1
|
Jankovská I, Karešová V, Michlová T, Kunc P, Knížková I, Zárybnická M, Langrová I. Effect of Pregnancy on Mercury Concentration in the Body of Free-living Small Rodents. J Wildl Dis 2024; 60:970-973. [PMID: 39150752 DOI: 10.7589/jwd-d-23-00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/22/2024] [Indexed: 08/17/2024]
Abstract
Relatively little information exists on the effects of mercury on terrestrial wildlife populations. We analyzed 38 free-living small rodent females (Myodes glareolus, Microtus agrestris, and Apodemus flavicolis), of which 11 were pregnant, for total mercury concentrations in combined liver and kidney samples. Using a single-purpose atomic absorption spectrometer for mercury determination, the measured mercury values ranged from 0.006 to 0.079 mg/kg. Pregnant females had significantly (P<0.041) higher mercury levels in liver and kidney than did nonpregnant females. Our results suggest that during mercury biomonitoring studies it is necessary to consider the pregnancy of the analyzed animals.
Collapse
Affiliation(s)
- Ivana Jankovská
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Veronika Karešová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Tereza Michlová
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Petr Kunc
- Institute of Animal Science, Přátelství 815; 104 00 Prague-Uhříněves, Czech Republic
| | - Ivana Knížková
- Institute of Animal Science, Přátelství 815; 104 00 Prague-Uhříněves, Czech Republic
| | - Markéta Zárybnická
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| |
Collapse
|
2
|
Galiciolli MEA, Pedroso TF, Mesquita M, Oliveira VA, Pereira ME, Oliveira CS. Biochemical Parameters of Female Wistar Rats and Their Offspring Exposed to Inorganic Mercury in Drinking Water during the Gestational and Lactational Periods. TOXICS 2022; 10:664. [PMID: 36355955 PMCID: PMC9696705 DOI: 10.3390/toxics10110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the effects of inorganic mercury (Hg2+) exposure on biochemical parameters of dams and their offspring exposed to metal in drinking water. Female Wistar rats were exposed to 0, 10, and 50 µg Hg2+/mL (as HgCl2) for 42 days corresponding to gestational (21 days) and lactational (21 days) periods. The offspring were sacrificed on postnatal days 10, 20, 30, and 40. Dams exposed to Hg2+ presented a decrease in water intake in gestation [total: F(2,19) = 15.84; p ≤ 0.0001; daily: F(2,21) = 12.71; p = 0.0002] and lactation [total: F(2,19) = 4.619; p = 0.024; daily: F(2,21) = 5.309; p = 0.0136] without alteration in food intake. Dams exposed to 50 µg Hg2+/mL had an increase in kidney total [F(2,21) = 8.081; p = 0.0025] and relative [F(2,21) = 14.11; p = 0.0001] weight without changes in biochemical markers of nephrotoxicity. Moreover, dams had an increase in hepatic [F(2,10) = 3.847; p = 0.0577] and renal [F(2,11) = 6.267; p = 0.0152] metallothionein content concomitantly with an increase in renal Hg levels after Hg2+ exposure. Regarding offspring, the exposure to Hg2+in utero and breast milk increased the relative liver [F(2,18) = 5.33; p = 0.0152] and kidney [F(2,18) = 3.819; p = 0.0415] weight only on the postnatal day 40. In conclusion, dams were able to handle the Hg2+ avoiding the classic Hg2+ toxic effects as well as protecting the offspring. We suggest that this protection is related to the hepatic and renal metallothionein content increase.
