1
|
Jin Z, Wang X. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential. Pharmacol Res 2024; 208:107387. [PMID: 39216839 DOI: 10.1016/j.phrs.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The incidence of cardiometabolic disease is increasing globally, with a trend toward younger age of onset. Among these, atherosclerotic cardiovascular disease is a leading cause of mortality worldwide. Despite the efficacy of traditional lipid-lowering drugs, such as statins, in reducing low-density lipoprotein cholesterol levels, a significant residual risk of cardiovascular events remains, which is closely related to unmet triglyceride (TG) targets. The clinical application of current TG-lowering Western medicines has certain limitations, necessitating alternative or complementary therapeutic strategies. Traditional Chinese medicine (TCM) and plant-derived natural products, known for their safety owing to their natural origins and diverse biological activities, offer promising avenues for TG regulation with potentially fewer side effects. This review systematically summarises the mechanisms of TG metabolism and subsequently reviews the regulatory effects of TCM and plant-derived natural products on TG metabolism, including the inhibition of TG synthesis (via endogenous and exogenous pathways), promotion of TG catabolism, regulation of fatty acid absorption and transport, enhancement of lipophagy, modulation of the gut microbiota, and other mechanisms. In conclusion, through a comprehensive analysis of recent studies, this review consolidates the multifaceted regulatory roles of TCM and plant-derived natural products in TG metabolism and elucidates their potential as safer, multi-target therapeutic agents in managing hypertriglyceridemia and mitigating cardiovascular risk, thereby providing a basis for new drug development.
Collapse
Affiliation(s)
- Zhou Jin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Yi F, Wang W, Yi Y, Wu Z, Li R, Song Y, Chen H, Zhou L, Tao Y. Research on the mechanism of regulating spleen-deficient obesity in rats by bawei guben huashi jiangzhi decoction based on multi-omics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117826. [PMID: 38296174 DOI: 10.1016/j.jep.2024.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Bawei Guben Huashi Jiangzhi Decoction (BGHJ), a traditional Chinese compound formula, comprises eight Chinese medicinal herbs: Codonopsis Radix, Atractylodis Macrocephalae Rhizoma, Cassiae Semen, Lysimachiae Herba, Edgeworthiae Gardner Flos, Oryzae Semen cum Monasco, Nelumbinis Folium, and Alismatis Rhizoma. It has the therapeutic effects of improving digestive and absorptive functions of the gastrointestinal tract, reducing cholesterol levels, and helping to lose weight. Therefore, BGHJ is mainly used to treat spleen-deficient obesity (SDO) clinically. AIM OF THE STUDY This study aims to examine the efficacy and mechanism of BGHJ in a model of SDO in rats, as well as the potentially involved constituents entering the blood and differential metabolites. METHODS The SDO rat model was replicated utilizing a high-fat and high-sugar diet in conjunction with exhaustive swimming. Subsequently, the rats were subjected to a six-week intervention comprising varying dosages of BGHJ and a positive control, orlistat. To evaluate the efficacy of BGHJ on SDO model rats, we first measured the rats' body weight, body surface temperature, spleen index, as well as biochemical indicators in the serum and colon, and then assessed the pathological state of the colon and liver. Afterward, we analyzed the 16S rDNA gut microbiota, non-targeted serum metabolomics, and serum pharmacology to study the main active components of BGHJ and its action mechanism against SDO model rats. In addition, we constructed a network diagram for overall visualization and analysis, and experimentally verified the predicted results. Finally, we used quantitative polymerase chain reaction (qPCR) to detect the gene expression of proopiomelanocortin (POMC) and neuropeptide Y (NPY) indicators in rat hypothalamic neurons. We quantitatively targeted the detection of neurotransmitters dopamine (DA), acetylcholine (Ach), 5-hydroxytryptamine (5-HT), and noradrenaline (NA) in rat hypothalamus. RESULTS The results demonstrated that all dosage regimens of BGHJ exhibited the capacity to moderately modulate parameters including body weight, surface temperature, spleen index, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK), 5-HT, interleukin 6 (IL-6) and interleukin 17 (IL-17), while concurrently reducing hepatic lipid droplet deposition and restoring intestinal integrity. Subsequent experimental results showed that we successfully identified 27 blood components of BGHJ and identified 52 differential metabolites in SDO model rats. At the same time, the experiment proved that BGHJ could effectively inhibit the metabolic pathway of arachidonic acid. In addition, BGHJ can also restore the intestinal microbiota composition of SDO model rats. Finally, we also found that BGHJ could regulate the expression of hypothalamic neurons and neurotransmitters. CONCLUSIONS The research revealed the main active ingredients of BGHJ and its mechanism against SDO model rats through gut microbiota, non-target serum metabolomics, and serum drug chemistry.
