1
|
Albukhari TA, Bagadood RM, Bokhari BT, Filimban WA, Sembawa H, Nasreldin N, Gadalla HE, El-Boshy ME. Chrysin Attenuates Gentamicin-Induced Renal Injury in Rats Through Modulation of Oxidative Damage and Inflammation via Regulation of Nrf2/AKT and NF-kB/KIM-1 Pathways. Biomedicines 2025; 13:271. [PMID: 40002685 PMCID: PMC11853687 DOI: 10.3390/biomedicines13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Gentamicin (GM) is extensively used as an antibiotic for the treatment of infections caused by Gram-negative bacteria. Oxidative stress and proinflammatory cytokines are implicated in GM-induced renal damage. Chrysin (CH), also known as 5,7-dihydroxyflavone, has been used in traditional medicine to treat various kidney disorders. The aim of this study was to investigate the antioxidant, anti-apoptotic, and anti-inflammatory effects of CH against nephrotoxicity induced by GM. METHODS Male rats were separated into four equal groups: a negative control group (NC), a CH-treated group (100 mg/kg/day per os), a group treated with GM (100 mg/kg/day IM), and a group treated with both GM and CH (100 mg/kg/day), for 10 days. Blood and urine renal markers were investigated. RESULTS GM caused increases in the serum creatinine and urea levels and decreases in creatinine clearance, urine flow, and urine volume in the GM-treated rats. Moreover, there were increases in the levels of IL-1β, TNF-α, IL-18, and MDA in the renal tissues, with an augmented expression of NF-κB/KIM-1, as well as decreases in antioxidant marker (GSH, GPx, CAT, and SOD) activities and decreased expressions of the anti-inflammatory transcription factors Nrf2 and AKT. The simultaneous treatment with CH in the GM-treated group protected renal tissues against the nephrotoxicity induced by GM, as demonstrated by the normalization of renal markers and improvement in histopathological damage. CONCLUSIONS This study reveals that CH may attenuate GM-induced renal toxicity in rats.
Collapse
Affiliation(s)
- Talat A. Albukhari
- Department of Hematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah 24382, Saudi Arabia
| | - Rehab M. Bagadood
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (R.M.B.); (B.T.B.)
| | - Bayan T. Bokhari
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (R.M.B.); (B.T.B.)
| | - Waheed A. Filimban
- Pathology Department, Faculty of Medicine, Umm Alqura University, Makkah 24382, Saudi Arabia;
| | - Hatem Sembawa
- Department of Surgery, Faculty of Medicine, Umm Alqura University, Makkah 24382, Saudi Arabia;
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga P.O. Box 72511, Egypt;
| | - Hossam E. Gadalla
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura P.O. Box 35516, Egypt;
| | - Mohamed E. El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura P.O. Box 35516, Egypt;
| |
Collapse
|
2
|
Hashem FM, Elkhateeb D, Ali MM, Abdel-Rashid RS. In-vivo and in-vitro assessment of curcumin loaded bile salt stabilized nanovesicles for oral delivery. Daru 2024; 33:9. [PMID: 39714544 DOI: 10.1007/s40199-024-00544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Bile salts enriched nanovesicles (bilosomes) have been attention worthy in the past few years due to their distinctive effect on the enhancement of drug delivery through various physiological administration routes. Oral delivery of multifunctioning phytochemical curcumin has faced a lot of difficulties due to its scarce solubility and poor oral bioavailability. OBJECTIVE The current investigation aimed to develop curcumin loaded bilosomes for improvement of oral curcumin bioavailability with maximum efficiency and safety. METHODS The effect of formulation variables (type of span, SDC % to total lipid content Span/Cholesterol molar ratio) on physicochemical characterization and in vitro drug release in simulated intestinal fluid was investigated. Furthermore, in-vivo protective effect of bilosomes on hepatic and renal functions was also studied. RESULTS and conclusion. The results revealed that the best curcumin loaded bilosomal formulation showed spherical nanovesicular morphology with particle size 145.1 ± 19.42 nm with highly reasonable %EE (93%), Zeta potential (≥ -30mv), prominent controlled in-vitro release reaching 55.18 ± 1.10 after 96 h. The formulation also showed good storage stability with negligible differences in physical features and content. The IC50 values of bilosomal, niosomal, and free curcumin were 216.50, 211.44, and 121.63 mmol/ml, respectively revealing that the unencapsulated curcumin displayed high toxicity on Caco2 cell line (nearly 2 folds). Additionally, the prepared bilosomes showed significant in-vivo hepatic and renal protection in liver cirrhosis induced rats with conservation to all liver and renal markers and histopathological morphology. The study assumes the effectiveness and safety of oral delivery of curcumin loaded bile salts stabilized nanovesicles and its powerful commandment for further investigations.
Collapse
Affiliation(s)
- Fahima M Hashem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, POB 11795, Egypt
| | - Dalia Elkhateeb
- Central Administration of Drug Control, Egyptian Drug Authority, Cairo, Egypt
| | - Marwa M Ali
- Central Administration of Drug Control, Egyptian Drug Authority, Cairo, Egypt
| | - Rania S Abdel-Rashid
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, POB 11795, Egypt.
- Nanotechnology Center, Helwan University, Cairo, Egypt.
| |
Collapse
|
3
|
Wei T, Liu B, Chen Y, Li C. Protective effect of ascorbic acid against renal injury induced by 3-chloropropane-1,2-diol-dipalmitate in rats. Ren Fail 2024; 46:2429694. [PMID: 39584474 PMCID: PMC11590184 DOI: 10.1080/0886022x.2024.2429694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
3-monochloropropane-1,2-diol esters (3-MCPDE) are a group of contaminants which are mainly formed during heat processing of edible oil and fat-based foods. The kidney is the primary target organ for the toxic effects of 3-MCPDE. 3-MCPD-di-palmitate exists in a variety of oils and fats, and is the most common and relatively high proportion of 3-MCPDE. In this study, we investigated the protective effect of ascorbic acid on 3-MCPD-di-palmitate-induced renal injury in rats. Thirty 8-week-old male Sprague-Dawley rats were randomly divided into 5 groups, namely control, 3-MCPD-di-palmitate (240 mg/kg·bw), 3-MCPD-di-palmitate (240 mg/kg·bw) + ascorbic acid (100 mg/kg·bw), 3-MCPD-di-palmitate (240 mg/kg·bw) + ascorbic acid (200 mg/kg·bw) and 3-MCPD-di-palmitate (240 mg/kg·bw) + ascorbic acid (500 mg/kg·bw). These treatments were administered via gavage for a duration of 4 weeks. The effects of ascorbic acid on 3-MCPDE-induced kidney injury in rats were investigated by evaluating the kidney index, renal function (BUN, CRE), renal histopathology, oxidative stress markers (ROS, GSH, MDA, and T-AOC), DNA oxidation marker (8-OHdG), and activities of Caspase 3 and 9. The results showed that the exposure to 3-MCPDE significantly increased the kidney index, BUN and CRE levels, ROS and MDA levels, 8-OHdG levels, and activities of Caspase 3 and 9, while decreasing GSH and T-AOC. The combined treatment with 3-MCPDE and ascorbic acid can effectively restore the aforementioned parameters. The present study concluded that ascorbic acid effectively attenuates the renal apoptosis and oxidative homeostasis induced by 3-MCPDE uptake thereby intervening in renal injury.
Collapse
Affiliation(s)
- Tao Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Bohan Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Althobaiti SA. Boosting impacts of Acacia nilotica against hepatic toxicity induced by gentamicin: biochemical, anti-inflammatory and immunohistochemical study. Toxicol Res (Camb) 2024; 13:tfae141. [PMID: 39233845 PMCID: PMC11368662 DOI: 10.1093/toxres/tfae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
It seems that gentamicin's toxicity to the liver is caused by reactive oxygen species production. The antioxidant and anti-inflammatory properties of Acacia nilotica extract (AN) have been demonstrated in recent studies. This research focused on how AN's extract affected gentamicin-induced liver damage in rats. Twenty-four Wister rats of male type were divided into four groups: first group received saline as a control, second group received AN (5%) for fifteen days, group three received daily intraperitoneal injections of gentamicin (100 mg/kg) for fifteen days, and group four, as mentioned in groups 2 and 3, also received gentamicin injections and AN extraction (5%) for fifteen days. In order to conduct biochemical analysis, serum was extracted. Histopathology, immunohistochemistry analyses for hepatic toxicity were all performed on the collected tissue samples. Serum levels of ALT, AST, total bilirubin, and GGT were all elevated after using gentamicin. The inflammatory cytokines)IL-1, TNF-α and IL-6(, all were increased in gentamycin-injected group. There were showing deformity of bile duct, hepatocellular necrosis and infiltration of inflammatory cells congestion of portal vein, and hepatic sinusoids besides fibrosis of portal area (white arrows), hypertrophy in gentamycin-injected group compared to AN plus gentamycin administered rats. There were upregulation in the immunoreactivity of COX-2, IFNkB and TGF-beta1 (TGF-β1) in gentamycin intoxicated rats. When gentamicin and AN were administered together, hepatic biomarkers, inflammatory cytokines, histological, and immunohistochemical markers were all ameliorated by AN administration.
