1
|
Wang C, Zheng M, Est C, Lawal R, Liang W, Korasick DA, Rau MJ, Saracco SA, Johnson V, Wang Y, White T, Li W, Zhang J, Gu X, Liu-Gontarek F. Production and characterization of homologous protoporphyrinogen IX oxidase (PPO) proteins: Evidence that small N-terminal amino acid changes do not impact protein function. PLoS One 2024; 19:e0311049. [PMID: 39325813 PMCID: PMC11426539 DOI: 10.1371/journal.pone.0311049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Transgenic soybean, cotton, and maize tolerant to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides have been developed by introduction of a bacterial-derived PPO targeted into the chloroplast. PPO is a membrane-associated protein with an intrinsic tendency for aggregation, making expression, purification, and formulation at high concentrations difficult. In this study, transgenic PPO expressed in three crops was demonstrated to exhibit up to a 13 amino acid sequence difference in the N-terminus due to differential processing of the chloroplast transit peptide (CTP). Five PPO protein variants were produced in and purified from E. coli, each displaying equivalent immunoreactivity and functional activity, with values ranging from 193 to 266 nmol min-1 mg-1. Inclusion of an N-terminal 6xHis-tag or differential processing of the CTP peptide does not impact PPO functional activity. Additionally, structural modeling by Alphafold, ESMfold, and Openfold indicates that these short N-terminal extensions are disordered and predicted to not interfere with the mature PPO structure. These results support the view that safety studies on PPO from various crops can be performed from a single representative variant. Herein, we report a novel and robust method for large-scale production of PPO, enabling rapid production of more than 200 g of highly active PPO protein at 99% purity and low endotoxin contamination. We also present a formulation that allows for concentration of active PPO to > 75 mg/mL in a buffer suitable for mammalian toxicity studies.
Collapse
Affiliation(s)
- Cunxi Wang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Meiying Zheng
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Chandler Est
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Remi Lawal
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Wenguang Liang
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - David A. Korasick
- Small Molecules, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Michael J. Rau
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Scott A. Saracco
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Virginia Johnson
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yanfei Wang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Tommi White
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Wenze Li
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jun Zhang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Xin Gu
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Flora Liu-Gontarek
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
2
|
Le VT, Zhan ZJ, Vu TTP, Malik MS, Ou YY. ProtTrans and multi-window scanning convolutional neural networks for the prediction of protein-peptide interaction sites. J Mol Graph Model 2024; 130:108777. [PMID: 38642500 DOI: 10.1016/j.jmgm.2024.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
This study delves into the prediction of protein-peptide interactions using advanced machine learning techniques, comparing models such as sequence-based, standard CNNs, and traditional classifiers. Leveraging pre-trained language models and multi-view window scanning CNNs, our approach yields significant improvements, with ProtTrans standing out based on 2.1 billion protein sequences and 393 billion amino acids. The integrated model demonstrates remarkable performance, achieving an AUC of 0.856 and 0.823 on the PepBCL Set_1 and Set_2 datasets, respectively. Additionally, it attains a Precision of 0.564 in PepBCL Set 1 and 0.527 in PepBCL Set 2, surpassing the performance of previous methods. Beyond this, we explore the application of this model in cancer therapy, particularly in identifying peptide interactions for selective targeting of cancer cells, and other fields. The findings of this study contribute to bioinformatics, providing valuable insights for drug discovery and therapeutic development.
Collapse
Affiliation(s)
- Van-The Le
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Zi-Jun Zhan
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Thi-Thu-Phuong Vu
- Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Muhammad-Shahid Malik
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan; Department of Computer Science and Engineering, Karakoram International University, Pakistan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan; Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
3
|
Huang T, Ko C, Paes D, Smeets E, Post M, Smith B. A review on the safety of growth factors commonly used in cultivated meat production. Compr Rev Food Sci Food Saf 2024; 23:e13350. [PMID: 38725377 DOI: 10.1111/1541-4337.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 08/24/2024]
Abstract
Growth factors are commonly added to cell culture media in cellular agriculture to mimic the endogenous process of proliferation and differentiation of cells. Many of these growth factors are endogenous to humans and known to be present in the edible tissues and milk of food animals. However, there is little or no information on the use of growth factors intentionally added in food production before the advent of cultivated meat. Ten commonly used growth factors have been reviewed to include information on their mode of action, bioavailability, occurrence in food and food animals, endogenous levels in humans, as well as exposure and toxicological information drawn from relevant animal studies and human clinical trials with a focus on oral exposure. In addition, a comparison of homology of growth factors was done to compare the sequence homology of growth factors from humans and domestic animal species commonly consumed as food, such as bovine, porcine, and poultry. This information has been gathered as the starting point to determine the safety of use of growth factors in cultivated meat meant for human consumption. The change in levels of growth factors measured in human milk and bovine milk after pasteurization and high-temperature treatment is discussed to give an indication of how commercial food processing can affect the levels of growth factors in food. The concept of substantial equivalence is also discussed together with a conservative exposure estimation. More work on how to integrate in silico assessments into the routine safety assessment of growth factors is needed.
Collapse
Affiliation(s)
- Taya Huang
- Future Ready Food Safety Hub (FRESH), Nanyang Technological University, Singapore, Singapore
| | - Cherie Ko
- Future Ready Food Safety Hub (FRESH), Nanyang Technological University, Singapore, Singapore
| | - Dean Paes
- Mosa Meat, Maastricht, The Netherlands
| | | | - Mark Post
- Mosa Meat, Maastricht, The Netherlands
| | - Benjamin Smith
- Future Ready Food Safety Hub (FRESH), Nanyang Technological University, Singapore, Singapore
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Rahmani K, Wu YC, Buck NR, Lau A, Hanlon PR. Retrospective analysis of carcinogenicity assessments within FDA-notified GRAS determinations. Hum Exp Toxicol 2024; 43:9603271241254338. [PMID: 39052968 DOI: 10.1177/09603271241254338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Frameworks have been developed to standardize the assessment of carcinogenic potential in the pharmaceutical and agrochemical industries, building upon decades of research. Carcinogenicity is also evaluated during the safety evaluation of food substances, using a comprehensive approach unique to each substance. To better understand these approaches, a retrospective assessment was conducted on the publicly available database of substances notified to the United States Food and Drug Administration (US FDA) as being Generally Recognized As Safe (GRAS). The data contained within these GRAS notifications (GRNs) were reviewed for the methods used to evaluate carcinogenic potential (genotoxicity studies, 2-year bioassays, other pre-clinical animal studies) to identify patterns that could provide an understanding of how this assessment has been conducted for different categories of food substances. While different approaches to the safety evaluation were required to adapt to the unique food substances, the data in all notifications supported the conclusion of safety. The evaluation of food substances for carcinogenic potential must consider all available data, including identifying the need for when more data must be generated to support an evaluation. Due to the complexity of substances used in food, ranging from defined chemical entities to minimally processed agricultural commodities to live microorganisms, the approach to conducting the safety evaluation of food substances must be able to adapt to the most relevant scientifically supported approach. This paper illustrates the data commonly used to support the safety of different types of food substances and proposes an approach familiar to other product sectors.
Collapse
|
5
|
Zimmermann CS, Snow RF, Wilson-Mifsud B, LeRoy K, Boeckman C, Huang E, Mathesius CA, Roper JM, Hurley BP. Evaluation of an in vitro experimental platform of human polarized intestinal epithelial monolayers for the hazard assessment of insecticidal proteins. Food Chem Toxicol 2023; 181:114106. [PMID: 37852351 DOI: 10.1016/j.fct.2023.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Previous work demonstrated the utility of using human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on Transwell® filters to differentiate between hazardous and non-hazardous proteins. The current study seeks to further resolve appropriate concentrations for evaluating proteins of unknown hazard potential using the IEC experimental platform and leverages these parameters for evaluating the potential toxicity of insecticidal proteins characteristic of those expressed in genetically modified (GM) agricultural biotechnology crops. To establish optimal test protein concentrations, effects of several known hazardous (C. perfringens epsilon toxin, Listeriolysin O, Phaseolus vulgaris erythroagglutinin, E. coli Shiga toxin 1, C. difficile Toxin B and wheat germ agglutinin) and non-hazardous (Ara-h2, β-lactoglobulin, fibronectin and Rubisco) proteins on IEC barrier integrity and cell viability were evaluated at concentration ranges. Two insecticidal proteins (AfIP-1A and AfIP-1B) were evaluated for effects in the IEC assay, a seven-day insecticidal bioassay, and assessed in a high-dose 14-day acute oral toxicity study in mice. The results obtained from the human in vitro IEC assay were consistent with results obtained from an in vivo acute oral toxicity study, both demonstrating that the combination of AfIP-1A and AfIP-1B do not exhibit any identifiable harmful impacts on mammalian cells.
