Cyprinus carpio, Carassius carassius and Perca fluviatilis. S. australis was isolated from water and once from the skin of Oncorhynchus mykiss, and S. diclina was detected only once on the skin of Salmo salar fish. In addition, Achlya ambisexualis, Saprolegnia anisospora and Newbia oligocantha isolated during this study are noted as a possible source of saprolegniasis. The results of this study are relevant for assessing the risk of potential outbreaks of saprolegniasis or other saprolegnia-like infection in Lithuanian freshwater aquaculture.
Collapse
Affiliation(s)
| | - Reda Iršėnaitė
- Laboratory of Mycology, Nature Research Centre, Vilnius, Lithuania
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Gintarė Sauliutė
- Laboratory of Ecotoxicology, Nature Research Centre, Vilnius, Lithuania
| | | |
Collapse
|
9
|
Shreves KV, Saraiva M, Ruba T, Miller C, Scott EM, McLaggan D, van West P. Specific Phylotypes of Saprolegnia parasitica Associated with Atlantic Salmon Freshwater Aquaculture. J Fungi (Basel) 2024; 10:57. [PMID: 38248966 PMCID: PMC10820671 DOI: 10.3390/jof10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Saprolegniosis is a major destructive disease in freshwater aquaculture. The destructive economic impact of saprolegniosis on freshwater aquaculture necessitates further study on the range of Saprolegnia species within Atlantic salmon fish farms. This study undertook a thorough analysis of a total of 412 oomycete and fungal isolates that were successfully cultured and sequenced from 14 aquaculture sites in Scotland across a two-year sampling period. An ITS phylogenetic analysis of all isolates was performed according to whether they were isolated from fish or water samples and during enzootic or epizootic periods. Several genera of oomycetes were isolated from sampling sites, including Achlya, Leptolegnia, Phytophthora, and Pythium, but by far the most prevalent was Saprolegnia, accounting for 66% of all oomycetes isolated. An analysis of the ITS region of Saprolegnia parasitica showed five distinct phylotypes (S2-S6); S1 was not isolated from any site. Phylotype S2 was the most common and most widely distributed phylotype, being found at 12 of the 14 sampling sites. S2 was overwhelmingly sampled from fish (93.5%) and made up 91.1% of all S. parasitica phylotypes sampled during epizootics, as well as 67.2% of all Saprolegnia. This study indicates that a single phylotype may be responsible for Saprolegnia outbreaks in Atlantic salmon fish farms, and that water sampling and spore counts alone may be insufficient to predict Saprolegnia outbreaks in freshwater aquaculture.
Collapse
Affiliation(s)
- Kypher Varin Shreves
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
| | - Marcia Saraiva
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
| | - Tahmina Ruba
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Claire Miller
- School Mathematics and Statistics, University of Glasgow, Glasgow G12 8TA, UK; (C.M.); (E.M.S.)
| | - E. Marian Scott
- School Mathematics and Statistics, University of Glasgow, Glasgow G12 8TA, UK; (C.M.); (E.M.S.)
| | - Debbie McLaggan
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
| | - Pieter van West
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
| |
Collapse
|
10
|
Angoshtari R, Scribner KT, Marsh TL. The impact of primary colonizers on the community composition of river biofilm. PLoS One 2023; 18:e0288040. [PMID: 37956125 PMCID: PMC10642824 DOI: 10.1371/journal.pone.0288040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/19/2023] [Indexed: 11/15/2023] Open
Abstract
As a strategy for minimizing microbial infections in fish hatcheries, we have investigated how putatively probiotic bacterial populations influence biofilm formation. All surfaces that are exposed to the aquatic milieu develop a microbial community through the selective assembly of microbial populations into a surface-adhering biofilm. In the investigations reported herein, we describe laboratory experiments designed to determine how initial colonization of a surface by nonpathogenic isolates from sturgeon eggs influence the subsequent assembly of populations from a pelagic river community, into the existing biofilm. All eight of the tested strains altered the assembly of river biofilm in a strain-specific manner. Previously formed isolate biofilm was challenged with natural river populations and after 24 hours, two strains and two-isolate combinations proved highly resistant to invasion, comprising at least 80% of the biofilm community, four isolates were intermediate in resistance, accounting for at least 45% of the biofilm community and two isolates were reduced to 4% of the biofilm community. Founding biofilms of Serratia sp, and combinations of Brevundimonas sp.-Hydrogenophaga sp. and Brevundimonas sp.-Acidovorax sp. specifically blocked populations of Aeromonas and Flavobacterium, potential fish pathogens, from colonizing the biofilm. In addition, all isolate biofilms were effective at blocking invading populations of Arcobacter. Several strains, notably Deinococcus sp., recruited specific low-abundance river populations into the top 25 most abundant populations within biofilm. The experiments suggest that relatively simple measures can be used to control the assembly of biofilm on the eggs surface and perhaps offer protection from pathogens. In addition, the methodology provides a relatively rapid way to detect potentially strong ecological interactions between bacterial populations in the formation of biofilms.
Collapse
Affiliation(s)
- Roshan Angoshtari
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States of America
| | - Kim T. Scribner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States of America
| | - Terence L. Marsh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
11
|
Grbin D, Geček S, Miljanović A, Pavić D, Hudina S, Žučko J, Rieder J, Pisano SRR, Adrian-Kalchhauser I, Bielen A. Comparison of exoskeleton microbial communities of co-occurring native and invasive crayfish species. J Invertebr Pathol 2023; 201:107996. [PMID: 37783231 DOI: 10.1016/j.jip.2023.107996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Host-associated microbial communities are an important determinant of individual fitness and have recently been highlighted as one of the factors influencing the success of invasive species. Invasive hosts introduce their microbes into the new environment, and then both the host and its associated microbes enter into a series of interactions with the native macroscopic and microscopic biota. As these processes are largely unexplored, we aimed to compare the exoskeletal microbial communities of co-occurring and phylogenetically related crayfish: the native narrow-clawed crayfish Pontastacus leptodactylus and the invasive signal crayfish Pacifastacus leniusculus from the recently invaded Korana River, Croatia. The results of high-throughput 16S rRNA sequencing showed that the exoskeletal microbiome of both species is very diverse, significantly influenced by the local environment and dominated by low abundance bacterial families from the phylum Proteobacteria. Furthermore, the exoskeletal microbiomes of the crayfish species differed significantly in the composition and abundance of Amplicon Sequence Variants (ASVs), suggesting that they are to some extent shaped by species-specific intrinsic factors, despite sharing a common habitat. However, over 95% of the bacterial genera associated with the exoskeleton were detected in the exoskeleton samples of both native and invasive crayfish. We paid particular attention to two known crayfish pathogens, Aphanomyces astaci and Saprolegnia parasitica, and find that both species carry low amounts of both pathogens. On the side, we find that a non-standard ddPCR protocol outperforms standard qPCR test for A. astaci under low concentration conditions. Taken together, our results indicate the possibility of bidirectional mixing and homogenisation of exoskeleton microbiome. As such, they can serve as a baseline in future detangling of the processes that act together to shape the microbiomes of co-occuring native and invasive congeners during biological invasions.
