1
|
Hammond HL, Roy CJ. History and Toxinology of Palytoxins. Toxins (Basel) 2024; 16:417. [PMID: 39453193 PMCID: PMC11511052 DOI: 10.3390/toxins16100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Palytoxins are a group of highly potent and structurally complex marine toxins that rank among some of the most toxic substances known to science. Palytoxins are naturally synthesized by a variety of marine organisms, including Palythoa zoanthids, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria, and are widely distributed in tropical and temperate regions where they can bioaccumulate in marine life. The evolution of research on palytoxins has been an intricate exchange between interdisciplinary fields, drawing insights from chemistry, biology, medicine, and environmental science in efforts to better understand and mitigate the health risks associated with this family of toxins. In this review, we begin with a brief history covering the discovery of this group of toxins and the events that led to its isolation. We then focus on the chemical structure of these compounds and their proposed mechanism of action. Finally, we review in vitro, ex vivo, and in vivo studies related to their toxicity, with the aim to provide a broad overview of the current knowledge on palytoxin toxinology.
Collapse
Affiliation(s)
- Harriet L. Hammond
- Center for Airborne Infection & Transmission Science, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chad J. Roy
- Center for Airborne Infection & Transmission Science, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| |
Collapse
|
2
|
Zeng Y, Li J, Zhao Y, Yang W. Community ecological response to polycyclic aromatic hydrocarbons in Baiyangdian Lake based on an ecological model. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:34-46. [PMID: 38182933 PMCID: PMC10830818 DOI: 10.1007/s10646-023-02722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
The dynamic response of a single population to chemicals can be represented by a Weibull function. However, it is unclear whether the overall response can still be represented in this manner when scaled up to the community level. In this study, we investigated the responses of biological communities to polycyclic aromatic hydrocarbons by using an ecological model of Baiyangdian Lake in northern China. The community dynamics process was divided into the following three stages. In the first stage, toxicity, played a dominant role and strong, medium, and weak species responses were observed according to the toxicity sensitivity. In the second stage, the dynamic process was dominated by the interaction strength with three alternative dynamic pathways comprising of direct response, no response, or inverse response. In the third stage, the toxicity was again dominant, and the biomasses of all species decreased to extinction. The toxicological dynamics were far more complex at the community level than those at the single species level and they were also influenced by the interaction strength as well as toxicity. The toxicological dynamic process in the community was constantly driven by the competing effects of these two forces. In addition to the total biomass, the interaction strength was identified as a suitable community-level signal because it exhibited good indicator properties regarding ecosystem steady-state transitions. However, we found that food web stability indicators were not suitable for use as community-level signals because they were not sensitive to changes in the ecosystem state. Some ecological management suggestions have been proposed, including medium to long-term monitoring, and reduction of external pollution loads and bioindicators. The results obtained in this study increase our understanding of how chemicals interfere with community dynamics, and the interaction strength and total biomass were identified as useful holistic indicators.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China.
| | - Jiaxin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Giglio ML, Boland W, Heras H. Egg toxic compounds in the animal kingdom. A comprehensive review. Nat Prod Rep 2022; 39:1938-1969. [PMID: 35916025 DOI: 10.1039/d2np00029f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1951 to 2022Packed with nutrients and unable to escape, eggs are the most vulnerable stage of an animal's life cycle. Consequently, many species have evolved chemical defenses and teamed up their eggs with a vast array of toxic molecules for defense against predators, parasites, or pathogens. However, studies on egg toxins are rather scarce and the available information is scattered. The aim of this review is to provide an overview of animal egg toxins and to analyze the trends and patterns with respect to the chemistry and biosynthesis of these toxins. We analyzed their ecology, distribution, sources, occurrence, structure, function, relative toxicity, and mechanistic aspects and include a brief section on the aposematic coloration of toxic eggs. We propose criteria for a multiparametric classification that accounts for the complexity of analyzing the full set of toxins of animal eggs. Around 100 properly identified egg toxins are found in 188 species, distributed in 5 phyla: cnidarians (2) platyhelminths (2), mollusks (9), arthropods (125), and chordates (50). Their scattered pattern among animals suggests that species have evolved this strategy independently on numerous occasions. Alkaloids are the most abundant and widespread, among the 13 types of egg toxins recognized. Egg toxins are derived directly from the environment or are endogenously synthesized, and most of them are transferred by females inside the eggs. Their toxicity ranges from ρmol kg-1 to mmol kg-1, and for some species, experiments support their role in predation deterrence. There is still a huge gap in information to complete the whole picture of this field and the number of toxic eggs seems largely underestimated.
Collapse
Affiliation(s)
- Matías L Giglio
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina. .,Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
4
|
Functional and Structural Biological Methods for Palytoxin Detection. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Palytoxin (PLTX) and its analogues are marine polyethers identified in Palythoa and Zoanthus corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Humans can be exposed to these toxins by different routes with a series of adverse effects but the most severe risk is associated with poisonings by the consumption of edible marine organisms accumulating these toxins, as occurs in (sub)-tropical areas. In temperate areas, adverse effects ascribed to PLTXs have been recorded after inhalation of marine aerosols and/or cutaneous contact with seawater during Ostreopsis blooms, as well as during cleaning procedures of Palythoa-containing home aquaria. Besides instrumental analytical methods, in the last years a series of alternative or complementary methods based on biological/biochemical tools have been developed for the rapid and specific PLTX detection required for risk assessment. These methods are usually sensitive, cost- and time-effective, and do not require highly specialized operators. Among them, structural immunoassays and functional cell-based assays are reviewed. The availability of specific anti-PLTX antibodies allowed the development of different sensitive structural assays, suitable for its detection also in complex matrices, such as mussels. In addition, knowing the mechanism of PLTX action, a series of functional identification methods has been developed. Despite some of them being limited by matrix effects and specificity issues, biological methods for PLTX detection represent a feasible tool, suitable for rapid screening.