Collapse
Affiliation(s)
| | - Ryan F Snow
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Brittany Wilson-Mifsud
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | - Bryan P Hurley
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Carlson AB, Mathesius CA, Gunderson TA, Hession A, Bruyere R, Mirsky HP, Zhang J, Sandmann M, Fallers MN, Herman RA. Protein familiarity is a fundamental but rarely operationalized concept in the safety assessment of genetically modified crops: example of phosphomannose isomerase (PMI). Transgenic Res 2023; 32:423-435. [PMID: 37415055 PMCID: PMC10602950 DOI: 10.1007/s11248-023-00358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Fundamental to the safety assessment of genetically modified (GM) crops is the concept of negligible risk for newly expressed proteins for which there is a history of safe use. Although this simple concept has been stated in international and regional guidance for assessing the risk of newly expressed proteins in GM crops, its full implementation by regulatory authorities has been lacking. As a result, safety studies are often repeated at a significant expenditure of resources by developers, study results are repeatedly reviewed by regulators, and animals are sacrificed needlessly to complete redundant animal toxicity studies. This situation is illustrated using the example of the selectable marker phosphomannose isomerase (PMI) for which familiarity has been established. Reviewed is the history of safe use for PMI and predictable results of newly conducted safety studies including bioinformatic comparisons, resistance to digestion, and acute toxicity that were repeated to gain regulatory reapproval of PMI expressed from constructs in recently developed GM maize. As expected, the results of these newly repeated hazard-identification and characterization studies for PMI indicate negligible risk. PMI expressed in recently developed GM crops provides an opportunity to use the concept of familiarity by regulatory authorities to reduce risk-disproportionate regulation of these new events and lessen the resulting waste of both developer and regulator resources, as well as eliminate unnecessary animal testing. This would also correctly imply that familiar proteins like PMI have negligible risk. Together, such modernization of regulations would benefit society through enabling broader and faster access to needed technologies.
Collapse
Affiliation(s)
- Anne B Carlson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | | | - Tim A Gunderson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Aideen Hession
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Reba Bruyere
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Henry P Mirsky
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - John Zhang
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mat Sandmann
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Melissa N Fallers
- Corteva Agriscience, Haskell R&D Center, P.O. Box 30, Newark, DE, 19714, USA
| | - Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| |
Collapse
|
7
|
Simmons CR, Herman RA. Non-seed plants are emerging gene sources for agriculture and insect control proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:23-37. [PMID: 37309832 DOI: 10.1111/tpj.16349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The non-seed plants (e.g., charophyte algae, bryophytes, and ferns) have multiple human uses, but their contributions to agriculture and research have lagged behind seed plants. While sharing broadly conserved biology with seed plants and the major crops, non-seed plants sometimes possess alternative molecular and physiological adaptations. These adaptations may guide crop improvements. One such area is the presence of multiple classes of insecticidal proteins found in non-seed plant genomes which are either absent or widely diverged in seed plants. There are documented uses of non-seed plants, and ferns for example have been used in human diets. Among the occasional identifiable toxins or antinutritive components present in non-seed plants, none include these insecticidal proteins. Apart from these discrete risk factors which can be addressed in the safety assessment, there should be no general safety concern about sourcing genes from non-seed plant species.
Collapse
Affiliation(s)
- Carl R Simmons
- Corteva Agriscience, Trait Discovery, Johnston, Iowa, 50131, USA
| | - Rod A Herman
- Corteva Agriscience, Regulatory and Stewardship, Johnston, Iowa, 50131, USA
| |
Collapse
|
8
|
Wang C, Bean GJ, Chen CJ, Kessenich CR, Peng J, Visconti NR, Milligan JS, Moore RG, Tan J, Edrington TC, Li B, Giddings KS, Bowen D, Luo J, Ciche T, Moar WJ. Safety assessment of Mpp75Aa1.1, a new ETX_MTX2 protein from Brevibacillus laterosporus that controls western corn rootworm. PLoS One 2022; 17:e0274204. [PMID: 36074780 PMCID: PMC9455866 DOI: 10.1371/journal.pone.0274204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
The recently discovered insecticidal protein Mpp75Aa1.1 from Brevibacillus laterosporus is a member of the ETX_MTX family of beta-pore forming proteins (β-PFPs) expressed in genetically modified (GM) maize to control western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). In this manuscript, bioinformatic analysis establishes that although Mpp75Aa1.1 shares varying degrees of similarity to members of the ETX_MTX2 protein family, it is unlikely to have any allergenic, toxic, or otherwise adverse biological effects. The safety of Mpp75Aa1.1 is further supported by a weight of evidence approach including evaluation of the history of safe use (HOSU) of ETX_MTX2 proteins and Breviballus laterosporus. Comparisons between purified Mpp75Aa1.1 protein and a poly-histidine-tagged (His-tagged) variant of the Mpp75Aa1.1 protein demonstrate that both forms of the protein are heat labile at temperatures at or above 55°C, degraded by gastrointestinal proteases within 0.5 min, and have no adverse effects in acute mouse oral toxicity studies at a dose level of 1920 or 2120 mg/kg body weight. These results support the use of His-tagged proteins as suitable surrogates for assessing the safety of their non-tagged parent proteins. Taken together, we report that Mpp75Aa1.1 is the first ETX-MTX2 insecticidal protein from B. laterosporus and displays a similar safety profile as typical Cry proteins from Bacillus thuringiensis.
Collapse
Affiliation(s)
- Cunxi Wang
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Gregory J. Bean
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Chun Ju Chen
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Jiexin Peng
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Jason S. Milligan
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Robert G. Moore
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jianguo Tan
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Bin Li
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Kara S. Giddings
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - David Bowen
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jinhua Luo
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Todd Ciche
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - William J. Moar
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
9
|
Edrington T, Wang R, McKinnon L, Kessenich C, Hodge-Bell K, Li W, Tan J, Brown G, Wang C, Li B, Giddings K. Food and feed safety of the Bacillus thuringiensis derived protein Vpb4Da2, a novel protein for control of western corn rootworm. PLoS One 2022; 17:e0272311. [PMID: 35921368 PMCID: PMC9348738 DOI: 10.1371/journal.pone.0272311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Western corn rootworm (WCR), Diabrotica virgifera virgifera, LeConte, is an insect pest that poses a significant threat to the productivity of modern agriculture, causing significant economic and crop losses. The development of genetically modified (GM) crops expressing one or more proteins that confer tolerance to specific insect pests, such as WCR, was a historic breakthrough in agricultural biotechnology and continues to serve as an invaluable tool in pest management. Despite this, evolving resistance to existing insect control proteins expressed in current generation GM crops requires continued identification of new proteins with distinct modes of action while retaining targeted insecticidal efficacy. GM crops expressing insecticidal proteins must undergo extensive safety assessments prior to commercialization to ensure that they pose no increased risk to the health of humans or other animals relative to their non-GM conventional counterparts. As part of these safety evaluations, a weight of evidence approach is utilized to assess the safety of the expressed insecticidal proteins to evaluate any potential risk in the context of dietary exposure. This study describes the food and feed safety assessment of Vpb4Da2, a new Bacillus thuringiensis insecticidal protein that confers in planta tolerance to WCR. Vpb4Da2 exhibits structural and functional similarities to other insect control proteins expressed in commercialized GM crops. In addition, the lack of homology to known toxins or allergens, a lack of acute toxicity in mice, inactivation by conditions commonly experienced in the human gut or during cooking/food processing, and the extremely low expected dietary exposure to Vpb4Da2 provide a substantial weight of evidence to demonstrate that the Vpb4Da2 protein poses no indication of a risk to the health of humans or other animals.
Collapse
Affiliation(s)
| | - Rong Wang
- Bayer Crop Science, Chesterfield, MO, United States of America
- * E-mail:
| | - Lucas McKinnon
- Bayer Crop Science, Chesterfield, MO, United States of America
| | | | | | - Wenze Li
- Bayer Crop Science, Chesterfield, MO, United States of America
| | - Jianguo Tan
- Bayer Crop Science, Chesterfield, MO, United States of America
| | - Gregory Brown
- Bayer Crop Science, Chesterfield, MO, United States of America
| | - Cunxi Wang
- Bayer Crop Science, Chesterfield, MO, United States of America
| | - Bin Li
- Bayer Crop Science, Chesterfield, MO, United States of America
| | - Kara Giddings
- Bayer Crop Science, Chesterfield, MO, United States of America
| |
Collapse
|
10
|
Safety assessment of the insecticidal protein IPD079Ea from the fern, Ophioglossum pendulum. Food Chem Toxicol 2022; 166:113187. [PMID: 35688270 DOI: 10.1016/j.fct.2022.113187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
As agricultural biotechnology continues to develop solutions for addressing crop pests through newly expressed proteins from novel source organisms, with different modes or sites of action and/or different spectra of activity, the safety of these proteins will be assessed. The results of hazard-identification and characterization studies for the insecticidal protein IPD079Ea, which is derived from a fern (Ophioglossum pendulum) and active against the maize pest western corn rootworm (Diabrotica virgifera virgifera, Coleoptera: Chrysomelidae) are provided. Collectively these results indicate that IPD079Ea is unlikely to present a hazard to human or animal health and support the safety of genetically modified maize expressing IPD079Ea.