Collapse
Affiliation(s)
- Maria Eduarda A. Galiciolli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
| | - Taíse F. Pedroso
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Mariana Mesquita
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Vitor A. Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Maria E. Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Cláudia S. Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
3
|
Oliveira VA, de Souza da Costa N, Mesquita M, Pedroso TF, da Luz Fiuza T, Peixoto NC, Pereira ME, Oliveira CS. Mercury toxicity in pregnant and lactating rats: zinc and N-acetylcysteine as alternative of prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40563-40572. [PMID: 32671705 DOI: 10.1007/s11356-020-09836-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the toxic effects of inorganic mercury (Hg) in pregnant and lactating rats, as well as the possible protective effect of zinc (Zn) and N-acetylcysteine (NAC). Pregnant and lactating rats were pre-treated with ZnCl2 (27 mg/kg) and/or NAC (5 mg/kg) and after 24 h, they were exposed to HgCl2 (10 mg/kg). Animals were sacrificed 24 h after Hg exposure, and biochemical tests and metal determination were performed. Regarding pregnant rats, Hg exposure caused kidney, blood, and placenta δ-aminolevulinic acid dehydratase (δ-ALA-D) activity inhibition, and the pre-treatments showed a tendency of protection. Moreover, all the animals exposed to Hg presented high Hg levels in the kidney, liver, and placenta when compared with control group. Pregnant rats pre-exposed to Zn (Zn-Hg and Zn/NAC-Hg groups) presented an increase in hepatic metallothionein levels. Therefore, lactating rats exposed to Hg presented renal and blood δ-ALA-D inhibition; the pre-treatments showed a tendency to prevent the renal δ-ALA-D inhibition and prevented the blood δ-ALA-D inhibition caused by Hg. Lactating rats exposed to Hg presented high Hg levels in the kidney and liver. These results showed that 10 mg/kg of HgCl2 causes biochemistry alterations in pregnant and lactating rats, and Zn and NAC present promising results against these damages.
Collapse
Affiliation(s)
- Vitor Antunes Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil
| | - Nayara de Souza da Costa
- Programa de Pós-Graduação Stricto Sensu em Biotecnologia Aplicada a Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba, Paraná, Brazil
| | - Mariana Mesquita
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil
| | - Taíse Fonseca Pedroso
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil
| | - Tiago da Luz Fiuza
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil
| | - Nilce Coelho Peixoto
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil.
- Departamento de Ciências da Saúde, Campus Palmeira das Missões, Universidade Federal de Santa Maria, Av. Independência, 3751, Bairro Vista Alegre, Palmeira das Missões, RS, Brazil.
| | - Maria Ester Pereira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil
| | - Cláudia Sirlene Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil.
- Programa de Pós-Graduação Stricto Sensu em Biotecnologia Aplicada a Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba, Paraná, Brazil.
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Abu-Taweel GM. Neurobehavioral protective properties of curcumin against the mercury chloride treated mice offspring. Saudi J Biol Sci 2019; 26:736-743. [PMID: 31048998 PMCID: PMC6486524 DOI: 10.1016/j.sjbs.2018.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/21/2023] Open
Abstract
In the present investigation, the effects of mercuric chloride (HgCl2) on the neurobehavioural and neurochemical disruption in mice offspring was studied. A total of thirty pregnant mice were divided into six groups. Group II and III were received 150 and 300 ppm of curcumin respectively. Group IV was given 10 ppm of HgCl2. Group V and VI were given 10 ppm of HgCl2 with 150 and 300 ppm of curcumin respectively. In this study, treatment started from day one of pregnancy and continued until post-natal day 15 (PD 15). During weaning period, three pups in each experimental group were marked and were subjected to behavioral, physical and biochemical tests. The results revealed decreased body weight, delayed hair growth and eye opening. HgCl2 treated pups taken more time in righting, rotating reflexes to return to normal placement, cliff avoidance compared to that of control group. HgCl2 exposed pups showed memory and learning deficits. Anxiety behavior in treating pups was increased. Biochemical investigations showed decreased level of dopamine (DA), serotonin (5-HT) and acetylcholinesterase (AChE) in forebrain of treated pups compared to the control and curcumin groups. The protective effect of curcumin doses were significant compared to HgCl2 group. The results indicated that the administration of curcumin showed effective activity towards biochemical and behavioral disorders obtained with the HgCl2 treated animals. Overall, the curcumin administration revealed increased cognetion and anxiety behaviors in the treated animals. Conclusively, curcumin has a good benefits for health which can use to avoid toxicants such as Hg and other heavy metals.
