1
|
Holman J, Hurd M, Moses PL, Mawe GM, Zhang T, Ishaq SL, Li Y. Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in inflammatory bowel diseases. J Nutr Biochem 2023; 113:109238. [PMID: 36442719 PMCID: PMC9974906 DOI: 10.1016/j.jnutbio.2022.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.
Collapse
Affiliation(s)
- Johanna Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Peter L Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA; Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| |
Collapse
|
2
|
Zhang T, Holman J, McKinstry D, Trindade BC, Eaton KA, Mendoza-Castrejon J, Ho S, Wells E, Yuan H, Wen B, Sun D, Chen GY, Li Y. A steamed broccoli sprout diet preparation that reduces colitis via the gut microbiota. J Nutr Biochem 2023; 112:109215. [PMID: 36370930 DOI: 10.1016/j.jnutbio.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Sulforaphane is a bioactive metabolite with anti-inflammatory activity and is derived from the glucosinolate glucoraphanin, which is highly abundant in broccoli sprouts. However, due to its inherent instability its use as a therapeutic against inflammatory diseases has been limited. There are few studies to investigate a whole food approach to increase sulforaphane levels with therapeutic effect and reduce inflammation. In the current study, using a mouse model of inflammatory bowel disease, we investigated the ability of steamed broccoli sprouts to ameliorate colitis and the role of the gut microbiota in mediating any effects. We observed that despite inactivation of the plant myrosinase enzyme responsible for the generation of sulforaphane via steaming, measurable levels of sulforaphane were detectable in the colon tissue and feces of mice after ingestion of steamed broccoli sprouts. In addition, this preparation of broccoli sprouts was also capable of reducing chemically-induced colitis. This protective effect was dependent on the presence of an intact microbiota, highlighting an important role for the gut microbiota in the metabolism of cruciferous vegetables to generate bioactive metabolites and promote their anti-inflammatory effects.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Johanna Holman
- College of Science and Humanities, Husson University, Bangor, Maine, USA
| | - Delaney McKinstry
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruno C Trindade
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonny Mendoza-Castrejon
- Postbac Research Education Program, University of Michigan, Ann Arbor, Michigan, USA; Currently at Department of Pediatrics, Washington University School of Medicine, St. Louis, Mississippi, USA
| | - Sharon Ho
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Wells
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Grace Y Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Yanyan Li
- College of Science and Humanities, Husson University, Bangor, Maine, USA.
| |
Collapse
|
3
|
Li Z, Zhang T, Xu L, Wei Y, Tang Y, Hu Q, Liu X, Li X, Davis J, Smith R, Jin H, Wang J. Decreasing risk of psychosis by sulforaphane study protocol for a randomized, double-blind, placebo-controlled, clinical multi-centre trial. Early Interv Psychiatry 2021; 15:585-594. [PMID: 32436318 DOI: 10.1111/eip.12988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022]
Abstract
AIM A growing number of studies suggest a role of neuroinflammation and oxidative stress in the pathophysiology of psychosis. Sulforaphane (SFN), a natural compound extracted from cruciferous vegetables, has shown anti-inflammatory and anti-oxidative effects which imply a potential effect on decreasing the risk of psychosis. However, there is no study testing the efficacy of SFN for this purpose. It's necessary to evaluate its efficacy on individuals at clinical high risk (CHR) for psychosis. METHODS This is a randomized, double-blind, placebo-controlled, multi-centre trial. A total of 300 CHR subjects will be identified in the course of face-to-face interviews using the Structured Interview for Prodromal Syndromes. All participants will be randomly allocated to SFN group (n = 150) or placebo group (n = 150). The study duration includes an intervention for 52 consecutive weeks, and additional 1-year follow-up. RESULTS The primary outcome is 2-year conversion rate of psychosis. Secondary outcomes include 1-year conversion rate of psychosis, the severity and duration of prodromal symptoms, predictive risk of psychosis conversion, neurocognitive functioning and peripheral blood biomarkers of inflammation, oxidative stress and metabolism. Safety monitoring will be performed using scales for side effect, serious adverse events recording, and laboratory tests. CONCLUSION This trial is expected to clarify the efficacy of SFN in improving prodromal symptoms, and its role in decreasing the risk and conversion rate of psychosis among CHR subjects. The results will also provide solid evidence about the efficacy and safety of SFN in CHR population. Potential challenges and their solutions in performing the present trial are discussed.