Collapse
Affiliation(s)
- Fei Yi
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wanchun Wang
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yuliu Yi
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhenhui Wu
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Rui Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yonggui Song
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; Key Research Office for Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Mental Disorders and Brain Diseases) of Jiangxi Administration of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Hao Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Li Zhou
- School of Computer, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Yingzhou Tao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
3
|
Li YJ, Wu RY, Liu RP, Wu KY, Ding MN, Sun R, Gu YQ, Zhou F, Wu JZ, Zheng Q, Duan SN, Li RR, Zhang YH, Li FH, Li X. Aurantio-obtusin ameliorates obesity by activating PPARα-dependent mitochondrial thermogenesis in brown adipose tissues. Acta Pharmacol Sin 2023; 44:1826-1840. [PMID: 37095199 PMCID: PMC10462708 DOI: 10.1038/s41401-023-01089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Obesity contributes to the progression of various chronic diseases, and shortens life expectancy. With abundant mitochondria, brown adipose tissue (BAT) dissipates energy through heat to limit weight gain and metabolic dysfunction in obesity. Our previous studies have shown that aurantio-obtusin (AO), a bioactive ingredient in Chinese traditional medicine Cassiae semen significantly improves hepatic lipid metabolism in a steatotic mouse model. In the current study we investigated the effects of AO on lipid metabolism in the BAT of diet-induced obesity mice and in oleic acid and palmitic acid (OAPA)-stimulated primary mature BAT adipocytes. Obese mice were established by feeding a HFHS diet for 4 weeks, and then administered AO (10 mg/kg, i.g.) for another 4 weeks. We showed that AO administration significantly increased the weight of BAT and accelerated energy expenditure to protect the weight increase in the obese mice. Using RNA sequencing and molecular biology analysis we found that AO significantly enhanced mitochondrial metabolism and UCP1 expression by activating PPARα both in vivo and in vitro in the primary BAT adipocytes. Interestingly, AO administration did not improve metabolic dysfunction in the liver and white adipose tissue of obese mice after interscapular BAT excision. We demonstrated that low temperature, a trigger of BAT thermogenesis, was not a decisive factor for AO to stimulate the growth and activation of BATs. This study uncovers a regulatory network of AO in activating BAT-dependent lipid consumption and brings up a new avenue for the pharmaceutical intervention in obesity and related comorbidities.
Collapse
Affiliation(s)
- Yi-Jie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui-Yu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Kai-Yi Wu
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Ming-Ning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong Sun
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Yi-Qing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian-Zhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shu-Ni Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong-Rong Li
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang-Hong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Preclinical activities of Cassia tora Linn against aging-related diseases. Expert Rev Mol Med 2022; 24:e43. [PMID: 36281483 DOI: 10.1017/erm.2022.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Globally, an aging population is increasing, and aging is a natural physiological process and a major risk factor for all age-related diseases. It seriously threatens personal health and imposes a great economic burden. Therefore, there is a growing scientific interest in strategies for well-aging with prevention and treatment of age-related diseases. The seed, root, stem or leaves of Cassia tora Linn. are useful for anti-bacteria, anti-hyperlipidemia and anti-obesity due to its pharmacological activities such as anti-inflammation and anti-oxidant both in vitro and in vivo. Nevertheless, no clinical trials have been attempted so far, therefore here we would like to understand the current preclinical activities for aging-related disease models including cataract, metabolic dysfunction and neurodegeneration, then discuss their preparation for clinical trials and perspectives.