Collapse
Affiliation(s)
- Dorotea Grbin
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Sunčana Geček
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Sandra Hudina
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Jurica Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Jessica Rieder
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland.
| | - Simone R R Pisano
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Irene Adrian-Kalchhauser
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Vink JNA, Hayhurst M, Gerth ML. Harnessing CRISPR-Cas for oomycete genome editing. Trends Microbiol 2023; 31:947-958. [PMID: 37127441 DOI: 10.1016/j.tim.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Oomycetes are a group of microorganisms that include pathogens responsible for devastating diseases in plants and animals worldwide. Despite their importance, the development of genome editing techniques for oomycetes has progressed more slowly than for model microorganisms. Here, we review recent breakthroughs in clustered regularly interspaced short palindromic repeats (CRISPR)-Cas technologies that are expanding the genome editing toolbox for oomycetes - from the original Cas9 study to Cas12a editing, ribonucleoprotein (RNP) delivery, and complementation. We also discuss some of the challenges to applying CRISPR-Cas in oomycetes and potential ways to overcome them. Advances in CRISPR-Cas technologies are being used to illuminate the biology of oomycetes, which ultimately can guide the development of tools for managing oomycete diseases.
Collapse
Affiliation(s)
- Jochem N A Vink
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Max Hayhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Monica L Gerth
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Bioprotection Aotearoa National Centre of Research Excellence, New Zealand.
| |
Collapse
|
13
|
El Gamal SA, Adawy RS, Zaki VH, Zahran E. Host-pathogen interaction unveiled by immune, oxidative stress, and cytokine expression analysis to experimental Saprolegnia parasitica infection in Nile tilapia. Sci Rep 2023; 13:9888. [PMID: 37337042 PMCID: PMC10279727 DOI: 10.1038/s41598-023-36892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The present study evaluated the pathogenicity, immunological, and oxidant/antioxidant responses against Saprolegnia parasitica (S. parasitica) infection in Nile tilapia (Oreochromis niloticus). Three groups of Nile tilapia were assigned as the control group (no zoospores exposure). The other two groups were challenged by Saprolegnia zoospores; one was used for sampling, and the other for mortality monitoring. The study lasted 3 weeks and was sampled at three point times at 1, 2, and 3 weeks. Results showed that S. parasitica zoospores were pathogenic to Nile tilapia, causing a cumulative mortality rate of 86.6%. Immunoglobulin M and C- reactive protein (IgM and CRP) levels showed a similar trend being significantly (P < 0.05, P < 0.001) higher in the infected group at weeks 1, 2, and 3, respectively, compared to the control group. Oxidant and antioxidant parameters in gills revealed that Malondialdehyde (MDA) level was significantly higher in the infected group compared to the control group. While catalase, glutathione peroxidase, and superoxide dismutase (CAT, GSH, and SOD) levels were significantly decreased in the infected group compared to the control group. Compared to the control, the tumor necrosis factor-α (TNF-α) gene was firmly upregulated in gill tissue at all-time points, particularly at day 14 post-infection. Meanwhile, Interleukin 1-β (IL-1 β) gene was significantly upregulated only at days 7 and 14 post-infection compared to control. Histopathological examination revealed destructive and degenerative changes in both skin and gills of experimentally infected Nile tilapia. Our findings suggest that Nile tilapia-S. parasitica infection model was successful in better understanding of pathogenicity and host (fish)-pathogen (oomycete) interactions, where the induced oxidative stress and upregulation of particular immune biomarkers in response to S. parasitica infection may play a crucial role in fish defense against oomycetes in fish.
Collapse
Affiliation(s)
- Samar A El Gamal
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Mansoura branch, Agriculture Research Center (ARC), Giza , Egypt
| | - Rawia Saad Adawy
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Mansoura branch, Agriculture Research Center (ARC), Giza , Egypt
| | - Viola Hassan Zaki
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
14
|
Limited Probiotic Effect of Enterococcus gallinarum L1, Vagococcus fluvialis L21 and Lactobacillus plantarum CLFP3 to Protect Rainbow Trout against Saprolegniosis. Animals (Basel) 2023; 13:ani13050954. [PMID: 36899810 PMCID: PMC10000206 DOI: 10.3390/ani13050954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Previous studies have demonstrated that the strains Enterococcus gallinarum L1, Vagococcus fluvialis L21 and Lactobacillus plantarum CLFP3 are probiotics against vibriosis or lactococosis in sea bass or rainbow trout. In this study, the utility of these bacterial strains in the control of saprolegniosis was evaluated. For this purpose, both in vitro inhibition studies and competition for binding sites against Saprolegnia parasitica and in vivo tests with experimentally infected rainbow trout were carried out. In the in vitro tests, the three isolates showed inhibitory activity upon mycelium growth and cyst germination and reduced the adhesion of cysts to cutaneous mucus; however, this effect depended on the number of bacteria used and the incubation time. In the in vivo test, the bacteria were administered orally at 108 CFU g-1 in the feed or at 106 CFU ml-1 in the tank water for 14 days. None of the three bacteria showed protection against S. parasitica infection either through water or feed, and the cumulative mortality reached 100% within 14 days post infection. The obtained results show that the use of an effective probiotic against a certain disease in a host may not be effective against another pathogen or in another host and that the results obtained in vitro may not always predict the effects when used in vivo.
Collapse
|
15
|
Khangembam VC, Thakuria D, Pant V, Tandel RS, Vishwakarma BK, Pandey N, Pande A, Pandey PK. First report of Achlya bisexualis infection in captive-reared Endangered golden mahseer Tor putitora. DISEASES OF AQUATIC ORGANISMS 2023; 153:59-68. [PMID: 36861898 DOI: 10.3354/dao03720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Achlya bisexualis is a notorious oomycete pathogen with the potential to cause emerging disease in fish farms. In this study, we report the first isolation of A. bisexualis from captive-reared golden mahseer Tor putitora, an Endangered fish species. The infected fish showed a cotton-like growth of mycelia at the site of infection. The mycelium when cultured on potato dextrose agar produced radially growing white hyphae. The hyphae were non-septate, and some of them carried matured zoosporangium with dense granular cytoplasmic contents. Spherical gemmae with stout stalks were also observed. All the isolates had 100% identity in internal transcribed spacer (ITS)-rDNA sequence and showed highest similarity to that of A. bisexualis. In molecular phylogeny, all the isolates formed a monophyletic group with A. bisexualis which was supported by a bootstrap value of 99%. Based on the molecular and morphological findings, all the isolates were confirmed as A. bisexualis. Further, the anti-oomycete effect of boric acid, a known antifungal agent, against the isolate was evaluated. The minimum inhibitory concentration and minimum fungicidal concentration were found to be 1.25 and >2.5 g l-1, respectively. Isolation of A. bisexualis from a new fish species indicates its possible occurrence in other unreported hosts. Considering its wide infectivity and the potential to cause disease in farmed fishes, its probable prevalence in a new environment and host needs to be closely monitored to prevent the spread of infection, if any, by adopting suitable control measures.