Collapse
Affiliation(s)
- Zhixing Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - Lihua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - Yanyan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - Qiang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - Xiaolong Li
- Shenzhen R&D Center, Shenzhen Fushan Biotech Co., Ltd., Shenzhen, PR China
| | - John Davis
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Robert Smith
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Hua Jin
- Department of Psychiatry, University of California San Diego, San Diego, California, USA.,VA San Diego Healthcare System, San Diego, California, USA
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
4
|
Liu X, Wang Y, Hoeflinger JL, Neme BP, Jeffery EH, Miller MJ. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates. Nutrients 2017; 9:nu9030262. [PMID: 28287418 PMCID: PMC5372925 DOI: 10.3390/nu9030262] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022] Open
Abstract
Broccoli consumption brings many health benefits, including reducing the risk of cancer and inflammatory diseases. The objectives of this study were to identify global alterations in the cecal microbiota composition using 16S rRNA sequencing analysis and glucoraphanin (GRP) hydrolysis to isothiocyanates ex vivo by the cecal microbiota, following different broccoli diets. Rats were randomized to consume AIN93G (control) or different broccoli diets; AIN93G plus cooked broccoli, a GRP-rich powder, raw broccoli, or myrosinase-treated cooked broccoli. Feeding raw or cooked broccoli for four days or longer both changed the cecal microbiota composition and caused a greater production of isothiocyanates ex vivo. A more than two-fold increase in NAD(P)H: quinone oxidoreductase 1 activity of the host colon mucosa after feeding cooked broccoli for seven days confirmed the positive health benefits. Further studies revealed that dietary GRP was specifically responsible for the increased microbial GRP hydrolysis ex vivo, whereas changes in the cecal microbial communities were attributed to other broccoli components. Interestingly, a three-day withdrawal from a raw broccoli diet reversed the increased microbial GRP hydrolysis ex vivo. Findings suggest that enhanced conversion of GRP to bioactive isothiocyanates by the cecal microbiota requires four or more days of broccoli consumption and is reversible.
Collapse
Affiliation(s)
- Xiaoji Liu
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin Ave., Urbana, 61801 IL, USA.
| | - Yanling Wang
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin Ave., Urbana, 61801 IL, USA.
| | - Jennifer L Hoeflinger
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin Ave., Urbana, 61801 IL, USA.
| | - Bárbara P Neme
- Department of Food Technology, Federal Rural University of Rio de Janeiro, 23.897-000 Seropédica, Brazil.
| | - Elizabeth H Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin Ave., Urbana, 61801 IL, USA.
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin Ave., Urbana, 61801 IL, USA.
| |
Collapse
|
5
|
Yang SH, Long M, Yu LH, Li L, Li P, Zhang Y, Guo Y, Gao F, Liu MD, He JB. Sulforaphane Prevents Testicular Damage in Kunming Mice Exposed to Cadmium via Activation of Nrf2/ARE Signaling Pathways. Int J Mol Sci 2016; 17:ijms17101703. [PMID: 27727176 PMCID: PMC5085735 DOI: 10.3390/ijms17101703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN) is a natural and highly effective antioxidant. Studies suggest that SFN protects cells and tissues against cadmium (Cd) toxicity. This study investigated the protective effect of SFN against oxidative damage in the testes of Kunming mice exposed to cadmium, and explored the possible molecular mechanisms involved. Cadmium greatly reduced the serum testosterone levels in mice, reduced sperm motility, total sperm count, and increased the sperm deformity rate. Cadmium also reduces superoxide dismutase (T-SOD) and glutathione (GSH) levels and increases malondialdehyde (MDA) concentrations. SFN intervention improved sperm quality, serum testosterone, and antioxidant levels. Both mRNA and protein expression of mouse testicular nuclear factor-erythroid 2-related factor 2 (Nrf2) was reduced in cadmium-treated group. Furthermore, the downstream genes of Nrf2, glutathione peroxidase (GSH-Px), γ-glutamyl cysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) were also decreased in cadmium-treated group. SFN intervention increases the expression of these genes. Sulforaphane prevents cadmium-induced testicular damage, probably via activation of Nrf2/ARE signaling.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Li-Hui Yu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yang Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Feng Gao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Ming-Da Liu
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jian-Bin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
6
|
Taranto F, Francese G, Di Dato F, D'Alessandro A, Greco B, Onofaro Sanajà V, Pentangelo A, Mennella G, Tripodi P. Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5824-5836. [PMID: 27357913 DOI: 10.1021/acs.jafc.6b01737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rocket salad (Diplotaxis spp., Eruca spp.) is a leafy vegetable rich in health-promoting compounds and widely consumed. In the present study, metabolic profiles of 40 rocket accessions mainly retrieved from gene banks were assessed. Seven glucosinolates (GLSs) and 15 flavonol compounds were detected across genotypes. Dimeric 4-mercaptobutyl-GLS and 4-(β-d-glucopyranosyldisulfanyl)butyl-GLS were the major components of the total glucosinolate content. Flavonols were different between genera, with the exception of isorhamnetin 3,4'-diglucoside. Morphoagronomic traits and color coordinates were also scored. Results showed a negative correlation between color and GLSs, indicating these last as responsible for the increase of the intensity of green and yellow pigments as well as for the darkness of the leaf, whereas agronomic traits showed positive correlation with GLSs. Genetic diversity was assessed using inter simple sequence repeat (ISSR) markers, allowing separation of the accessions on the basis of the species and elucidating the observations made by means of phenotypic data.