Collapse
|
5
|
Espitia-Pérez P, Albino SM, da Rosa HT, Silveira AK, Espitia-Pérez L, Brango H, Moraes DP, Hermann PRS, Mingori M, Barreto F, Kunzler A, Gelain DP, Schnorr CE, Moreira JCF. Effects of methylmercury and retinol palmitate co-administration in rats during pregnancy and breastfeeding: Metabolic and redox parameters in dams and their offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:603-615. [PMID: 30031321 DOI: 10.1016/j.ecoenv.2018.06.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Ubiquitous low-dose methylmercury (MeHg) exposure through an increased fish consumption represents a global public health problem, especially among pregnant women. A plethora of micronutrients presented in fish affects MeHg uptake/distribution, but limited data is available. Vitamin A (VitA), another fish micronutrient is used in nutritional supplementation, especially during pregnancy. However, there is no information about the health effects arising from their combined exposure. Therefore, the present study aimed to examine the effects of both MeHg and retinyl palmitate administered on pregnant and lactating rats in metabolic and redox parameters from dams and their offspring. Thirty Wistar female rats were orally supplemented with MeHg (0,5 mg/kg/day) and retinyl palmitate (7500 µg RAE/kg/day) via gavage, either individually or in combination from the gestational day 0 to weaning. For dams (150 days old) and their offspring (31 days old), glycogen accumulation (hepatic and cardiac) and retinoid contents (plasma and liver) were analyzed. Hg deposition in liver tissue was quantified. Redox parameters (liver, kidney, and heart) were evaluated for both animals. Cytogenetic damage was analyzed with micronucleus test. Our results showed no general toxic or metabolic alterations in dams and their offspring by MeHg-VitA co-administration during pregnancy and lactation. However, increased lipoperoxidation in maternal liver and a disrupted pro-oxidant response in the heart of male pups was encountered, with apparently no particular effects in the antioxidant response in female offspring. GST activity in dam kidney was altered leading to possible redox disruption of this tissue with no alterations in offspring. Finally, the genomic damage was exacerbated in both male and female pups. In conclusion, low-dose MeHg exposure and retinyl palmitate supplementation during gestation and lactation produced a potentiated pro-oxidant effect, which was tissue-specific. Although this is a pre-clinical approach, we recommend precaution for pregnant women regarding food consumption, and we encourage more epidemiological studies to assess possible modulations effects of MeHg-VitA co-administration at safe or inadvertently used doses in humans, which may be related to specific pathologies in mothers and their children.
Collapse
Affiliation(s)
- Pedro Espitia-Pérez
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Suelen Marin Albino
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helen Tais da Rosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Carrera 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - Hugo Brango
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Diogo Pompéu Moraes
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Paolla Rissi Silva Hermann
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Moara Mingori
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano Barreto
- Laboratório de Análise de Resíduos de Pesticidas e Medicamentos Veterinários (RPM), Laboratório Nacional Agropecuário RS, Estrada da Ponta Grossa 3036, CEP: 91780-580 Porto Alegre, Rio Grande do Sul, Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Schnorr
- Departamento de Civil y Ambiental, Programa de Ingeniería Ambiental, Universidad de la Costa, Calle 58 #55- 66, Barranquilla, Atlántico, Colombia
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Continuous Exposure to Inorganic Mercury Affects Neurobehavioral and Physiological Parameters in Mice. J Mol Neurosci 2018; 66:291-305. [PMID: 30251082 DOI: 10.1007/s12031-018-1176-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/14/2018] [Indexed: 02/02/2023]
Abstract
Contamination with mercury is a real health issue for humans with physiological consequences. The main objective of the present study was to assess the neurotoxicological effect of inorganic mercury: HgCl2. For this, adult mice were exposed prenatally, postnatally, and during the adult period to a low level of the metal, and their behavior and antioxidant status were analyzed. First, we showed that mercury concentrations in brain tissue of treated animals showed significant bioaccumulation, which resulted in behavioral deficits in adult mice. Thus, the treated mice developed an anxiogenic state, as evidenced by open field and elevated plus maze tests. This anxiety-like behavior was accompanied by a decrease in social behavior. Furthermore, an impairment of memory in these treated mice was detected in the object recognition and Y-maze tests. The enzymatic activity of the antioxidant system was assessed in eight brain structures, including the cerebral cortex, olfactory bulb, hippocampus, hypothalamus, mesencephalon, pons, cerebellum, and medulla oblongata. The results show that chronic exposure to HgCl2 caused alterations in the activity of catalase, thioredoxin reductase, glutathione peroxidase, superoxide dismutase, and glutathione S-transferase, accompanied by peroxidation of membrane lipids, indicating a disturbance in intracellular redox homeostasis with subsequent increased intracellular oxidative stress. These changes in oxidative stress were concomitant with a redistribution of essential heavy metals, i.e., iron, copper, zinc, and magnesium, in the brain as a possible response to homeostatic dysfunction following chronic exposure. The alterations observed in overall oxidative stress could constitute the basis of the anxiety-like state and the neurocognitive disorders observed.