Collapse
|
16
|
Calboli FCF, Iso-Touru T, Bitz O, Fischer D, Nousiainen A, Koskinen H, Tapio M, Tapio I, Kause A. Genomic selection for survival under naturally occurring Saprolegnia oomycete infection in farmed European whitefish Coregonus lavaretus. J Anim Sci 2023; 101:skad333. [PMID: 37777972 PMCID: PMC10583997 DOI: 10.1093/jas/skad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023] Open
Abstract
Saprolegnia oomycete infection causes serious economic losses and reduces fish health in aquaculture. Genomic selection based on thousands of DNA markers is a powerful tool to improve fish traits in selective breeding programs. Our goal was to develop a single nucleotide polymorphism (SNP) marker panel and to test its use in genomic selection for improved survival against Saprolegnia infection in European whitefish Coregonus lavaretus, the second most important farmed fish species in Finland. We used a double digest restriction site associated DNA (ddRAD) genotyping by sequencing method to produce a SNP panel, and we tested it analyzing data from a cohort of 1,335 fish, which were measured at different times for mortality to Saprolegnia oomycete infection and weight traits. We calculated the genetic relationship matrix (GRM) from the genome-wide genetic data, integrating it in multivariate mixed models used for the estimation of variance components and genomic breeding values (GEBVs), and to carry out Genome-Wide Association Studies for the presence of quantitative trait loci (QTL) affecting the phenotypes in analysis. We identified one major QTL on chromosome 6 affecting mortality to Saprolegnia infection, explaining 7.7% to 51.3% of genetic variance, and a QTL for weight on chromosome 4, explaining 1.8% to 5.4% of genetic variance. Heritability for mortality was 0.20 to 0.43 on the liability scale, and heritability for weight was 0.44 to 0.53. The QTL for mortality showed an additive allelic effect. We tested whether integrating the QTL for mortality as a fixed factor, together with a new GRM calculated excluding the QTL from the genetic data, would improve the accuracy estimation of GEBVs. This test was done through a cross-validation approach, which indicated that the inclusion of the QTL increased the mean accuracy of the GEBVs by 0.28 points, from 0.33 to 0.61, relative to the use of full GRM only. The area under the curve of the receiver-operator curve for mortality increased from 0.58 to 0.67 when the QTL was included in the model. The inclusion of the QTL as a fixed effect in the model increased the correlation between the GEBVs of early mortality with the late mortality, compared to a model that did not include the QTL. These results validate the usability of the produced SNP panel for genomic selection in European whitefish and highlight the opportunity for modeling QTLs in genomic evaluation of mortality due to Saprolegnia infection.
Collapse
Affiliation(s)
| | - Terhi Iso-Touru
- Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland
| | - Oliver Bitz
- Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland
| | - Daniel Fischer
- Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland
| | - Antti Nousiainen
- Natural Resources Institute Finland (LUKE), FI-70210 Kuopio, Finland
| | - Heikki Koskinen
- Natural Resources Institute Finland (LUKE), FI-70210 Kuopio, Finland
| | - Miika Tapio
- Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland
| | - Ilma Tapio
- Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland
| | - Antti Kause
- Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland
| |
Collapse
|
17
|
Aquatic insects differentially affect lake sturgeon larval phenotypes and egg surface microbial communities. PLoS One 2022; 17:e0277336. [PMID: 36409729 PMCID: PMC9678266 DOI: 10.1371/journal.pone.0277336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Documentation of how interactions among members of different stream communities [e.g., microbial communities and aquatic insect taxa exhibiting different feeding strategies (FS)] collectively influence the growth, survival, and recruitment of stream fishes is limited. Considerable spatial overlap exists between early life stages of stream fishes, including species of conservation concern like lake sturgeon (Acipenser fulvescens), and aquatic insects and microbial taxa that abundantly occupy substrates on which spawning occurs. Habitat overlap suggests that species interactions across trophic levels may be common, but outcomes of these interactions are poorly understood. We conducted an experiment where lake sturgeon eggs were fertilized and incubated in the presence of individuals from one of four aquatic insect FS taxa including predators, facultative and obligate-scrapers, collector-filterers/facultative predators, and a control (no insects). We quantified and compared the effects of different insect taxa on the taxonomic composition and relative abundance of egg surface bacterial and lower eukaryotic communities, egg size, incubation time to hatch, free embryo body size (total length) at hatch, yolk-sac area, (a measure of resource utilization), and percent survival to hatch. Mean egg size varied significantly among insect treatments. Eggs exposed to predators had a lower mean percent survival to hatch. Eggs exposed to predators had significantly shorter incubation periods. At hatch, free embryos exposed to predators had significantly smaller yolk sacs and total length. Multivariate analyses revealed that egg bacterial and lower eukaryotic surface community composition varied significantly among insect treatments and between time periods (1 vs 4 days post-fertilization). Quantitative PCR documented significant differences in bacterial 16S copy number, and thus abundance on egg surfaces varied across insect treatments. Results indicate that lethal and non-lethal effects associated with interactions between lake sturgeon eggs and free embryos and aquatic insects, particularly predators, contributed to lake sturgeon trait variability that may affect population levels of recruitment.
Collapse
|
18
|
Nam B, Nguyen TTT, Lee HB, Park SK, Choi YJ. Uncharted Diversity and Ecology of Saprolegniaceae ( Oomycota) in Freshwater Environments. MYCOBIOLOGY 2022; 50:326-344. [PMID: 36404897 PMCID: PMC9645278 DOI: 10.1080/12298093.2022.2121496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The fungal-like family Saprolegniaceae (Oomycota), also called "water mold," includes mostly aquatic saprophytes as well as notorious aquatic animal pathogens. Most studies on Saprolegniaceae have been biased toward pathogenic species that are important to aquaculture rather than saprotrophic species, despite the latter's crucial roles in carbon cycling of freshwater ecosystems. Few attempts have been made to study the diversity and ecology of Saprolegniaceae; thus, their ecological role is not well-known. During a survey of oomycetes between 2016 and 2021, we investigated the diversity and distribution of culturable Saprolegniaceae species in freshwater ecosystems of Korea. In the present study, members of Saprolegniaceae were isolated and identified at species level based on their cultural, morphological, and molecular phylogenetic analyses. Furthermore, substrate preference and seasonal dynamics for each were examined. Most of the species were previously reported as animal pathogens; however, in the present study, they were often isolated from other freshwater substrates, such as plant debris, algae, water, and soil sediment. The relative abundance of Saprolegniaceae was higher in the cold to cool season than that in the warm to hot season of Korea. This study enhances our understanding of the diversity and ecological attributes of Saprolegniaceae in freshwater ecosystems.
Collapse
Affiliation(s)
- Bora Nam
- Department of Biological Science, College of Natural Sciences, Kunsan National University, Gunsan, South Korea
| | - Thuong T. T. Nguyen
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Hyang Burm Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Sang Kyu Park
- Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, South Korea
| | - Young-Joon Choi
- Department of Biological Science, College of Natural Sciences, Kunsan National University, Gunsan, South Korea
| |
Collapse
|
19
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Chanu KV, Thakuria D, Pant V, Bisht S, Tandel RS. Development of multiplex PCR assay for species-specific detection and identification of Saprolegnia parasitica. BIOTECHNOLOGY REPORTS 2022; 35:e00758. [PMID: 36034340 PMCID: PMC9398915 DOI: 10.1016/j.btre.2022.e00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
A multiplex PCR was developed targeting rDNA-ITS region and a hypothetical protein gene. The protocol is highly sensitive with low detection limit of genomic DNA. The protocol can identify saprolegnia parasitica in a single reaction.
Saprolegnia parasitica is the most important pathogen under the genus, Saprolegnia which causes devastating oomycete diseases in freshwater fish. At present, the most common molecular method for identification of Saprolegnia species is sequencing of ribosomal DNA internal transcribed spacer (rDNA-ITS) region. In this study, a highly sensitive multiplex PCR targeting rDNA-ITS region and a hypothetical protein gene was developed using two sets of primer pair. In this PCR, two amplicons of different size of 750 bp and 365 bp are produced only in case of S. parasitica while other Saprolegnia species had single amplicon. This protocol could also differentiate Saprolegnia species from other fungus based on the size of rDNA-ITS region. The protocol does not require sequencing and can identify S. parasitica in a single reaction. Therefore, the multiplex PCR developed in this study may prove to be an easier, faster and cheaper molecular method for identification of S. parasitica.
