1
|
Shu C, Ge L, Li Z, Chen B, Liao S, Lu L, Wu Q, Jiang X, An Y, Wang Z, Qu M. Antibacterial activity of cinnamon essential oil and its main component of cinnamaldehyde and the underlying mechanism. Front Pharmacol 2024; 15:1378434. [PMID: 38529191 PMCID: PMC10961361 DOI: 10.3389/fphar.2024.1378434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Background: Plant essential oils have long been regarded as repositories of antimicrobial agents. In recent years, they have emerged as potential alternatives or supplements to antimicrobial drugs. Although literature reviews and previous studies have indicated that cinnamon essential oil (CIEO) and its major component, cinnamaldehyde (CID), possess potent antibacterial activities, their antibacterial mechanisms, especially the in vivo antibacterial mechanisms, remain elusive. Methods: In this study, we utilized the in vivo assessment system of Caenorhabditis elegans (C. elegans) to investigate the effects and mechanisms of high dose (100 mg/L) and low dose (10 mg/L) CIEO and CID in inhibiting Pseudomonas aeruginosa (P. aeruginosa). In addition, we also examined the in vitro antibacterial abilities of CIEO and CID against other common pathogens including P. aeruginosa and 4 other strains. Results: Our research revealed that both high (100 mg/L) and low doses (10 mg/L) of CIEO and CID treatment significantly alleviated the reduction in locomotion behavior, lifespan, and accumulation of P. aeruginosa in C. elegans infected with the bacteria. During P. aeruginosa infection, the transcriptional expression of antimicrobial peptide-related genes (lys-1 and lys-8) in C. elegans was upregulated with low-dose CIEO and CID treatment, while this trend was suppressed at high doses. Further investigation suggested that the PMK-1 mediated p38 signaling pathway may be involved in the regulation of CIEO and CID during nematode defense against P. aeruginosa infection. Furthermore, in vitro experimental results also revealed that CIEO and CID exhibit good antibacterial effects, which may be associated with their antioxidant properties. Conclusion: Our results indicated that low-dose CIEO and CID treatment could activate the p38 signaling pathway in C. elegans, thereby regulating antimicrobial peptides, and achieving antimicrobial effects. Meanwhile, high doses of CIEO and CID might directly participate in the internal antimicrobial processes of C. elegans. Our study provides research basis for the antibacterial properties of CIEO and CID both in vivo and in vitro.
Collapse
Affiliation(s)
- Chengjie Shu
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Ling Ge
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Zhuohang Li
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Bin Chen
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Shengliang Liao
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Lu Lu
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Qinlin Wu
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Xinyi Jiang
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Yuhan An
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Zongde Wang
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Man Qu
- School of Public Health, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Wang L, Liu X, Chen W, Sun Z. Studies on the Inhibition Mechanism of Linalyl Alcohol against the Spoilage Microorganism Brochothrix thermosphacta. Foods 2024; 13:244. [PMID: 38254545 PMCID: PMC10814832 DOI: 10.3390/foods13020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to investigate the bacterial inhibitory ability and mechanism of action of linalyl alcohol against B. thermosphacta. Linalyl alcohol causes the leakage of intracellular material by disrupting the cell wall and exposing the hydrophobic phospholipid bilayer, which binds to bacterial membrane proteins and alters their structure. In addition, linalyl alcohol causes cell membrane damage by affecting fatty acids and proteins in the cell membrane. By inhibiting the synthesis of macromolecular proteins, the normal physiological functions of the bacteria are altered. Linalyl alcohol binds to DNA in both grooved and embedded modes, affecting the normal functioning of B. thermosphacta, as demonstrated through a DNA interaction analysis.
Collapse
Affiliation(s)
| | | | | | - Zhichang Sun
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (L.W.); (X.L.); (W.C.)