Collapse
|
11
|
Jonaitis T, Lewis EA, Lourens N, Groot A, Goodman RE, Mitchell D, Karpol A, Tracy B. Subchronic feeding, allergenicity, and genotoxicity safety evaluations of single strain bacterial protein. Food Chem Toxicol 2022; 162:112878. [PMID: 35196545 DOI: 10.1016/j.fct.2022.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
Microbial proteins are potentially important alternatives to animal protein. A safety assessment was conducted on a Clostridium protein which can serve as a high-quality protein source in human food. A battery of toxicity studies was conducted comprising a 14-day dose-range finding dietary study in rats, 90-day dietary study in rats and in vitro genotoxicity studies. The allergenic potential was investigated by bioinformatics analysis. In the 90-day feeding study, rats were fed diets containing 0, 5.0, 7.5, and 10% Clostridium protein. The Clostridium protein-containing diets were well-tolerated and no adverse effects on the health or growth were observed. Significant reductions in neutrophil counts were observed in all female rats compared to controls, which were slightly outside of reference ranges. These effects were not deemed to be adverse due to the absence of comparable findings in male rats and high physiological variability of measured values within groups. A No-Observed-Adverse-Effect-Level (NOAEL) of at least 10% Clostridium protein, the highest dose tested and corresponding to 5,558 and 6,671 mg/kg body weight/day for male and female rats, respectively, was established. No evidence of genotoxicity was observed and the allergenic potential was low. These results support the use of Clostridium protein as a food ingredient.
Collapse
Affiliation(s)
- Tom Jonaitis
- NutraSteward, Ltd., 1 Cleddau Bridge Business Park, Pembroke Dock, SA72 6UP, UK
| | - Elizabeth A Lewis
- NutraSteward, Ltd., 1 Cleddau Bridge Business Park, Pembroke Dock, SA72 6UP, UK
| | - Nicky Lourens
- Charles River Laboratories 's-Hertogenbosch, the Netherlands
| | - Angelique Groot
- Charles River Laboratories 's-Hertogenbosch, the Netherlands
| | - Richard E Goodman
- RE Goodman Consulting LLC, 8110 Dougan Circle, Lincoln, NE, 68516, United States
| | - Daniel Mitchell
- Superbrewed Food, Inc., 239 Lisa Drive, New Castle, DE, 19720, United States
| | - Alon Karpol
- Superbrewed Food Israel, Prof. A.D. Bergman St. 2, Rehovot, 7670504, Israel
| | - Bryan Tracy
- Superbrewed Food, Inc., 239 Lisa Drive, New Castle, DE, 19720, United States.
| |
Collapse
|
12
|
Herman RA, Hou Z, Mirsky H, Nelson ME, Mathesius CA, Roper JM. History of safe exposure and bioinformatic assessment of phosphomannose-isomerase (PMI) for allergenic risk. Transgenic Res 2021; 30:201-206. [PMID: 33761048 PMCID: PMC8026442 DOI: 10.1007/s11248-021-00243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
Newly expressed proteins in genetically engineered crops are evaluated for potential cross reactivity to known allergens as part of their safety assessment. This assessment uses a weight-of-evidence approach. Two key components of this allergenicity assessment include any history of safe human exposure to the protein and/or the source organism from which it was originally derived, and bioinformatic analysis identifying amino acid sequence relatedness to known allergens. Phosphomannose-isomerase (PMI) has been expressed in commercialized genetically engineered (GE) crops as a selectable marker since 2010 with no known reports of allergy, which supports a history of safe exposure, and GE events expressing the PMI protein have been approved globally based on expert safety analysis. Bioinformatic analyses identified an eight-amino-acid contiguous match between PMI and a frog parvalbumin allergen (CAC83047.1). While short amino acid matches have been shown to be a poor predictor of allergen cross reactivity, most regulatory bodies require such matches be assessed in support of the allergenicity risk assessment. Here, this match is shown to be of negligible risk of conferring cross reactivity with known allergens.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA.
| | - Zhenglin Hou
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Henry Mirsky
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | | | - Jason M Roper
- Corteva Agriscience, P.O. Box 30, Newark, DE, 19714, USA
| |
Collapse
|
13
|
Zarka KA, Hokanson K, Douches DS. Molecular characterization for food safety assessment of a genetically modified late blight resistant potato: an unusual case. Transgenic Res 2021; 30:169-183. [PMID: 33751337 DOI: 10.1007/s11248-021-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Standard food safety assessments of genetically modified crops require a thorough molecular characterization of the novel DNA as inserted into the plant that is intended for commercialization, as well as a comparison of agronomic and nutritional characteristics of the genetically modified to the non-modified counterpart. These characterization data are used to identify any unintended changes in the inserted DNA or in the modified plant that would require assessment for safety in addition to the assessment of the intended modification. An unusual case of an unintended effect discovered from the molecular characterization of a genetically modified late blight resistant potato developed for growing in Bangladesh and Indonesia is presented here. Not only was a significant portion of the plasmid vector backbone DNA inserted into the plant along with the intended insertion of an R-gene for late blight resistance, but the inserted DNA was split into two separate fragments and inserted into two separate chromosomes. One fragment carries the R-gene and the other fragment carries the NPTII selectable marker gene and the plasmid backbone DNA. The implications of this for the food safety assessment of this late blight resistant potato are considered.
Collapse
Affiliation(s)
- Kelly A Zarka
- Department of Plant, Soil and Microbial Sciences, Molecular Plant Science Bldg, Michigan State University, East Lansing, MI, USA.
| | - Karen Hokanson
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA
| | - David S Douches
- Department of Plant, Soil and Microbial Sciences, Molecular Plant Science Bldg, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Dumont AF. Statement on in vitro protein digestibility tests in allergenicity and protein safety assessment of genetically modified plants. EFSA J 2021; 19:e06350. [PMID: 33473251 PMCID: PMC7801955 DOI: 10.2903/j.efsa.2021.6350] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This statement supplements and updates the GMO Panel guidance document on allergenicity of genetically modified (GM) plants published in 2017. In that guidance document, the GMO Panel considered that additional investigations on in vitro protein digestibility were needed before providing any additional recommendations in the form of guidance to applicants. Thus, an interim phase was proposed to assess the utility of an enhanced in vitro digestion test, as compared to the classical pepsin resistance test. Historically, resistance to degradation by pepsin using the classical pepsin resistance test has been considered as additional information, in a weight-of-evidence approach, for the assessment of allergenicity and toxicity of newly expressed proteins in GM plants. However, more recent evidence does not support this test as a good predictor of allergenic potential for hazard. Furthermore, there is a need for more reliable systems to predict the fate of the proteins in the gastrointestinal tract and how they interact with the relevant human cells. Nevertheless, the classical pepsin resistance test can still provide some information on the physicochemical properties of novel proteins relating to their stability under acidic conditions. But other methods can be used to obtain data on protein's structural and/or functional integrity. It is acknowledged that the classical pepsin resistance test is embedded into international guidelines, e.g. Codex Alimentarius and Regulation (EU) No 503/2013. For future development, a deeper understanding of protein digestion in the gastrointestinal tract could enable the framing of more robust strategies for the safety assessment of proteins. Given the high complexity of the digestion and absorption process of dietary proteins, it is needed to clarify and identify the aspects that could be relevant to assess potential risks of allergenicity and toxicity of proteins. To this end, a series of research questions to be addressed are also formulated in this statement.
Collapse
|
15
|
Chiozza MV, Burachik M, Miranda PV. Compositional analysis of soybean event IND-ØØ41Ø-5. GM CROPS & FOOD 2020; 11:154-163. [PMID: 32351157 PMCID: PMC7518735 DOI: 10.1080/21645698.2020.1742040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/02/2022]
Abstract
Soybean (Glycine max L.) is the world's largest source of protein feed and the second largest source of vegetable oil. Water restriction is the main limiting factor to achieve maximum soybean yields. Therefore, development of varieties that maintain yield under environmental stresses is a major objective of soybean breeding programs. The HaHB4 (Helianthus annuus homeobox 4) gene from sunflower encodes for a transcription factor involved in the plant´s tolerance to environmental stress. The introduction of HaHB4 in soybean led to the development of event IND-ØØ41Ø-5 (HB4® soybean), which displayed higher yield in environments having low productivity potential, compared with the parental control variety. Compositional analyses of soybean event IND-ØØ41Ø-5 were conducted both in Argentina and the United Sates. A total of 44 components were analyzed in grain and 9 components in forage. Based on the results of these studies it was concluded that soybean event IND-ØØ41Ø-5 was compositionally equivalent to its non-transgenic parental control.