Collapse
|
5
|
Cardoso CW, Oliveira e Silva MM, Bandeira AC, Silva RB, Prates APPB, Soares ÊS, Silva JJM, de Souza LJR, Souza MMDS, Muhana MA, Pires RSS, Araujo Neto JF, Santos MSS, Mafra Junior LL, Alves TP, Schramm MA, Ribeiro GS. Haff Disease in Salvador, Brazil, 2016-2021: Attack rate and detection of toxin in fish samples collected during outbreaks and disease surveillance. LANCET REGIONAL HEALTH. AMERICAS 2021; 5:100092. [PMID: 36776458 PMCID: PMC9904022 DOI: 10.1016/j.lana.2021.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Background From late 2016 to early 2021, cases of Haff disease, a rare cause of rhabdomyolysis, possibly due to poisoning by palytoxin-like compounds in seafood, were detected in Salvador, Brazil. Surveillance was established to detect additional cases aiming at describing the clinical characteristics of the cases, identifying associated factors, estimating disease attack rate, and investigating the presence of biotoxins and trace metals in selected fish specimens obtained from cases. Method Between December/2016-January/2021, surveillance investigated Haff disease suspected cases, and obtained clinical and fish samples to test. Findings Of 65 cases investigated during the 2016-2017 outbreak, 43 (66%) had high creatine phosphokinase (CPK) levels. Among those with laboratory-confirmed rhabdomyolysis, 38 (88%) were hospitalized, 11 (26%) required intensive care, and three (7%) dialysis. Ingestion of marine fish 24h before disease onset was reported by 74% of the cases with elevated CPK and by 41% of those without CPK measurement (P=0·02). Attack rate for individuals who ate fish related to the outbreak was 55%. Following this outbreak, surveillance identified 12 suspected cases between 2017-2019, and a second outbreak in 2020-2021, with 16 laboratory-confirmed rhabdomyolysis patients (five required intensive care; one died). No traces of ciguatoxins and metals were detected in fish specimens obtained in 2016, found to be Seriola rivoliana. Some fish samples from 2020 were screened for palytoxin (PlTX)-like compounds and contained detectable levels of molecule fragments characteristics of isobaric PlTX, ovatoxin-a (OVTX-a), OVTX-b and OVTX-d. Interpretation These findings support the hypothesis that compounds related to PlTX accumulated in marine fish may be the toxic agent causing the disease. Haff disease is a life-threatening condition, requiring clinical suspicion for patients with sudden-onset myalgia following fish ingestion. Suspected cases should be reported to health authorities for investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Guilherme Sousa Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil,Corresponding author:
| |
Collapse
|
6
|
Reevaluation of the acute toxicity of palytoxin in mice: Determination of lethal dose 50 (LD 50) and No-observed-adverse-effect level (NOAEL). Toxicon 2020; 177:16-24. [PMID: 32056831 DOI: 10.1016/j.toxicon.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Palytoxin is an emergent toxin in Europe and one of the most toxic substances know to date. The toxin disrupts the physiological functioning of the Na+/K+-ATPase converting the enzyme in a permeant cation channel. Human intoxications by PLTX after consumption of contaminated fishery products are a serious health issue and can be fatal. Several reports have previously investigated the oral and intraperitoneal toxicity of PLTX in mice. However, in all cases short observation periods (24 and 48 h) after toxin administration were evaluated. In this work, single oral or intraperitoneal doses of PLTX were administered to healthy mice and surviving animals were followed up for 96 h. The data obtained here allowed us to calculate the oral and intraperitoneal lethal doses 50 (LD50) which were in the range of the values previously described. Surprisingly, the oral NOAEL for PLTX was more than 10 times lower than that previously described, a fact that indicates the need for the reevaluation of the levels of the toxin in edible fishery products.
Collapse
|
7
|
Hu B, Zhou R, Li Z, Ouyang S, Li Z, Hu W, Wang L, Jiao B. Study of the binding mechanism of aptamer to palytoxin by docking and molecular simulation. Sci Rep 2019; 9:15494. [PMID: 31664144 PMCID: PMC6820544 DOI: 10.1038/s41598-019-52066-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
This paper provides a feasible model for molecular structure analysis and interaction mechanism of aptamer and micromolecule. In this study, modeling and dynamic simulation of ssDNA aptamer (P-18S2) and target (Palytoxin, PTX) were performed separately. Then, the complex structure between DNA and PTX was predicted, and docking results showed that PTX could combine steadily at the groove’s top of DNA model by strong hydrogen-bonds and electrostatic interaction. Thus, we truncated and optimized P-18S2 by simulating. At the same time, we also confirmed the reliability of simulation results by experiments. With the experimental and computational results, the study provided a more reasonable interpretation for the high affinity and specific binding of P-18S2 and PTX, which laid the foundation for further optimization and development of aptamers in molecular diagnostics and therapeutic applications.
Collapse
Affiliation(s)
- Bo Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Rong Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhengang Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Shengqun Ouyang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China
| | - Zhen Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China
| | - Wei Hu
- Chengdu FenDi Technology Co., Ltd, Chengdu, 610041, China
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China. .,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Sakai R, Tanano K, Ono T, Kitano M, Iida Y, Nakano K, Jimbo M. Soritesidine, a Novel Proteinous Toxin from the Okinawan Marine Sponge Spongosorites sp. Mar Drugs 2019; 17:md17040216. [PMID: 30965587 PMCID: PMC6520796 DOI: 10.3390/md17040216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
A novel protein, soritesidine (SOR) with potent toxicity was isolated from the marine sponge Spongosorites sp. SOR exhibited wide range of toxicities over various organisms and cells including brine shrimp (Artemia salina) larvae, sea hare (Aplysia kurodai) eggs, mice, and cultured mammalian cells. Toxicities of SOR were extraordinary potent. It killed mice at 5 ng/mouse after intracerebroventricular (i.c.v.) injection, and brine shrimp and at 0.34 µg/mL. Cytotoxicity for cultured mammalian cancer cell lines against HeLa and L1210 cells were determined to be 0.062 and 12.11 ng/mL, respectively. The SOR-containing fraction cleaved plasmid DNA in a metal ion dependent manner showing genotoxicity of SOR. Purified SOR exhibited molecular weight of 108.7 kDa in MALDI-TOF MS data and isoelectric point of approximately 4.5. N-terminal amino acid sequence up to the 25th residue was determined by Edman degradation. Internal amino acid sequences for fifteen peptides isolated from the enzyme digest of SOR were also determined. None of those amino acid sequences showed similarity to existing proteins, suggesting that SOR is a new proteinous toxin.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| | - Kota Tanano
- School of Marine Bioscience, Kitasato University, Minato City, Tokyo 108-0072, Japan.
| | - Takumi Ono
- School of Marine Bioscience, Kitasato University, Minato City, Tokyo 108-0072, Japan.
| | - Masaya Kitano
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| | - Yusuke Iida
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| | - Koji Nakano
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| | - Mitsuru Jimbo
- School of Marine Bioscience, Kitasato University, Minato City, Tokyo 108-0072, Japan.
| |
Collapse
|
9
|
Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin. Biosens Bioelectron 2016; 89:952-958. [PMID: 27816587 DOI: 10.1016/j.bios.2016.09.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes.