Collapse
|
21
|
MacAulay S, Ellison AR, Kille P, Cable J. Moving towards improved surveillance and earlier diagnosis of aquatic pathogens: From traditional methods to emerging technologies. REVIEWS IN AQUACULTURE 2022; 14:1813-1829. [PMID: 36250037 PMCID: PMC9544729 DOI: 10.1111/raq.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/16/2023]
Abstract
Early and accurate diagnosis is key to mitigating the impact of infectious diseases, along with efficient surveillance. This however is particularly challenging in aquatic environments due to hidden biodiversity and physical constraints. Traditional diagnostics, such as visual diagnosis and histopathology, are still widely used, but increasingly technological advances such as portable next generation sequencing (NGS) and artificial intelligence (AI) are being tested for early diagnosis. The most straightforward methodologies, based on visual diagnosis, rely on specialist knowledge and experience but provide a foundation for surveillance. Future computational remote sensing methods, such as AI image diagnosis and drone surveillance, will ultimately reduce labour costs whilst not compromising on sensitivity, but they require capital and infrastructural investment. Molecular techniques have advanced rapidly in the last 30 years, from standard PCR through loop-mediated isothermal amplification (LAMP) to NGS approaches, providing a range of technologies that support the currently popular eDNA diagnosis. There is now vast potential for transformative change driven by developments in human diagnostics. Here we compare current surveillance and diagnostic technologies with those that could be used or developed for use in the aquatic environment, against three gold standard ideals of high sensitivity, specificity, rapid diagnosis, and cost-effectiveness.
Collapse
Affiliation(s)
| | | | - Peter Kille
- School of Biosciences, Cardiff UniversityCardiffUK
| | - Joanne Cable
- School of Biosciences, Cardiff UniversityCardiffUK
| |
Collapse
|
22
|
Costa S, Lopes I. Saprolegniosis in Amphibians: An Integrated Overview of a Fluffy Killer Disease. J Fungi (Basel) 2022; 8:jof8050537. [PMID: 35628794 PMCID: PMC9144230 DOI: 10.3390/jof8050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Amphibians constitute the class of vertebrates with the highest proportion of threatened species, with infectious diseases being considered among the greatest causes for their worldwide decline. Aquatic oomycetes, known as “water molds,” are fungus-like microorganisms that are ubiquitous in freshwater ecosystems and are capable of causing disease in a broad range of amphibian hosts. Various species of Achlya sp., Leptolegnia sp., Aphanomyces sp., and mainly, Saprolegnia sp., are responsible for mass die-offs in the early developmental stages of a wide range of amphibian populations through a disease known as saprolegniosis, aka, molding or a “Saprolegnia-like infection.” In this context, the main objective of the present review was to bring together updated information about saprolegniosis in amphibians to integrate existing knowledge, identify current knowledge gaps, and suggest future directions within the saprolegniosis–amphibian research field. Based on the available literature and data, an integrated and critical interpretation of the results is discussed. Furthermore, the occurrence of saprolegniosis in natural and laboratory contexts and the factors that influence both pathogen incidence and host susceptibility are also addressed. The focus of this work was the species Saprolegnia sp., due to its ecological importance on amphibian population dynamics and due to the fact that this is the most reported genera to be associated with saprolegniosis in amphibians. In addition, integrated emerging therapies, and their potential application to treat saprolegniosis in amphibians, were evaluated, and future actions are suggested.
Collapse
|
23
|
Pires-Zottarelli CLA, de Oliveira Da Paixão SC, da Silva Colombo DR, Boro MC, de Jesus AL. Saprolegnia atlantica sp. nov. (Oomycota, Saprolegniaceae) from Brazil, and new synonymizations and epitypifications in the genus Saprolegnia. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Pavić D, Grbin D, Gregov M, Ćurko J, Vladušić T, Šver L, Miljanović A, Bielen A. Variations in the Sporulation Efficiency of Pathogenic Freshwater Oomycetes in Relation to the Physico-Chemical Properties of Natural Waters. Microorganisms 2022; 10:microorganisms10030520. [PMID: 35336096 PMCID: PMC8955207 DOI: 10.3390/microorganisms10030520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oomycete pathogens in freshwaters, such as Saprolegnia parasitica and Aphanomyces astaci, are responsible for fish/crayfish population declines in the wild and disease outbreaks in aquaculture. Although the formation of infectious zoospores in the laboratory can be triggered by washing their mycelium with natural water samples, the physico-chemical properties of the water that might promote sporulation are still unexplored. We washed the mycelia of A. astaci and S. parasitica with a range of natural water samples and observed differences in sporulation efficiency. The results of Partial Least Squares Regression (PLS-R) multivariate analysis showed that SAC (spectral absorption coefficient measured at 254 nm), DOC (dissolved organic carbon), ammonium-N and fluoride had the strongest positive effect on sporulation of S. parasitica, while sporulation of A. astaci was not significantly correlated with any of the analyzed parameters. In agreement with this, the addition of environmentally relevant concentrations of humic acid, an important contributor to SAC and DOC, to the water induced sporulation of S. parasitica but not of A. astaci. Overall, our results point to the differences in ecological requirements of these pathogens, but also present a starting point for optimizing laboratory protocols for the induction of sporulation.
Collapse
|
25
|
Lacalendola N, Tayagui A, Ting M, Malmstrom J, Nock V, Willmott GR, Garrill A. Biomechanical responses of encysted zoospores of the oomycete Achlya bisexualis to hyperosmotic stress are consistent with an ability to turgor regulate. Fungal Genet Biol 2022; 159:103676. [DOI: 10.1016/j.fgb.2022.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
|
26
|
Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022; 11:antibiotics11020163. [PMID: 35203766 PMCID: PMC8868336 DOI: 10.3390/antibiotics11020163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host’s immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.
Collapse
|
27
|
Ghosh S, Straus DL, Good C, Phuntumart V. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS One 2021; 16:e0250808. [PMID: 34898622 PMCID: PMC8668100 DOI: 10.1371/journal.pone.0250808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022] Open
Abstract
Saprolegniasis is an important disease in freshwater aquaculture, and is associated with oomycete pathogens in the genus Saprolegnia. Early detection of significant levels of Saprolegnia spp. pathogens would allow informed decisions for treatment which could significantly reduce losses. This study is the first to report the development of loop-mediated isothermal amplification (LAMP) for the detection of Saprolegnia spp. and compares it with quantitative PCR (qPCR). The developed protocols targeted the internal transcribed spacer (ITS) region of ribosomal DNA and the cytochrome C oxidase subunit 1 (CoxI) gene and was shown to be specific only to Saprolegnia genus. This LAMP method can detect as low as 10 fg of S. salmonis DNA while the qPCR method has a detection limit of 2 pg of S. salmonis DNA, indicating the superior sensitivity of LAMP compared to qPCR. When applied to detect the pathogen in water samples, both methods could detect the pathogen when only one zoospore of Saprolegnia was present. We propose LAMP as a quick (about 20–60 minutes) and sensitive molecular diagnostic tool for the detection of Saprolegnia spp. suitable for on-site applications.