Collapse
Affiliation(s)
- Mariana V. Chiozza
- Instituto De Agrobiotecnología Rosario (INDEAR), Rosario, Santa Fe, Argentina
- Department of Agronomy, Iowa State University, Iowa, IA, USA
| | - Moisés Burachik
- Instituto De Agrobiotecnología Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Patricia V. Miranda
- Instituto De Agrobiotecnología Rosario (INDEAR), Rosario, Santa Fe, Argentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)
| |
Collapse
|
16
|
Wang R, Wang Y, Edrington TC, Liu Z, Lee TC, Silvanovich A, Moon HS, Liu ZL, Li B. Presence of small resistant peptides from new in vitro digestion assays detected by liquid chromatography tandem mass spectrometry: An implication of allergenicity prediction of novel proteins? PLoS One 2020; 15:e0233745. [PMID: 32542029 PMCID: PMC7295189 DOI: 10.1371/journal.pone.0233745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
The susceptibility of newly expressed proteins to digestion by gastrointestinal proteases (e.g., pepsin) has long been regarded as one of the important endpoints in the weight-of-evidence (WOE) approach to assess the allergenic risk of genetically modified (GM) crops. The European Food Safety Authority (EFSA) has suggested that current digestion study protocols used for this assessment should be modified to more accurately reflect the diverse physiological conditions encountered in human populations and that the post-digestion analysis should include analytical methods to detect small peptide digestion products.The susceptibility of two allergens (beta-lactoglobin (β-Lg) and alpha-lactalbumin (α-La)) and two non-allergens (hemoglobin (Hb) and phosphofructokinase (PFK)) to proteolytic degradation was investigated under two pepsin digestion conditions (optimal pepsin digestion condition: pH 1.2, 10 U pepsin/μg test protein; sub-optimal pepsin digestion condition: pH 5.0, 1 U pepsin/10 mg test protein), followed by 34.5 U trypsin/mg test protein and 0.4 U chymotrypsin/mg test protein digestion in the absence or presence of bile salts. All samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with Coomassie Blue staining and, in parallel, liquid chromatography tandem mass spectrometry (LC-MS) detection. The results provide following insights: 1) LC-MS methodology does provide the detection of small peptides; 2) Peptides are detected in both allergens and non-allergens from all digestion conditions; 3) No clear differences among the peptides detected from allergen and non-allergens; 4) The differences observed in SDS-PAGE between the optimal and sub-optimal pepsin digestion conditions are expected and align with kinetics and properties of the specific enzymes; 5) The new methodology with new digestion conditions and LC-MS detection does not provide any differentiating information for prediction whether a protein is an allergen. The classic pepsin resistance assay remains the most useful assessment of the potential exposure of an intact newly expressed protein as part of product safety assessment within a WOE approach.
Collapse
Affiliation(s)
- Rong Wang
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Yanfei Wang
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | | | - Zhenjiu Liu
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Thomas C. Lee
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | | | - Hong S. Moon
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Zi L. Liu
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Bin Li
- Bayer CropScience, Chesterfield, Missouri, United States of America
| |
Collapse
|
17
|
Sá CA, Vieira LR, Pereira Almeida Filho LC, Real-Guerra R, Lopes FC, Souza TM, Vasconcelos IM, Staniscuaski F, Carlini CR, Urano Carvalho AF, Farias DF. Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease. Food Chem Toxicol 2019; 136:110977. [PMID: 31759068 DOI: 10.1016/j.fct.2019.110977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023]
Abstract
Jaburetox (JBTX) is an insecticidal and antifungal peptide derived from jack bean (Canavalia ensiformis) urease that has been considered a candidate for developing genetically modified crops. This study aimed to perform the risk assessment of the peptide JBTX following the general recommendations of the two-tiered, weight-of-evidence approach proposed by International Life Sciences Institute. The urease of C. ensiformis (JBU) and its isoform JBURE IIb (the JBTX parental protein) were assessed. The history of safe use revealed no hazard reports for the studied proteins. The available information shows that JBTX possesses selective activity against insects and fungi. JBTX and JBU primary amino acids sequences showed no relevant similarity to toxic, antinutritional or allergenic proteins. Additionally, JBTX and JBU were susceptible to in vitro digestibility, and JBU was also susceptible to heat treatment. The results did not identify potential risks of adverse effects and reactions associated to JBTX. However, further allergen (e.g. serum IgE binding test) and toxicity (e.g. rodent toxicity tests) experimentation can be done to gather additional safety information on JBTX, and to meet regulatory inquiries for commercial approval of transgenic cultivars expressing this peptide.
Collapse
Affiliation(s)
- Chayenne Alves Sá
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Leonardo Rogério Vieira
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | | | - Rafael Real-Guerra
- Center for Coastal, Limnological and Marine Studies (CECLIMAR), Federal University of Rio Grande do Sul, 95625-000, Imbé, RS, Brazil; Interdisciplinary Department, Federal University of Rio Grande do Sul, 95625-000, Tramandaí, RS, Brazil
| | - Fernanda Cortez Lopes
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Ilka Maria Vasconcelos
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Fernanda Staniscuaski
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil
| | - Célia Regina Carlini
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil; Brain Institute (Instituto do Cérebro-INSCER), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Building 63, CEP 90610-000, Porto Alegre, Brazil
| | - Ana Fontenele Urano Carvalho
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil; Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Davi Felipe Farias
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil; Laboratory for Risk Assesment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraíba, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
18
|
Petrick JS, Bell E, Koch MS. Weight of the evidence: independent research projects confirm industry conclusions on the safety of insect-protected maize MON 810. GM CROPS & FOOD 2019; 11:30-46. [PMID: 31651217 PMCID: PMC7064210 DOI: 10.1080/21645698.2019.1680242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/16/2023]
Abstract
The cumulative weight of the evidence demonstrates the safety and equivalence of genetically engineered (GE) crops compared to the conventional varieties from which they have been derived. Confirmatory toxicology and animal nutrition studies have nevertheless become an expected/mandated component of GE crop safety assessments, despite the lack of additional value these studies provide for product safety assessment. Characterization and safety data (e.g. trait protein safety; molecular, compositional, and agronomic/phenotypic assessments), and animal feeding studies form a weight of the evidence supporting the safety of insect-protected maize MON 810. Independent animal testing has recently confirmed the lack of MON 810 toxicity in subchronic and chronic toxicity studies. These results could have been predicted from the available safety data. Animal testing of GE crops should be supported by testable scientific hypotheses and testing should be consistent with ethical obligations to reduce, refine, and replace (3Rs) animal testing when possible.
Collapse
Affiliation(s)
- Jay S. Petrick
- Product Safety Center, Bayer Crop Science, Chesterfield, Missouri, USA
| | - Erin Bell
- Product Safety Center, Monsanto Company, Chesterfield, Missouri, USA
| | - Michael S. Koch
- Product Safety Center, Bayer Crop Science, Chesterfield, Missouri, USA
| |
Collapse
|
19
|
Lanter BB, Eaton AD, Roper JM, Zimmermann C, Delaney B, Hurley BP. Single versus repeated exposure to human polarized intestinal epithelial monolayers for in vitro protein hazard characterization. Food Chem Toxicol 2019; 132:110666. [PMID: 31288052 DOI: 10.1016/j.fct.2019.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 11/25/2022]
Abstract
Recent studies suggest human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on permeable Transwell® filters are effective at differentiating between hazardous and non-hazardous proteins following a single exposure. In this study, IEC polarized monolayers were subjected to hazardous or non-hazardous proteins in nine exposures over 30 days and compared to a single exposure of the same protein. The objective was to evaluate whether repeated exposures to a protein differently alter barrier integrity or compromise cell viability compared to single exposures. Proteins tested included Clostridium difficile toxin A, Streptolysin O, Wheat Germ Agglutinin, Phaseolus vulgaris Hemagglutinin-E, bovine serum albumin, porcine serum albumin, and fibronectin. Evidence of diminished barrier integrity and/or cell viability following exposure to hazardous proteins was more pronounced in magnitude when IECs were subjected to multiple rather than single exposures. In some cases, an effect on IEC monolayers was observed only with repeated exposures. In general, IEC responses to non-hazardous proteins following either single or repeated exposures were minimal. Results from these studies support the utility of using cultured human IEC polarized monolayers to differentiate between hazardous and non-hazardous proteins and suggest that repeated exposures may reveal a greater magnitude of response when compared to single exposures.
Collapse
Affiliation(s)
- B B Lanter
- Department of Pediatrics, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States
| | - A D Eaton
- Department of Pediatrics, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States
| | - J M Roper
- Corteva Agriscience, Newark, DE, 19711, United States
| | - C Zimmermann
- Corteva Agriscience, Johnston, IA, 50131, United States.
| | - B Delaney
- Corteva Agriscience, Johnston, IA, 50131, United States
| | - B P Hurley
- Department of Pediatrics, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
20
|
Anderson JA, Brustkern S, Cong B, Deege L, Delaney B, Hong B, Lawit S, Mathesius C, Schmidt J, Wu J, Zhang J, Zimmermann C. Evaluation of the History of Safe Use of the Maize ZMM28 Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7466-7474. [PMID: 31184886 DOI: 10.1021/acs.jafc.9b00391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ZMM28 protein encoded by the zmm28 gene is endogenous to maize. DP202216 maize was genetically modified to increase and extend expression of the zmm28 gene relative to native zmm28 gene expression, resulting in plants with enhanced grain yield potential. Evaluation of the history of safe use (HOSU) is one component of the safety assessment framework for a newly expressed protein in a GM crop. The deduced amino acid sequence of the introduced ZMM28 protein in DP202216 maize is identical to the ZMM28 protein in nonmodified conventional maize. The ZMM28 protein has also been found in selected varieties of sweet corn kernels, and closely related proteins are found in other commonly consumed food crops. Concentrations of the ZMM28 protein in event DP202216 maize, conventional maize, and sweet corn are reported. This information supports, in part, the evaluation of HOSU, which can be leveraged in the safety assessment of the ZMM28 protein. Additional studies will be considered in the food and feed safety assessment of the DP202216 maize event.