Collapse
|
5
|
Santiago CMO, de Oliveira DG, Rocha‐Gomes A, Oliveira G, Bernardes EDO, Dias PL, Reis ÍG, Severiano CM, da Silva AA, Lessa MR, Dessimoni Pinto NAV, Riul TR. Unripe banana flour (
Musa cavendishii
) promotes increased hypothalamic antioxidant activity, reduced caloric intake, and abdominal fat accumulation in rats on a high‐fat diet. J Food Biochem 2022; 46:e14341. [DOI: 10.1111/jfbc.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Camilla M. O. Santiago
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Dalila G. de Oliveira
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Arthur Rocha‐Gomes
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Gabriel A. Oliveira
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Eduardo de Oliveira Bernardes
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Patrick L. Dias
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Ítalo G. Reis
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Cecília M. Severiano
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Alexandre A. da Silva
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Programa de Pós‐Graduação em Ciências da Saúde Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Mayara R. Lessa
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Nisia A. V. Dessimoni Pinto
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Tania R. Riul
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| |
Collapse
|
6
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
7
|
Luo H, Wu H, Wang L, Xiao S, Lu Y, Liu C, Yu X, Zhang X, Wang Z, Tang L. Hepatoprotective effects of Cassiae Semen on mice with non-alcoholic fatty liver disease based on gut microbiota. Commun Biol 2021; 4:1357. [PMID: 34862475 PMCID: PMC8642482 DOI: 10.1038/s42003-021-02883-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Cassiae Semen (CS), the seeds of Cassia obtusifolia L. and C. tora L, have a long medicinal history in China, with suggestions for it to relieve constipation and exert hepatoprotective effects. However, the underlying mechanisms are still unclear. In this study, mice with high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) were used to study the hepatoprotective effects of CS. The relationship between gut microbiota and hepatoprotective effect mechanisms mediated by CS extracts, the total aglycone extracts of CS, rubrofusarin-6-β-gentiobioside, and aurantio-obtusin were examined. Our data indicate that CS extracts and components confer a protective effect by ameliorating lipid accumulation, intestinal barrier damage, liver damage, and inflammation on HFD-induced liver injury. Meanwhile, fecal microbe transplantation exerted the pharmacological effect of CS on HFD-fed mice; however, the efficacy of CS was inhibited or eliminated by antibiotic-induced dysbiosis. In conclusion, the therapeutic effects of CS on NAFLD were closely related to the gut microbiota, suggesting a role for TCM in treating disease.
Collapse
Affiliation(s)
- Hanyan Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Yaqi Lu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Cong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiankuo Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiao Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| |
Collapse
|
8
|
Kwon J, Hwang H, Selvaraj B, Lee JH, Park W, Ryu SM, Lee D, Park JS, Kim HS, Lee JW, Jang DS, Kwon HC. Phenolic constituents isolated from Senna tora sprouts and their neuroprotective effects against glutamate-induced oxidative stress in HT22 and R28 cells. Bioorg Chem 2021; 114:105112. [PMID: 34216894 DOI: 10.1016/j.bioorg.2021.105112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
The consumption of sprouts has been steadily increasing due to their being an excellent source of nutrition. It is known that the bioactive constituents of legumes can be increased after germination. In this study, the extract from Senna tora sprouts is shown to exhibit improved radical scavenging activities and better neuroprotective effects in HT22 hippocampal neuronal (HT22) and R28 retina precursor (R28) cells than those from seeds due to an increased content of phenolic constituents, especially compounds 1 and 3-6. A phytochemical investigation of S. tora sprouts resulted in the isolation of two new naphthopyrone glycosides (1-2) with 27 previously reported compounds. Their structures were determined via interpreting spectroscopic data. Compounds 1 and 3-6 were found to possess radical scavenging activities and neuroprotective effects against oxidative stress in both neuronal cells. Hence, Senna tora sprouts and their constituents may be developed as natural neuroprotective agents via antioxidative effects.
Collapse
Affiliation(s)
- Jaeyoung Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| | - Hoseong Hwang
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Baskar Selvaraj
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Jung Hwan Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Woongbi Park
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Seung Mok Ryu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Soo Park
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Hyoung Seok Kim
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Jae Wook Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| |
Collapse
|
9
|
Pang X, Li NN, Yu HS, Kang LP, Yu HY, Song XB, Fan GW, Han LF. Two new naphthalene glycosides from the seeds of Cassia obtusifolia. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:970-976. [PMID: 29947250 DOI: 10.1080/10286020.2018.1478816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
A phytochemical study on the seeds of Cassia obtusifolia was carried out, which finally led to obtain two naphthalenes (1 and 2), two naphthopyrans (3 and 4) and twelve anthraquinones (5-16). The structures of all compounds were established mainly by NMR and MS experiments as well as the necessary chemical evidence. Among them, 1 and 2 (obtusinaphthalensides A and B) were identified to be new naphthalene glycosides.