Collapse
Affiliation(s)
- Francesca Taranto
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| | - Gianluca Francese
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| | - Francesco Di Dato
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| | - Antonietta D'Alessandro
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| | - Barbara Greco
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| | - Vincenzo Onofaro Sanajà
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| | - Alfonso Pentangelo
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| | - Giuseppe Mennella
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| | - Pasquale Tripodi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di Ricerca per l'Orticoltura (CREA-ORT) , Via dei Cavalleggeri 25, 84098 Pontecagnano-Faiano, Salerno, Italy
| |
Collapse
|
7
|
Chen YJ, Myracle AD, Wallig MA, Jeffery EH. Dietary broccoli protects against fatty liver development but not against progression of liver cancer in mice pretreated with diethylnitrosamine. J Funct Foods 2016; 24:57-62. [PMID: 27672403 DOI: 10.1016/j.jff.2016.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Western-style high fat, high sugar diets are associated with non-alcoholic fatty liver disease (NAFLD) and increased liver cancer risk. Sulforaphane from broccoli may protect against these. Previously we initiated broccoli feeding to mice prior to exposure to the hepatocarcinogen diethylnitrosamine (DEN), and saw protection against NAFLD and liver cancer. Here we administered DEN to unweaned mice, initiating broccoli feeding two weeks later, to determine if broccoli protects against cancer progression. Specifically, male 15-day-old C57BL/6J mice were given DEN and placed on a Western or Western+10%Broccoli diet from the age of 4 weeks through 7 months. Dietary broccoli decreased hepatic triacylglycerols, NAFLD, liver damage and tumour necrosis factor by month 5 without changing body weight or relative liver weight, but did not slow carcinogenesis, seen in 100% of mice. We conclude that broccoli, a good source of sulforaphane, slows progression of hepatic lipidosis, but not tumourigenesis in this robust model.
Collapse
Affiliation(s)
- Yung-Ju Chen
- Department of Food Science and Human Nutrition, University of Illinois, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Angela D Myracle
- Department of Food Science and Human Nutrition, University of Illinois, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Matthew A Wallig
- Department of Pathobiology, University of Illinois, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Elizabeth H Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Zhou Y, Yang H, Li Y, Lynch B, Jia X. Broccoli seed extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharmacol 2015; 73:442-51. [DOI: 10.1016/j.yrtph.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 01/05/2023]
|
9
|
Yoshida K, Ushida Y, Ishijima T, Suganuma H, Inakuma T, Yajima N, Abe K, Nakai Y. Broccoli sprout extract induces detoxification-related gene expression and attenuates acute liver injury. World J Gastroenterol 2015; 21:10091-10103. [PMID: 26401074 PMCID: PMC4572790 DOI: 10.3748/wjg.v21.i35.10091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of broccoli sprout extract (BSEx) on liver gene expression and acute liver injury in the rat.
METHODS: First, the effects of BSEx on liver gene expression were examined. Male rats were divided into two groups. The Control group was fed the AIN-76 diet, and the BSEx group was fed the AIN-76 diet containing BSEx. After a 10-d feeding period, rats were sacrificed and their livers were used for DNA microarray and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses. Next, the effects of BSEx on acute liver injury were examined. In experiments using acute liver injury models, 1000 mg/kg acetaminophen (APAP) or 350 mg/kg D-galactosamine (D-GalN) was used to induce injury. These male rats were divided into four groups: Control, BSEx, Inducer (APAP or D-GalN), and Inducer+BSEx. The feeding regimens were identical for the two analyses. Twenty-four hours following APAP administration via p.o. or D-GalN administration via i.p., rats were sacrificed to determine serum aspartate transaminase (AST) and alanine transaminase (ALT) levels, hepatic glutathione (GSH) and thiobarbituric acid-reactive substances accumulation and glutathione-S-transferase (GST) activity.