Collapse
Affiliation(s)
- Satyaki Ghosh
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - David L. Straus
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree-Stuttgart National Aquaculture Research Center, Stuttgart, Arkansas, United States of America
| | - Christopher Good
- The Conservation Fund’s Freshwater Institute, Shepherdstown, West Virginia, United States of America
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ghimire B, Saraiva M, Andersen CB, Gogoi A, Saleh M, Zic N, van West P, Brurberg MB. Transformation systems, gene silencing and gene editing technologies in oomycetes. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Negative effects of parasite exposure and variable thermal stress on brown trout (Salmo trutta) under future climatic and hydropower production scenarios. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Zhang YZ, Han QD, Fu LW, Wang YX, Sui ZH, Liu YG. Molecular identification and phylogenetic analysis of fungal pathogens isolated from diseased fish in Xinjiang, China. JOURNAL OF FISH BIOLOGY 2021; 99:1887-1898. [PMID: 34472096 DOI: 10.1111/jfb.14893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The outbreaks of fungal diseases in cultured fish have been severe in recent years, which is harmful to the healthy and sustainable development of fish farming. In this study, an investigation was conducted for significant fungal infections of 12 species of fish in four regions in Xinjiang, China, to understand the distribution of local fish fungal pathogens. Twenty-six fungal strains with pathogenicity were isolated, and the challenge experiment showed that eight strains from Changji area had high infection rate to fish eggs. Based on internal transcribed spacer sequence data and molecular analysis, the 26 strains were classified into nine different species of six fungal genera. Phylogenetic analysis showed that all strains were divided into two clades, namely Cluster 1 (contains only the genus Mucor) and Cluster 2 (consists of five small branches), and the distribution of strains from the same region was scattered in two clusters. There is no strict host selectivity for these fungi to infect fish. Mucor sp. are the main fungal pathogen of fish in these four regions, whereas Hypophthalmichthys molitrix and Carassius auratus are two types of fish that were susceptible to pathogen. In addition, the environmental adaptability experiments showed that eight highly pathogenic strains have different adaptability to the environment, and their optimum temperature and pH were 25°C and 7.0, respectively, whereas the concentration of NaCl was negatively correlated with the growth of strains. Therefore, these results indicated that the coinfection of multiple fungal pathogens in a culture region should be considered in the future study.
Collapse
Affiliation(s)
- Yan-Zhen Zhang
- College of Life Sciences, Linyi University, Linyi, China
- College of Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Qing-Dian Han
- College of Life Sciences, Linyi University, Linyi, China
| | - Long-Wei Fu
- College of Life Sciences, Linyi University, Linyi, China
- College of Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Yong-Xing Wang
- College of Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Zhi-Hai Sui
- College of Life Sciences, Linyi University, Linyi, China
| | - Yun-Guo Liu
- College of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
31
|
Current practices and emerging possibilities for reducing the spread of oomycete pathogens in terrestrial and aquatic production systems in the European Union. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Genetic Analyses of Saprolegnia Strains Isolated from Salmonid Fish of Different Geographic Origin Document the Connection between Pathogenicity and Molecular Diversity. J Fungi (Basel) 2021; 7:jof7090713. [PMID: 34575751 PMCID: PMC8470814 DOI: 10.3390/jof7090713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Saprolegnia parasitica is recognized as one of the most important oomycetes pests of salmon and trout species. The amplified fragment length polymorphism (AFLP) and method sequence data of the internal transcribed spacer (ITS) were used to study the genetic diversity and relationships of Saprolegnia spp. collected from Canada, Chile, Japan, Norway and Scotland. AFLP analysis of 37 Saprolegnia spp. isolates using six primer combinations gave a total of 163 clear polymorphic bands. Bayesian cluster analysis using genetic similarity divided the isolates into three main groups, suggesting that there are genetic relationships among the isolates. The unweighted pair group method with arithmetic mean (UPGMA) and principal coordinate analysis (PCO) confirmed the pattern of the cluster analyses. ITS analyses of 48 Saprolegnia sequences resulted in five well-defined clades. Analysis of molecular variance (AMOVA) revealed greater variation within countries (91.01%) than among countries (8.99%). We were able to distinguish the Saprolegnia isolates according to their species, ability to produce oogonia with and without long spines on the cysts and their ability to or not to cause mortality in salmonids. AFLP markers and ITS sequencing data obtained in the study, were found to be an efficient tool to characterize the genetic diversity and relationships of Saprolegnia spp. The comparison of AFLP analysis and ITS sequence data using the Mantel test showed a very high and significant correlation (r2 = 0.8317).
Collapse
|
33
|
Miljanović A, Grbin D, Pavić D, Dent M, Jerković I, Marijanović Z, Bielen A. Essential Oils of Sage, Rosemary, and Bay Laurel Inhibit the Life Stages of Oomycete Pathogens Important in Aquaculture. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081676. [PMID: 34451721 PMCID: PMC8401702 DOI: 10.3390/plants10081676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Saprolegnia parasitica, the causative agent of saprolegniosis in fish, and Aphanomyces astaci, the causative agent of crayfish plague, are oomycete pathogens that cause economic losses in aquaculture. Since toxic chemicals are currently used to control them, we aimed to investigate their inhibition by essential oils of sage, rosemary, and bay laurel as environmentally acceptable alternatives. Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that the essential oils tested were rich in bioactive volatiles, mainly monoterpenes. Mycelium and zoospores of A. astaci were more sensitive compared to those of S. parasitica, where only sage essential oil completely inhibited mycelial growth. EC50 values (i.e., concentrations of samples at which the growth was inhibited by 50%) for mycelial growth determined by the radial growth inhibition assay were 0.031-0.098 µL/mL for A. astaci and 0.040 µL/mL for S. parasitica. EC50 values determined by the zoospore germination inhibition assay were 0.007-0.049 µL/mL for A. astaci and 0.012-0.063 µL/mL for S. parasitica. The observed inhibition, most pronounced for sage essential oil, could be partly due to dominant constituents of the essential oils, such as camphor, but more likely resulted from a synergistic effect of multiple compounds. Our results may serve as a basis for in vivo experiments and the development of environmentally friendly methods to control oomycete pathogens in aquaculture.
Collapse
Affiliation(s)
- Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| | - Dorotea Grbin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| | - Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| | - Maja Dent
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21 000 Split, Croatia; (I.J.); (Z.M.)
| | - Zvonimir Marijanović
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21 000 Split, Croatia; (I.J.); (Z.M.)
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| |
Collapse
|
34
|
Sabbadin F, Henrissat B, Bruce NC, McQueen-Mason SJ. Lytic Polysaccharide Monooxygenases as Chitin-Specific Virulence Factors in Crayfish Plague. Biomolecules 2021; 11:biom11081180. [PMID: 34439846 PMCID: PMC8393829 DOI: 10.3390/biom11081180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
The oomycete pathogen Aphanomyces astaci, also known as “crayfish plague”, is an obligate fungal-like parasite of freshwater crustaceans and is considered responsible for the ongoing decline of native European crayfish populations. A. astaci is thought to secrete a wide array of effectors and enzymes that facilitate infection, however their molecular mechanisms have been poorly characterized. Here, we report the identification of AA15 lytic polysaccharide monooxygenases (LPMOs) as a new group of secreted virulence factors in A. astaci. We show that this enzyme family has greatly expanded in A. astaci compared to all other oomycetes, and that it may facilitate infection through oxidative degradation of crystalline chitin, the most abundant polysaccharide found in the crustacean exoskeleton. These findings reveal new roles for LPMOs in animal–pathogen interactions, and could help inform future strategies for the protection of farmed and endangered species.
Collapse
Affiliation(s)
- Federico Sabbadin
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK;
- Correspondence: (F.S.); (S.J.M.-M.)