Collapse
|
10
|
Fraga M, Vilariño N, Louzao MC, Fernández DA, Poli M, Botana LM. Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods. Anal Chim Acta 2015; 903:1-12. [PMID: 26709295 DOI: 10.1016/j.aca.2015.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022]
Abstract
Palytoxin (PLTX) is a complex marine toxin produced by zoanthids (i.e. Palythoa), dinoflagellates (Ostreopsis) and cyanobacteria (Trichodesmium). PLTX outbreaks are usually associated with Indo-Pacific waters, however their recent repeated occurrence in Mediterranean-European Atlantic coasts demonstrate their current worldwide distribution. Human sickness and fatalities have been associated with toxic algal blooms and ingestion of seafood contaminated with PLTX-like molecules. These toxins represent a serious threat to human health. There is an immediate need to develop easy-to-use, rapid detection methods due to the lack of validated protocols for their detection and quantification. We have developed an immuno-detection method for PLTX-like molecules based on the use of microspheres coupled to flow-cytometry detection (Luminex 200™). The assay consisted of the competition between free PLTX-like compounds in solution and PLTX immobilized on the surface of microspheres for binding to a specific monoclonal anti-PLTX antibody. This method displays an IC50 of 1.83 ± 0.21 nM and a dynamic range of 0.47-6.54 nM for PLTX. An easy-to-perform extraction protocol, based on a mixture of methanol and acetate buffer, was applied to spiked mussel samples providing a recovery rate of 104 ± 8% and a range of detection from 374 ± 81 to 4430 ± 150 μg kg(-1) when assayed with this method. Extracts of Ostreopsis cf. siamensis and Palythoa tuberculosa were tested and yielded positive results for PLTX-like molecules. However, the data obtained for the coral sample suggested that this antibody did not detect 42-OH-PLTX efficiently. The same samples were further analyzed using a neuroblastoma cytotoxicity assay and UPLC-IT-TOF spectrometry, which also pointed to the presence of PLTX-like compounds. Therefore, this single detection method for PLTX provides a semi-quantitative tool useful for the screening of PLTX-like molecules in different matrixes.
Collapse
Affiliation(s)
- María Fraga
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Diego A Fernández
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Mark Poli
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
11
|
Rial D, Murado MA, Beiras R, Vázquez JA. Toxicity of four spill-treating agents on bacterial growth and sea urchin embryogenesis. CHEMOSPHERE 2014; 104:57-62. [PMID: 24268751 DOI: 10.1016/j.chemosphere.2013.10.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023]
Abstract
The toxicity of spill-treating agents (STAs) is a topic that needs to be assessed prior to their potential application in environmental disasters. The aim of the present work was to study the effects of four commercial STAs (CytoSol, Finasol OSR 51, Agma OSD 569 and OD4000) on the growth of marine (Phaeobacter sp., Pseudomonas sp.) and terrestrial (Leuconostoc mesenteroides) bacteria, and sea urchin (Paracentrotus lividus) embryolarval development. In general, STA did not inhibit significantly the biomass production of the tested marine bacteria. Finasol OSR 51 and OD4000 clearly inhibited the growth of L. mesenteroides and an accurate description of the kinetics was provided by a proposed bivariate equation. For this species, a global parameter (EC50,τ) was defined to summarize the set of growth kinetics. Using this parameter Finasol OSR 51 was found to be less toxic (754μL L(-1)) than OD4000 (129μL L(-1)). For the sea urchin embryo assay, the ranking of toxicity as EC50 (μL L(-1)) was Agma OSD 569 (34.0)<CytoSol (26.3)<OD4000 (2.2)<Finasol OSR 51 (1.2).
Collapse
Affiliation(s)
- Diego Rial
- Grupo de Reciclado e Valorización de Residuos (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), C/Eduardo Cabello 6, CP 36208, Vigo, Spain
| | - Miguel A Murado
- Grupo de Reciclado e Valorización de Residuos (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), C/Eduardo Cabello 6, CP 36208, Vigo, Spain
| | - Ricardo Beiras
- Estación de Ciencias Mariñas de Toralla (ECIMAT - Universidade de Vigo), Illa de Toralla, CP 36331, Galicia, Spain
| | - José A Vázquez
- Grupo de Reciclado e Valorización de Residuos (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), C/Eduardo Cabello 6, CP 36208, Vigo, Spain.
| |
Collapse
|
12
|
Vázquez JA. Modeling of chemical inhibition from amyloid protein aggregation kinetics. BMC Pharmacol Toxicol 2014; 15:9. [PMID: 24572069 PMCID: PMC3939820 DOI: 10.1186/2050-6511-15-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 02/14/2014] [Indexed: 01/01/2023] Open
Abstract
Backgrounds The process of amyloid proteins aggregation causes several human neuropathologies. In some cases, e.g. fibrillar deposits of insulin, the problems are generated in the processes of production and purification of protein and in the pump devices or injectable preparations for diabetics. Experimental kinetics and adequate modelling of chemical inhibition from amyloid aggregation are of practical importance in order to study the viable processing, formulation and storage as well as to predict and optimize the best conditions to reduce the effect of protein nucleation. Results In this manuscript, experimental data of insulin, Aβ42 amyloid protein and apomyoglobin fibrillation from recent bibliography were selected to evaluate the capability of a bivariate sigmoid equation to model them. The mathematical functions (logistic combined with Weibull equation) were used in reparameterized form and the effect of inhibitor concentrations on kinetic parameters from logistic equation were perfectly defined and explained. The surfaces of data were accurately described by proposed model and the presented analysis characterized the inhibitory influence on the protein aggregation by several chemicals. Discrimination between true and apparent inhibitors was also confirmed by the bivariate equation. EGCG for insulin (working at pH = 7.4/T = 37°C) and taiwaniaflavone for Aβ42 were the compounds studied that shown the greatest inhibition capacity. Conclusions An accurate, simple and effective model to investigate the inhibition of chemicals on amyloid protein aggregation has been developed. The equation could be useful for the clear quantification of inhibitor potential of chemicals and rigorous comparison among them.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Reciclado e Valorización de Residuos (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), C/ Eduardo Cabello 6, CP36208 Vigo, Spain.