RESULTS: Microarray and real-time RT-PCR analyses revealed that BSEx upregulated the expression of genes related to detoxification and glutathione synthesis in normal rat liver. The levels of AST (70.91 ± 15.74 IU/mL vs 5614.41 ± 1997.83 IU/mL, P < 0.05) and ALT (11.78 ± 2.08 IU/mL vs 1297.71 ± 447.33 IU/mL, P < 0.05) were significantly suppressed in the APAP + BSEx group compared with the APAP group. The level of GSH (2.61 ± 0.75 nmol/g tissue vs 1.66 ± 0.59 nmol/g tissue, P < 0.05) and liver GST activity (93.19 ± 16.55 U/g tissue vs 51.90 ± 16.85 U/g tissue, P < 0.05) were significantly increased in the APAP + BSEx group compared with the APAP group. AST (4820.05 ± 3094.93 IU/mL vs 12465.63 ± 3223.97 IU/mL, P < 0.05) and ALT (1808.95 ± 1014.04 IU/mL vs 3936.46 ± 777.52 IU/mL, P < 0.05) levels were significantly suppressed in the D-GalN + BSEx group compared with the D-GalN group, but the levels of AST and ALT in the D-GalN + BSEx group were higher than those in the APAP + BSEx group. The level of GST activity was significantly increased in the D-GalN + BSEx group compared with the D-GalN group (98.04 ± 15.75 U/g tissue vs 53.15 ± 8.14 U/g tissue, P < 0.05).
CONCLUSION: We demonstrated that BSEx protected the liver from various types of xenobiotic substances through induction of detoxification enzymes and glutathione synthesis.
Collapse
|
10
|
Liu AG, Juvik JA, Jeffery EH, Berman-Booty LD, Clinton SK, Erdman JW. Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis. J Med Food 2014; 17:1177-82. [PMID: 24983303 DOI: 10.1089/jmf.2013.0145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Broccoli is rich in bioactive components, such as sulforaphane and indole-3-carbinol, which may impact cancer risk. The glucosinolate profile of broccoli can be manipulated through treatment with the plant stress hormone methyl jasmonate (MeJA). Our objective was to produce broccoli with enhanced levels of indole glucosinolates and determine its impact on prostate carcinogenesis. Brassica oleracea var. Green Magic was treated with a 250 μM MeJA solution 4 days prior to harvest. MeJA-treated broccoli had significantly increased levels of glucobrassicin, neoglucobrassicin, and gluconasturtiin (P < .05). Male transgenic adenocarcinoma of mouse prostate (TRAMP) mice (n = 99) were randomized into three diet groups at 5-7 weeks of age: AIN-93G control, 10% standard broccoli powder, or 10% MeJA broccoli powder. Diets were fed throughout the study until termination at 20 weeks of age. Hepatic CYP1A was induced with MeJA broccoli powder feeding, indicating biological activity of the indole glucosinolates. Following ∼ 15 weeks on diets, neither of the broccoli treatments significantly altered genitourinary tract weight, pathologic score, or metastasis incidence, indicating that broccoli powder at 10% of the diet was ineffective at reducing prostate carcinogenesis in the TRAMP model. Whereas broccoli powder feeding had no effect in this model of prostate cancer, our work demonstrates the feasibility of employing plant stress hormones exogenously to stimulate changes in phytochemical profiles, an approach that may be useful for optimizing bioactive component patterns in foods for chronic-disease-prevention studies.