Collapse
Affiliation(s)
- Xu Pang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Na-Na Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - He-Shui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Li-Ping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing 100700 , China
| | - Hai-Yang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Xin-Bo Song
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Guan-Wei Fan
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Li-Feng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| |
Collapse
|
10
|
Extract from Lycium ruthenicum Murr. Incorporating κ-carrageenan colorimetric film with a wide pH–sensing range for food freshness monitoring. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Pang X, Wang LM, Zhang YC, Kang LP, Yu HS, Fan GW, Han LF. New anthraquinone and eurotinone analogue from the seeds of Senna obtusifolia and their inhibitory effects on human organic anion transporters 1 and 3. Nat Prod Res 2018; 33:3409-3416. [PMID: 29863900 DOI: 10.1080/14786419.2018.1480621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A continuous phytochemical study on the seeds of Senna obtusifolia (Syn.: Cassia obtusifolia) led to the isolation of a new anthraquinone analogue, obtusifolin-2-O-β-D-(6'-O-α,β-unsaturated butyryl)-glucopyranoside (1) and a new eurotinone analogue, epi-9-dehydroxyeurotinone-β-D-glucopyranoside (2). Their structures were established mainly by NMR and MS experiments as well as the necessary chemical evidences. Their inhibitory effects on two organic anion transporters (OAT1 and OAT3) were investigated and the results showed that 1 exhibited a strongly specific inhibitory effect on OAT1 at 100 μM.
Collapse
Affiliation(s)
- Xu Pang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China.,Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China
| | - Li-Ming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China.,Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China
| | - You-Cai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin , China
| | - Li-Ping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing , China
| | - He-Shui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China
| | - Guan-Wei Fan
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin , China
| | - Li-Feng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China.,Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , China
| |
Collapse
|
12
|
Seo Y, Song JS, Kim YM, Jang YP. Toralactone glycoside in Cassia obtusifolia mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism. Food Res Int 2017; 97:340-346. [DOI: 10.1016/j.foodres.2017.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/11/2017] [Accepted: 04/29/2017] [Indexed: 11/26/2022]
|
13
|
Promising Inhibitory Effects of Anthraquinones, Naphthopyrone, and Naphthalene Glycosides, from Cassia obtusifolia on α-Glucosidase and Human Protein Tyrosine Phosphatases 1B. Molecules 2016; 22:molecules22010028. [PMID: 28035984 PMCID: PMC6155831 DOI: 10.3390/molecules22010028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 11/18/2022] Open
Abstract
The present work aims to evaluate the anti-diabetic potentials of 16 anthraquinones, two naphthopyrone glycosides, and one naphthalene glycoside from Cassia obtusifolia via inhibition against the protein tyrosine phosphatases 1B (PTP1B) and α-glucosidase. Among them, anthraquinones emodin and alaternin exhibited the highest inhibitory activities on PTP1B and α-glucosidase, respectively. Moreover, we examined the effects of alaternin and emodin on stimulation of glucose uptake by insulin-resistant human HepG2 cells. The results showed that alaternin and emodin significantly increased the insulin-provoked glucose uptake. In addition, our kinetic study revealed that alaternin competitively inhibited PTP1B, and showed mixed-type inhibition against α-glucosidase. In order to confirm enzyme inhibition, we predicted the 3D structure of PTP1B using Autodock 4.2 to simulate the binding of alaternin. The docking simulation results demonstrated that four residues of PTP1B (Gly183, Arg221, Ile219, Gly220) interact with three hydroxyl groups of alaternin and that the binding energy was negative (−6.30 kcal/mol), indicating that the four hydrogen bonds stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, resulting in more effective PTP1B inhibition. The results of the present study clearly demonstrate that C. obtusifolia and its constituents have potential anti-diabetic activity and can be used as a functional food for the treatment of diabetes and associated complications.