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark;
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Neil C. Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK;
| | - Simon J. McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK;
- Correspondence: (F.S.); (S.J.M.-M.)
| |
Collapse
|
35
|
Zhou A, Xie S, Zhang Y, Chuan J, Tang H, Li X, Zhang L, Xu G, Zou J. Interaction of environmental eukaryotic microorganisms and fungi in the pond-cultured carps: new insights into the potential pathogenic fungi in the freshwater aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38839-38854. [PMID: 33745047 DOI: 10.1007/s11356-021-13231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The quality and safety of the aquatic products have gradually become the focus of global attention. In this study, the environmental eukaryotic and fungi communities in pond-cultured grass carp (Ctenopharyngodon idellus) and the koi carp (Cyprinus carpio L.) were investigated. For comparative analysis, the alpha diversity shows that the environmental microbial abundance in the koi carp groups were higher than that in the grass carp groups, while beta diversity reveals that the differences of the microbial community composition and structures in the grass carp groups were significantly higher than those in the koi carp groups. Meanwhile, the environmental microbial diversity of grass carp groups was higher than that of koi carp groups at phylum level, but showed no significant difference at genus level. Additionally, the dominant total phyla were Opisthokonta, Stramenopiles plusAlveolates plusRhizaria, Archaeplastida, Cryptophyceae, and Centrohelida for the 18S rRNA gene and Ciliophora, Chlorophyta, and Ascomycota for the ITS2 rRNA gene in both of the two carp groups. Additionally, annotation analysis showed that the biomarkers in the grass carp groups are significantly higher than those of the koi carp groups. Furthermore, the functional prediction of Funguild showed significant difference in outputs, while similarity in trophic modes and guild types between the two carp groups. Meanwhile, the total relative abundances of animal pathogen, fungal parasite, and plant pathogen were extremely similar between the two carp groups. Surprisingly, one pathogenic fungus of genus Fusarium was identified in both the environments of two carp groups based on filtered operational taxonomic unit tables. Overall, this is the first robust report to understand the characteristics of environmental eukaryotic microorganisms and fungi in the edible and ornamental carps. Our results also provide the basic data for the prevention of fungal diseases and the healthy culture of the carps.
Collapse
Affiliation(s)
- Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A 5 T1, Canada
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Departments of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jiacheng Chuan
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A 5 T1, Canada
| | - Huijuan Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiang Li
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A 5 T1, Canada
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Lavrinenko IV, Shulha LV, Peredera ОО, Zhernosik IA, Peredera RV. Efficacy of acriflavin chloride and Melaleuca alternifolia extract against Saprolegnia parasitica infection in Pterophyllum scalare. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article describes cases of saprolegniosis in Pterophyllum scalare in private aquaristics and assesses the therapeutic efficacy of acriflafin chloride against Saprolegnia parasitica infection. To establish the diagnosis, the clinical signs present in sick fish, the results of mycological and microscopic examinations are taken into account. Some chemical and mycological indices of aquarium water have been studied, and also mycological studies of fish feed have been carried out. It is established that the disease of fish develops against the background of adverse changes in physical, chemical composition and microbiocenosis of aquarium water. Low water temperature, high levels of phosphates and pH, a significant level of organic pollution, compared to the norm, provoke the accumulation of opportunistic microbiota, resulting in imbalance in the parasite-host system and the development of clinical manifestations of saprolegniosis in fish. It was found that 44.4% of the studied feed samples fed to fish were contaminated with epiphytic micromycetes. Micromycetes are represented by the genera Aspergillus, Penicilium, Fusarium, Mucor, Rhizopus. Among the studied feeds, the most affected by fungi were larvae of Chironomus plumosus and dry Daphnia pulex. According to the results of our studies during outbreaks of saprolegniosis, the pH of aquarium water was 8.1 ± 0.7, the content of phosphates – 5.6 ± 1.1 mg/L, micromycetes – 18.0 ± 1.2 CFU/100 cm3. Aspergillus flavus, A. niger and Penicillium canescens were detected in the studied water samples. With saprolegniosis, the angelfish have a reduced appetite, spots, ulcers, white thin threads, and a cotton-like plaque appear on certain areas of the skin, fins, eyes, and gills. It is established that effective means for the treatment of sick fish are external use in the form of a long bath of acriflavine chloride and extract of Melaleuca alternifolia. It is also effective to increase the water temperature to 25–27 °С, to ensure the normative fish-holding density in aquariums and to exclude from the diet fish feed contaminated with micromycetes. After using the drugs for two weeks every other day, water was replaced by 20% of the aquarium volume and aerated. As a result of the treatment, gradual healing of skin lesions and recovery of 65% of fish with signs of lesions of the outer coverings were registered. Thus, the article analyzes the causes of saprolegniosis in angelfish common in private aquariums, describes the clinical signs of the disease and assesses the therapeutic efficacy of acriflavine chloride and Melaleuca alternifolia extract against Saprolegnia parasitica infection. Prospects for further research lie in search of more effective and environmentally friendly means for the treatment of saprolegniosis in aquarium fish.
Collapse
|
37
|
Casabella-Herrero G, Martínez-Ríos M, Viljamaa-Dirks S, Martín-Torrijos L, Diéguez-Uribeondo J. Aphanomyces astaci mtDNA: insights into the pathogen's differentiation and its genetic diversity from other closely related oomycetes. Fungal Biol 2020; 125:316-325. [PMID: 33766310 DOI: 10.1016/j.funbio.2020.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
The causative agent of crayfish plague, Aphanomyces astaci (Saprolegniales, Oomycota), is one of the 100 world's worst invasive alien species and represents a major threat to freshwater crayfish species worldwide. A better understanding of the biology and epidemiology of A. astaci relies on the application of efficient tools to detect the pathogen and assess its genetic diversity. In this study, we validated the specificity of two recently developed PCR-based approaches used to detect A. astaci groups. The first relies on the analysis of mitochondrial ribosomal rnnS (small) and rnnL (large) subunit sequences and the second, of sequences obtained by using genotype-specific primers designed from A. astaci whole genome sequencing. For this purpose, we tested the specificity against 76 selected isolates, including other oomycete species and the recently described species Aphanomyces fennicus, which, when used in nrITS-based specific tests for A. astaci, is known to result in a false positive. Under both approaches, we were able to efficiently and accurately identify A. astaci and its genetic groups in both pure cultures and clinical samples. We report that sequence analysis of the rnnS region alone is sufficient for the identification of A. astaci and a partial characterization of haplogroups. In contrast, the rnnL region alone is not sufficiently informative for A. astaci identification as other oomycete species present sequences identical to those of A. astaci.
Collapse
Affiliation(s)
| | - María Martínez-Ríos
- Department of Mycology, Real Jardín Botánico (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain.
| | - Satu Viljamaa-Dirks
- Veterinary Bacteriology and Pathology, Laboratory and Research, Finnish Food Authority, Helsinki, Finland.
| | - Laura Martín-Torrijos
- Department of Mycology, Real Jardín Botánico (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain.
| | | |
Collapse
|
38
|
Matthews E, Ellison A, Cable J. Saprolegnia parasitica zoospore activity and host survival indicates isolate variation in host preference. Fungal Biol 2020; 125:260-268. [PMID: 33766304 DOI: 10.1016/j.funbio.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022]
Abstract
The ubiquitous freshwater pathogen Saprolegnia parasitica has long been considered a true generalist, capable of infecting a wide range of fish species. It remains unclear, however, whether different isolates of this pathogen, obtained from distinct geographic locations and host species, display differences in host preference. To assess this, the current study examined the induced zoospore encystment responses of four S. parasitica isolates towards the skin of four fish species. While three of the isolates displayed 'specialist' responses, one appeared to be more of a 'generalist'. In vivo challenge infections involving salmon and sea trout with the 'generalist' (salmon isolate EA001) and a 'specialist' (sea trout isolate EA016) pathogen, however, did not support the in vitro findings, with no apparent host preference reflected in infection outcomes. Survival of sea trout and salmon though was significantly different following a challenge infection with the sea trout (EA016) isolate. These results indicate that while S. parasitica isolates can be considered true generalists, they may target hosts to which they have been more frequently exposed (potential local adaptation). Understanding host preference of this pathogen could aid our understanding of infection epidemics and help with the development of fish management procedures.