Collapse
Affiliation(s)
- Saed A Althobaiti
- Department of Biology, Turabah University College, Taif University, P.O. Box 11099, Turabah, Taif, Saudi Arabia
| |
Collapse
|
5
|
Hamdy S, Elshopakey GE, Risha EF, Rezk S, Ateya AI, Abdelhamid FM. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways. Food Chem Toxicol 2024; 183:114323. [PMID: 38056816 DOI: 10.1016/j.fct.2023.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Gentamicin (GEN) is an aminoglycoside antibiotic used to treat gram-negative bacterial infections. Our study aimed to explore curcumin's (CMN) protective role against GEN-induced renal and cardiac toxicity. Rats were randomly classified into 4 equal groups; Control (cont), GEN (100 mg/kg b.wt, i.p.) for seven days, CMN (200 mg/kg b.wt, orally) for 21 days, and CMN + GEN groups. GEN caused renal and cardiac dysfunctions; increased urea, creatinine, uric acid, cystatin C, CK-MB, LDH, and troponin I serum levels. MDA level was elevated significantly while activities of SOD, CAT, and GSH level were reduced significantly in renal and cardiac tissues. GEN-intoxicated rats showed up-regulation of NF-κB, IL-1β, Keap1, HMOX1, and BAX with down-regulation of Nrf2, and Bcl-2 mRNA expression in renal and cardiac tissues. Also, GEN-induced up-regulation of renal mRNA expression of KIM-1, NGAL, and intermediate filament proteins [desmin, nestin, and vimentin] as well cardiac gene expression of cMyBP-C and H-FABP. GEN-induced toxicity was significantly attenuated by CMN co-treatment as CMN improved renal and cardiac biomarkers, reduced oxidative stress and inflammatory response, and reversed alterations in mRNA expression of all tested renal and cardiac genes. These outcomes indicated that CMN could protect renal and cardiac tissues against GEN-induced oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Sara Hamdy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Engy F Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I Ateya
- Department of Development of Animal wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma M Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Laorodphun P, Cherngwelling R, Panya A, Arjinajarn P. Curcumin protects rats against gentamicin-induced nephrotoxicity by amelioration of oxidative stress, endoplasmic reticulum stress and apoptosis. PHARMACEUTICAL BIOLOGY 2022; 60:491-500. [PMID: 35188833 PMCID: PMC8865128 DOI: 10.1080/13880209.2022.2037663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Gentamicin (GM) is an aminoglycoside antibiotic which is commonly used against Gram-negative bacterial infection; however, serious complications including nephrotoxicity could limit its clinical use. OBJECTIVE The present study examined the protective effects of curcumin (CUR) on endoplasmic reticulum (ER) stress-mediated apoptosis through its antioxidative property in GM-induced nephrotoxicity in rats. MATERIALS AND METHODS Male Sprague-Dawley rats (n = 3) were divided into six groups to receive normal saline (control), GM (100 mg/kg/day), co-treatment with GM and CUR (100, 200 and 300 mg/kg/day) and CUR (200 mg/kg/day) alone for 15 days by gavage feeding. Then, the renal function, kidney injury as well as oxidative stress, antioxidative markers and ER stress-mediated apoptosis were evaluated. RESULTS Pre-treatment of CUR rescued the nephrotoxicity in GM-treated rats. Several nephrotoxicity hallmarks were reversed in the CUR-pre-treatment group. At the dose of 200 mg/kg/day, it could significantly lower serum creatinine (from 0.95 to 0.50 mg/dL), blood urea nitrogen (from 35.00 to 23.50 mg/dL) and augmented creatinine clearance (from 0.83 to 1.71 mL/min). The normalized expression of oxidative stress marker, malondialdehyde was decreased (from 13.00 to 5.98) in line with the increase of antioxidant molecules including superoxide dismutase (from 5.59 to 14.24) and glutathione (from 5.22 to 12.53). Furthermore, the renal ER stress and apoptotic protein biomarkers were lowered in CUR treatment. DISCUSSION AND CONCLUSIONS Our findings pave the way for the application of CUR as a supplement in the prevention of nephrotoxicity and other kidney diseases in the future.
Collapse
Affiliation(s)
- Pongrapee Laorodphun
- Ph.D.’s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Rada Cherngwelling
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phatchawan Arjinajarn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Şener Akçora D, Erdoğan D, Take Kaplanoğlu G, Göktaş GE, Şeker U, Elmas Ç. Electron microscopic investigation of benzo(a)pyrene-induced alterations in the rat kidney tissue and the protective effects of curcumin. Ultrastruct Pathol 2022; 46:519-530. [DOI: 10.1080/01913123.2022.2152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dila Şener Akçora
- Department of Histology and Embryology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Deniz Erdoğan
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Turkey
| | | | - Gül Eser Göktaş
- Department of Histology and Embryology, Faculty of Medicine, Lokman Hekim University, Turkey
| | - Uğur Şeker
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Sanlıurfa, Turkey
| | - Çiğdem Elmas
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Turkey
| |
Collapse
|
8
|
Dai C, Tian E, Hao Z, Tang S, Wang Z, Sharma G, Jiang H, Shen J. Aflatoxin B1 Toxicity and Protective Effects of Curcumin: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2022; 11:antiox11102031. [PMID: 36290754 PMCID: PMC9598162 DOI: 10.3390/antiox11102031] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most significant classes of mycotoxins, aflatoxins (AFTs), can cause a variety of detrimental outcomes, including cancer, hepatitis, aberrant mutations, and reproductive issues. Among the 21 identified AFTs, aflatoxin B1 (AFB1) is the most harmful to humans and animals. The mechanisms of AFB1-induced toxicity are connected to the generation of excess reactive oxygen species (ROS), upregulation of CYP450 activities, oxidative stress, lipid peroxidation, apoptosis, mitochondrial dysfunction, autophagy, necrosis, and inflammatory response. Several signaling pathways, including p53, PI3K/Akt/mTOR, Nrf2/ARE, NF-κB, NLRP3, MAPKs, and Wnt/β-catenin have been shown to contribute to AFB1-mediated toxic effects in mammalian cells. Curcumin, a natural product with multiple therapeutic activities (e.g., anti-inflammatory, antioxidant, anticancer, and immunoregulation activities), could revise AFB1-induced harmful effects by targeting these pathways. Therefore, the potential therapeutic use of curcumin against AFB1-related side effects and the underlying molecular mechanisms are summarized. This review, in our opinion, advances significant knowledge, sparks larger discussions, and drives additional improvements in the hazardous examination of AFTs and detoxifying the application of curcumin.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhihui Hao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Mousavi K, Manthari RK, Najibi A, Jia Z, Ommati MM, Heidari R. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of tramadol-induced renal injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100049. [PMID: 34909675 PMCID: PMC8663991 DOI: 10.1016/j.crphar.2021.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.
Collapse
Affiliation(s)
- Khadijah Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zhipeng Jia
- College of Animal Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Bencheikh N, Bouhrim M, Kharchoufa L, Al Kamaly OM, Mechchate H, Es-safi I, Dahmani A, Ouahhoud S, El Assri S, Eto B, Bnouham M, Choukri M, Elachouri M. The Nephroprotective Effect of Zizyphus lotus L. (Desf.) Fruits in a Gentamicin-Induced Acute Kidney Injury Model in Rats: A Biochemical and Histopathological Investigation. Molecules 2021; 26:4806. [PMID: 34443393 PMCID: PMC8401527 DOI: 10.3390/molecules26164806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
Zizyphus lotus L. (Desf.) (Z. lotus) is a medicinal plant largely distributed all over the Mediterranean basin and is traditionally used by Moroccan people to treat many illnesses, including kidney failure. The nephrotoxicity of gentamicin (GM) has been well documented in humans and animals, although the preventive strategies against it remain to be studied. In this investigation, we explore whether the extract of Zizyphus lotus L. (Desf.) Fruit (ZLF) exhibits a protective effect against renal damage produced by GM. Indeed, twenty-four Wistar rats were separated into four equal groups of six each (♂/♀ = 1). The control group was treated orally with distilled water (10 mL/kg); the GM treated group received distilled water (10 mL/kg) and an intraperitoneal injection of GM (80 mg/kg) 3 h after; and the treated groups received ZLF extract orally at the doses 200 or 400 mg/kg and injected intraperitoneally with the GM. All treatments were given daily for 14 days. At the end of the experiment, the biochemical parameters and the histological observation related the kidney function was explored. ZLF treatment has significantly attenuated the nephrotoxicity induced by the GM. This effect was indicated by its capacity to decrease significantly the serum creatinine, uric acid, urea, alkaline phosphatase, gamma-glutamyl-transpeptidase, albumin, calcium, sodium amounts, water intake, urinary volume, and relative kidney weight. In addition, this effect was also shown by the increase in the creatinine clearance, urinary creatinine, uric acid, and urea levels, weight gain, compared to the rats treated only with the GM. The hemostasis of oxidants/antioxidants has been significantly improved with the treatment of ZLF extract, which was shown by a significant reduction in malondialdehydes levels. Histopathological analysis of renal tissue was correlated with biochemical observation. Chemical analysis by HPLC-DAD showed that the aqueous extract of ZLF is rich in phenolic compounds such as 3-hydroxycinnamic acid, catechin, ferulic acid, gallic acid, hydroxytyrosol, naringenin, p- coumaric Acid, quercetin, rutin, and vanillic acid. In conclusion, ZLF extract improved the nephrotoxicity induced by GM, through the improvement of the biochemical and histological parameters and thus validates its ethnomedicinal use.
Collapse
Affiliation(s)
- Noureddine Bencheikh
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60040, Morocco; (N.B.); (M.B.); (L.K.); (A.D.); (S.O.); (M.B.); (M.E.)
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60040, Morocco; (N.B.); (M.B.); (L.K.); (A.D.); (S.O.); (M.B.); (M.E.)
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60040, Morocco; (N.B.); (M.B.); (L.K.); (A.D.); (S.O.); (M.B.); (M.E.)
| | - Omkulthom Mohamed Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Hamza Mechchate
- Laboratory of Biotechnology, Environment, Agrifood and Health, Faculty of Sciences, University of Sidi Mohamed Ben Abdellah, Fez 30050, Morocco;
| | - Imane Es-safi
- Laboratory of Biotechnology, Environment, Agrifood and Health, Faculty of Sciences, University of Sidi Mohamed Ben Abdellah, Fez 30050, Morocco;
| | - Ahmed Dahmani
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60040, Morocco; (N.B.); (M.B.); (L.K.); (A.D.); (S.O.); (M.B.); (M.E.)
| | - Sabir Ouahhoud
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60040, Morocco; (N.B.); (M.B.); (L.K.); (A.D.); (S.O.); (M.B.); (M.E.)
| | - Soufiane El Assri
- Faculty of Medicine and Pharmacy, Mohammed First University, B.P. 724, Oujda 60000, Morocco; (S.E.A.); (M.C.)
| | - Bruno Eto
- Laboratories-TBC, Faculty of Pharmaceutical and Biological Sciences, B.P. 83, 59000 Lille, France;
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60040, Morocco; (N.B.); (M.B.); (L.K.); (A.D.); (S.O.); (M.B.); (M.E.)
| | - Mohammed Choukri
- Faculty of Medicine and Pharmacy, Mohammed First University, B.P. 724, Oujda 60000, Morocco; (S.E.A.); (M.C.)