| |
Collapse
|
3
|
Liu H, Chen W, Chai Y, Liu W, Chen H, Sun L, Tang X, Luo C, Chen D, Cheng X, Wang F, Yuan X, Huang C. Terpenoids and their gene regulatory networks in Opisthopappus taihangensis 'Taihang Mingzhu' as detected by transcriptome and metabolome analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:1014114. [PMID: 36247591 PMCID: PMC9557748 DOI: 10.3389/fpls.2022.1014114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
'Taihang Mingzhu' is the hybrid offspring of Opisthopappus taihangensis, and it has an excellent characteristic of whole-plant fragrance. At present, the genes and metabolites involved in the synthesis of its aromatic compounds are unknown because of the paucity of molecular biology studies on flowering in the Opisthopappus Shih genus. To elucidate the biosynthetic pathways of terpenoids, the main aromatic compounds in 'Taihang Mingzhu', we conducted transcriptome and metabolite analyses on its leaves and bud, inflorescences at the color-development, flowering, and full-bloom stages. A total of 82,685 unigenes were obtained, of which 43,901 were annotated on the basis of information at the protein databases Nr, SwissProt, KEGG, and COG/KOG (e-value<0.00001). Using gas headspace solid-phase microextraction chromatography - mass spectrometry (HS-SPME-GC/MS), 1350 metabolites were identified, the most abundant of which were terpenoids (302 metabolites). Analyses of the gene regulatory network of terpenoids in 'Taihang Mingzhu' identified 52 genes potentially involved in the regulation of terpenoid synthesis. The correlations between genes related to terpenoid metabolism/regulation and metabolite abundance were analyzed. We also extracted the essential oil from the leaves of 'Taihang Mingzhu' by hydrodistillation, and obtained 270 aromatic compounds. Again, the most abundant class was terpenoids. These results provide guidance for the extraction of essential oil from 'Taihang Mingzhu' leaves and flowers. In addition, our analyses provide valuable genetic resources to identify genetic targets to manipulate the aromatic profiles of this plant and other members the Opisthopappus Shih genus by molecular breeding.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Wendan Chen
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yuhong Chai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Wenchao Liu
- Beijing Liu Wenchao Institute of Summer Chrysanthemums Breeding Science and Technology, Beijing, China
| | - Haixia Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Lei Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Xiaowei Tang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Chang Luo
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Dongliang Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Xi Cheng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Xiaohuan Yuan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Conglin Huang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| |
Collapse
|
4
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
5
|
Rutnik K, Knez Hrnčič M, Jože Košir I. Hop Essential Oil: Chemical Composition, Extraction, Analysis, and Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1874413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ksenija Rutnik
- Department for Agrochemistry and Brewing, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| | - Maša Knez Hrnčič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Iztok Jože Košir
- Department for Agrochemistry and Brewing, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| |
Collapse
|
6
|
Środa-Pomianek K, Palko-Łabuz A, Poła A, Ferens-Sieczkowska M, Wesołowska O, Kozioł A. TMPE Derived from Saffron Natural Monoterpene as Cytotoxic and Multidrug Resistance Reversing Agent in Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21207529. [PMID: 33065997 PMCID: PMC7589963 DOI: 10.3390/ijms21207529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Terpenes constitute one of the largest groups of natural products. They exhibit a wide range of biological activities including antioxidant, anticancer, and drug resistance modulating properties. Saffron extract and its terpene constituents have been demonstrated to be cytotoxic against various types of cancer cells, including breast, liver, lung, pancreatic, and colorectal cancer. In the present work, we have studied anticancer properties of TMPE, a newly synthesized monoterpene derivative of β-cyclocitral—the main volatile produced by the stigmas of unripe crocuses. TMPE presented selective cytotoxic activity to doxorubicin-resistant colon cancer cells and was identified to be an effective MDR modulator in doxorubicin-resistant cancer cells. Synergy between this derivative and doxorubicin was observed. Most probably, TMPE inhibited transport activity of ABCB1 protein without affecting its expression level. Analysis of TMPE physicochemical parameters suggested it was not likely to be transported by ABCB1. Molecular modeling showed TMPE being more reactive molecule than the parental compound—β-cyclocitral. Analysis of electrostatic potential maps of both compounds prompted us to hypothesize that reduced reactivity as well as susceptibility to electrophilic attack were related to the lower general toxicity of β-cyclocitral. All of the above pointed to TMPE as an interesting candidate molecule for MDR reversal in cancer cells.
Collapse
Affiliation(s)
- Kamila Środa-Pomianek
- Department of Biophysics and Neurobiology, Wroclaw Medical University, ul. Chalubinskiego 3, 50-368 Wroclaw, Poland; (K.Ś.-P.); (A.P.-Ł.); (A.P.)
| | - Anna Palko-Łabuz
- Department of Biophysics and Neurobiology, Wroclaw Medical University, ul. Chalubinskiego 3, 50-368 Wroclaw, Poland; (K.Ś.-P.); (A.P.-Ł.); (A.P.)
| | - Andrzej Poła
- Department of Biophysics and Neurobiology, Wroclaw Medical University, ul. Chalubinskiego 3, 50-368 Wroclaw, Poland; (K.Ś.-P.); (A.P.-Ł.); (A.P.)
| | - Mirosława Ferens-Sieczkowska
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, ul. M. Skłodowskiej-Curie 48/50, 50-369 Wrocław, Poland; (M.F.-S.); (A.K.)
| | - Olga Wesołowska
- Department of Biophysics and Neurobiology, Wroclaw Medical University, ul. Chalubinskiego 3, 50-368 Wroclaw, Poland; (K.Ś.-P.); (A.P.-Ł.); (A.P.)