Collapse
|
14
|
Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab 2016; 311:E730-E740. [PMID: 27577854 DOI: 10.1152/ajpendo.00225.2016] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/28/2016] [Indexed: 01/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing worldwide epidemic and an important risk factor for the development of insulin resistance, type 2 diabetes, nonalcoholic steatohepatitis (NASH), and hepatic cellular carcinoma (HCC). Despite the prevalence of NAFLD, lifestyle interventions involving exercise and weight loss are the only accepted treatments for this disease. Over the last decade, numerous experimental compounds have been shown to improve NAFLD in preclinical animal models, and many of these therapeutics have been shown to increase the activity of the cellular energy sensor AMP-activated protein kinase (AMPK). Because AMPK activity is reduced by inflammation, obesity, and diabetes, increasing AMPK activity has been viewed as a viable therapeutic strategy to improve NAFLD. In this review, we propose three primary mechanisms by which AMPK activation may improve NAFLD. In addition, we examine the mechanisms by which AMPK is activated. Finally, we identify 27 studies that have used AMPK activators to reduce NAFLD. Future considerations for studies examining the relationship between AMPK and NAFLD are highlighted.
Collapse
Affiliation(s)
- Brennan K Smith
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Katarina Marcinko
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - James S Lally
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine; and Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Lee GY, Kim JH, Choi SK, Kim YH. Constituents of the seeds of Cassia tora with inhibitory activity on soluble expoxide hydrolease. Bioorg Med Chem Lett 2015; 25:5097-101. [PMID: 26483136 DOI: 10.1016/j.bmcl.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Efforts to extract soluble epoxide hydrolase (sEH) inhibitors from food sources through bioactivity-guided fractionation of Cassia tora seed extracts led to the isolation of one new compound, 1, and 15 known compounds, 2-16. Structural elucidations were performed using 1D/2D NMR spectroscopy and mass spectrometry. Compounds 1, 3, 4, 6, 10, 11, and 13-16 exhibited inhibitory activities on sEH with IC50 values of 2.2±2.1-40.6±3.4 μM. Compound 13 was particularly active and exhibited a reversible-uncompetitive behavior in enzyme kinetic studies. A binding site on the enzyme for compound 13 was also predicted by Autodock 4.2 simulations.
Collapse
Affiliation(s)
- Ga Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852, Republic of Korea
| | - Seung-Kook Choi
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
16
|
Mei L, Tang Y, Li M, Yang P, Liu Z, Yuan J, Zheng P. Co-Administration of Cholesterol-Lowering Probiotics and Anthraquinone from Cassia obtusifolia L. Ameliorate Non-Alcoholic Fatty Liver. PLoS One 2015; 10:e0138078. [PMID: 26375281 PMCID: PMC4573521 DOI: 10.1371/journal.pone.0138078] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a common liver disease in recent decades. No effective treatment is currently available. Probiotics and natural functional food may be promising therapeutic approaches to this disease. The present study aims to investigate the efficiency of the anthraquinone from Cassia obtusifolia L. (AC) together with cholesterol-lowering probiotics (P) to improve high-fat diet (HFD)-induced NAFLD in rat models and elucidate the underlying mechanism. Cholesterol-lowering probiotics were screened out by MRS-cholesterol broth with ammonium ferric sulfate method. Male Sprague-Dawley rats were fed with HFD and subsequently administered with AC and/or P. Lipid metabolism parameters and fat synthesis related genes in rat liver, as well as the diversity of gut microbiota were evaluated. The results demonstrated that, compared with the NAFLD rat, the serum lipid levels of treated rats were reduced effectively. Besides, cholesterol 7α-hydroxylase (CYP7A1), low density lipoprotein receptor (LDL-R) and farnesoid X receptor (FXR) were up-regulated while the expression of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR) was reduced. The expression of peroxisome proliferator activated receptor (PPAR)-α protein was significantly increased while the expression of PPAR-γ and sterol regulatory element binding protein-1c (SREBP-1c) was down-regulated. In addition, compared with HFD group, in AC, P and AC+P group, the expression of intestinal tight-junction protein occludin and zonula occluden-1 (ZO-1) were up-regulated. Furthermore, altered gut microbiota diversity after the treatment of probiotics and AC were analysed. The combination of cholesterol-lowering probiotics and AC possesses a therapeutic effect on NAFLD in rats by up-regulating CYP7A1, LDL-R, FXR mRNA and PPAR-α protein produced in the process of fat metabolism while down-regulating the expression of HMGCR, PPAR-γ and SREBP-1c, and through normalizing the intestinal dysbiosis and improving the intestinal mucosal barrier function.