Collapse
Affiliation(s)
- Jennifer A Anderson
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Sarah Brustkern
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Bin Cong
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Lora Deege
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Bryan Delaney
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Bonnie Hong
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Shai Lawit
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Carey Mathesius
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Jean Schmidt
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Jingrui Wu
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - John Zhang
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| | - Cindi Zimmermann
- Corteva Agriscience , Agriculture Division of DowDuPont , Johnston , Iowa 50131 , United States
| |
Collapse
|
21
|
Carlson AB, Mathesius CA, Ballou S, Boeckman CJ, Gunderson TA, Mirsky HP, Mukerji P, Roe JC, Schmidt JM, Zhang J, Delaney B. Safety assessment of coleopteran active IPD072Aa protein from Pseudomonas chlororaphis. Food Chem Toxicol 2019; 129:376-381. [DOI: 10.1016/j.fct.2019.04.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
22
|
Bhatti F, Asad S, Khan QM, Mobeen A, Iqbal MJ, Asif M. Risk assessment of genetically modified sugarcane expressing AVP1 gene. Food Chem Toxicol 2019; 130:267-275. [PMID: 31132391 DOI: 10.1016/j.fct.2019.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Biosafety is a multidisciplinary approach that encompasses social, societal, ethical issues and policies for the regulations of genetically modified (GM) organisms. The potential health risks associated with GM sugarcane containing AVP1 gene confers resistance against drought and salinity were evaluated by animal feeding studies and some genotoxicity assays. Acute and sub-chronic toxicity examinations were carried out via oral dose administration of GM sugarcane juice supplemented with the normal diet (modified from certified rodent standard diet) on Wistar rats. AVP1 protein concentration in sugarcane juice was 1mg/1 mL. Biochemical, haematological blood analyses were performed and the results revealed that there were non-significant differences among all the treatment groups; GM sugarcane juice, non-GM sugarcane juice and the control group (normal diet and water). Genotoxicity assessment based on the comet assay and the micronucleus assay data exhibited that AVP1 GM sugarcane was not genotoxic or cytotoxic in rat's peripheral blood. These research findings supported the conclusion that GM AVP1 sugarcane was non-toxic in experimental animals. Therefore, data generated through this research work would be helpful for the commercial release of GM AVP1 sugarcane.
Collapse
Affiliation(s)
- Farheen Bhatti
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS) University, Islamabad, Pakistan
| | - Shaheen Asad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Qaiser Mahmood Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Ameena Mobeen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Javed Iqbal
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
23
|
Lee TC, Edrington TC, Bell E, Burzio LA, Glenn KC. Effect of common processing of soybeans on the enzymatic activity and detectability of the protein, Dicamba Mono-Oxygenase (DMO), introduced into dicamba-tolerant MON 87708. Regul Toxicol Pharmacol 2019; 102:98-107. [PMID: 30562601 DOI: 10.1016/j.yrtph.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022]
Abstract
Assessing the safety of genetically engineered crops includes evaluating the risk (hazard and exposure) of consuming their newly expressed proteins. The dicamba monooxygenase (DMO) protein, introduced into soybeans to confer tolerance (DT) to dicamba herbicide, was previously characterized and identified to pose no food or feed safety hazards. Most agricultural commodities (e.g., soybeans, maize) enter the food supply after processing methods that can include exposure to high temperatures, harsh solvents or pH extremes that can adversely impact the structure and function of proteins. To understand the likelihood of exposure to DMO in foods from DT soy, enzymatically active and/or immunodetectable forms of DMO were measured in pilot-scale productions of two soy foods (soymilk and tofu), and eight processed fractions (full fat flour, inactivated full fat flour, defatted flour, toasted meal, protein isolate, protein concentrate, crude lecithin, and refined, bleached and deodorized oil). Western blot analysis detected DMO in tofu and in five of the eight processed fractions. DMO activity was not detected in either soymilk or tofu, nor in six of the eight processed fractions. Therefore, many commercial soy processing methods can denature and/or degrade introduced proteins, like DMO. Although the DMO protein has shown no evidence of hazard, this study demonstrates that processing further reduces any food or feed risk by limiting dietary exposure to intact DMO protein.
Collapse
Affiliation(s)
- Thomas C Lee
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA.
| | - Thomas C Edrington
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA
| | - Erin Bell
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA
| | - Luis A Burzio
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA
| | - Kevin C Glenn
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA
| |
Collapse
|
24
|
Herman RA, Zhuang M, Storer NP, Cnudde F, Delaney B. Risk-Only Assessment of Genetically Engineered Crops Is Risky. TRENDS IN PLANT SCIENCE 2019; 24:58-68. [PMID: 30385102 DOI: 10.1016/j.tplants.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
The risks of not considering benefits in risk assessment are often overlooked. Risks are also often evaluated without consideration of the broader context. We discuss these two concepts in relation to genetically engineered (GE) crops. The health, environmental, and economic risks and benefits of GE crops are exemplified and presented in the context of modern agriculture. Misattribution of unique risks to GE crops are discussed. It is concluded that the scale of modern agriculture is its distinguishing characteristic and that the greater knowledge around GE crops allows for a more thorough characterization of risk. By considering the benefits and risks in the context of modern agriculture, society will be better served and benefits will be less likely to be forgone.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | - Meibao Zhuang
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Nicholas P Storer
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Filip Cnudde
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, Avenue des Arts 44 1040, Brussels, Belgium
| | - Bryan Delaney
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, 7100 NW 62nd Avenue, Johnston, IA, 50131, USA
| |
Collapse
|
25
|
Chinnadurai P, Stojšin D, Liu K, Frierdich GE, Glenn KC, Geng T, Schapaugh A, Huang K, Deffenbaugh AE, Liu ZL, Burzio LA. Variability of CP4 EPSPS expression in genetically engineered soybean (Glycine max L. Merrill). Transgenic Res 2018; 27:511-524. [PMID: 30173346 PMCID: PMC6267263 DOI: 10.1007/s11248-018-0092-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
Abstract
The expression of the CP4 EPSPS protein in genetically engineered (GE) soybean confers tolerance to the Roundup® family of agricultural herbicides. This study evaluated the variability of CP4 EPSPS expression using an enzyme-linked immunosorbent assay in soybean tissues collected across diverse germplasm and 74 different environments in Argentina, Brazil and the USA. Evaluated material included single and combined (stacked) trait products with other GE traits in entries with cp4 epsps gene at one or two loci. The highest level of CP4 EPSPS was observed in leaf tissues, intermediate in forage and seed, and lowest in root tissues. Varieties with two loci had approximately twice the level of CP4 EPSPS expression compared to one locus entries. Variable and non-directional level of CP4 EPSPS was observed with other factors like genetic background, trait stacking, growing region or season. The maximum and average CP4 EPSPS expression levels in seed provided large margins of exposure (MOE of approximately 4000 and 11,000, respectively), mitigating concerns over exposure to this protein in food and feed from soybean varieties tolerant to Roundup® herbicides.
Collapse
Affiliation(s)
| | - Duška Stojšin
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Kang Liu
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Gregory E Frierdich
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Kevin C Glenn
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Tao Geng
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Adam Schapaugh
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Keguo Huang
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | | | - Zi L Liu
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| | - Luis A Burzio
- Bayer Crop Sciences, 700 Chesterfield Parkway West, St. Louis, MO, 63017, USA
| |
Collapse
|
26
|
Wang C, Li W, Kessenich CR, Petrick JS, Rydel TJ, Sturman EJ, Lee TC, Glenn KC, Edrington TC. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regul Toxicol Pharmacol 2018; 99:50-60. [DOI: 10.1016/j.yrtph.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
|
27
|
Dreesen R, Capt A, Oberdoerfer R, Coats I, Pallett KE. Characterization and safety evaluation of HPPD W336, a modified 4-hydroxyphenylpyruvate dioxygenase protein, and the impact of its expression on plant metabolism in herbicide-tolerant MST-FGØ72-2 soybean. Regul Toxicol Pharmacol 2018; 97:170-185. [PMID: 29894735 DOI: 10.1016/j.yrtph.2018.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/09/2018] [Accepted: 06/05/2018] [Indexed: 01/29/2023]
Abstract
By transgenic expression technology, a modified 4-hydroxyphenylpyruvate dioxygenase enzyme (HPPD W336) originating from Pseudomonas fluorescens is expressed in MST-FGØ72-2 soybean to confer tolerance to 4-benzoyl isoxazole and triketone type of herbicides. Characterization and safety assessment of HPPD W336 were performed. No relevant sequence homologies were found with known allergens or toxins. Although sequence identity to known toxins showed identity to HPPD proteins annotated as hemolysins, the absence of hemolytic activity of HPPD W336 was demonstrated in vitro. HPPD W336 degrades rapidly in simulated gastric fluid. The absence of toxicity and hemolytic potential of HPPD W336 was confirmed by in vivo studies. The substrate spectrum of HPPD W336 was compared with wild type HPPD proteins, demonstrating that its expression is unlikely to induce any metabolic shifts in soybean. The potential effect of expression of HPPD W336 on metabolic pathways related to tyrosine was investigated by comparing seed composition of MST-FGØ72-2 soybean with non-genetically modified varieties, demonstrating that expression of HPPD W336 does not change aromatic amino acid, homogentisate and tocochromanol levels. In conclusion, HPPD W336 was demonstrated to be as safe as other food proteins. No adverse metabolic effects were identified related to HPPD W336 expression in MST-FGØ72-2 soybean.