- Biochemistry Laboratory, Central Laboratory Service—CHU, Mohammed VI University Hospital, B.P. 4806, Oujda 60049, Morocco
| | - Mostafa Elachouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60040, Morocco; (N.B.); (M.B.); (L.K.); (A.D.); (S.O.); (M.B.); (M.E.)
| |
Collapse
|
11
|
Thymoquinone, but Not Metformin, Protects against Gentamicin-Induced Nephrotoxicity and Renal Dysfunction in Rats. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Gentamicin (GM) is an antibiotic that is widely used to treat many Gram-negative bacteria, such as those involved in urinary tract infections. However, being nephrotoxic, GM dose adjustment and reno-protective elements must be concurrently administered with GM to minimize kidney damage. Oxidative stress plays a pivotal role in the pathogenesis of GM-induced nephrotoxicity. Thymoquinone (TQ) is a promising therapeutic substance, that is being extensively studied in many diseases, such as diabetes mellitus, cancer, hypertension, and others. The powerful antioxidant properties of TQ may greatly help in minimizing GM nephrotoxicity. Metformin (MF) is a well-known, clinically approved oral hypoglycaemic drug that has many other actions, including antioxidant properties. The aim of this work was to evaluate the possible antioxidant and reno-protective effects of TQ and metformin in GM-induced nephrotoxicity in the same model (rats) at the same time. In addition, we aimed to further understand the effects underlying GM-induced nephrotoxicity. Methods: Twenty male rats were randomly divided into four equal groups: the first group (control) received distilled water; the second group received GM only; the third group received concurrent oral TQ and GM; and the fourth group received concurrent oral MF and GM. After 4 weeks, renal function and histopathology, as well as levels of the oxidative markers glutathione peroxidase-1 (GLPX1), superoxide dismutase (SOD), and malondialdehyde (MDA) in the kidney tissues, were assessed. Results: Compared with the control group, and as expected, the GM-injected rats showed significant biochemical and histological changes denoting renal damage. Compared with GM-injected rats, the concurrent administration of TQ with GM significantly reduced the levels of serum creatinine, serum urea, and tissue MDA and significantly increased the levels of GLPX1 and SOD. Concurrent metformin administration with GM significantly increased the levels of both GLPX1 and SOD and significantly decreased the levels of tissue MDA but had no significant effect on serum creatinine and urea levels. Compared with GM-injected rats, the addition of either TQ or MF resulted in a reduction in endothelial proliferation and mesangial hypercellularity. Conclusions: Both TQ and MF effectively alleviated the oxidative stress in GM-induced nephrotoxicity in rats, with TQ but not MF producing a complete reno-protective effect. Further studies for evaluation of different reno-protective mechanisms of TQ should be conducted.
Collapse
|
12
|
Protective Effects of Liposomal Curcumin on Oxidative Stress/Antioxidant Imbalance, Metalloproteinases 2 and -9, Histological Changes and Renal Function in Experimental Nephrotoxicity Induced by Gentamicin. Antioxidants (Basel) 2021; 10:antiox10020325. [PMID: 33671770 PMCID: PMC7926985 DOI: 10.3390/antiox10020325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our study aimed to assess the efficiency of Curcumin nanoformulation (LCC) on experimental nephrotoxicity induced by Gentamicin in rats. METHODS Six groups of seven rats were used: C-(control group) received saline solution i.p. (i.p. = intraperitoneal), G-gentamicin (G, 80 mg/kg body weight (b.w.)), GCC1 and GCC2-with G and CC solution (single dose of 10 mg/kg b.w.-CC1, or 20 mg/kg b.w.-CC2), GLCC1 (10 mg/kg b.w.) and GLCC2 (20 mg/kg b.w.) with G and LCC administration. Oxidative stress parameters (NOx = nitric oxide, MDA = malondialdehyde, TOS = total oxidative stress), antioxidant parameters (CAT = catalase, TAC = total antioxidant capacity), matrix metalloproteinases (MMP-2 and MMP-9), and renal function parameters (creatinine, blood urea nitrogen, and urea) were measured. Kidneys histopathologic examination was made for each group. RESULTS Pretreatment with CC and LCC in both doses had significantly alleviating effects on assessed parameters (NOx, MDA, TOS, CAT, TAC, MMP-2, and -9) as compared with the untreated group (p < 0.006). Histopathological aspect and renal function were significantly improved in CC and LCC groups. Liposomal formulation (LCC) showed higher efficiency on all examined parameters compared to CC (p < 0.006). CONCLUSIONS Our results demonstrated improving renal function and kidney cytoarchitecture, oxidative stress/antioxidant/balance, and MMPs plasma concentrations with better dose-related efficacity of LCC than CC.
Collapse
|
13
|
A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochem Biophys Rep 2021; 25:100908. [PMID: 33506115 PMCID: PMC7815660 DOI: 10.1016/j.bbrep.2021.100908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Inflammation has been considered as an important factor in cardiovascular diseases (CVD). Curcumin has been well known for its anti-inflammatory effects. In current research, protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide (LPS) was investigated in rats. Material and methods The animals were divided into five groups and received the treatments during two weeks [1]: Control in which vehicle was administered instead of curcumin and saline was injected instead of LPS [2], LPS group in which vehicle of curcumin plus LPS (1 mg/kg) was administered [3-5], curcumin groups in them three doses of curcumin (5, 10 and 15 mg/kg) before LPS were administered. Results Administration of LPS was followed by an inflammation status presented by an increased level of white blood cells (WBC) (p < 0.001). An oxidative stress status was also occurred after LPS injection which was presented by an increased level of malondialdehyde (MDA) while, a decrease in thiols, superoxide dismutase (SOD) and catalase(CAT) in all heart, aorta and serum (p < 0.001). The results also showed that curcumin decreased WBC (doses: 10 and 15 mg/kg) (p < 0.001) accompanying with a decrease in MDA (P < 0.01 and P < 0.001). Curcumin also improved the thiols and the activities of SOD and catalase (P < 0.05, P < 0.01 and P < 0.001). Conclusion Based on our findings, curcumin can ameliorates oxidative stress and inflammation induced by LPS in rats to protect the cardiovascular system. The aim of the present study was to investigate the cardiovascular protective effects of curcumin in lipopolysaccharide (LPS) challenged rats Lipopolysaccharide (LPS) induced inflammation model in rats LPS injection was followed by inflammation and induced oxidative stress status in the serum, aorta and heart. Administration of curcumin attenuated oxidative stress and inflammation in the serum, aorta and heart tissues induced by LPS.
Collapse
|
14
|
Vazin A, Heidari R, Khodami Z. Curcumin Supplementation Alleviates Polymyxin E-Induced Nephrotoxicity. J Exp Pharmacol 2020; 12:129-136. [PMID: 32581601 PMCID: PMC7280086 DOI: 10.2147/jep.s255861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background The last-line agent for gram-negative bacteria that have developed resistance towards commonly used antibiotics is polymyxin E (PolyE). The renal toxicity attributed to this agent limits its use, proper dosing, and eventually its clinical efficacy. Although the exact mechanism of PolyE-induced nephrotoxicity is not obvious, some investigations suggest the role of oxidative stress and its associated events in this complication. Curcumin (CUR) is a potent antioxidant molecule. The aim of the current investigation was the evaluation of the potential nephroprotective properties of CUR in PolyE-treated mice. Materials and Methods Mice were randomly allocated into five groups (n = 8 per group). PolyE (15 mg/kg/day, i.v, for 7 days) alone or in combination with CUR (10, 100 and 200 mg/kg, i.p) were administered to mice. Renal injury biomarkers, in addition to markers of oxidative stress and kidney histopathological alterations, were evaluated. Results Plasma creatinine (Cr) and blood urine nitrogen (BUN) significantly raised in PolyE group. Oxidative stress biomarkers consisting of reactive oxygen species (ROS) and lipid peroxidation (LPO) also increased, and concomitantly GSH and antioxidant capacity of renal cells significantly decreased following the use of PolyE. Interstitial nephritis, tissue necrosis, and glomerular atrophy were all induced by the use of PolyE in the mice kidney. CUR (10, 100, and 200 mg/kg, i.p) treatment alleviated PolyE-induced oxidative stress and histopathological alterations in the kidney tissue significantly. Conclusion According to the results of this study, CUR has a protective role against renal toxicity induced by PolyE. Hence, more research is necessary until this compound could be clinically applicable to alleviate PolyE-induced renal injury.
Collapse
Affiliation(s)
- Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodami
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Mahi-Birjand M, Yaghoubi S, Abdollahpour-Alitappeh M, Keshtkaran Z, Bagheri N, Pirouzi A, Khatami M, Sineh Sepehr K, Peymani P, Karimzadeh I. Protective effects of pharmacological agents against aminoglycoside-induced nephrotoxicity: A systematic review. Expert Opin Drug Saf 2020; 19:167-186. [PMID: 31914328 DOI: 10.1080/14740338.2020.1712357] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Aminoglycosides have been long used for antibacterial treatment and are still commonly used in clinical practice. Despite their extensive application and positive effects, drug-related toxicity is considered as the main obstacle for aminoglycosides. Aminoglycosides induce nephrotoxicity through the endocytosis and accumulation of the antibiotics in the epithelial cells of proximal tubule. Most importantly, however, a number of pharmacological agents were demonstrated to have protective activities against nephrotoxicity in experimental animals.Areas covered: In the present systematic review, the authors provide and discuss the mechanisms and epidemiological features of aminoglycoside-induced nephrotoxicity, and focus mainly on recent discoveries and key features of pharmacological interventions. In total, 39 articles were included in this review.Expert opinion: The majority of studies investigated gentamicin-induced nephrotoxicity in animal models. Antioxidants, chemicals, synthetic drugs, hormones, vitamins, and minerals showed potential values to prevent gentamicin-induced nephrotoxicity. Indicators used to evaluate the effectiveness of nephroprotection included antioxidative indexes, inflammatory responses, and apoptotic markers. Among the nephroprotective agents studied, herbs and natural antioxidant agents showed excellent potential to provide a protective strategy against gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Motahareh Mahi-Birjand
- Student Research Committee, Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Zahra Keshtkaran
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Payam Peymani
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich-University of Zurich, Switzerland.,Health Policy Research Center, Institute of Heath, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimzadeh
- Student Research Committee, Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Sadeghi H, Ramian A, Javadi I, Sadeghi H, Panahi Kokhdan E, Doustimotlagh A, Abbasi R, Alizadeh S, Nikbakht H. Repeated administration of fluvoxamine worsens gentamicin-induced nephrotoxicity in rats. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2020. [DOI: 10.4103/jrptps.jrptps_57_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Aldhahrani A. Suadian Acacia Gerrardii: Antidiabetic Effect in Rats Suffering from Diabetic Nephropathy and DNA Fingerprinting Using ISSR. Pak J Biol Sci 2020; 23:1162-1175. [PMID: 32981247 DOI: 10.3923/pjbs.2020.1162.1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE There is a widespread use of medicinal herbs with beneficial uses against different diseased conditions. This study was carried out to identify and study the biological effect of Acacia gerrardii leaf extract on lowering blood sugar in rats suffering from diabetic nephropathy. MATERIALS AND METHODS It studied the effects of leaf extract at concentrations ranging from 100-500 mg kg-1 b.wt. per day for 4 weeks. Serum glucose levels, total lipids profile and kidney functions were estimated. Plasma levels of sodium and potassium as well as total bilirubin levels were assessed and kidneys from different groups were histopathologically examined. RESULTS The results showed that leaves were rich in the major compounds of phenolic acids, including salicylic acid and flavonoids with reduction of total lipids, triglycerides and total cholesterol in diabetic rats with renal failure together with reduction in uric acid, creatinine and urea with reduced vacuolar degeneration of tubules and basement membrane thickening. Additionally, the phylogenetic analysis using ISSR primers detected a genetic divergence among different samples. The results showed that the rich antioxidant content of Acacia gerrardii improved lipid, serum antioxidant and kidney function profiles in diabetic rats. CONCLUSION Acacia gerrardii could be used as a safe source of antioxidants. Moreover, the ISSR assay proved its usefulness in detecting genetic variations among different Acacia gerrardii samples.