Collapse
Affiliation(s)
- Lu Mei
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Youcai Tang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Pingchang Yang
- Department of Pathology&Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhiqiang Liu
- Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - Jieli Yuan
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, Dalian, China
- * E-mail: (PYZ); (JLY)
| | - Pengyuan Zheng
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Medical Microecology and Clinical Nutrition Research Institute of Zhengzhou University, Zhengzhou, China
- * E-mail: (PYZ); (JLY)
| |
Collapse
|
17
|
Kang H, Koppula S. Houttuynia cordata alleviates high-fat diet-induced non-alcoholic fatty liver in experimental rats. PHARMACEUTICAL BIOLOGY 2015; 53:414-422. [PMID: 25272018 DOI: 10.3109/13880209.2014.923002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Houttuynia cordata Thunb. (Saururaceae) is used traditionally in Asian countries to treat various disease symptoms. OBJECTIVE To study the effect of H. cordata ethyl acetate (HC-EA) extract on high-fat diet (HFD)-induced hepatic steatosis. MATERIALS AND METHODS HFD fed rats were orally dosed with HC-EA (100, 200, or 300 mg/kg) once daily for 8 weeks and the lipid profiles and protein expressions in hepatocytes were evaluated. RESULTS HFD rats showed an increase (p < 0.05) in the plasma lipid levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), free fatty acids (FFAs), and reduced the high-density lipoprotein (HDL) levels. Treatment with HC-EA extract (300 mg/kg) restored the changes in plasma lipid levels of TC, TG, LDL, FFA, and HDL in HFD-fed rats by 34.8, 31.1, 51.4, 32.4, and 56.3%, respectively, compared with control rats (p < 0.01). HC-EA treatment also decreased the hepatic lipid accumulation (p < 0.001 at 300 mg/kg) and improved hepatic histological lesions. HC-EA extract enhanced AMPK phosphorylation and its primary downstream targeting enzyme, acetyl-CoA carboxylase (ACC), up-regulated the gene expression of carnitine palmitoyl transferase-1 (CPT-1), and down-regulated sterol regulatory element binding protein 1, fatty acid synthase, and glutamate pyruvate transaminase protein levels in the livers of HFD-fed rats. Further, the increased expression of hepatic cytochrome P450 (CYP) composition such as CYP2E1 and CYP4A was also suppressed. DISCUSSION AND CONCLUSION Data suggest that HC-EA extract might act by regulating the AMPK-dependent pathway and related mediators and might be used in treating obesity-related liver diseases.
Collapse
Affiliation(s)
- Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University , Chungnam , Republic of Korea and
| | | |
Collapse
|
18
|
Lai YS, Chen WC, Ho CT, Lu KH, Lin SH, Tseng HC, Lin SY, Sheen LY. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5897-906. [PMID: 24857364 DOI: 10.1021/jf500803c] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This study investigated the protective properties of garlic essential oil (GEO) and its major organosulfur component (diallyl disulfide, DADS) against the development of nonalcoholic fatty liver disease (NAFLD). C57BL/6J mice were fed a normal or high-fat diet (HFD) with/without GEO (25, 50, and 100 mg/kg) or DADS (10 and 20 mg/kg) for 12 weeks. GEO and DADS dose-dependently exerted antiobesity and antihyperlipidemic effects by reducing HFD-induced body weight gain, adipose tissue weight, and serum biochemical parameters. Administration of 50 and 100 mg/kg GEO and 20 mg/kg DADS significantly decreased the release of pro-inflammatory cytokines in liver, accompanied by elevated antioxidant capacity via inhibition of cytochrome P450 2E1 expression during NAFLD development. The anti-NAFLD effects of GEO and DADS were mediated through down-regulation of sterol regulatory element binding protein-1c, acetyl-CoA carboxylase, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase, as well as stimulation of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1. These results demonstrate that GEO and DADS dose-dependently protected obese mice with long-term HFD-induced NAFLD from lipid accumulation, inflammation, and oxidative damage by ameliorating lipid metabolic disorders and oxidative stress. The dose of 20 mg/kg DADS was equally as effective in preventing NAFLD as 50 mg/kg GEO containing the same amount of DADS, which demonstrates that DADS may be the main bioactive component in GEO.
Collapse
Affiliation(s)
- Yi-Syuan Lai
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|