Collapse
Affiliation(s)
- Rozemarijn Dreesen
- Bayer CropScience N.V. - Innovation Center, Tech Lane Ghent Science Park 38, B-9052, Gent, Belgium.
| | - Annabelle Capt
- Bayer S.A.S., Bayer CropScience, 355 rue Dostoïevski, 06903, Sophia Antipolis, France.
| | - Regina Oberdoerfer
- Bayer A.G., CropScience Division, Alfred-Nobel-Straße 50, 40789, Monheim, Germany.
| | - Isabelle Coats
- Bayer CropScience L.P., 2 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Kenneth Edward Pallett
- Bayer CropScience N.V. - Innovation Center, Tech Lane Ghent Science Park 38, B-9052, Gent, Belgium.
| |
Collapse
|
28
|
Zou S, Lang T, Liu X, Huang K, He X. Safety evaluation of genetically modified DAS-40278-9 maize in a subchronic rodent feeding study. Regul Toxicol Pharmacol 2018; 96:146-152. [DOI: 10.1016/j.yrtph.2018.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 12/01/2022]
|
29
|
Food safety evaluation for R-proteins introduced by biotechnology: A case study of VNT1 in late blight protected potatoes. Regul Toxicol Pharmacol 2018. [DOI: 10.1016/j.yrtph.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Zimmermann C, Eaton A, Lanter B, Roper J, Hurley B, Delaney B. Extended exposure duration of cultured intestinal epithelial cell monolayers in characterizing hazardous and non-hazardous proteins. Food Chem Toxicol 2018; 115:451-459. [DOI: 10.1016/j.fct.2018.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023]
|
31
|
Distinguishing allergens from non-allergenic homologues using Physical-Chemical Property (PCP) motifs. Mol Immunol 2018; 99:1-8. [PMID: 29627609 DOI: 10.1016/j.molimm.2018.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
Quantitative guidelines to distinguish allergenic proteins from related, but non-allergenic ones are urgently needed for regulatory agencies, biotech companies and physicians. In a previous study, we found that allergenic proteins populate a relatively small number of protein families, as characterized by the Pfam database. However, these families also contain non-allergenic proteins, meaning that allergenic determinants must lie within more discrete regions of the sequence. Thus, new methods are needed to discriminate allergenic proteins within those families. Physical-Chemical Properties (PCP)-motifs specific for allergens within a Pfam class were determined for 17 highly populated protein domains. A novel scoring method based on PCP-motifs that characterize known allergenic proteins within these families was developed, and validated for those domains. The motif scores distinguished sequences of allergens from a large selection of 80,000 randomly selected non-allergenic sequences. The motif scores for the birch pollen allergen (Bet v 1) family, which also contains related fruit and nut allergens, correlated better than global sequence similarities with clinically observed cross-reactivities among those allergens. Further, we demonstrated that the average scores of allergen specific motifs for allergenic profilins are significantly different from the scores of non-allergenic profilins. Several of the selective motifs coincide with experimentally determined IgE epitopes of allergenic profilins. The motifs also discriminated allergenic pectate lyases, including Jun a 1 from mountain cedar pollen, from similar proteins in the human microbiome, which can be assumed to be non-allergens. The latter lacked key motifs characteristic of the known allergens, some of which correlate with known IgE binding sites.
Collapse
|
32
|
Herman RA, Ekmay RD, Schafer BW, Song P, Fast BJ, Papineni S, Shan G, Juberg DR. Food and feed safety of DAS-444Ø6-6 herbicide-tolerant soybean. Regul Toxicol Pharmacol 2018; 94:70-74. [PMID: 29366656 DOI: 10.1016/j.yrtph.2018.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/17/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022]
Abstract
DAS-444Ø6-6 soybean was genetically engineered (GE) to withstand applications of three different herbicides. Tolerance to glufosinate and glyphosate is achieved through expression of the phosphinothricin acetyltransferase (PAT) and double-mutated maize 5-enolpyruvyl shikimate-3-phosphate synthase (2mEPSPS) enzymes, respectively. These proteins are expressed in currently commercialized crops and represent no novel risk. Tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) is achieved through expression of the aryloxyalkanoate dioxygenase 12 (AAD-12) enzyme, which is novel in crops. The safety of the AAD-12 protein and DAS-444Ø6-6 event was assessed for food and feed safety based on the weight of evidence and found to be as safe as non-GE soybean.
Collapse
Affiliation(s)
- Rod A Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Ricardo D Ekmay
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Barry W Schafer
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Ping Song
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Brandon J Fast
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Sabitha Papineni
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Guomin Shan
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Daland R Juberg
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| |
Collapse
|
33
|
Anderson JA, Staley J, Challender M, Heuton J. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Res 2018; 27:103-113. [PMID: 29427161 PMCID: PMC5847145 DOI: 10.1007/s11248-018-0061-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022]
Abstract
Genetically modified crops undergo extensive evaluation to characterize their food, feed and environmental safety prior to commercial introduction, using a well-established, science-based assessment framework. One component of the safety assessment includes an evaluation of each introduced trait, including its source organism, for potential adverse pathogenic, toxic and allergenic effects. Several Pseudomonas species have a history of safe use in agriculture and certain species represent a source of genes with insecticidal properties. The ipd072Aa gene from P. chlororaphis encodes the IPD072Aa protein, which confers protection against certain coleopteran pests when expressed in maize plants. P. chlororaphis is ubiquitous in the environment, lacks known toxic or allergenic properties, and has a history of safe use in agriculture and in food and feed crops. This information supports, in part, the safety assessment of potential traits, such as IPD072Aa, that are derived from this source organism.
Collapse
Affiliation(s)
| | - Jamie Staley
- DuPont Pioneer, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mary Challender
- DuPont Pioneer, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Jamie Heuton
- DuPont Pioneer, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| |
Collapse
|
34
|
Papineni S, Thomas J, Marshall VA, Juberg DR, Herman RA. No treatment-related effects with aryloxyalkanoate dioxygenase-12 in three 28-day mouse toxicity studies. Regul Toxicol Pharmacol 2018; 92:220-225. [PMID: 29258926 DOI: 10.1016/j.yrtph.2017.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/28/2022]
Abstract
The aryloxyalkanoate dioxygenase-12 (AAD-12) protein is expressed in genetically modified soybean events DAS-68416-4 and DAS-444Ø6-6. Expression of the AAD-12 protein in soybeans confers tolerance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) providing an additional herbicide choice to farmers. This enzyme acts by catalyzing the degradation of 2,4-D into herbicidally inactive metabolites. To meet evolving interpretation of regulations in the European Union, three separate 28-day repeat-dose oral mouse studies were conducted at increasing doses of up to 1100 mg AAD-12 protein/kg bw/day. No treatment-related effects were seen in any of these three studies.