Collapse
Affiliation(s)
- Emily Matthews
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Amy Ellison
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK; School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, Gwynedd, LL57 2UW, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
39
|
Dzyuba EV, Kondratov IG, Maikova OO, Nebesnykh IA, Khanaev IV, Denikina NN. Water Molds of the Order Saprolegniales (Oomycota) in Association with Fish and Sponge Species from Lake Baikal. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020040056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Ellison AR, Uren Webster TM, Rodriguez-Barreto D, de Leaniz CG, Consuegra S, Orozco-terWengel P, Cable J. Comparative transcriptomics reveal conserved impacts of rearing density on immune response of two important aquaculture species. FISH & SHELLFISH IMMUNOLOGY 2020; 104:192-201. [PMID: 32534231 DOI: 10.1016/j.fsi.2020.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Infectious diseases represent an important barrier to sustainable aquaculture development. Rearing density can substantially impact fish productivity, health and welfare in aquaculture, including growth rates, behaviour and, crucially, immune activity. Given the current emphasis on aquaculture diversification, stress-related indicators broadly applicable across species are needed. Utilising an interspecific comparative transcriptomic (RNAseq) approach, we compared gill gene expression responses of Atlantic salmon (Salmo salar) and Nile tilapia (Oreochromis niloticus) to rearing density and Saprolegnia parasitica infection. Salmon reared at high-density showed increased expression of stress-related markers (e.g. c-fos and hsp70), and downregulation of innate immune genes. Upon pathogen challenge, only salmon reared at low density exhibited increased expression of inflammatory interleukins and lymphocyte-related genes. Tilapia immunity, in contrast, was impaired at low-density. Using overlapping gene ontology enrichment and gene ortholog analyses, we found that density-related stress similarly impacted salmon and tilapia in key immune pathways, altering the expression of genes vital to inflammatory and Th17 responses to pathogen challenge. Given the challenges posed by ectoparasites and gill diseases in fish farms, this study underscores the importance of optimal rearing densities for immunocompetence, particularly for mucosal immunity. Our comparative transcriptomics analyses identified density stress impacted immune markers common across different fish taxa, providing key molecular targets with potential for monitoring and enhancing aquaculture resilience in a wide range of farmed species.
Collapse
Affiliation(s)
- Amy R Ellison
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| | | | | | | | - Sofia Consuegra
- Biosciences Department, Swansea University, Swansea, SA2 8PP, UK.
| | | | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
41
|
Sadinski W, Gallant AL, Cleaver JE. Climate’s cascading effects on disease, predation, and hatching success in Anaxyrus canorus, the threatened Yosemite toad. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
González-Palacios C, Fregeneda-Grandes JM, Aller-Gancedo JM. Possible Mechanisms of Action of Two Pseudomonas fluorescens Isolates as Probiotics on Saprolegniosis Control in Rainbow Trout ( Oncorhynchus mykiss Walbaum). Animals (Basel) 2020; 10:ani10091507. [PMID: 32858959 PMCID: PMC7552218 DOI: 10.3390/ani10091507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
Probiotics have been proposed as one of the alternatives to the chemical treatments currently used in aquaculture. Recently, the possible usefulness of certain microorganisms, mainly bacteria, has been highlighted as a potential biocontrol for saprolegniosis. In the present work we investigated the possible mechanisms of action of two isolates of Pseudomonas fluorescens (LE89 and LE141) with proven ability to reduce Saprolegnia parasitica infection in rainbow trout under experimental conditions when they are added to the tank water. The stimulation of the innate immune response and the production of siderophores and bioactive substances inhibiting S. parasitica present in cells and supernatants of LE89 and LE141 were studied. Regarding the immune response the only noteworthy points were the increase in the phagocytic activity of macrophages and the concentration of serum proteins when LE141 was administered. Both bacteria produced siderophores. When analyzing the protein substances present in supernatants, it was observed that in both isolates the proteins with inhibitory activity present might be siderophores. In LE141, besides siderophores, a protein of 66 kDa was identified in the fraction responsible for inhibition. To sum up, the two P. fluorescens isolates might be usable for biocontrol of saprolegniosis and that the mode of action of these bacteria is likely to be related to the production of siderophores.
Collapse
|
43
|
Experimental evidence of dispersal of invasive cyprinid eggs inside migratory waterfowl. Proc Natl Acad Sci U S A 2020; 117:15397-15399. [PMID: 32571940 PMCID: PMC7355035 DOI: 10.1073/pnas.2004805117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Fish have somehow colonized isolated water bodies all over the world without human assistance. It has long been speculated that these colonization events are assisted by waterbirds, transporting fish eggs attached to their feet and feathers, yet empirical support for this is lacking. Recently, it was suggested that endozoochory (i.e., internal transport within the gut) might play a more important role, but only highly resistant diapause eggs of killifish have been found to survive passage through waterbird guts. Here, we performed a controlled feeding experiment, where developing eggs of two cosmopolitan, invasive cyprinids (common carp, Prussian carp) were fed to captive mallards. Live embryos of both species were retrieved from fresh feces and survived beyond hatching. Our study identifies an overlooked dispersal mechanism in fish, providing evidence for bird-mediated dispersal ability of soft-membraned eggs undergoing active development. Only 0.2% of ingested eggs survived gut passage, yet, given the abundance, diet, and movements of ducks in nature, our results have major implications for biodiversity conservation and invasion dynamics in freshwater ecosystems.
Collapse
|
44
|
Mostafa AAF, Al-Askar AA, Taha Yassin M. Anti-saprolegnia potency of some plant extracts against Saprolegnia diclina, the causative agent of saprolengiasis. Saudi J Biol Sci 2020; 27:1482-1487. [PMID: 32489284 PMCID: PMC7254045 DOI: 10.1016/j.sjbs.2020.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/01/2022] Open
Abstract
Saprolegnosis of fresh water fishes caused by Saprolegnia diclina often results in serious economic losses to fish hatcheries. Despite the proven efficiency of malachite green as a potential fungicide in prevention and control of fish saprolegnosis, there is a strong debate about its safety aspects in use since it was documented to be responsible for many carcinogenic and teratogenic attributes. Bioactivity of four ethanolic plant extracts were assessed to attain a natural alternative to the traditional fungicide currently used in saprolegnosis control. Ethanolic extracts of Punica granatum and Thymus vulgaris exhibited a potential efficacy in suppressing mycelial growth of S. diclina at concentration of 0.5 mg/ml while extracts of Nigella sativa and Zingiber officinales were not effective respectively. The extract of pomegranate showed the highest antifungal potency with minimum inhibitory concentration (MIC) of 200 ppm while thyme extract was less effective and recorded MIC of 400 ppm against S. diclina. The acute fish toxicity of the plant extracts indicated the low toxicity of P. granatum and T. vulgaris extracts as no fish mortalities were detected at aquaria containing 200, 400 and 800 ppm of plant extracts respectively. Considering the low toxicity of these plant extracts, it may be concluded that 200 and 400 ppm of pomegranate and thyme extracts which suppressed the mycelial growth of the S. diclina could be safely used for saprolegniasis control. Both of pomegranate and thyme extracts which proved to possess a potential antifungal activity can be considered as a natural alternative fungicides to control saprolegniasis avoiding carcinogenic malachite green application.