Collapse
|
7
|
Oliveira CS, Nogara PA, Ardisson-Araújo DMP, Aschner M, Rocha JBT, Dórea JG. Neurodevelopmental Effects of Mercury. ADVANCES IN NEUROTOXICOLOGY 2018; 2:27-86. [PMID: 32346667 PMCID: PMC7188190 DOI: 10.1016/bs.ant.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The toxicology of mercury (Hg) is of concern since this metal is ubiquitously distributed in the environment, and living organisms are routinely exposed to Hg at low to high levels. The toxic effects of Hg are well studied and it is known that they may differ depending on the Hg chemical species. In this chapter, we emphasize the neurotoxic effects of Hg during brain development. The immature brain is more susceptible to Hg exposure, since all the Hg chemical forms, not only the organic ones, can harm it. The possible consequences of Hg exposure during the early stages of development, the additive effects with other co-occurring neurotoxicants, and the known mechanisms of action and targets will be addressed in this chapter.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniel M P Ardisson-Araújo
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Virologia de Insetos, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - José G Dórea
- Professor Emeritus, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
8
|
Oliveira VA, Favero G, Stacchiotti A, Giugno L, Buffoli B, de Oliveira CS, Lavazza A, Albanese M, Rodella LF, Pereira ME, Rezzani R. Acute mercury exposition of virgin, pregnant, and lactating rats: Histopathological kidney and liver evaluations. ENVIRONMENTAL TOXICOLOGY 2017; 32:1500-1512. [PMID: 27726300 DOI: 10.1002/tox.22370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
This work investigated the effects of mercury chloride (HgCl2 ) acute exposure on virgin, pregnant and lactating rats by determination of renal and hepatic morphological and ultrastructural parameters and the expression of oxidative stress and stress tolerance markers, due to kidney and liver are the organs that more accumulate inorganic mercury. Adult Wistar rats virgin (90 days old), pregnant (18th gestation day) and lactating (7th lactation day) were injected once with HgCl2 (5 mg/kg) or saline (controls). We observed that HgCl2 exposure of virgin rats caused significant inflammatory infiltration and severe morphological variations, like glomeruli atrophy, dilatation of Bowman's capsule, tubular degeneration and hepatocytes alteration. Moreover, virgin rats presented mitochondrial modification, important oxidative stress and increase in stress tolerance proteins at both kidney and liver level, compared with virgin controls. In detail, virgin rats exposed to HgCl2 presented significantly elevated level of inducible nitric oxide synthase, heat shock protein 27 and glucose regulated proteins 75 expressions at both renal tubular and hepatocytes level, respect untreated virgin rats. Interestingly, pregnant and lactating rats exposed to HgCl2 presented weak renal and liver morphological alterations, showing weak inflammatory infiltration and no significant difference in structural mitochondrial transmembrane protein, oxidative stress markers and stress tolerance proteins expressions respect controls (virgin, pregnant and lactating rats). Although, both control and HgCl2 -exposed pregnant and lactating rats showed renal glomeruli greater in diameter respect virgin rats. In conclusion, we believe that virgin rats are more sensitive to HgCl2 toxicity respect pregnant and lactating rats. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1500-1512, 2017.
Collapse
Affiliation(s)
- Vitor Antunes Oliveira
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia, Italy
| | - Lorena Giugno
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Barbara Buffoli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia, Italy
| | - Claudia Sirlene de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Antonio Lavazza
- OIE Reference Laboratory for RHD, Istituto Zooprofilattico Sperimentale della Lombardia e Emilia Romagna, Brescia, Italy
| | - Massimo Albanese
- Department of Oral and Maxillofacial Surgery, University of Verona, Verona, Italy
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia, Italy
| | - Maria Ester Pereira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia, Italy
| |
Collapse
|
9
|
Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior. Reprod Toxicol 2016; 65:18-23. [DOI: 10.1016/j.reprotox.2016.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 11/22/2022]
|
10
|
Uzunhisarcikli M, Aslanturk A, Kalender S, Apaydin FG, Bas H. Mercuric chloride induced hepatotoxic and hematologic changes in rats. Toxicol Ind Health 2016; 32:1651-62. [DOI: 10.1177/0748233715572561] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study focuses on investigating the possible protective effect of sodium selenite (Na2SeO3) and/or vitamin E against mercuric chloride (HgCl2)-induced hepatotoxicity in rat. Male rats were given HgCl2 (1 mg/kg body weight (bw)) and HgCl2 plus Na2SeO3 (0.25 mg/kg bw) and/or vitamin E (100 mg/kg bw) daily via gavage for 4 weeks. HgCl2-treated groups had significantly higher white blood cell and thrombocyte counts than the control group. Serum activities of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, γ-glutamyl-transferase, and lactate dehydrogenase significantly increased and serum levels of total protein, albumin, triglyceride, total cholesterol, and low-density lipoprotein cholesterol significantly decreased in the HgCl2-treated groups compared with control group. Malondialdehyde level significantly increased and superoxide dismutase, catalase, and glutathione peroxidase activities decreased in liver tissue of HgCl2-treated rats. Also, HgCl2 exposure resulted in histopathological changes. Supplementation of Na2SeO3 and/or vitamin E provided partial protection in hematological and biochemical parameters that were altered by HgCl2. As a result, Na2SeO3 and/or vitamin E significantly reduced HgCl2-induced hepatotoxicity, but not protected completely.