Collapse
|
18
|
Ghelani H, Razmovski-Naumovski V, Chang D, Nammi S. Chronic treatment of curcumin improves hepatic lipid metabolism and alleviates the renal damage in adenine-induced chronic kidney disease in Sprague-Dawley rats. BMC Nephrol 2019; 20:431. [PMID: 31752737 PMCID: PMC6873446 DOI: 10.1186/s12882-019-1621-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders due to the dysregulation of lipoprotein metabolism which progresses kidney disease. The objective of this study is to evaluate the protective effects of curcumin on dyslipidaemia associated with adenine-induced chronic kidney disease in rats. Methods Male SD rats (n = 29) were divided into 5 groups for 24 days: normal control (n = 5, normal diet), CKD control (n = 6, 0.75% w/w adenine-supplemented diet), CUR 50 (n = 6, 50 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), CUR 100 (n = 6, 100 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), and CUR 150 (n = 6, 150 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet). The serum and tissue lipid profile, as well as the kidney function test, were measured using commercial diagnostic kits. Results The marked rise in total cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, triglycerides and free fatty acids in serum, as well as hepatic cholesterol, triglyceride and free fatty acids of CKD control rats were significantly protected by curcumin co-treatment (at the dose of 50, 100 and 150 mg/kg). Furthermore, curcumin significantly increased the serum high-density lipoprotein (HDL) cholesterol compared to the CKD control rats but did not attenuate the CKD-induced weight retardation. Mathematical computational analysis revealed that curcumin significantly reduced indicators for the risk of atherosclerotic lesions (atherogenic index) and coronary atherogenesis (coronary risk index). In addition, curcumin improved kidney function as shown by the reduction in proteinuria and improvement in creatinine clearance. Conclusion The results provide new scientific evidence for the use of curcumin in CKD-associated dyslipidaemia and substantiates the traditional use of curcumin in preventing kidney damage.
Collapse
Affiliation(s)
- Hardik Ghelani
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Valentina Razmovski-Naumovski
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia.,South Western Sydney Clinical School School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dennis Chang
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia. .,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia.
| |
Collapse
|
19
|
Motaharinia J, Panahi Y, Barreto GE, Beiraghdar F, Sahebkar A. Efficacy of curcumin on prevention of drug-induced nephrotoxicity: A review of animal studies. Biofactors 2019; 45:690-702. [PMID: 31246346 DOI: 10.1002/biof.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 11/10/2022]
Abstract
Drug-induced nephrotoxicity is a frequent serious adverse effect, contributing to morbidity and increased healthcare utilization. Prevention or reversal is key. Curcumin has useful biological features that include antioxidant, anti-inflammatory, and anticancer properties. This review covers aspects of curcumin in relation to prevention of drug-induced nephrotoxicity: dosage and schedule, effect on kidney biomarkers and histological changes, and mechanisms of curcumin's protective effects. Despite success in some animal models, human studies and clinical administration of curcumin for nephroprotection remains limited due to difficulty in achieving therapeutic levels following oral administration and in determining the optimal dosing schedule. Lack of sufficient evidence from animal studies, coupled with low systemic bioavailability, continues to limit the utilization of curcumin in addressing and controlling drug-induced nephrotoxicity. Therefore, human studies are required to fully assess and validate the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Javad Motaharinia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Rizwan F, Yesmine S, Banu SG, Chowdhury IA, Hasan R, Chatterjee TK. Renoprotective effects of stevia ( Stevia rebaudiana Bertoni), amlodipine, valsartan, and losartan in gentamycin-induced nephrotoxicity in the rat model: Biochemical, hematological and histological approaches. Toxicol Rep 2019; 6:683-691. [PMID: 31372346 PMCID: PMC6656923 DOI: 10.1016/j.toxrep.2019.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/29/2022] Open
Abstract
The current study investigated the renoprotective effects of stevia, angiotensin-II type 1 receptor (AT1) blocker and calcium (Ca2+) channel blocker in gentamycin-induced nephrotoxicity in rat models. Six groups of male Sprague-Dawley rats of eight weeks old were taken for the experiment: sham control, nephrotoxicity, treatment with amlodipine (4 mg/kg/day); stevia (200 mg/kg/day); losartan (15 mg/kg/day) and valsartan (5 mg/kg/day), accordingly. The blood sample was taken for the assessment of renal and hepatic-functional variables like serum creatinine, blood urea, BUN and SGPT, SGOT, and total serum bilirubin. Hematological parameters were also examined. Histological examination has been done on kidneys and liver. Alterations of the body weight and the organ's weight were documented. Treatment with stevia and valsartan significantly decreased serum creatinine levels. A reduction of liver enzymes, and total serum bilirubin levels were observed in all the treatment groups. Treatment with valsartan and amlodipine, remarkably and stevia, mildly reduced the renal tissue damage, inflammation, and tubular necrosis. However, the present study demonstrated that losartan treatment aggravated kidney damage by increasing protein cast, calcification, tubular necrosis, and injury. This comparison indicated that both stevia and valsartan have beneficial renoprotective effect and valsartan offers a better treatment option in renal damage over losartan.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- ARB
- ARB, angiotensin-II type 1 receptor (AT1) blockers
- AT1, angiotensin-II type 1 receptor
- AT2, angiotensin-II type 2 receptor
- BUN, blood urea nitrogen
- CCB
- CCB, calcium (Ca2+) channel blocker
- CKD, chronic kidney disease
- EDTA, ethylene diamine tetra acetate
- Gentamycin-induced
- HCT, hematocrit
- HDL, high density lipoprotein
- Hb, hemoglobin
- LDL, low density lipoprotein
- MCH, mean corpuscular hemoglobin
- MCHC, mean corpuscular hemoglobin concentration
- MCV, mean corpuscular volume
- Nephrotoxicity
- RBC, red blood cells
- RBS, random blood sugar
- RDW-CV, red blood cell distribution width-CV
- RDW-SD, red blood cell distribution width-SD
- ROS, reactive oxygen species
- Renoprotective effects
- SGOT, serum glutamic oxaloacetic transaminase
- SGPT, serum glutamic pyruvic transaminase
- Stevia
- TG, triglycerides
Collapse
Affiliation(s)
- Farhana Rizwan
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
- Department of Pharmacy, East West University, Aftabnagar, Dhaka, 1212, Bangladesh
| | - Saquiba Yesmine
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Sultana Gulshan Banu
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | | | - Rajibul Hasan
- Department of Biochemistry and Cell Biology, Bangladesh University of Health Sciences, Mirpur, 1216, Dhaka, Bangladesh
| | - Tapan Kumar Chatterjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
- Department of Pharmaceutical Science and Technology, JIS University, Agarpara, Kolkata, 700109, West Bengal, India
| |
Collapse
|
21
|
The footprints of mitochondrial impairment and cellular energy crisis in the pathogenesis of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and Fanconi's syndrome: A comprehensive review. Toxicology 2019; 423:1-31. [PMID: 31095988 DOI: 10.1016/j.tox.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
Fanconi's Syndrome (FS) is a disorder characterized by impaired renal proximal tubule function. FS is associated with a vast defect in the renal reabsorption of several chemicals. Inherited and/or acquired conditions seem to be connected with FS. Several xenobiotics including many pharmaceuticals are capable of inducing FS and nephrotoxicity. Although the pathological state of FS is well described, the exact underlying etiology and cellular mechanism(s) of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and FS are not elucidated. Constant and high dependence of the renal reabsorption process to energy (ATP) makes mitochondrial dysfunction as a pivotal mechanism which could be involved in the pathogenesis of FS. The current review focuses on the footprints of mitochondrial impairment in the etiology of xenobiotics-induced FS. Moreover, the importance of mitochondria protecting agents and their preventive/therapeutic capability against FS is highlighted. The information collected in this review may provide significant clues to new therapeutic interventions aimed at minimizing xenobiotics-induced renal injury, serum electrolytes imbalance, and FS.