Collapse
Affiliation(s)
- Ashraf Abdel-Fattah Mostafa
- Botany and Microbiology Dept., College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.,National Institute of Oceanography and Fisheries, Al-Kanater Fish Research Station, Egypt
| | | | - Mohamed Taha Yassin
- Botany and Microbiology Dept., College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
45
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
46
|
Tedesco P, Beraldo P, Massimo M, Fioravanti ML, Volpatti D, Dirks R, Galuppi R. Comparative Therapeutic Effects of Natural Compounds Against Saprolegnia spp. (Oomycota) and Amyloodinium ocellatum (Dinophyceae). Front Vet Sci 2020; 7:83. [PMID: 32154278 PMCID: PMC7047137 DOI: 10.3389/fvets.2020.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
The fish parasites Saprolegnia spp. (Oomycota) and Amyloodinium ocellatum (Dinophyceae) cause important losses in freshwater and marine aquaculture industry, respectively. The possible adverse effects of compounds used to control these parasites in aquaculture resulted in increased interest on the search for natural products with antiparasitic activity. In this work, eighteen plant-derived compounds (2′,4′-Dihydroxychalcone; 7-Hydroxyflavone; Artemisinin; Camphor (1R); Diallyl sulfide; Esculetin; Eucalyptol; Garlicin 80%; Harmalol hydrochloride dihydrate; Palmatine chloride; Piperine; Plumbagin; Resveratrol; Rosmarinic acid; Sclareolide; Tomatine, Umbelliferone, and Usnic Acid) have been tested in vitro. Sixteen of these were used to determine their effects on the gill cell line G1B (ATCC®CRL-2536™) and on the motility of viable dinospores of Amyloodinium ocellatum, and thirteen were screened for inhibitory activity against Saprolegnia spp. The cytotoxicity results on G1B cells determined that only two compounds (2′,4′-Dihydroxychalcone and Tomatine) exhibited dose-dependent toxic effects. The highest surveyed concentrations (0.1 and 0.01 mM) reduced cell viability by 80%. Upon lowering the compound concentration the percentage of dead cells was lower than 20%. The same two compounds revealed to be potential antiparasitics by reducing in a dose-dependent manner the motility of A. ocellatum dinospores up to 100%. With respect to Saprolegnia, a Minimum Inhibitory Concentration was found for Tomatine (0.1 mM), Piperine and Plumbagin (0.25 mM), while 2′,4′-Dihydroxychalcone considerably slowed down mycelial growth for 24 h at a concentration of 0.1 mM. Therefore, this research allowed to identify two compounds, Tomatine and 2′,4′-Dihydroxychalcone, effective against both parasites. These compounds could represent promising candidates for the treatment of amyloodiniosis and saprolegniosis in aquaculture. Nevertheless, further in vitro and in vivo tests are required in order to determine concentrations that are effective against the considered pathogens but at the same time safe for hosts, environment and consumers.
Collapse
Affiliation(s)
- Perla Tedesco
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Paola Beraldo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Michela Massimo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Maria Letizia Fioravanti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Donatella Volpatti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Ron Dirks
- Future Genomics Technologies BV, Leiden, Netherlands
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Monroy-Vilchis O, Heredia-Bobadilla RL, Zarco-González MM, Ávila-Akerberg V, Sunny A. Genetic diversity and structure of two endangered mole salamander species of the Trans-Mexican Volcanic Belt. HERPETOZOA 2019. [DOI: 10.3897/herpetozoa.32.e38023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The most important factor leading to amphibian population declines and extinctions is habitat degradation and destruction. To help prevent further extinctions, studies are needed to make appropriate conservation decisions in small and fragmented populations. The goal of this study was to provide data from the population genetics of two micro-endemic mole salamanders from the Trans-Mexican Volcanic Belt. Nine microsatellite markers were used to study the population genetics of 152 individuals from twoAmbystomaspecies. We sampled 38 individuals in two localities forA. altamiraniandA. rivualre. We found medium to high levels of genetic diversity expressed as heterozygosity in the populations. However, all the populations presented few alleles per locus and genotypes. We found strong genetic structure between populations for each species. Effective population size was small but similar to that of the studies from other mole salamanders with restricted distributions or with recently fragmented habitats. Despite the medium to high levels of genetic diversity expressed as heterozygosity, we found few alleles, evidence of a genetic bottleneck and that the effective population size is small in all populations. Therefore, this study is important to propose better management plans and conservation efforts for these species.
Collapse
|
48
|
Ali SE, Songe MM, Skaar I. Colorimetric assay for the in vitro evaluation of Saprolegnia biofilm inhibitors. JOURNAL OF FISH DISEASES 2019; 42:1119-1124. [PMID: 31099066 DOI: 10.1111/jfd.13017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
A quantitative and reproducible 96-well microtiter method that is easily adaptable for the screening of Saprolegnia biofilm inhibitors is described. As opposed to other methods previously developed for the screening of Saprolegnia inhibitors on spore germination or mycelial growth, this technique is of particular significance as it investigates potential inhibitors against surface-attached mycelial mats of Saprolegnia spp. (biofilm). In this study, we have investigated the effects of propionic acid (PPA) on reducing the viability of induced Saprolegnia biofilms using colorimetric MTS assay based on the reduction of tetrazolium salts. Viability of Saprolegnia hyphae in treated biofilms was reduced significantly following treatment with different PPA concentrations. The effect was enhanced after combining each of the tested PPA concentrations with 500 mg/L of boric acid (BA). However, the percentage of non-viable hyphae was still higher in 200 mg L-1 bronopol-treated biofilms (positive control) following 6- and 12-hr exposure. Similar results were observed using other recently described fluorescence-based assays for viability.
Collapse
Affiliation(s)
- Shimaa E Ali
- Department of Hydrobiology, National Research Centre, Giza, Egypt
- WorldFish, Cairo, Egypt
| | - Mwansa M Songe
- Ministry of Fisheries and Livestock, Department of Veterinary Services, Central Veterinary Research Institute, Lusaka, Zambia
| | - Ida Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
49
|
The signal crayfish (Pacifastacus leniusculus) in Lake Tahoe (USA) hosts multiple Aphanomyces species. J Invertebr Pathol 2019; 166:107218. [PMID: 31330144 DOI: 10.1016/j.jip.2019.107218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
Abstract
The genus Aphanomyces (Oomycetes) comprises approximately 50 known species of water molds in three lineages. One of the most notorious is Aphanomyces astaci, the causative agent of crayfish plague. In this study, fresh isolates of Aphanomyces were collected from 20 live specimens of the signal crayfish Pacifastacus leniusculus (Dana, 1852) from Lake Tahoe, California, providing 35 axenic cultures of A. astaci as well as two apparently undescribed Aphanomyces spp. isolates. Based on the results of ITS-, chitinase-, mitochondrial rnnS- and rnnL-sequences and microsatellite markers combined, the Lake Tahoe A. astaci isolates were identical to isolates of A. astaci B-haplogroup commonly detected in Europe, and infection experiments confirmed their high virulence towards noble crayfish. One of the two undescribed Aphanomyces spp. isolates was highly similar to an Aphanomyces lineage detected previously in crustacean zooplankton (Daphnia) in Central Europe, while the other was distinct and most closely related (ITS sequence similarity of 93%) to either A. astaci or to Aphanomyces fennicus isolated recently from Astacus astacus in Finland. Neither of the two Aphanomyces spp. isolates caused crayfish mortality under experimental conditions. Our results indicate that the populations of North American signal crayfish can act as carriers of both pathogenic and non-pathogenic Aphanomyces at the same time. Furthermore, considering that a limited number of crayfish individuals from a single location yielded multiple distinct Aphanomyces isolates, our results suggest that substantial species diversity within this genus remains undescribed.
Collapse
|
50
|
Molecular identification of oomycete species affecting aquaculture in Bangladesh. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|