| |
Collapse
|
13
|
Oversimplification and overstandardization in biological methods: sperm bioassays in ecotoxicology as a case of study and a proposal for their reformulation. ScientificWorldJournal 2014; 2014:936202. [PMID: 24672396 PMCID: PMC3933505 DOI: 10.1155/2014/936202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/27/2013] [Indexed: 11/17/2022] Open
Abstract
An interesting toxicological bioassay (fertilization inhibition in sea urchin) uses as assessment criterion a variable (fertilization ratio) whose variation with time creates two types of difficulties. First, it fails to distinguish between the toxic effect and the spontaneous decline in the sperm activity, causing some inconsistencies. Second, the sensitivity of the fertilization ratio to many other variables of the system requires a complex standardization, constraining the achievement of the method without solving its main problem. Our proposal consists of using a parameter (sperm half-life) as the response of the assay, and describing explicitly the behavior of the system as a simultaneous function of dose and time. This new focus is able to solve the problematic character of the results based on the fertilization ratio and by using the same data set which is required by the conventional approach; it simplifies the protocol, economizes experimental effort, provides unambiguous and robust results, and contributes to the detection of an artefactual temperature effect, which is not very evident under the usual perspective. Potential application of this new approach to the improvement of other formally similar bioassays is finally suggested.
Collapse
|
14
|
Murado MA, Prieto MA. NOEC and LOEC as merely concessive expedients: two unambiguous alternatives and some criteria to maximize the efficiency of dose-response experimental designs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 461-462:576-586. [PMID: 23756217 DOI: 10.1016/j.scitotenv.2013.04.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
NOEC and LOEC (no and lowest observed effect concentrations, respectively) are toxicological concepts derived from analysis of variance (ANOVA), a not very sensitive method that produces ambiguous results and does not provide confidence intervals (CI) of its estimates. For a long time, despite the abundant criticism that such concepts have raised, the field of the ecotoxicology is reticent to abandon them (two possible reasons will be discussed), adducing the difficulty of clear alternatives. However, this work proves that a debugged dose-response (DR) modeling, through explicit algebraic equations, enables two simple options to accurately calculate the CI of substantially lower doses than NOEC. Both ANOVA and DR analyses are affected by the experimental error, response profile, number of observations and experimental design. The study of these effects--analytically complex and experimentally unfeasible--was carried out using systematic simulations with realistic data, including different error levels. Results revealed the weakness of NOEC and LOEC notions, confirmed the feasibility of the proposed alternatives and allowed to discuss the--often violated--conditions that minimize the CI of the parametric estimates from DR assays. In addition, a table was developed providing the experimental design that minimizes the parametric CI for a given set of working conditions. This makes possible to reduce the experimental effort and to avoid the inconclusive results that are frequently obtained from intuitive experimental plans.
Collapse
Affiliation(s)
- M A Murado
- Instituto de Investigacións Mariñas (CSIC), r/Eduardo Cabello 6, 36208-Vigo, Galicia, Spain
| | | |
Collapse
|
15
|
Vilariño N, Louzao MC, Fraga M, Rodríguez LP, Botana LM. Innovative detection methods for aquatic algal toxins and their presence in the food chain. Anal Bioanal Chem 2013; 405:7719-32. [PMID: 23820950 DOI: 10.1007/s00216-013-7108-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 01/17/2023]
Abstract
Detection of aquatic algal toxins has become critical for the protection of human health. During the last 5 years, techniques such as optical, electrochemical, and piezoelectric biosensors or fluorescent-microsphere-based assays have been developed for the detection of aquatic algal toxins, in addition to optimization of existing techniques, to achieve higher sensitivities, specificity, and speed or multidetection. New toxins have also been incorporated in the array of analytical and biological methods. The impact of the former innovation on this field is highlighted by recent changes in legal regulations, with liquid chromatography-mass spectrometry becoming the official reference method for marine lipophilic toxins and replacing the mouse bioassay in many countries. This review summarizes the large international effort to provide routine testing laboratories with fast, sensitive, high-throughput, multitoxin, validated methods for the screening of seafood, algae, and water samples.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain,
| | | | | | | | | |
Collapse
|
16
|
Del Favero G, Beltramo D, Sciancalepore M, Lorenzon P, Coslovich T, Poli M, Testai E, Sosa S, Tubaro A. Toxicity of palytoxin after repeated oral exposure in mice and in vitro effects on cardiomyocytes. Toxicon 2013; 75:3-15. [PMID: 23770425 DOI: 10.1016/j.toxicon.2013.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 11/16/2022]
Abstract
Palytoxin (PLTX) is a highly toxic hydrophilic polyether detected in several edible marine organisms from intra-tropical areas, where seafood poisoning were reported. Symptoms usually start with gastro-intestinal malaise, often accompanied by myalgia, muscular cramps, dyspnea and, sometimes, arrhythmias. Monitoring programs in the Mediterranean Sea have detected PLTX-like molecules in edible mollusks and echinoderms. Despite the potential exposure of the human population and its high toxic potential, the toxicological profile of the molecule is still an issue. Thus, the effects of repeated oral administration of PLTX in mice were investigated. Seven days of PLTX administration caused lethality and toxic effects at doses ≥ 30 μg/kg/day. A NOAEL was estimated equal to 3 μg/kg/day, indicating a quite steep dose-response curve. This value, due to the limited number of animal tested, is provisional, although represents a sound basis for further testing. Macroscopic alterations at gastrointestinal level (gastric ulcers and intestinal fluid accumulation) were observed in mice dead during the treatment period. Histological analysis highlighted severe inflammation, locally associated with necrosis, at pulmonary level, as well as hyper-eosinophilia and fiber separation in myocardium. A cardiac damage was supported by the in vitro effect of the toxin on cardiomyocytes, indicating a severe and irreversible impairment of their electrical properties: electrophysiological recordings detected a progressive cell depolarization, arrest of action potentials and beating.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Murado García MA, Prieto Lage MÁ. Dose-response analysis in the joint action of two effectors. A new approach to simulation, identification and modelling of some basic interactions. PLoS One 2013; 8:e61391. [PMID: 23637825 PMCID: PMC3634793 DOI: 10.1371/journal.pone.0061391] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