Collapse
Affiliation(s)
- Sabitha Papineni
- Dow AgroSciences LLC., 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | - Johnson Thomas
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Washington Street, Midland, MI 48674, USA.
| | - Valerie A Marshall
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Washington Street, Midland, MI 48674, USA.
| | - Daland R Juberg
- Dow AgroSciences LLC., 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | - Rod A Herman
- Dow AgroSciences LLC., 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| |
Collapse
|
35
|
Delaney B, Goodman RE, Ladics GS. Food and Feed Safety of Genetically Engineered Food Crops. Toxicol Sci 2017; 162:361-371. [DOI: 10.1093/toxsci/kfx249] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Bryan Delaney
- DuPont Pioneer, International, Inc, 8325 N 62nd Avenue, Johnston, IA 50131, USA
| | - Richard E Goodman
- Food Science & Technology, University of Nebraska, 1901 North 21St Street, Lincoln Nebraska, Lincoln, NE 68588, USA
| | - Gregory S Ladics
- DuPont Haskell Laboratory, 1090 Elkton Road, Newark, DE, 19711, USA
| |
Collapse
|
36
|
Papineni S, Golden RM, Thomas J. The aryloxyalkanoate dioxygenase-12 (AAD-12) protein is not acutely toxic in mice. Food Chem Toxicol 2017; 110:200-203. [PMID: 29066407 DOI: 10.1016/j.fct.2017.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Typically, when a protein is orally toxic, it acts via acute mechanisms, especially at high doses. Therefore, an acute oral toxicity study is considered appropriate for evaluating the safety of transgenic proteins. Soybean plants (events DAS-68416-4 and DAS-444Ø6-6) have been genetically modified to express the aryloxyalkanoate dioxygenase-12 (AAD-12) protein. The AAD-12 protein provides tolerance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). This paper summarizes the study designs of two acute oral toxicity studies evaluating the AAD-12 protein and reports the results of these studies. No mortalities or adverse effects were observed in mice when AAD-12 was tested up to a limit dose of 5000 mg/kg body weight. Based on the results of these studies, it can be concluded that AAD-12 protein, as expressed in genetically modified DAS-68416-4 and DAS-444Ø6-6 soybeans, lacks acute toxicity via the oral route.
Collapse
Affiliation(s)
| | - Rachel M Golden
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, USA
| | - Johnson Thomas
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, USA
| |
Collapse
|
37
|
Delaney B. In vitro studies with human intestinal epithelial cell line monolayers for protein hazard characterization. Food Chem Toxicol 2017; 110:425-433. [DOI: 10.1016/j.fct.2017.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
|
38
|
Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses. Int J Mol Sci 2017; 18:ijms18112300. [PMID: 29104238 PMCID: PMC5713270 DOI: 10.3390/ijms18112300] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 11/23/2022] Open
Abstract
Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.
Collapse
|
39
|
Functional classification of protein toxins as a basis for bioinformatic screening. Sci Rep 2017; 7:13940. [PMID: 29066768 PMCID: PMC5655178 DOI: 10.1038/s41598-017-13957-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Proteins are fundamental to life and exhibit a wide diversity of activities, some of which are toxic. Therefore, assessing whether a specific protein is safe for consumption in foods and feeds is critical. Simple BLAST searches may reveal homology to a known toxin, when in fact the protein may pose no real danger. Another challenge to answer this question is the lack of curated databases with a representative set of experimentally validated toxins. Here we have systematically analyzed over 10,000 manually curated toxin sequences using sequence clustering, network analysis, and protein domain classification. We also developed a functional sequence signature method to distinguish toxic from non-toxic proteins. The current database, combined with motif analysis, can be used by researchers and regulators in a hazard screening capacity to assess the potential of a protein to be toxic at early stages of development. Identifying key signatures of toxicity can also aid in redesigning proteins, so as to maintain their desirable functions while reducing the risk of potential health hazards.
Collapse
|
40
|
Farmer DR, Edrington TC, Kessenich CR, Wang C, Petrick JS. Improving insect control protein activity for GM crops: A case study demonstrating that increased target insect potency can be achieved without impacting mammalian safety. Regul Toxicol Pharmacol 2017; 89:155-164. [DOI: 10.1016/j.yrtph.2017.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
|
41
|
Matthews BA, Launis KL, Bauman PA, Juba NC. Double-Mutated 5-Enol Pyruvylshikimate-3-phosphate Synthase Protein Expressed in MZHG0JG Corn (Zea mays L.) Has No Impact on Toxicological Safety and Nutritional Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8459-8465. [PMID: 28892386 DOI: 10.1021/acs.jafc.7b02217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MZHG0JG corn will offer growers the flexibility to alternate between herbicides with two different modes of action in their weed-management programs, helping to mitigate and manage the evolution of herbicide resistance in weed populations. The proteins conferring herbicide tolerence in MZHG0JG corn, double-mutated 5-enol pyruvylshikimate-3-phosphate synthase protein (mEPSPS) and phosphinothricin acetyltransferase (PAT), as well as the MZHG0JG corn event, have been assessed by regulatory authorities globally and have been determined to be safe for humans, animals, and the environment. In addition to the safety data available for these proteins, further studies were conducted on MZHG0JG corn to assess levels of mEPSPS as compared to previously registered genetically modified (GM) corn. The results support the conclusion of no impact on toxicological safety or nutritional composition.
Collapse
Affiliation(s)
- Bethany A Matthews
- Syngenta Crop Protection, LLC , Research Triangle Park, Durham, North Carolina 27709, United States
| | - Karen L Launis
- Syngenta Crop Protection, LLC , Research Triangle Park, Durham, North Carolina 27709, United States
| | - Patricia A Bauman
- Syngenta Crop Protection, LLC , Research Triangle Park, Durham, North Carolina 27709, United States
| | - Nicole C Juba
- Syngenta Crop Protection, LLC , Research Triangle Park, Durham, North Carolina 27709, United States
| |
Collapse
|
42
|
Booth ED, Rawlinson PJ, Maria Fagundes P, Leiner KA. Regulatory requirements for genotoxicity assessment of plant protection product active ingredients, impurities, and metabolites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:325-344. [PMID: 28329407 DOI: 10.1002/em.22084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Active ingredients in plant protection products are subject to rigorous safety assessment during their development, including assessment of genotoxicity. Plant protection products are used for agriculture in multiple regions and for the registration of active ingredients it is necessary to satisfy the data requirements of these different regions. There are no overarching global agreements on which genotoxicity studies need to be conducted to satisfy the majority of regulatory authorities. The implementation of new OECD guidelines for the in vitro micronucleus, transgenic rodent somatic and germ cell gene mutation and in vivo comet assays, as well as the revision of a number of other OECD test guidelines has resulted in some changes to data requirements. This review describes the genotoxicity data requirements for chemical active ingredients as well as biologicals, microbials, ground water metabolites, metabolites, and impurities in a number of regions. Similarities and differences are highlighted. Environ. Mol. Mutagen. 58:325-344, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ewan D Booth
- Department of Toxicology and Health Sciences, Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Paul J Rawlinson
- Department of Toxicology and Health Sciences, Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Priscila Maria Fagundes
- Department of Product Safety, Syngenta Protecao de Cultivos Ltda, Sao Paulo, SP, 04795-900, Brazil
| | - Kevin A Leiner
- Department of Toxicology and Health Sciences, Syngenta Crop Protection LLC, Research Triangle Park, North Carolina
| |
Collapse
|
43
|
Eaton AD, Zimmermann C, Delaney B, Hurley BP. Primary human polarized small intestinal epithelial barriers respond differently to a hazardous and an innocuous protein. Food Chem Toxicol 2017; 106:70-77. [PMID: 28533127 DOI: 10.1016/j.fct.2017.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 02/08/2023]
Abstract
An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins.
Collapse
Affiliation(s)
- A D Eaton
- Department of Pediatrics, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - B P Hurley
- Department of Pediatrics, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Cowley H, Yan Q, Koetzner L, Dolan L, Nordwald E, Cowley AB. In vitro and in vivo safety evaluation of Nephure™. Regul Toxicol Pharmacol 2017; 86:241-252. [PMID: 28322893 PMCID: PMC5500298 DOI: 10.1016/j.yrtph.2017.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Nephure™ is a proprietary oxalate decarboxylase (OxDC) enzyme being developed as a food ingredient. In this study, the safety of Nephure™ was evaluated in a bacterial mutagenicity assay and in a sub-chronic (13-week) oral toxicity study in rats. Nephure™ did not show any mutagenic properties in the mutagenicity assay. In the 13-week sub-chronic oral toxicity study in which 10 Sprague Dawley rats per sex were administered 0, 118, 235 and 475 mg/kg bw/day (8260, 16450 and 33,250 Units/kg bw/day, respectively) of Nephure™ by gavage, male and female rats did not show any test article-related clinical observations or effects on body weight, body weight gain, food consumption, food efficiency, ophthalmology, functional observational battery parameters or motor activity. Furthermore, there were no changes in coagulation, clinical chemistry, urinalysis or hematology parameters, macroscopic/microscopic findings or organ weights that could be attributed to the test article. Based on these results, Nephure™ was not mutagenic and the no-adverse-effect level (NOAEL) in the 13-week study was determined to be 475 mg/kg bw/day (33,250 Units/kg bw/day). Evaluation of the estimated consumption of Nephure™, generation of the metabolite formate, and the current safety studies resulted in a conclusion of a tolerable upper limit of 3450 Units of OxDC activity/day (57.5 Units activity/kg bw/day), when Nephure™ is added to food to decrease dietary oxalate.