Collapse
Affiliation(s)
| | - Ayse Aslanturk
- Vocational High School of Health Services, Gazi University, Ankara, Turkey
| | - Suna Kalender
- Department of Science Education, Gazi Faculty of Education, Gazi University, Ankara, Turkey
| | | | - Hatice Bas
- Department of Biology, Faculty of Arts and Science, Bozok University, Yozgat, Turkey
| |
Collapse
|
11
|
Abstract
Environmental toxicants such as methylmercury have been shown to negatively impact fetal health. Despite the prevalence of inorganic mercury (Hg(2+)) in the environment and the ability of methylmercury to biotransform into Hg(2+), little is known about the ability of Hg(2+) to cross the placenta into fetal tissues. Therefore, it is important to understand the handing and disposition of Hg(2+) in the reproductive system. The purpose of the current study was to assess the disposition and transport of Hg(2+) in placental and fetal tissues, and to test the hypothesis that acute renal injury in dams can alter the accumulation of Hg(2+) in fetal tissues. Pregnant Wistar rats were injected intravenously with 0.5 or 2.5 μmol kg(-1) HgCl2 for 6 or 48 h and the disposition of Hg(2+) was measured. Accumulation of Hg(2+) in the placenta was rapid and dose-dependent. Very little Hg(2+) was eliminated during the initial 48 h after exposure. When dams were exposed to the low dose of HgCl2, fetal accumulation of Hg(2+) increased between 6h and 48 h, while at the higher dose, accumulation was similar at each time point. Within fetal organs, the greatest concentration of Hg(2+) (nmol/g) was localized in the kidneys, followed by the liver and brain. A dose-dependent increase in the accumulation of Hg(2+) in fetal organs was observed, suggesting that continued maternal exposure may lead to increased fetal exposure. Taken together, these data indicate that Hg(2+) is capable of crossing the placenta and gaining access to fetal organs in a dose-dependent manner.
Collapse
|
12
|
Oliveira CS, Favero AM, Franciscato C, da Luz SCA, Pereira ME. Distinct response of lactating and nonlactating rats exposed to inorganic mercury on hepatic δ-aminolevulinic acid dehydratase activity. Biol Trace Elem Res 2014; 158:230-7. [PMID: 24634288 DOI: 10.1007/s12011-014-9931-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/03/2014] [Indexed: 11/26/2022]
Abstract
This study investigated if lactating and nonlactating rats presented differences in relation to hepatic sensitivity to HgCl2 and the potential preventive role of ZnCl2. Lactating (days 3-12 of lactation) and nonlactating rats received 27 mg/kg ZnCl2 for five consecutive days and 5 mg/kg HgCl2 for five subsequent days. Lactating and nonlactating rats exposed to HgCl2 presented a decrease in food intake, a decrease in plasma alanine aminotransferase (ALT), and an increase in hepatic Hg levels when compared to the control group. Only lactating rats exposed to HgCl2 presented an increase in hepatic δ-aminolevulinic acid dehydratase activity. On the other hand, only nonlactating rats exposed to HgCl2 presented an increase in plasma aspartate aminotransferase (AST). ZnCl2 pre-exposure partially protected the increase in plasma AST activity presented by nonlactating rats and potentiated the liver Hg accumulation in lactating rats. Pups from the Sal-Hg and Zn-Hg groups showed a decrease in absolute liver weight and an increase in liver Hg levels. Summarizing, this study demonstrated that lactating rats presented distinct biochemical responses compared to nonlactating rats exposed to HgCl2 when hepatic parameters were evaluated.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | | | | | | |
Collapse
|