Collapse
|
22
|
Falayi OO, Oyagbemi AA, Omobowale TO, Ayodele EA, Adedapo AD, Yakubu MA, Adedapo AA. Nephroprotective properties of the methanol stem extract of Abrus precatorius on gentamicin-induced renal damage in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2018; 16:/j/jcim.ahead-of-print/jcim-2017-0176/jcim-2017-0176.xml. [PMID: 30367803 DOI: 10.1515/jcim-2017-0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/13/2018] [Indexed: 11/15/2022]
Abstract
Background The use of plants for the treatment and prevention of diseases in man and his animals has led to a renewed scientific interest in the use of medicinal plants for therapeutic purposes. The nephroprotective properties of methanol stem bark extract of Abrus precatorius against gentamicin-induced renal damage in rats was evaluated in this study. Methods Thirty male Wistar rats were divided into five equal groups. Group A was the negative control group while B was the positive control group which received gentamicin 100 mg/kg intra-peritoneally for 6 days. Group C were pretreated with 100 mg/kg extract for the 3 days and then concurrently with gentamicin 100 mg/kg for 3 days and group D were pretreated with 200 mg/kg extract for 3 days and then concurrently with gentamicin 100 mg/kg for 3 days. Group E received gentamicin intraperitoneally for 6 days followed by administration of 200 mg/kg of the extract for 3 days. Blood samples, kidneys and kidney homogenates were collected for haematological, biochemical, histopathological and immunohistochemical analysis. Results The results showed that no significant haematological changes were noted. The groups treated with extract exhibited significant increase in body weight gain. While group B significantly exhibited focal areas of inflammation, fatty degeneration, congestion of vessels, tubular necrosis and glomerular atrophy, the lesions were mild with the treated groups. Treated groups exhibited a dose dependent significant decrease in serum creatinine, urea, XO, NO and Myeloperoxidase, AOPP, Protein carbonyl, H2O2 generated and MDA levels when compared with group B. There were significant dose dependent improvements in SOD, GST, GSH, Protein thiol, and non-protein thiol levels in the treated groups when compared with group B. In immunohistochemistry, Group B exhibited over expression of CRP and NF-κB levels, and marked reduction in expression of Bcl-2 while the reverse was seen in the groups treated with methanol extracts of Abrus precatorius. Conclusion The methanol extract of Abrus precatorius plays a vital role against gentamicin induced renal damage by reducing levels of renal markers of oxidative stress, inflammation and apoptosis, enhancing enzymatic and non enzymatic renal antioxidant system, alongside an increase in Bcl-2 and a decrease in NF-κB and CRP expressions.
Collapse
Affiliation(s)
- Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Technology and Engineering, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004, USA
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
23
|
Yang H, Song Y, Liang YN, Li R. Quercetin Treatment Improves Renal Function and Protects the Kidney in a Rat Model of Adenine-Induced Chronic Kidney Disease. Med Sci Monit 2018; 24:4760-4766. [PMID: 29987270 PMCID: PMC6069490 DOI: 10.12659/msm.909259] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background The aim of this study was to examine the effects of the natural flavonoid, quercetin, in a rat model of adenine-induced chronic kidney disease. Material/Methods Forty male Wister rats were divided into four groups: normal (no adenine or quercetin) (n=10); untreated model (treated withadenine but not quercetin) (n=10); quercetin-treated model (5 mg/kg/day for 21 days) (n=10); quercetin-treated model (10 mg/kg/day for 21 days) (n=10). Urine and blood samples were collected and rat kidneys were examined histologically. Results Comparison of the findings of the model rats treated with quercetin (n=20) with non-treated model rats (n=10) showed reduced levels of fibroblast growth factor 23 (FGF23): normal group, 19.6 pg/ml; untreated group, 73.6 pg/ml; quercetin-treated group (5 mg/kg), 34.25 pg/ml; and quercetin-treated group (10 mg/kg), 21.3 pg/ml. Quercetin-treated model rats had reduced serum levels of parathyroid hormone (PTH), inorganic phosphate, increased urine protein-to-creatinine ratio, increased urine antioxidants, serum lactate dehydrogenase (LDH), and interleukin (IL)-8 when compared with the untreated model group and the control group. Quercetin treatment 10 mg/kg (n=10) reduced the levels of creatinine, blood urea nitrogen (BUN), and urinary uric acid. Renal histopathology in model rats treated with quercetin (n=20) showed reduced inflammation compared with the untreated model rats (n=10). Conclusions In a rat model of adenine-induced chronic kidney disease, treatment with quercetin improved renal function, reduced oxidative stress factors, serum levels of FGF23, and kidney inflammation.
Collapse
Affiliation(s)
- Hu Yang
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Ya-Nan Liang
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Rong Li
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
24
|
Ncir M, Saoudi M, Sellami H, Rahmouni F, Lahyani A, Makni Ayadi F, El Feki A, Allagui MS. In vitro and in vivo studies of Allium sativum extract against deltamethrin-induced oxidative stress in rats brain and kidney. Arch Physiol Biochem 2018; 124:207-217. [PMID: 28920707 DOI: 10.1080/13813455.2017.1376335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study investigated the in vitro and the in vivo antioxidant capacities of Allium sativum (garlic) extract against deltamethrin-induced oxidative damage in rat's brain and kidney. The in vitro result showed that highest extraction yield was achieved with methanol (20.08%). Among the tested extracts, the methanol extract exhibited the highest total phenolic, flavonoids contents and antioxidant activity. The in vivo results showed that deltamethrin treatment caused an increase of the acetylcholinesterase level (AChE) in brain and plasma, the brain and kidney conjugated dienes and lipid peroxidation (LPO) levels as compared to control group. The antioxidant enzymes results showed that deltamethrin treatment induced a significantly decrease (p < 0.01) in brain and kidney antioxidant enzymes as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) to control group. The co-administration of garlic extract reduced the toxic effects in brain and kidney tissues induced by deltamethrin.
Collapse
Affiliation(s)
- Marwa Ncir
- a Animal Eco-Physiology Laboratory, Sciences Faculty of Sfax , Université de Sfax , Sfax , Tunisia
| | - Mongi Saoudi
- a Animal Eco-Physiology Laboratory, Sciences Faculty of Sfax , Université de Sfax , Sfax , Tunisia
| | - Hanen Sellami
- b Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax , Université de Sfax , Sfax , Tunisia
- c Laboratoire de Traitement et de Valorisation des Rejets Hydriques (LTVRH), Water Researches and Technologies Center (CERTE) , University of Carthage , Nabeul , Tunisia
| | - Fatma Rahmouni
- d Laboratory of Histology and Embryology, Faculty of Medicine , University of Sfax , Sfax , Tunisia
| | - Amina Lahyani
- e Biochemistry Laboratory , CHU HabibBourguiba of Sfax , Sfax , Tunisia
| | - Fatma Makni Ayadi
- e Biochemistry Laboratory , CHU HabibBourguiba of Sfax , Sfax , Tunisia
| | - Abdelfattah El Feki
- a Animal Eco-Physiology Laboratory, Sciences Faculty of Sfax , Université de Sfax , Sfax , Tunisia
| | - Mohamed Salah Allagui
- a Animal Eco-Physiology Laboratory, Sciences Faculty of Sfax , Université de Sfax , Sfax , Tunisia
| |
Collapse
|
25
|
Xu Y, Hu N, Jiang W, Yuan HF, Zheng DH. Curcumin-carrying nanoparticles prevent ischemia-reperfusion injury in human renal cells. Oncotarget 2018; 7:87390-87401. [PMID: 27901497 PMCID: PMC5349996 DOI: 10.18632/oncotarget.13626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a major complication in clinical practice. However, despite its frequency, effective preventive/treatment strategies for this condition are scarce. Curcumin possesses antioxidant properties and is a promising potential protective agent against renal IRI, but its poor water solubility restricts its application. In this study, we constructed curcumin-carrying distearoylphosphatidylethanolamine-polyethylene glycol nanoparticles (Cur-NPs), and their effect on HK-2 cells exposed to IRI was examined in vitro. Curcumin encapsulated in NPs demonstrated improved water solubility and slowed release. Compared with the IRI and Curcumin groups, Cur-NP groups displayed significantly improved cell viability, downregulated protein expression levels of caspase-3 and Bax, upregulated expression of Bcl-2 protein, increased antioxidant superoxide dismutase level, and reduced apoptotic rate, reactive oxygen species level, and malondialdehyde content. Results clearly showed that Cur-NPs demonstrated good water solubility and slow release, as well as exerted protective effects against oxidative stress in cultured HK-2 cells exposed to IRI.
Collapse
Affiliation(s)
- Yong Xu
- Department of Nephrology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Ning Hu
- Department of Nephrology, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Hong-Fang Yuan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong-Hui Zheng
- Department of Nephrology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223002, China
| |
Collapse
|
26
|
Ahmad M, Taweel GMA, Hidayathulla S. Nano-composites chitosan-curcumin synergistically inhibits the oxidative stress induced by toxic metal cadmium. Int J Biol Macromol 2017; 108:591-597. [PMID: 29229243 DOI: 10.1016/j.ijbiomac.2017.12.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
Abstract
The present study intends to compare the influence of pre-treatment with nanoparticles of curcumin (Cr-NPS), chitosan (Ch-NPS) and nanocomposites chitosan-curcumin (CC-NPS) on cadmium (Cd)-induced oxidative damage in the liver, kidneys, and blood indices in Swiss strain adult male mice. The pretreated mice with Cr-NPS, Ch-NPS, and CC-NPS were exposed to Cd (10mg/kg) for three weeks. The non-enzymatic Oxidative Stress (OS) indices like lipid peroxides (TBARS), reduced total glutathione (GSH), enzymatic OS indices like catalase (CAT), glutathione S-transferase (GST) and superoxide dismutase (SOD) were estimated together with some blood indices. Cadmium was able to induce a significant increase in TBARS and a significant decrease in GSH, GST, CAT and SOD levels in all the tissues, which were pretreated with nanocomposite. Furthermore, the blood indices like counts of red and white blood cells, platelets, hemoglobin and packed cell volume were also depleted due to Cd exposure but remained unaffected and kept under normal levels in pretreated mice group. The results indicate that Cr-NPS, Ch-NPS, and CC-NPS may act as natural antioxidants and when compared among the three, CC-NPS appears to be the best antioxidant.
Collapse
Affiliation(s)
- Mohammad Ahmad
- College of Nursing, King Saud University, Riyadh, Saudi Arabia.
| | - Gasem M Abu Taweel
- College of Education, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Syed Hidayathulla
- Medicinal, Aromatic and Poisonous Plants Research Center (MAPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci Rep 2017; 7:10114. [PMID: 28860665 PMCID: PMC5579036 DOI: 10.1038/s41598-017-10693-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the protective role and underlying mechanisms of curcumin on glycerol-induced acute kidney injury (AKI) in rats. Glycerol (10 ml/kg BW, 50% v/v in sterile saline, i.m.) was used to induce AKI, followed by curcumin (200 mg/kg/day, p.o.) administration for 3 days. To confirm renal damage and the effects of curcumin on AKI, serum BUN, Scr, and CK as well as renal SOD, MDA, GSH-Px were measured. Additionally, morphological changes were identified by H&E staining and transmission electron microscopy. The expression of several factors including chemotactic factor MCP-1, proinflammatory cytokines including TNF-α and IL-6, as well as the kidney injury markers, as Kim-1 and Lipocalin-2 were also assessed using q-PCR. Finally, cell apoptosis in renal tissue was detected using in situ TUNEL apoptosis fluorescence staining and expression of proteins associated with apoptotic, oxidative stress and lipid oxidative related signaling pathways were detected using immunohistochemical staining and western blot. The results showed that curcumin exerts renoprotective effects by inhibiting oxidative stress in rhabdomyolysis-induced AKI through regulation of the AMPK and Nrf2/HO-1 signaling pathways, and also ameliorated RM-associated renal injury and cell apoptosis by activating the PI3K/Akt pathway.