In systems with several effectors, the results of dose-response (DR) experiments are usually assessed by checking them against two hypotheses: independent action (IA) and concentration addition (CA). Both are useful simplifications, but do not represent the only possible responses, and avoid to a large extent the analysis of the interactions that are possible in the system. In addition, these are often applied in such a way that they produce insufficient descriptions of the problem that raises them, frequent inconclusive cases and doubtful decisions. In this work a generative approach is attempted, starting from some simple mechanisms necessarily underlying the response of an elementary biological entity to an effector agent. A set of simulations is formulated next through an equally simple system of logical rules, and several families of virtual responses are thus generated. These families include typical responses of IA and CA modes of action, other ones not less probable from a physiological point of view, and even other derived from common and expectable forms of interactions. The analysis of these responses enabled, firstly, to relate some phenomenological regularities with some general mechanistic principles, and to detect several causes by which the IA-CA dualism is necessarily ambiguous. Secondly, it allowed identifying different forms of synergy and antagonism that contribute to explain some controversial aspects of these notions. Finally, it led to propose two sets of explicit algebraic equations that describe accurately a wide diversity of possible and realistic responses.
Collapse
|
18
|
Görögh T, Bèress L, Quabius ES, Ambrosch P, Hoffmann M. Head and neck cancer cells and xenografts are very sensitive to palytoxin: decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity. Mol Cancer 2013; 12:12. [PMID: 23409748 PMCID: PMC3585753 DOI: 10.1186/1476-4598-12-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/06/2013] [Indexed: 02/01/2023] Open
Abstract
Objectives Palytoxin (PTX), a marine toxin isolated from the Cnidaria (zooanthid) Palythoa caribaeorum is one of the most potent non-protein substances known. It is a very complex molecule that presents both lipophilic and hydrophilic areas. The effect of PTX was investigated in a series of experiments conducted in head and neck squamous cell carcinoma (HNSCC) cell lines and xenografts. Materials and methods Cell viability, and gene expression of the sodium/potassium-transporting ATPase subumit alpha1 (ATP1AL1) and GAPDH were analyzed in HNSCC cells and normal epithelial cells after treatment with PTX using cytotoxicity-, clonogenic-, and enzyme inhibitor assays as well as RT-PCR and Northern Blotting. For xenograft experiments severe combined immunodeficient (SCID) mice were used to analyze tumor regression. The data were statistically analyzed using One-Way Annova (SPSS vs20). Results Significant toxic effects were observed in tumor cells treated with PTX (LD50 of 1.5 to 3.5 ng/ml) in contrast to normal cells. In tumor cells PTX affected both the release of LDH and the expression of the sodium/potassium-transporting ATPase subunit alpha1 gene suggesting loss of cellular integrity, primarily of the plasma membrane. Furthermore, strong repression of the c-Jun N-terminal kinase 3 (JNK3) mRNA expression was found in carcinoma cells which correlated with enhanced toxicity of PTX suggesting an essential role of the mitogen activated protein kinase (MAPK)/JNK signalling cascades pathway in the mechanisms of HNSCC cell resistance to PTX. In mice inoculated with carcinoma cells, injections of PTX into the xenografted tumors resulted within 24 days in extensive tumor destruction in 75% of the treated animals (LD50 of 68 ng/kg to 83 ng/kg) while no tumor regression occurred in control animals. Conclusions These results clearly provide evidence that PTX possesses preferential toxicity for head and neck carcinoma cells and therefore it is worth further studying its impact which may extend our knowledge of the biology of head and neck cancer.
Collapse
Affiliation(s)
- Tibor Görögh
- Department of Otorhinolaryngology- Head and Neck Surgery, Section of Experimental Oncology, University of Kiel Schleswig-Holstein, Kiel, 24105, Germany.
| | | | | | | | | |
Collapse
|
19
|
Alfonso A, Fernández-Araujo A, Alfonso C, Caramés B, Tobio A, Louzao M, Vieytes M, Botana L. Palytoxin detection and quantification using the fluorescence polarization technique. Anal Biochem 2012; 424:64-70. [DOI: 10.1016/j.ab.2012.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/19/2012] [Accepted: 02/09/2012] [Indexed: 11/16/2022]
|
20
|
Antibody characterization and immunoassays for palytoxin using an SPR biosensor. Anal Bioanal Chem 2011; 400:2865-9. [DOI: 10.1007/s00216-011-5019-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
|
21
|
Deeds JR, Handy SM, White KD, Reimer JD. Palytoxin found in Palythoa sp. zoanthids (Anthozoa, Hexacorallia) sold in the home aquarium trade. PLoS One 2011; 6:e18235. [PMID: 21483745 PMCID: PMC3070722 DOI: 10.1371/journal.pone.0018235] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/23/2011] [Indexed: 11/19/2022] Open
Abstract
Zoanthids (Anthozoa, Hexacorallia) are colonial anemones that contain one of the deadliest toxins ever discovered, palytoxin (LD(50) in mice 300 ng/kg), but it is generally believed that highly toxic species are not sold in the home aquarium trade. We previously showed that an unintentionally introduced zoanthid in a home aquarium contained high concentrations of palytoxin and was likely responsible for a severe respiratory reaction when an individual attempted to eliminate the contaminant colonies using boiling water. To assess the availability and potential exposure of palytoxin to marine aquarium hobbyists, we analyzed zoanthid samples collected from local aquarium stores for palytoxin using liquid chromatography and high resolution mass spectrometry and attempted to identify the specimens through genetic analysis of 16S and cytochrome c oxidase 1 (COI) markers. We found four specimens of the same apparent species of zoanthid, that we described previously to be responsible for a severe respiratory reaction in a home aquarium, to be available in three aquarium stores in the Washington D.C. area. We found all of these specimens (n = 4) to be highly toxic with palytoxin or palytoxin-like compounds (range 0.5-3.5 mg crude toxin/g zoanthid). One of the most potent non-protein compounds ever discovered is present in dangerous quantities in a select species of zoanthid commonly sold in the home aquarium trade.