Collapse
Affiliation(s)
- Ann G Liu
- 1 Division of Nutritional Sciences, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois, USA
| | | | | | | | | | | |
Collapse
|
11
|
Novel gram-scale production of enantiopure R-sulforaphane from Tuscan black kale seeds. Molecules 2014; 19:6975-86. [PMID: 24871574 PMCID: PMC6270725 DOI: 10.3390/molecules19066975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/04/2022] Open
Abstract
Dietary R-sulforaphane is a highly potent inducer of the Keap1/Nrf2/ARE pathway. Furthermore, sulforaphane is currently being used in clinical trials to assess its effects against different tumour processes. This study reports an efficient preparation of enantiopure R-sulforaphane based on the enzymatic hydrolysis of its natural precursor glucoraphanin. As an alternative to broccoli seeds, we have exploited Tuscan black kale seeds as a suitable source for gram-scale production of glucoraphanin. The defatted seed meal contained 5.1% (w/w) of glucoraphanin that was first isolated through an anion exchange chromatographic process, and then purified by gel filtration. The availability of glucoraphanin (purity ≈ 95%, weight basis) has allowed us to develop a novel simple hydrolytic process involving myrosinase (EC 3.2.1.147) in a biphasic system to directly produce R-sulforaphane. In a typical experiment, 1.09 g of enantiopure R-sulforaphane was obtained from 150 g of defatted Tuscan black kale seed meal.
Collapse
|
12
|
Angelino D, Jeffery E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.09.029] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
13
|
Zhou R, Lin J, Wu D. Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:209-18. [PMID: 24060752 PMCID: PMC3859691 DOI: 10.1016/j.bbagen.2013.09.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/22/2013] [Accepted: 09/11/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. METHOD The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. RESULTS The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase-1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. CONCLUSIONS Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol-induced fatty liver in mice. GENERAL SIGNIFICANCE The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study.
Collapse
Affiliation(s)
- Richard Zhou
- Depetment of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jianjun Lin
- Liver Disease Center, Xiamen Chinese Medicine Hospital, Fujian Chinese Medicine University, Xiamen, China
| | - Defeng Wu
- Depetment of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
14
|
Butler SM, Wallig MA, Nho CW, Pan CH, Lee EH, Jung SH, Jeffery EH. A polyacetylene-rich extract from Gymnaster koraiensis strongly inhibits colitis-associated colon cancer in mice. Food Chem Toxicol 2013; 53:235-9. [DOI: 10.1016/j.fct.2012.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/25/2022]
|
15
|
Blum NM, Mueller K, Lippmann D, Metges CC, Linn T, Pallauf J, Mueller AS. Feeding of selenium alone or in combination with glucoraphanin differentially affects intestinal and hepatic antioxidant and phase II enzymes in growing rats. Biol Trace Elem Res 2013; 151:384-99. [PMID: 23271678 DOI: 10.1007/s12011-012-9567-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/28/2012] [Indexed: 12/14/2022]
Abstract
The anti-carcinogenic effects of sulforaphane (SFN) are based on the up-regulation of antioxidant enzymes (AE) and phase II enzymes (PIIE) through the transcription factor Nrf2. Current knowledge on the roles of the SFN precursor glucoraphanin (GRA) on these processes is limited. Anti-carcinogenic effects of Se depending on glutathione peroxidase (GPx) activity have also been reported. We studied effects and possible synergisms of Se and GRA on the expression and activity of a broad spectrum of AE and PIIE in jejunum, colon and the liver of rats fed diets differing in Se and GRA concentration. In all organs, GPx1 mRNA expression was 70 % to 90 % lower in Se deficiency than in Se sufficiency. GPx2 expression increased in jejunum and liver under Se deficiency and decreased in the colon. Se deficiency increased most colonic AE and PIIE compared to Se adequacy. Adequate and in particular supranutritive Se combined with GRA increased colonic AE and PIIE expression up to 3.72-fold. In the liver Se deficiency raised the expression of AE and PIIE up to 4.49-fold. GRA attenuated liver AE and PIIE response in Se deficiency. Expression- and correlation analyses revealed that Keap1 mRNA better reflects AE and PIIE gene expression than Nrf2 mRNA. We conclude that: (1) GPx1 sensitively indicates Se deficiency; (2) the influence of Se and Nrf2/Keap1 on GPx2 expression depends on the organ; (3) GRA combined with supranutritive Se may effectively protect against inflammation and colon cancer; (4) future investigations on AE and PIIE expression should consider the role of Keap1 to a higher extent.