Collapse
|
28
|
Bayomy NA, Elbakary RH, Ibrahim MAA, Abdelaziz EZ. Effect of Lycopene and Rosmarinic Acid on Gentamicin Induced Renal Cortical Oxidative Stress, Apoptosis, and Autophagy in Adult Male Albino Rat. Anat Rec (Hoboken) 2017; 300:1137-1149. [PMID: 27884046 DOI: 10.1002/ar.23525] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/15/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2023]
Abstract
Gentamicin nephrotoxicity accounts for 10%-15% of all cases of acute renal failure. Several natural antioxidants were found to be effective against drug-induced toxicity. The possible protective effects of lycopene (Lyc) and rosmarinic acid (RA) alone or combined on gentamicin (Gen) induced renal cortical oxidative stress, apoptosis, and autophagy were evaluated. Sixty-three rats were randomly divided into seven groups named: control, group II received RA 50 mg/kg/day, group III received Lyc 4 mg/kg/day, group IV received Gen 100 mg/kg/day, group V (RA + Gen), group VI (Lyc + Gen), and group VII (RA + Lyc + Gen). At the end of the experiment, kidney functions were estimated then the kidneys were sampled for histopathological, immunohistochemistry, and biochemical studies. Administration of rosmarinic acid and lycopene decreased elevated serum creatinine, blood urea nitrogen, renal malondialdehyde and immunoexpression of the proapoptotic protein (Bax), autophagic marker protein (LC3/B), and inducible nitric oxide synthase (iNOS) induced by gentamicin. They increased reduced glutathione, glutathione peroxidase, superoxide dismutase, and immunoexpression of the antiapoptotic protein (Bcl2). They also improved the histopathological changes induced by gentamicin. The combination therapy of rosmarinic acid and lycopene shows better protective effects than the corresponding monotherapy. Anat Rec, 300:1137-1149, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naglaa A Bayomy
- Histology department Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reda H Elbakary
- Histology department Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa A A Ibrahim
- Histology department Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Z Abdelaziz
- Pharmacology department Faculty of Medicine, Suez Canal University, Ismalia, Egypt
| |
Collapse
|
29
|
Teymouri M, Barati N, Pirro M, Sahebkar A. Biological and pharmacological evaluation of dimethoxycurcumin: A metabolically stable curcumin analogue with a promising therapeutic potential. J Cell Physiol 2017; 233:124-140. [PMID: 27996095 DOI: 10.1002/jcp.25749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
Dimethoxycurcumin (DiMC) is a synthetic analog of curcumin with superior inter-related pro-oxidant and anti-cancer activity, and metabolic stability. Numerous studies have shown that DiMC reserves the biologically beneficial features, including anti-inflammatory, anti-carcinogenic, and cytoprotective properties, almost to the same extent as curcumin exhibits. DiMC lacks the phenolic-OH groups as opposed to curcumin, dimethoxycurcumin, and bis-demethoxycurcumin that all vary in the number of methoxy groups per molecule, and has drawn the attentions of researchers who attempted to discover the structure-activity relationship (SAR) of curcumin. In this regard, tetrahydrocurcumin (THC), the reduced and biologically inert metabolite of curcumin, denotes the significance of the conjugated α,β diketone moiety for the curcumin activity. DiMC exerts unique molecular activities compared to curcumin, including induction of androgen receptor (AR) degradation and suppression of the transcription factor activator protein-1 (AP-1). The enhanced AR degradation on DiMC treatment suggests it as a novel anticancer agent against resistant tumors with androgenic etiology. Further, DiMC might be a potential treatment for acne vulgaris. DiMC induces epigenetic alteration more effectively than curcumin, although both showed no direct DNA hypomethylating activity. Given the metabolic stability, nanoparticulation of DiMC is more promising for in vivo effectiveness. However, studies in this regard are still in its infancy. In the current review, we portray the various molecular and biological functions of DiMC reported so far. Whenever possible, the efficiency is compared with curcumin and the reasons for DiMC being more metabolically stable are elaborated. We also provide future perspective investigations with respect to varying DiMC-nanoparticles.
Collapse
Affiliation(s)
- Manouchehr Teymouri
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Department of Medicine, Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, University of Perugia, Perugia, Italy
| | - Amirhosein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Aparicio-Trejo OE, Tapia E, Molina-Jijón E, Medina-Campos ON, Macías-Ruvalcaba NA, León-Contreras JC, Hernández-Pando R, García-Arroyo FE, Cristóbal M, Sánchez-Lozada LG, Pedraza-Chaverri J. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics. Biofactors 2017; 43:293-310. [PMID: 27801955 DOI: 10.1002/biof.1338] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
Five-sixths nephrectomy (5/6NX) is a widely used model to study the mechanisms leading to renal damage in chronic kidney disease (CKD). However, early alterations on renal function, mitochondrial dynamics, and oxidative stress have not been explored yet. Curcumin is an antioxidant that has shown nephroprotection in 5/6NX-induced renal damage. The aim of this study was to explore the effect of curcumin on early mitochondrial alterations induced by 5/6NX in rats. In isolated mitochondria, 5/6NX-induced hydrogen peroxide production was associated with decreased activity of complexes I and V, decreased activity of antioxidant enzymes, alterations in oxygen consumption and increased MDA-protein adducts. In addition, it was found that 5/6NX shifted mitochondrial dynamics to fusion, which was evidenced by increased optic atrophy 1 and mitofusin 1 (Mfn1) and decreased fission 1 and dynamin-related protein 1 expressions. These data were confirmed by morphological analysis and immunoelectron microscopy of Mfn-1. All the above-described mechanisms were prevented by curcumin. Also, it was found that curcumin prevented renal dysfunction by improving renal blood flow and the total antioxidant capacity induced by 5/6NX. Moreover, in glomeruli and proximal tubules 5/6NX-induced superoxide anion production by uncoupled nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent way, this latter was associated with increased phosphorylation of serine 304 of p47phox subunit of NOX. In conclusion, this study shows that curcumin pretreatment decreases early 5/6NX-induced altered mitochondrial dynamics, bioenergetics, and oxidative stress, which may be associated with the preservation of renal function. © 2016 BioFactors, 43(2):293-310, 2017.
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Edilia Tapia
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Eduardo Molina-Jijón
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Ciudad de México, 07340, México
| | - Omar Noel Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Norma Angélica Macías-Ruvalcaba
- Department of Physical Chemistry, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, 14000, Mexico
| | - Fernando E García-Arroyo
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Magdalena Cristóbal
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| |
Collapse
|
31
|
Curcumin modulates oxidative stress and genotoxicity induced by a type II fluorinated pyrethroid, beta-cyfluthrin. Food Chem Toxicol 2016; 97:168-176. [DOI: 10.1016/j.fct.2016.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
|
32
|
Lonare M, Kumar M, Raut S, More A, Doltade S, Badgujar P, Telang A. Evaluation of ameliorative effect of curcumin on imidacloprid-induced male reproductive toxicity in wistar rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1250-1263. [PMID: 25758541 DOI: 10.1002/tox.22132] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
This study was undertaken to investigate the toxic effects of imidacloprid (IM) on male reproductive system and ameliorative effect of curcumin (CMN) in male Wistar rats. For this purpose, IM (45 and 90 mg/kg, body weight) and CMN (100 mg/kg, body weight) were administered orally to the rats either alone or in combinations for a period of 28 days. At the end of experiment, male reproductive toxicity parameters (total sperm count and sperm abnormalities), testosterone level, steroidal enzymatic activity [3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD], and oxidative stress indicators were estimated in testis and plasma. IM treatments resulted in significant decrease (p < 0.05) in total epididymal sperm count, sperm motility, live sperm count, and increase (p < 0.05) in sperm abnormalities. Activities of gamma-glutamyl transpeptidase, lactate dehydrogenase-x, and sorbitol dehydrogenase were significantly increased (p < 0.05), while, 3β-HSD and 17β-HSD enzymatic activity along with testosterone concentration in testis and plasma were decreased significantly (p < 0.05) in IM-treated rats. IM exposure resulted in significant increase (p < 0.05) in LPO and decrease (p < 0.05) in GSH level along with decreased activities of CAT, SOD, GPx, and GST. IM-treated rats showed histopathological alterations in testis and epididymis. However, the reproductive toxicity parameters, oxidative stress indicators, and histopathological changes were minimized and functional restorations were noticed by co-administration of CMN in IM-treated rats. The results of this study suggest that IM-induced male reproductive toxic effects could be ameliorated by CMN supplementation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1250-1263, 2016.