Collapse
Affiliation(s)
- Helena Cowley
- Captozyme Inc., 1622 NW 55th Place Gainesville FL 32653, United States
| | - Qin Yan
- Captozyme Inc., 1622 NW 55th Place Gainesville FL 32653, United States
| | - Lee Koetzner
- Product Safety Laboratories, 2394 Highway 130, Dayton, NJ 08810, United States
| | - Laurie Dolan
- Burdock Group, 859 Outer Road, Orlando FL 32801, United States
| | - Erik Nordwald
- Captozyme Inc., 1622 NW 55th Place Gainesville FL 32653, United States
| | - Aaron B Cowley
- Captozyme Inc., 1622 NW 55th Place Gainesville FL 32653, United States.
| |
Collapse
|
45
|
Moar WJ, Evans AJ, Kessenich CR, Baum JA, Bowen DJ, Edrington TC, Haas JA, Kouadio JLK, Roberts JK, Silvanovich A, Yin Y, Weiner BE, Glenn KC, Odegaard ML. The sequence, structural, and functional diversity within a protein family and implications for specificity and safety: The case for ETX_MTX2 insecticidal proteins. J Invertebr Pathol 2017; 142:50-59. [DOI: 10.1016/j.jip.2016.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/26/2022]
|
46
|
Koch MS, DeSesso JM, Williams AL, Michalek S, Hammond B. Adaptation of the ToxRTool to Assess the Reliability of Toxicology Studies Conducted with Genetically Modified Crops and Implications for Future Safety Testing. Crit Rev Food Sci Nutr 2016; 56:512-26. [PMID: 25208336 DOI: 10.1080/10408398.2013.788994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To determine the reliability of food safety studies carried out in rodents with genetically modified (GM) crops, a Food Safety Study Reliability Tool (FSSRTool) was adapted from the European Centre for the Validation of Alternative Methods' (ECVAM) ToxRTool. Reliability was defined as the inherent quality of the study with regard to use of standardized testing methodology, full documentation of experimental procedures and results, and the plausibility of the findings. Codex guidelines for GM crop safety evaluations indicate toxicology studies are not needed when comparability of the GM crop to its conventional counterpart has been demonstrated. This guidance notwithstanding, animal feeding studies have routinely been conducted with GM crops, but their conclusions on safety are not always consistent. To accurately evaluate potential risks from GM crops, risk assessors need clearly interpretable results from reliable studies. The development of the FSSRTool, which provides the user with a means of assessing the reliability of a toxicology study to inform risk assessment, is discussed. Its application to the body of literature on GM crop food safety studies demonstrates that reliable studies report no toxicologically relevant differences between rodents fed GM crops or their non-GM comparators.
Collapse
Affiliation(s)
- Michael S Koch
- a Monsanto Company, Product Safety Center , St. Louis , Missouri , USA
| | | | | | - Suzanne Michalek
- c Department of Microbiology, University of Alabama at Birmingham , Birmingham , Alabama , USA
| | - Bruce Hammond
- a Monsanto Company, Product Safety Center , St. Louis , Missouri , USA
| |
Collapse
|
47
|
Hurley BP, Eaton AD, Zimmermann C, Delaney B. Polarized monolayer cultures of human intestinal epithelial cell lines exposed to intractable proteins - In vitro hazard identification studies. Food Chem Toxicol 2016; 98:262-268. [DOI: 10.1016/j.fct.2016.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 12/01/2022]
|
48
|
Wang C, Glenn KC, Kessenich C, Bell E, Burzio LA, Koch MS, Li B, Silvanovich A. Safety assessment of dicamba mono-oxygenases that confer dicamba tolerance to various crops. Regul Toxicol Pharmacol 2016; 81:171-182. [PMID: 27575686 DOI: 10.1016/j.yrtph.2016.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
Dicamba tolerant (DT) soybean, cotton and maize were developed through constitutive expression of dicamba mono-oxygenase (DMO) in chloroplasts. DMO expressed in three DT crops exhibit 91.6-97.1% amino acid sequence identity to wild type DMO. All DMO forms maintain the characteristics of Rieske oxygenases that have a history of safe use. Additionally, they are all functionally similar in vivo since the three DT crops are all tolerant to dicamba treatment. None of these DMO sequences were found to have similarity to any known allergens or toxins. Herein, to further understand the safety of these DMO variants, a weight of evidence approach was employed. Each purified DMO protein was found to be completely deactivated in vitro by heating at temperatures 55 °C and above, and all were completely digested within 30 s or 5 min by pepsin and pancreatin, respectively. Mice orally dosed with each of these DMO proteins showed no adverse effects as evidenced by analysis of body weight gain, food consumption and clinical observations. Therefore, the weight of evidence from all these protein safety studies support the conclusion that the various forms of DMO proteins introduced into DT soybean, cotton and maize are safe for food and feed consumption, and the small amino acid sequence differences outside the active site of DMO do not raise any additional safety concerns.
Collapse
MESH Headings
- Administration, Oral
- Amino Acid Sequence
- Animals
- Computational Biology
- Consumer Product Safety
- Crops, Agricultural/enzymology
- Crops, Agricultural/genetics
- Crops, Agricultural/toxicity
- Databases, Protein
- Dicamba/pharmacology
- Drug Resistance/genetics
- Enzyme Stability
- Female
- Food Safety
- Food, Genetically Modified/parasitology
- Food, Genetically Modified/toxicity
- Gene Expression Regulation, Plant
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/toxicity
- Herbicides/pharmacology
- Humans
- Male
- Mice
- Mixed Function Oxygenases/administration & dosage
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Mixed Function Oxygenases/toxicity
- Oxidoreductases, O-Demethylating/toxicity
- Pancreatin/metabolism
- Pepsin A/metabolism
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/toxicity
- Protein Denaturation
- Proteolysis
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/toxicity
- Risk Assessment
- Glycine max/enzymology
- Glycine max/genetics
- Glycine max/toxicity
- Stenotrophomonas maltophilia/enzymology
- Stenotrophomonas maltophilia/genetics
- Temperature
- Toxicity Tests, Acute
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/toxicity
Collapse
Affiliation(s)
- Cunxi Wang
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA.
| | - Kevin C Glenn
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Colton Kessenich
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Erin Bell
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Luis A Burzio
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Michael S Koch
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Bin Li
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Andre Silvanovich
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| |
Collapse
|
49
|
Zhang L, Guo R, Fang Z, Liu B. Genetically modified rice Bt-Shanyou63 expressing Cry1Ab/c protein does not harm Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:196-201. [PMID: 27322607 DOI: 10.1016/j.ecoenv.2016.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
The genetically modified (GM) rice Bt-ShanYou63 (Bt-SY63) received an official biosafety certificate while its safety remained in dispute. In a lifelong study, Daphnia magna were experimentally fed a basal diet of rice flours from Bt-SY63 or its parental rice ShanYou63 (SY63) at concentrations of 0.2mg, 0.3mg, or 0.4mgC (per individual per day). Overall the survival, body size, and reproduction of the animals were comparable between Bt-SY63 and ShanYou63.. The results showed that no significant differences were observed in growth and reproduction parameters between D. magna fed GM and non-GM flour and no dose-related changes occurred in all the values. Based on the different parameters assessed, the GM rice Bt-SY63 is a safe food source for D. magna that does not differ in quality from non-GM rice.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences(NIES), Ministry of Environmental Protection of China, No 8, Jiang-wang-miao Street, Nanjing, Jiangsu 210042, China
| | - Ruqing Guo
- State Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences(NIES), Ministry of Environmental Protection of China, No 8, Jiang-wang-miao Street, Nanjing, Jiangsu 210042, China
| | - Zhixiang Fang
- State Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences(NIES), Ministry of Environmental Protection of China, No 8, Jiang-wang-miao Street, Nanjing, Jiangsu 210042, China
| | - Biao Liu
- State Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences(NIES), Ministry of Environmental Protection of China, No 8, Jiang-wang-miao Street, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
50
|
Narva KE, Wang NX, Herman R. Safety considerations derived from Cry34Ab1/Cry35Ab1 structure and function. J Invertebr Pathol 2016; 142:27-33. [PMID: 27480405 DOI: 10.1016/j.jip.2016.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 11/16/2022]
Abstract
Insecticidal proteins developed for in-plant protection against crop pests undergo extensive safety testing during the product development process. Safety considerations for insecticidal proteins expressed in crops follow recommended, science-based guidelines and specific studies are conducted on a case by case basis. Corn events expressing Bacillus thuringiensis (Bt) Cry34Ab1 and Cry35Ab1 were developed to protect maize from Diabrotica virgifera virgifera (western corn rootworm) feeding damage. The protein crystal structures of Cry34Ab1 and Cry35Ab1 are different from the more common three-domain Cry or Vip3 proteins expressed in insect resistant maize varieties. Cry34Ab1 is a single domain protein that folds into a beta sandwich structure that resembles membrane-active proteins, including several cytolysins, from a variety of natural sources. Cry35Ab1 has two domains, one domain with structural relatedness to sugar binding motifs and a second domain with an extended beta sheet structure that is clearly related to beta pore forming proteins, some of which are insecticidal, e.g. B. sphaericus BinA/BinB. In this review we discuss Cry34Ab1/Cry35Ab1 structure and function in the context of protein safety studies for insect resistant crops.
Collapse
Affiliation(s)
- Kenneth E Narva
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | - Nick X Wang
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Rod Herman
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| |
Collapse
|