Collapse
Affiliation(s)
- Jonathan R Deeds
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America.
| | | | | | | |
Collapse
|
22
|
Tubaro A, Del Favero G, Beltramo D, Ardizzone M, Forino M, De Bortoli M, Pelin M, Poli M, Bignami G, Ciminiello P, Sosa S. Acute oral toxicity in mice of a new palytoxin analog: 42-Hydroxy-palytoxin. Toxicon 2011; 57:755-63. [DOI: 10.1016/j.toxicon.2011.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|
23
|
Palytoxin toxicology: Animal studies. Toxicon 2011; 57:470-7. [DOI: 10.1016/j.toxicon.2010.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/02/2010] [Accepted: 10/04/2010] [Indexed: 11/17/2022]
|
24
|
Rial D, Vázquez JA, Murado MA. Effects of three heavy metals on the bacteria growth kinetics: a bivariate model for toxicological assessment. Appl Microbiol Biotechnol 2011; 90:1095-109. [DOI: 10.1007/s00253-011-3138-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 11/28/2022]
|
25
|
Murado MA, Vázquez JA, Rial D, Beiras R. Dose-response modelling with two agents: application to the bioassay of oil and shoreline cleaning agents. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:807-17. [PMID: 20970248 DOI: 10.1016/j.jhazmat.2010.09.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 05/15/2023]
Abstract
Single and joint effects of hydrocarbons and a shoreline cleaning agent (SCA) were studied by measuring the inhibition of the larval growth of sea urchin. Different dosage methods of hydrophobic compounds were compared. The results obtained in the evaluation of CytoSol toxicity revealed that the method of variable dilution of water accommodated fraction (WAF) led to the more conservative toxicological approach. Regarding to Libyan oil, the use of DMSO as carrier allowed us the evaluation of its potential toxicity in comparison with the limitations imposed to the use of WAF method. A reparametrised form of the Weibull equation was slightly modified to be useful for dose-response analysis. This was the basis for modelling single sigmoid responses, which were used to simulate biphasic profiles with addition of effects and to describe both the concentration addition (CA) and independent action (IA) hypotheses. In all cases, its descriptive ability was graphically and statistically satisfactory. The IA model was the best option to explain the combined experimental responses obtained.
Collapse
Affiliation(s)
- Miguel A Murado
- Grupo de Reciclado e Valorización de Materiais Residuais, Instituto de Investigacións Mariñas, CSIC, 6. Vigo-36208, Galicia, Spain.
| | | | | | | |
Collapse
|
26
|
Tubaro A, Durando P, Del Favero G, Ansaldi F, Icardi G, Deeds JR, Sosa S. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 2011; 57:478-95. [PMID: 21255599 DOI: 10.1016/j.toxicon.2011.01.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/31/2010] [Accepted: 01/10/2011] [Indexed: 11/28/2022]
Abstract
A series of case reports and anecdotal references describe the adverse effects on human health ascribed to the marine toxin palytoxin (PLTX) after different exposure routes. They include poisonings after oral intake of contaminated seafood, but also inhalation and cutaneous/systemic exposures after direct contact with aerosolized seawater during Ostreopsis blooms and/or through maintaining aquaria containing cnidarian zoanthids. The symptoms commonly recorded during PLTX intoxication are general malaise and weakness, associated with myalgia, respiratory effects, impairment of the neuromuscular apparatus and abnormalities in cardiac function. Systemic symptoms are often recorded together with local damages whose intensity varies according to the route and length of exposure. Gastrointestinal malaise or respiratory distress is common for oral and inhalational exposure, respectively. In addition, irritant properties of PLTX probably account for the inflammatory reactions typical of cutaneous and inhalational contact. Unfortunately, the toxin identification and/or quantification are often incomplete or missing and cases of poisoning are indirectly ascribed to PLTXs, according only to symptoms, anamnesis and environmental/epidemiological investigations (i.e. zoanthid handling or ingestion of particular seafood). Based on the available literature, we suggest a "case definition of PLTX poisonings" according to the main exposure routes, and, we propose the main symptoms to be checked, as well as, hemato-clinical analysis to be carried out. We also suggest the performance of specific analyses both on biological specimens of patients, as well as, on the contaminated materials responsible for the poisoning. A standardized protocol for data collection could provide a more rapid and reliable diagnosis of palytoxin-poisoning, but also the collection of necessary data for the risk assessment for this family of toxins.
Collapse
Affiliation(s)
- A Tubaro
- Department of Materials and Natural Resources, University of Trieste, Via A Valerio 6, 34127 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Aligizaki K, Katikou P, Milandri A, Diogène J. Occurrence of palytoxin-group toxins in seafood and future strategies to complement the present state of the art. Toxicon 2010; 57:390-9. [PMID: 21126531 DOI: 10.1016/j.toxicon.2010.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/05/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
Abstract
Palytoxin (PlTX) and palytoxin-like (PlTX-like) compounds in seafood have been raising scientific concern in the last years. The constant increase in record numbers of the causative dinoflagellates of the genus Ostreopsis together with the large spatial expansion of this genus has led to intensification of research towards optimization of methods for determination of PlTX presence and toxicity. In this context, identification of seafood species which could possibly contain PlTXs constitutes an important issue for public health protection. In the present paper, worldwide occurrence of PlTX-like compounds in seafood is reviewed, while potential future strategies are discussed. PlTX has been reported to be present in several species of fish, crustaceans, molluscs and echinoderms. In one occasion, PlTX has been identified in freshwater puffer fish whereas all other records of PlTXs refer to marine species and have been recorded in latitudes approximately between 43°N and 15°S. PlTX determination in seafood has relied on different methodologies (mainly LC-MS, mouse bioassay and hemolysis neutralization assay) that have evolved over time. Future recommendations include systematic screening of PlTX in those species and areas where PlTX has already been recorded implementing updated methodologies.