Collapse
Affiliation(s)
- Nicole M Blum
- Institute of Agricultural and Nutritional Sciences, Preventive Nutrition Group, Martin Luther University Halle Wittenberg, Von Danckelmann Platz 2, 06120, Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2011; 750:107-131. [PMID: 22178957 DOI: 10.1016/j.mrrev.2011.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lorenzo Ferruzzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
17
|
Pasini F, Verardo V, Cerretani L, Caboni MF, D'Antuono LF. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2858-64. [PMID: 21725983 DOI: 10.1002/jsfa.4535] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/17/2011] [Accepted: 05/27/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND Salad crops of the Brassicaceae family, such as Diplotaxis tenuifolia and Eruca vesicaria, commonly referred to as 'rocket salads', have attracted considerable interest as culinary vegetables because of their strong flavour and their content of putative health-promoting compounds. Among such compounds, glucosinolates and phenolics are well-known phytochemicals with an important role also in determining the characteristic flavour of these species. In this study, to identify potentially high-value rocket salads, 37 cultivated types were examined for sensory characters and their relations with glucosinolate and phenolic contents, which ranged from 0.76 to 3.03 g kg(-1) dry weight (DW) and from 4.68 to 31.39 g kg(-1) DW, respectively. RESULTS The perception of bitter taste was significantly affected by specific glucosinolates, namely progoitrin/epiprogoitrin and dimeric glucosativin. Aroma intensity was negatively related to glucoalyssin content, whereas pungency was significantly related to total glucosinolate content. Kaempferol-3-(2-sinapoyl-glucoside)-4'-glucoside was positively and significantly related to all flavour trait perceptions. Aroma intensity, pungency, crunchiness and juiciness were positively related to typical rocket salad flavour perception through a prominent direct effect. CONCLUSION Aroma intensity, pungency, crunchiness and juiciness were strong determinants of overall rocket salad flavour perception. Visual traits also characterised sensory components. Bitterness, usually considered a negative flavour trait, was moderately perceived in the examined material, without negatively affecting typical flavour perception. In the range of the examined material, glucosinolate content did not contrast with typical flavour, demonstrating that good taste and putative health-promoting properties may coexist.
Collapse
Affiliation(s)
- Federica Pasini
- Department of Food Science, Faculty of Agriculture, Food Science University Campus, University of Bologna, Piazza Goidanich 60, I-47521 Cesena (FC), Italy.
| | | | | | | | | |
Collapse
|
18
|
Rajendran P, Delage B, Dashwood WM, Yu TW, Wuth B, Williams DE, Ho E, Dashwood RH. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol Cancer 2011; 10:68. [PMID: 21624135 PMCID: PMC3127849 DOI: 10.1186/1476-4598-10-68] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/30/2011] [Indexed: 02/08/2023] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN), an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant in broccoli. Here, we examined the time-course and reversibility of SFN-induced HDAC changes in human colon cancer cells. Results Cells underwent progressive G2/M arrest over the period 6-72 h after SFN treatment, during which time HDAC activity increased in the vehicle-treated controls but not in SFN-treated cells. There was a time-dependent loss of class I and selected class II HDAC proteins, with HDAC3 depletion detected ahead of other HDACs. Mechanism studies revealed no apparent effect of calpain, proteasome, protease or caspase inhibitors, but HDAC3 was rescued by cycloheximide or actinomycin D treatment. Among the protein partners implicated in the HDAC3 turnover mechanism, silencing mediator for retinoid and thyroid hormone receptors (SMRT) was phosphorylated in the nucleus within 6 h of SFN treatment, as was HDAC3 itself. Co-immunoprecipitation assays revealed SFN-induced dissociation of HDAC3/SMRT complexes coinciding with increased binding of HDAC3 to 14-3-3 and peptidyl-prolyl cis/trans isomerase 1 (Pin1). Pin1 knockdown blocked the SFN-induced loss of HDAC3. Finally, SFN treatment for 6 or 24 h followed by SFN removal from the culture media led to complete recovery of HDAC activity and HDAC protein expression, during which time cells were released from G2/M arrest. Conclusion The current investigation supports a model in which protein kinase CK2 phosphorylates SMRT and HDAC3 in the nucleus, resulting in dissociation of the corepressor complex and enhanced binding of HDAC3 to 14-3-3 or Pin1. In the cytoplasm, release of HDAC3 from 14-3-3 followed by nuclear import is postulated to compete with a Pin1 pathway that directs HDAC3 for degradation. The latter pathway predominates in colon cancer cells exposed continuously to SFN, whereas the former pathway is likely to be favored when SFN has been removed within 24 h, allowing recovery from cell cycle arrest.