Collapse
Affiliation(s)
- Milindmitra Lonare
- Division of Veterinary Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243, 122, Uttar Pradesh, India
| | - Manoj Kumar
- Division of Veterinary Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243, 122, Uttar Pradesh, India
| | - Sachin Raut
- Division of Veterinary Pathology, Indian Veterinary Research Institute, Izatnagar-243, 122, Uttar Pradesh, India
| | - Amar More
- Division of Veterinary Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243, 122, Uttar Pradesh, India
| | - Sagar Doltade
- Division of Veterinary Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243, 122, Uttar Pradesh, India
| | - Prarabdh Badgujar
- Division of Veterinary Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243, 122, Uttar Pradesh, India
| | - Avinash Telang
- Toxicology Lab, Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar-243, 122, Uttar Pradesh, India
| |
Collapse
|
33
|
Bayomy NA, Abdelaziz EZ, Said MA, Badawi MS, El-Bakary RH. Effect of pycnogenol and spirulina on vancomycin-induced renal cortical oxidative stress, apoptosis, and autophagy in adult male albino rat. Can J Physiol Pharmacol 2016; 94:838-48. [PMID: 27203524 DOI: 10.1139/cjpp-2015-0600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vancomycin-induced nephrotoxicity has been reported to occur in 5%-25% of patients who were administered with it. Several natural antioxidants were found to be effective against drug-induced toxicity. We evaluated the possible protective effects of spirulina and pycnogenol alone or in combination on vancomycin-induced renal cortical oxidative stress. Forty-nine rats were randomly divided into 7 groups: group I, control; group II, received spirulina 1000 mg/kg per day; group III, received pycnogenol 200 mg/kg per day; group IV, received vancomycin 200 mg/kg per day every 12 h; group V, (spirulina + vancomycin); group VI, (pycnogenol + vancomycin); and group VII, (pycnogenol + spirulina + vancomycin). At the end of the experiment, kidney functions were estimated and then the kidneys were removed, weighed, and sampled for histopathological, immunohistochemistry, and biochemical studies. Administration of spirulina and pycnogenol alone or in combination decreased elevated serum creatinine, blood urea nitrogen, renal malondialdehyde, and immunoexpression of the proapoptotic protein (Bax), autophagic marker protein (LC3/B), and inducible nitric oxide synthase induced by vancomycin. They increased reduced glutathione, glutathione peroxidase, superoxide dismutase, and immunoexpression of the antiapoptotic protein (Bcl2). They also ameliorated the morphological changes induced by vancomycin. The combination therapy of spirulina and pycnogenol showed better protective effects than the corresponding monotherapy.
Collapse
Affiliation(s)
- Naglaa A Bayomy
- a Department of Histology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Eman Z Abdelaziz
- b Department of Pharmacology, Faculty of Medicine, Suez Canal University, Suez Canal, Egypt
| | - Mona A Said
- c Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Marwa S Badawi
- d Department of Anatomy, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Reda H El-Bakary
- a Department of Histology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
34
|
Lin Y, Lin J, Hong Y. Development of chitosan/poly‐γ‐glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration. J Biomed Mater Res B Appl Biomater 2015; 105:81-90. [DOI: 10.1002/jbm.b.33394] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/11/2015] [Accepted: 02/08/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Yu‐Hsin Lin
- Department of Biological Science and TechnologyChina Medical UniversityTaichung Taiwan
| | - Jui‐Hsiang Lin
- R&D CenterBio‐Medical Carbon Technology Co., LtdTaichung Taiwan
| | - Ya‐Shiuan Hong
- Department of Biological Science and TechnologyChina Medical UniversityTaichung Taiwan
| |
Collapse
|
35
|
Curcumin Attenuates Gentamicin-Induced Kidney Mitochondrial Alterations: Possible Role of a Mitochondrial Biogenesis Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:917435. [PMID: 26345660 PMCID: PMC4541007 DOI: 10.1155/2015/917435] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 11/18/2022]
Abstract
It has been shown that curcumin (CUR), a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM-) induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2)-related factor 2 (Nrf2) nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h) during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day) was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2.
Collapse
|
36
|
Dhodi JB, Thanekar DR, Mestry SN, Juvekar AR. Carissa carandas Linn. fruit extract ameliorates gentamicin–induced nephrotoxicity in rats via attenuation of oxidative stress. JOURNAL OF ACUTE DISEASE 2015. [DOI: 10.1016/s2221-6189(15)30023-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Liu G, Shi Y, Peng X, Liu H, Peng Y, He L. Astaxanthin Attenuates Adriamycin-Induced Focal Segmental Glomerulosclerosis. Pharmacology 2015; 95:193-200. [DOI: 10.1159/000381314] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/28/2015] [Indexed: 11/19/2022]
|
38
|
He L, Peng X, Zhu J, Liu G, Chen X, Tang C, Liu H, Liu F, Peng Y. Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats. Can J Physiol Pharmacol 2015; 93:275-82. [PMID: 25730179 DOI: 10.1139/cjpp-2014-0459] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Gentamicin-induced nephrotoxicity is one of the most common causes of acute kidney injury (AKI). The phenotypic alterations that contribute to acute kidney injury include inflammatory response and oxidative stress. Curcumin has a wide range biological functions, especially as an antioxidant. This study was designed to evaluate the renoprotective effects of curcumin treatment in gentamicin-induced AKI. Methods: Gentamicin-induced AKI was established in female Sprague–Dawley rats. Rats were treated with curcumin (100 mg/kg body mass) by intragastric administration, once daily, followed with an intraperitoneal injection of gentamicin sulfate solution at a dose of 80 mg/kg body mass for 8 consecutive days. At days 3 and 8, the rats were sacrificed, and the kidneys and blood samples were collected for further analysis. Results: The animals treated with gentamicin showed marked deterioration of renal function, together with higher levels of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) in the plasma as compared with the controls. Animals that underwent intermittent treatment with curcumin exhibited significant improvements in renal functional parameters. We also observed that treatment with curcumin significantly attenuated renal tubular damage, apoptosis, and oxidative stress. Curcumin treatment exerted anti-apoptosis and anti-oxidative effects by up-regulating Nrf2/HO-1 and Sirt1 expression. Conclusions: Our data clearly demonstrate that curcumin protects kidney from gentamicin-induced AKI via the amelioration of oxidative stress and apoptosis of renal tubular cells, thus providing hope for the amelioration of gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Liyu He
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Xiaofei Peng
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Jiefu Zhu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Guoyong Liu
- Department of Nephrology, The First Affiliated Hospital of Changde Vocational Technical College, Changde, Hunan 415000, People’s Republic of China
| | - Xian Chen
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Chengyuan Tang
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Hong Liu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Fuyou Liu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Youming Peng
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| |
Collapse
|
39
|
Zhang N, Cheng GY, Liu XZ, Zhang FJ. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats. ASIAN PAC J TROP MED 2015; 7:386-9. [PMID: 25063066 DOI: 10.1016/s1995-7645(14)60061-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To investigate the effect of acute renal ischemia reperfusion on brain tissue. METHODS Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors. RESULTS Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2. CONCLUSIONS Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.
Collapse
Affiliation(s)
- Na Zhang
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Gen-Yang Cheng
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xian-Zhi Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng-Jiang Zhang
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
40
|
Chaudhary S, Ganjoo P, Raiusddin S, Parvez S. Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid. PROTOPLASMA 2015; 252:209-217. [PMID: 25000991 DOI: 10.1007/s00709-014-0670-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Valproic acid (VPA) is ubiquitously used as a major drug in the intervention of epilepsy and in the control of several kinds of seizures. Cellular toxicities are the serious dose-limiting side effects of VPA when applied in the treatment of diseases. Oxidative stress has been proven to be involved in VPA-induced toxicity. Accumulating evidence intimates that oxidative stress caused by free radicals and in kidney cells contributes to the pathogenesis of VPA-induced nephrotoxicity. The pathogenesis of these forms of VPA nephrotoxicity is still not clear. The aim of our investigation was to evaluate the nephrotoxic potential of VPA and protective effects of quercetin (QR) against VPA-induced nephrotoxicity by using rat kidney tissue preparation as an in vitro model. Oxidative stress indexes such as lipid peroxidation (LPO) and protein carbonyl (PC) content were appraised. The levels of oxidative stress markers, LPO, and PC were significantly elevated. Nonenzymatic antioxidants effect was also demonstrated as a significant increase in reduced glutathione (GSH) and nonprotein thiol level (NP-SH). VPA exposure altered the activities of glutathione metabolizing enzymes such as glutathione-S-transferase, glutathione peroxidase, and glutathione reductase. Pre-treatment with QR could reverse the VPA-induced effects in kidney tissue preparation of rat. Based on reno-protective and antioxidant action of QR, we suggest that this flavonoid compound could be considered as a potential safe and effective approach in attenuating the adverse effect of VPA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Shaista Chaudhary
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | | | | | | |
Collapse
|
41
|
Lonare M, Kumar M, Raut S, Badgujar P, Doltade S, Telang A. Evaluation of imidacloprid-induced neurotoxicity in male rats: A protective effect of curcumin. Neurochem Int 2014; 78:122-9. [DOI: 10.1016/j.neuint.2014.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/29/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
42
|
Hismiogullari AA, Hismiogullari SE, Karaca O, Sunay FB, Paksoy S, Can M, Kus I, Seyrek K, Yavuz O. The protective effect of curcumin administration on carbon tetrachloride (CCl4)-induced nephrotoxicity in rats. Pharmacol Rep 2014; 67:410-6. [PMID: 25933946 DOI: 10.1016/j.pharep.2014.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aim of the present study was to examine the protective effect of curcumin (CUR) on carbon tetrachloride (CCl4)-induced nephrotoxicity to evaluate the detailed mechanisms by which CUR exerts its protective action. METHODS Thirty male Wistar-Albino rats weighing 250-300 g were randomly divided into three groups: administrations of olive oil (control, po), CCl4 (0.5mg/kg in olive oil sc) every other day for 3 weeks, and CCl4 (0.5mg/kg in olive oil sc) plus CUR (200mg/kg) every day for 3 weeks. RESULTS Administration of CCl4 significantly (p<0.001) increased the levels of renal function test such as creatinine and blood urea nitrogen (BUN). Furthermore, treatment of CCl4 significantly elevated the oxidant status of renal tissues while decreasing its anti-oxidant status (p<0.001). CUR displayed a renal protective effect as evident by significant decrease in inflammation and apoptosis during histopathological examination. The administration of CCl4 resulted in an increase in malondialdehyde (MDA) production due to an increase in membrane lipid peroxidation; however, the administration of CUR attenuated this, probably via its antioxidant and free radical scavenging properties. CONCLUSION The finding of our study indicates that CUR may have an important role to play in protecting the kidney from oxidative insult.