Collapse
Affiliation(s)
- Katerina Aligizaki
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, PO Box 109, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|
28
|
Ciminiello P, Dell'Aversano C, Dello Iacovo E, Fattorusso E, Forino M, Tartaglione L. LC-MS of palytoxin and its analogues: State of the art and future perspectives. Toxicon 2010; 57:376-89. [PMID: 21070802 DOI: 10.1016/j.toxicon.2010.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
The state of the art of LC-MS of palytoxin and its analogues is reported in the present review. MS data for palytoxin, 42-hydroxy-palytoxin, ostreocin-D, mascarenotoxins, and ovatoxins, obtained using different ionization techniques, namely fast-atom bombardment (FAB), matrix assisted laser desorption ionization (MALDI), and electrospray ionization (ESI), are summarized together with the LC-MS methods used for their detection. Application of the developed LC-MS methods to both plankton and seafood analysis is also reported, paying attention to the extraction procedures used and to limits of detection (LOD) and quantitation (LOQ) achieved. In a research setting, LC-MS has shown a good potential in determination of palytoxin and its analogues from various sources, but, in a regulatory setting, routine LC-MS analysis of palytoxins is still at a preliminary stage. The LOQ currently achieved in seafood analysis appears insufficient to detect palytoxins in shellfish extract at levels close to the tolerance limit for palytoxins (30 μg/kg) proposed by the European Food Safety Authority (EFSA, 2009). In addition, lacking of certified reference standard of palytoxins as well as of validation studies for the proposed LC-MS methods represent important issues that should be faced for future perspectives of LC-MS technique.
Collapse
Affiliation(s)
- Patrizia Ciminiello
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Murado MA, Vázquez JA. Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathematical model and its implications on hormesis. BMC Microbiol 2010; 10:220. [PMID: 20723220 PMCID: PMC2936355 DOI: 10.1186/1471-2180-10-220] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 08/19/2010] [Indexed: 11/13/2022] Open
Abstract
Background In the present work, we describe a group of anomalous dose-response (DR) profiles and develop a dynamic model that is able to explain them. Responses were obtained from conventional assays of three antimicrobial agents (nisin, pediocin and phenol) against two microorganisms (Carnobacterium piscicola and Leuconostoc mesenteroides). Results Some of these anomalous profiles show biphasic trends which are usually attributed to hormetic responses. But they can also be explained as the result of the time-course of the response from a microbial population with a bimodal distribution of sensitivity to an effector, and there is evidence suggesting this last origin. In light of interest in the hormetic phenomenology and the possibility of confusing it with other phenomena, especially in the bioassay of complex materials we try to define some criteria which allow us to distinguish between sensu stricto hormesis and biphasic responses due to other causes. Finally, we discuss some problems concerning the metric of the dose in connection with the exposure time, and we make a cautionary suggestion about the use of bacteriocins as antimicrobial agents. Conclusions The mathematical model proposed, which combines the basis of DR theory with microbial growth kinetics, can generate and explain all types of anomalous experimental profiles. These profiles could also be described in a simpler way by means of bisigmoidal equations. Such equations could be successfully used in a microbiology and toxicology context to discriminate between hormesis and other biphasic phenomena.
Collapse
Affiliation(s)
- Miguel A Murado
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (CSIC), R/Eduardo Cabello, 6 Vigo-36208-Galicia, Spain.
| | | |
Collapse
|
30
|
Dominguez HJ, Paz B, Daranas AH, Norte M, Franco JM, Fernández JJ. Dinoflagellate polyether within the yessotoxin, pectenotoxin and okadaic acid toxin groups: Characterization, analysis and human health implications. Toxicon 2010; 56:191-217. [DOI: 10.1016/j.toxicon.2009.11.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/11/2009] [Accepted: 11/09/2009] [Indexed: 11/26/2022]
|
31
|
Battocchi C, Totti C, Vila M, Masó M, Capellacci S, Accoroni S, Reñé A, Scardi M, Penna A. Monitoring toxic microalgae Ostreopsis (dinoflagellate) species in coastal waters of the Mediterranean Sea using molecular PCR-based assay combined with light microscopy. MARINE POLLUTION BULLETIN 2010; 60:1074-1084. [PMID: 20188383 DOI: 10.1016/j.marpolbul.2010.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 05/28/2023]
Abstract
A molecular PCR-based assay was developed and applied to macrophyte and seawater samples containing mixed microphytobenthic and phytoplanktonic assemblages, respectively, in order to detect toxic Ostreopsis species in Mediterranean Sea. The specificity and sensitivity of the molecular PCR assay were assessed with both plasmidic and genomic DNA of the target genus or species using taxon-specific primers in the presence of background macrophyte DNA. The PCR molecular technique allowed rapid detection of the Ostreopsis cells, even at abundances undetectable within the resolution limit of the microscopy technique. Species-specific identification of Ostreopsis was determined only by PCR-based assay, due to the inherent difficulty of morphological identification in field samples. In the monitoring of the toxic Ostreopsis blooms PCR-based methods proved to be effective tools complementary to microscopy for rapid and specific detection of Ostreopsis and other toxic dinoflagellates in marine coastal environments.