Collapse
Affiliation(s)
- Praveen Rajendran
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ernst IMA, Schuemann C, Wagner AE, Rimbach G. 3,3'-Diindolylmethane but not indole-3-carbinol activates Nrf2 and induces Nrf2 target gene expression in cultured murine fibroblasts. Free Radic Res 2011; 45:941-9. [PMID: 21615272 DOI: 10.3109/10715762.2011.571683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is increasing interest in the gene-regulatory activity of Brassica vegetable derived phytochemicals such as 3,3'-diindolylmethane (DIM) and indole-3-carbinol (I3C). DIM is formed under acidic conditions by dimerization of I3C. This study compared the Nrf2 activating potential of DIM and I3C in murine fibroblasts (NIH3T3). In contrast to its precursor I3C, DIM induces the transactivation of Nrf2. Furthermore, Nrf2 targets such as HO-1, γGCS and NQO1 were increased on the mRNA and protein levels following DIM treatment. DIM was less potent than sulforaphane (used as positive control) in inducing Nrf2-dependent gene expression. The present data suggest that the dimerization of I3C to DIM increases its Nrf2 inducing activity.
Collapse
Affiliation(s)
- I M A Ernst
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel , Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
20
|
Lai RH, Miller MJ, Jeffery E. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food Funct 2010; 1:161-6. [PMID: 21776467 DOI: 10.1039/c0fo00110d] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the absence of the plant enzyme myrosinase, such as in cooked broccoli, glucoraphanin is considered to be hydrolyzed by bacteria in the lower gut to produce the bioactive isothiocyanate sulforaphane. Simulated digestion using US Pharmacopeia methods caused no loss of glucoraphanin, confirming that glucoraphanin is not destroyed by digestive enzymes during passage through the digestive tract and is able to reach the rat cecum intact. Introduction of glucoraphanin (150 μmol/kg BW) directly into the cecum resulted in appearance of isothiocyanates in the mesenteric plasma by 120 min. In contrast, introduction of sulforaphane (150 μmol/kg BW) directly into the cecum resulted in the appearance of isothiocyanates in the mesenteric plasma within 15 min. Plasma levels remained constant for over an hour. Anaerobic incubation ex vivo of cecal microbiota from male F344 rats with glucoraphanin resulted in very low levels of the hydrolytic metabolite erucin nitrile, showing that hydrolysis of glucosinolates is carried out by cecal microbiota, but metabolism ex vivo by microbiota did not reflect not reflect metabolism in situ. These data are the first to report direct evidence of hydrolysis of glucoraphanin to sulforaphane in the cecum of rats and to show that sulforaphane is able to cross the cecal enterocyte for systemic absorption.
Collapse
Affiliation(s)
- Ren-Hau Lai
- Division of Nutritional Sciences, University of Illinois, 905 S Goodwin Ave, Urbana, IL 61801, USA
| | | | | |
Collapse
|
21
|
Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat Rev 2010; 36:377-83. [DOI: 10.1016/j.ctrv.2010.01.002] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/23/2009] [Accepted: 01/17/2010] [Indexed: 11/18/2022]
|
22
|
Zhu N, Soendergaard M, Jeffery EH, Lai RH. The impact of loss of myrosinase on the bioactivity of broccoli products in F344 rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1558-1563. [PMID: 20085276 DOI: 10.1021/jf9034817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In vitro, animal, and epidemiological studies all show that broccoli products containing sulforaphane, the bioactive hydrolysis product of glucoraphanin (GRP), lower risk for cancer. As a result, GRP-rich extracts are appearing on the market as dietary supplements. However, these products typically have no hydrolyzing enzyme for sulforaphane (SF) formation. We evaluated safety and compared efficacy to other broccoli preparations. Four daily doses of 0.5 mmol GRP/kg BW, given by gavage to adult male F344 rats, caused temporary cecal inflammation that was essentially resolved four days later. A similar dose dispersed in the diet caused no inflammation. To compare efficacy, we fed rats 20% freeze-dried broccoli (heated or unheated), 3.5% broccoli seed meal, or 4.3% semipurified GRP, each balanced within an AIN93G semipurified diet, for 4 days. Diets lacking myrosinase (semipurified GRP and heated broccoli florets) caused upregulation of NAD(P)H-quinone oxidoreductase 1 (NQO1) in colon but not liver. Surprisingly, broccoli seed, rich in myrosinase and GRP, also caused NQO1 upregulation in colon but not liver. In contrast, unheated broccoli florets caused upregulation in both colon and liver. These data suggest that GRP supplements may not exert systemic effects. We hypothesize that within whole broccoli additional components enhanced sulforaphane-dependent upregulation of NQO1 in liver.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Food Science and Human Nutrition, University of Illinois, 467 Bevier Hall, 905 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