Collapse
Affiliation(s)
- Adnan A Hismiogullari
- Department of Medical Biochemistry, School of Medicine, Balikesir University, Balikesir, Turkey.
| | - Sahver E Hismiogullari
- Department of Pharmacology and Toxicology, School of Veterinary Medicine, Balkesir University, Balikesir, Turkey
| | - Omur Karaca
- Department of Anatomy, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Fatma B Sunay
- Department of Histology and Embryology, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Serpil Paksoy
- Department of Pathology, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Mehmet Can
- Department of Anatomy, School of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Iter Kus
- Department of Anatomy, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Kamil Seyrek
- Department of Medical Biochemistry, School of Medicine, Balikesir University, Balikesir, Turkey
| | - Ozlem Yavuz
- Department of Medical Biochemistry, School of Medicine, Balikesir University, Balikesir, Turkey
| |
Collapse
|
43
|
Protective Effect of Curcumin against the Liver Toxicity Caused by Propanil in Rats. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:853697. [PMID: 27437486 PMCID: PMC4897076 DOI: 10.1155/2014/853697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/28/2014] [Accepted: 08/19/2014] [Indexed: 11/24/2022]
Abstract
We investigated the protective effects of curcumin on propanil-induced alterations in biochemical indices in blood and liver of male Wistar rats. The study consisted of four treatment groups, with six animals each, designated as control, propanil (20mg/kg), curcumin(50 mg/kg), and curcumin (50 mg/kg) + propanil (20 mg/kg). Rats were administered their respective doses orally, every other day, for 28 days. Propanil administration elicited significant (P < 0.001) increases in plasma aspartate aminotransferase and alkaline phosphatase activities, by 24% and 56%, respectively, compared to the control. Treatment with propanil elevated bilirubin, creatinine, and total cholesterol levels in rats, but these were not significant relative to controls. Administration of propanil to rats significantly (P < 0.001) increased lipid peroxidation levels. However, catalase activity, vitamin C, and reduced glutathione levels were significantly reduced. Exposure to propanil did not produce any significant changes in packed cell volume, neutrophils, and leukocyte counts. The supplementation of curcumin attenuated the adverse effects of propanil intoxication by reducing lipid peroxidation levels and restored the levels of serum enzymes and reduced glutathione. The present study showed that propanil increased oxidative stress and altered some biochemical parameters in the rats but curcumin could afford some protection to attenuate propanil-induced toxicity in the liver.
Collapse
|
44
|
Shivanoor SM, David M. Protective role of turmeric against deltamethrin induced renal oxidative damage in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Xie Y, Zhao QY, Li HY, Zhou X, Liu Y, Zhang H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol Biochem Behav 2014; 126:181-6. [PMID: 25159739 DOI: 10.1016/j.pbb.2014.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/25/2014] [Accepted: 08/02/2014] [Indexed: 12/15/2022]
Abstract
Oxidative stress is one of the major mechanisms implicated in carbon ion irradiation. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its effects partly radioprotection. In vivo, we investigated the protective effects of curcumin against (12)C(6+)radiation-induced cerebral injury. Our results showed that 4Gy heavy ion radiation-induced spatial strategy and memory decline and reduction of brain superoxide dismutase (SOD) activity levels were all consistently improved by curcumin, and the augmentation of cerebral malonaldehyde (MDA) was lowered by curcumin. Furthermore, both the cerebral cells nuclear erythroid 2-related factor 2 (Nrf2) protein and three typically recognized Nrf2 downstream genes, NAD(P)H quinine oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and γ-glutamyl cysteine synthetase (γ-GCS) were consistently up-regulated in curcumin-pretreated mice. Our study confirmed the antagonistic roles of curcumin to counteract radiation-induced cerebral injury in vivo and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against radiation. This provides a potential useful radioprotection dietary component for human populations.
Collapse
Affiliation(s)
- Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China
| | - Qiu Yue Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Hong Yan Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China.
| |
Collapse
|
46
|
Ali Hussei S, El-Said Az M, Kamal El-S S. Protective Effect of Curcumin on Antioxidant Defense System and Oxidative Stress in Liver Tissue of Iron Overloading Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajcn.2014.1.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Mei XT, Xu DH, Xu SK, Zheng YP, Xu SB. Zinc(II)-curcumin accelerates the healing of acetic acid-induced chronic gastric ulcers in rats by decreasing oxidative stress and downregulation of matrix metalloproteinase-9. Food Chem Toxicol 2013; 60:448-54. [PMID: 23933360 DOI: 10.1016/j.fct.2013.07.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/15/2013] [Accepted: 07/28/2013] [Indexed: 01/27/2023]
Abstract
Gastric ulcers form as a result of a multifaceted process which includes acid secretion, reactive oxygen species generation and extracellular matrix (ECM) degradation. The aim of this study was to investigate the possible mechanisms underlying the anti-ulcerogenic effects of the Zn(II)-curcumin complex, a curcumin derivative, on the healing of acetic acid-induced gastric ulcers in rats. The severely ulcerated gastric mucosa of control animals had a lower glutathione level (GSH) and superoxide dismutase activity (SOD), and increased malondialdehyde (MDA) content compared to sham operated rats (P<0.001). Zn(II)-curcumin solid dispersions (equivalent to 12, 24 and 48 mg/kg) dose-dependently reduced the gastric ulcer index, significantly increased SOD activity and GSH levels, and reduced the MDA content and matrix metalloproteinase-9 (MMP-9) mRNA expression in the gastric mucosa (P<0.05, compared to control animals). Zn(II)-curcumin exerted a greater anti-ulcerogenic effect than curcumin at the same dose (24 mg/kg), leading to a reduced severity of gastric ulcers, lower MDA content, and increased SOD activity and GSH levels (P<0.05). In conclusion, these results confirm that the Zn(II)-curcumin complex possesses an enhanced mucosal barrier defense activity compared to curcumin alone, due to its synergistic ability to decrease oxidative stress and attenuate MMP-9-mediated inflammation.
Collapse
Affiliation(s)
- Xue-Ting Mei
- Laboratory of Traditional Chinese Medicine and Marine Drugs, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | |
Collapse
|
48
|
Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 2013; 169:1672-92. [PMID: 23425071 PMCID: PMC3753829 DOI: 10.1111/bph.12131] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED TNFs are major mediators of inflammation and inflammation-related diseases, hence, the United States Food and Drug Administration (FDA) has approved the use of blockers of the cytokine, TNF-α, for the treatment of osteoarthritis, inflammatory bowel disease, psoriasis and ankylosis. These drugs include the chimeric TNF antibody (infliximab), humanized TNF-α antibody (Humira) and soluble TNF receptor-II (Enbrel) and are associated with a total cumulative market value of more than $20 billion a year. As well as being expensive ($15 000-20 000 per person per year), these drugs have to be injected and have enough adverse effects to be given a black label warning by the FDA. In the current report, we describe an alternative, curcumin (diferuloylmethane), a component of turmeric (Curcuma longa) that is very inexpensive, orally bioavailable and highly safe in humans, yet can block TNF-α action and production in in vitro models, in animal models and in humans. In addition, we provide evidence for curcumin's activities against all of the diseases for which TNF blockers are currently being used. Mechanisms by which curcumin inhibits the production and the cell signalling pathways activated by this cytokine are also discussed. With health-care costs and safety being major issues today, this golden spice may help provide the solution. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | |
Collapse
|
49
|
Kang C, Lee H, Hah DY, Heo JH, Kim CH, Kim E, Kim JS. Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats. Toxicol Res 2013; 29:61-7. [PMID: 24278630 PMCID: PMC3834437 DOI: 10.5487/tr.2013.29.1.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/24/2023] Open
Abstract
Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3, GS 100 mg/kg/d, i.p. + HC 500 mg/kg/d, oral; and group 4, GS 100 mg/kg/d i.p. + HC 1000 mg/kg/d, oral administration). Treatments were administered once daily for 12 d. After 12 d, biochemical and histopathological analyses were conducted to evaluate oxidative stress and renal nephrotoxicity. Serum levels of creatinine, malondialdehyde (MDA), and blood urea nitrogen (BUN), together with renal levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified to evaluate antioxidant activity. Animals treated with GS alone showed a significant increase in serum levels of creatinine, BUN, and MDA, with decreased renal levels of GSH, SOD, and CAT. Treatment of rats with HC showed significant improvement in renal function, presumably as a result of decreased biochemical indices and oxidative stress parameters associated with GS-induced nephrotoxicity. Histopathological examination of the rat kidneys confirmed these observations. Therefore, the novel natural antioxidant HC may protect against GSinduced nephrotoxicity and oxidative stress in rats.
Collapse
Affiliation(s)
- Changgeun Kang
- Department of Pharmacology & Toxicology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Bekheet SHM, Awadalla EA, Salman MM, Hassan MK. Prevention of hepatic and renal toxicity with bradykinin potentiating factor (BPF) isolated from Egyptian scorpion venom (Buthus occitanus) in gentamicin treated rats. Tissue Cell 2012; 45:89-94. [PMID: 23218888 DOI: 10.1016/j.tice.2012.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 11/17/2022]
Abstract
The present investigation report the effect of a bradykinin-potentiating factor (BPF) on gentamicin-induced oxidative stress in rat liver and kidney. BPF is a peptide fraction isolated from the venom of the Egyptian scorpion (Buthus occitanus) has been demonstrated to have antioxidant, free radical scavenger and anti-inflammatory effects. Thirty male Rattus norvegicus (130-150 g) were included and divided into three equal groups as follows: Group I (control), group II was (ip) injected with gentamicin alone (80 mg/kg/day) for 15 days, group III was given (ip) injection of BPF (1mg/kg/day) one hour prior to gentamicin treatment for 15 days with the same dose of gentamicin as group II. Both organs were subjected to histopathological analysis with the light microscope. The activities of alanine aminotransferase (ALT), asparate aminotransferase (AST) and alkaline phosphatase (ALP) in serum were measured as indicators of the liver function. As parameters of the kidney function, creatinine, uric acid and urea concentrations were determined. Also, malondialdehyde (MDA), reduced glutathione (GSH), super oxide dismutase (SOD) and catalase (CAT) were determined in both tissues. Gentamicin caused a significant decrease or inhibition in the activities of GSH, SOD, and CAT, with significant increase in the level of MDA, ALT, AST, ALP, as well as creatinine, uric acid and urea concentrations in versus to control groups in both liver and kidney. Co-administration of gentamicin and BPF significantly increased the activity of GSH, SOD, and CAT, with significant decrease in the level of MDA and maintained serum (ALT); (AST); (ALP), creatinine, uric acid and urea concentrations as the same level as control group. Moreover, administration of gentamicin resulted in damage to liver and kidney structures. Administration of BPF before gentamicin exposure prevented severe alterations of biochemical parameters and disruptions of liver and kidney structures. In conclusion, this study obviously demonstrated that pretreatment with BPF significantly attenuated the physiological and histopathological alterations induced by gentamicin. Also, the present study identifies new areas of research for development of better therapeutic agents for liver, kidney, and other organs dysfunctions and diseases.
Collapse
|