Collapse
Affiliation(s)
- Cecilia Battocchi
- Dipartimento di Scienze Biomolecolari, Sez. Biol. Amb., Università di Urbino, Viale Trieste 296, 61100 Pesaro, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ramos V, Vasconcelos V. Palytoxin and analogs: biological and ecological effects. Mar Drugs 2010; 8:2021-37. [PMID: 20714422 PMCID: PMC2920541 DOI: 10.3390/md8072021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/14/2010] [Accepted: 06/29/2010] [Indexed: 11/16/2022] Open
Abstract
Palytoxin (PTX) is a potent marine toxin that was originally found in soft corals from tropical areas of the Pacific Ocean. Soon after, its occurrence was observed in numerous other marine organisms from the same ecological region. More recently, several analogs of PTX were discovered, remarkably all from species of the dinoflagellate genus Ostreopsis. Since these dinoflagellates are also found in other tropical and even in temperate regions, the formerly unsuspected broad distribution of these toxins was revealed. Toxicological studies with these compounds shows repeatedly low LD50 values in different mammals, revealing an acute toxic effect on several organs, as demonstrated by different routes of exposure. Bioassays tested for some marine invertebrates and evidences from environmental populations exposed to the toxins also give indications of the high impact that these compounds may have on natural food webs. The recognition of its wide distribution coupled with the poisoning effects that these toxins can have on animals and especially on humans have concerned the scientific community. In this paper, we review the current knowledge on the effects of PTX and its analogs on different organisms, exposing the impact that these toxins may have in coastal ecosystems.
Collapse
Affiliation(s)
- Vítor Ramos
- Marine and Environmental Research Center–CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; E-Mail:
| | - Vítor Vasconcelos
- Marine and Environmental Research Center–CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; E-Mail:
- Faculty of Sciences, Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
- * Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351 223401814; Fax: +351 223390608
| |
Collapse
|
33
|
Garet E, Cabado AG, Vieites JM, González-Fernández A. Rapid isolation of single-chain antibodies by phage display technology directed against one of the most potent marine toxins: Palytoxin. Toxicon 2010; 55:1519-26. [PMID: 20223256 DOI: 10.1016/j.toxicon.2010.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 01/03/2023]
Abstract
Several recombinant antibodies against one of the most potent marine toxins, Palytoxin (PlTX), were obtained using two naive human semi-synthetic phage display libraries (Tomlinson I and J) as an effective method for generating specific anti-toxin single-chain variable fragment (scFv) antibodies. After four rounds of panning and selection on free palytoxin adsorbed immunotubes, individual clones were isolated, sequenced and characterized by Enzyme-Linked Immunosorbent Assay (ELISA). Four phage-antibody clones specifically recognized the toxin. A competitive ELISA assay was optimized with one of these phage antibodies giving a very reproducible standard curve with a linear regression (R(2)=0.9945), showing a working range of 0.0005-500ngmL(-1). Several spiked shellfish samples were analysed by competitive ELISA to determine the accuracy of the assay, with a mean recovery rate of 90%. This study demonstrates that phage display libraries provide a valuable system for the easy and rapid generation of specific antibody fragments directed against difficult antigenic targets, such as free small molecules. Large-scale, low-cost production of anti-palytoxin scFv antibodies in Escherichia coli (E. coli) is an exciting prospect for the development of rapid and simple detection methods. Our results suggest that anti-palytoxin phage antibodies could be a valuable tool with competitive ELISA to detect palytoxin in natural shellfish samples.
Collapse
Affiliation(s)
- E Garet
- Area de Inmunología, Universidad de Vigo, Edificio de Ciencias Experimentales, As Lagoas Marcosende, 36310 Vigo, Pontevedra, Spain
| | | | | | | |
Collapse
|
34
|
Murado MA, Vázquez JA. Mathematical model for the characterization and objective comparison of antioxidant activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1622-1629. [PMID: 20058868 DOI: 10.1021/jf903709z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The available data about the interference of antioxidants in the kinetics of lipid oxidation are abundant, but often they allow only semiquantitative conclusions, not always with sufficient basis. One of the causes of this problem is the absence of formal models able to guide the experimental design and to calculate characterizing parameters. In this regard, the model which we propose allows us to obtain the simultaneous solution of a series of oxidation kinetics in the presence of any number of antioxidant concentrations. It describes satisfactorily simulations in which substrate and antioxidant compete for oxygen in a second order kinetic scheme, as well as experimental results from other authors, in different systems and under different conditions. Its application is simple, it provides parametric estimates which characterize both the oxidative process and the antioxidant activity, and it facilitates rigorous comparisons among the effects of different compounds and experimental approaches. In all experimental data tested, the calculated parameters were always statistically significant (Student's t test, alpha = 0.05), the equations were consistent (Fisher's F-test), and the goodness of fit parameters (adj r(2), adjusted coefficients of multiple determination) were up to 0.97.
Collapse
Affiliation(s)
- Miguel Anxo Murado
- Grupo de Reciclado y Valorizacíon de Materiales Residuales, Instituto de Investigacións Mariñas, 6 Vigo-36208 Galicia, Spain
| | | |
Collapse
|
35
|
|
36
|
Sosa S, Del Favero G, De Bortoli M, Vita F, Soranzo MR, Beltramo D, Ardizzone M, Tubaro A. Palytoxin toxicity after acute oral administration in mice. Toxicol Lett 2009; 191:253-9. [PMID: 19766704 DOI: 10.1016/j.toxlet.2009.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/15/2022]
Abstract
The acute oral toxicity of palytoxin (PLTX), a highly toxic compound associated with seafood intoxication in tropical and subtropical areas, was investigated in mice. After gavage administration (300-1697 microg/kg) to groups of five female CD-1 mice, signs of toxicity and lethality were recorded for 24 h. The LD(50) was 767 microg/kg (95% confidence limits: 549-1039 microg/kg) and the main symptoms observed were scratching, jumping, respiratory distress and paralysis. Hematoclinical analyses showed increased levels of creatine phosphokinase and lactate dehydrogenase at doses of 600 microg/kg and above, and aspartate transaminase at 848 microg/kg and above. Histological analysis revealed acute inflammation of the forestomach in mice surviving up to 24h after administration (424-1200 microg/kg). Other histological alterations were observed in the liver and pancreas, while cardiac and skeletal muscle cells revealed only ultrastructural alterations visible by transmission electron microscopy. Ultrastructural and hematoclinical findings suggest an involvement of skeletal and/or cardiac muscle as targets of PLTX, according to the observed human symptoms. A NOEL of 300 microg/kg can be estimated from this acute oral toxicity study.
Collapse
Affiliation(s)
- S Sosa
- Department of Materials and Natural Resources, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Functional assays for marine toxins as an alternative, high-throughput-screening solution to animal tests. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2009.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|