23
|
Liu AG, Volker SE, Jeffery EH, Erdman JW. Feeding tomato and broccoli powders enriched with bioactives improves bioactivity markers in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7304-7310. [PMID: 19650632 DOI: 10.1021/jf901926b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Many studies have evaluated the cancer -preventive potential of individual bioactives from tomatoes and broccoli, but few have examined them within the context of a whole food. Male Copenhagen rats were fed diets containing 10% standard tomato powder, tomato enriched with lycopene or total carotenoids, standard broccoli floret, broccoli sprouts, or broccoli enriched with indole glucosinolates or selenium for 7 days. All broccoli diets increased the activity of colon quinone reductase (NQO1). Indole glucosinolate-enriched broccoli and selenium-enriched broccoli increased hepatic NQO1 and cytochrome P450 1A activity (P < 0.05). Standard broccoli and lycopene-enriched tomato diets down-regulated prostatic glutathione S-transferase P1 mRNA expression. Different tomato diets resulted in altered hepatic accumulation of lycopene, phytofluene, and phytoene. These results demonstrate that the bioactive content of vegetables affects both tissue content of bioactives and activity of detoxification enzymes. Enhancing bioactive content of tomatoes and broccoli may enhance efficacy in the prevention of prostate cancer.
Collapse
Affiliation(s)
- Ann G Liu
- Division of Nutritional Sciences and Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
24
|
Wagner AE, Ernst I, Iori R, Desel C, Rimbach G. Sulforaphane but not ascorbigen, indole-3-carbinole and ascorbic acid activates the transcription factor Nrf2 and induces phase-2 and antioxidant enzymes in human keratinocytes in culture. Exp Dermatol 2009; 19:137-44. [PMID: 19558496 DOI: 10.1111/j.1600-0625.2009.00928.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nrf2 is a basic leucine zipper transcriptional activator essential for the coordinated transcriptional induction of phase-2 and antioxidant enzymes. Brassica vegetables contain phytochemicals including glucoraphanin, the precursor of sulforaphane (SFN) and glucobrassicin, the precursor of indole-3-carbinole (I3C) and ascorbigen (ABG). The degradation products SFN, I3C and ABG may be capable of inducing cytoprotective genes in skin. In this study, we tested the potency of SFN, ABG and I3C in affecting Nrf2-dependent gene expression in human keratinocytes in culture. SFN but not ABG and its precursors I3C and ascorbic acid induced Nrf2 dependent gene expression at a relatively low concentration (5 micromol/l). Induction of Nrf2 due to SFN was accompanied by an increase in mRNA and protein levels of NADPH quinone oxidoreductase 1, heme oxygenase 1 and gamma-glutamylcysteine-synthetase. Furthermore, SFN elevated cellular glutathione levels and antagonized tumor necrosis factor-alpha-induced NFkappaB transactivation. Therefore, SFN treatment may present a strategy for enhancing the cellular defense mechanisms in skin.
Collapse
Affiliation(s)
- Anika E Wagner
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | |
Collapse
|
25
|
Losso JN, Truax RE. Comparative inhibitory activities of sulforaphane and phenethyl isothiocyanate against leukemia resistant CEM/C2 cancer cells. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Valgimigli L, Iori R. Antioxidant and pro-oxidant capacities of ITCs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:222-237. [PMID: 19197991 DOI: 10.1002/em.20468] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Isothiocyanates (ITCs) are breakdown products of glucosinolates contained in cruciciferous vegetables. This heterogeneous family of molecules has the -N=C=S group as its common structural feature and possesses important cytoprotective properties. Their biological interactions are strongly related to modulation of cellular redox status, and a number of studies have documented their indirect antioxidant properties, particularly related to induction of phase-2 enzymes. On the other hand, some direct antioxidant behavior has also been observed for a limited number of ITCs. Paradoxically relevant pro-oxidant properties have also been documented, possibly related to the simultaneous induction of phase-1 enzymes. In this review, we will summarize and discuss the prevailing mechanisms for the antioxidant and pro-oxidant activity of ITCs, both in vivo and in vitro.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Organic Chemistry A. Mangini, Faculty of Pharmacy, University of Bologna, Bologna, Italy.
| | | |
Collapse
|