- Correspondence: ; Tel.: +48-71-784-14-15
| | - Agata Kozioł
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, ul. M. Skłodowskiej-Curie 48/50, 50-369 Wrocław, Poland; (M.F.-S.); (A.K.)
| |
Collapse
|
7
|
Gong X, Wang B, Yan L, Lu X, Zhao X. Linalool inhibits the growth of human T cell acute lymphoblastic leukemia cells with involvement of the MAPK signaling pathway. Oncol Lett 2020; 20:181. [PMID: 32934748 PMCID: PMC7471647 DOI: 10.3892/ol.2020.12042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Linalool can inhibit the malignant proliferation of numerous human malignant solid tumors, including hepatocellular carcinoma, breast cancer, small cell carcinoma and malignant melanoma. However, the role of linalool in T cell acute lymphoblastic leukaemia (T-ALL) remains unclear. In the present study, human T-ALL cell lines (Jurkat, H9, Molt-4 and Raji cells) and peripheral blood mononuclear cells (PBMCs) from healthy donors were treated with various concentrations of linalool (3.75, 7.50, 15.00, 30.00, 60.00 and 120.00 µM, respectively). A CCK-8 assay was used to analyse cell viability and it demonstrated that linalool inhibited the growth of T-ALL cells in a dose-dependent manner, but did not significantly affect normal PBMCs. Flow cytometry was used to detect the cell cycle and apoptosis and demonstrated that linalool reduced the percentage of T-ALL cells at the G0/G1 phase, and induced the apoptosis of T-ALL cells. RNA sequencing was conducted on an Illumina HiSeq X Series 2500 before and after treatment with linalool followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. It was demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the effect of linalool on T-ALL cells. Real-time quantitative PCR and western blotting were performed to verify the mRNA and protein levels, respectively of the genes in the signaling pathway identified. In addition, it was found that linalool significantly inhibited phosphorylated (p)-ERK1/2 protein expression and enhanced p-JNK protein expression of T-ALL cells. In conclusion, the present study revealed that linalool inhibits T-ALL cell survival with involvement of the MAPK signaling pathway. JNK activation and ERK inhibition may play a functional role in apoptosis induction of T-ALL cells. Linalool may be developed as a novel anti T-ALL agent.
Collapse
Affiliation(s)
- Xubo Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zheijang 310000, P.R. China
| | - Baiyong Wang
- Department of Intensive Care Unit, The First Hospital of Hangzhou Normal University, Hangzhou, Zheijang 310000, P.R. China
| | - Lijuan Yan
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zheijang 310000, P.R. China
| | - Xiaoya Lu
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zheijang 310000, P.R. China
| | - Xiaoying Zhao
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zheijang 310000, P.R. China
| |
Collapse
|
8
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
9
|
Ke J, Zhu C, Zhang Y, Zhang W. Anti-Arrhythmic Effects of Linalool via Cx43 Expression in a Rat Model of Myocardial Infarction. Front Pharmacol 2020; 11:926. [PMID: 32670059 PMCID: PMC7329979 DOI: 10.3389/fphar.2020.00926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lavender is a traditional therapy for different heart symptoms including palpitation, which comprises an important symptom of cardiac arrhythmias. This experiment was designed to evaluate the antiarrhythmic effects of linalool using an experimental model of arrhythmia following myocardial infarction in rats. The underlying electrophysiological mechanism through cardiac connexin 43 (Cx43) expression was also investigated. METHODS Fifty male Sprague-Dawley rats were divided into five equal groups. The first group was considered as the normal control group; MI was induced by ligation of the left anterior descending artery (LAD) in the second group. The other three groups received metoprolol (100 mg/kg/day) or linalool (50 or 100 mg/kg/day) for seven days before LAD ligation. The arrhythmia score, isolated myocyte resting potential, histological changes, and cardiac Cx43 expression levels were evaluated. RESULTS In the MI group, there was a significant increase in the arrhythmia score but a marked decrease in resting membrane potential relative to the control; these changes were prevented by the administration of metoprolol or linalool. The histological changes were also minimized in the groups treated with these substances compared to the untreated MI group. The western blot and real-time PCR results showed that the protein expression of Cx43 in the infarct zone of the rat hearts was significantly higher in the MI groups receiving metoprolol or linalool compared with the untreated MI group. CONCLUSION Linalool was shown to be able to dose-dependently decrease the incidence of arrhythmias in a rat model of myocardial infarction. We propose that the key mechanism behind this antiarrhythmic effect is probably the prevention of decreased Cx43 expression following MI.
Collapse
Affiliation(s)
- Jianlin Ke
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Canzhan Zhu
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Wenlong Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Satyal P, Setzer WN. Chemical Compositions of Commercial Essential Oils From Coriandrum sativum Fruits and Aerial Parts. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20933067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coriander and cilantro, the fruit and herb of Coriandrum sativum, are popular additives in various cuisines worldwide. The essential oils derived from coriander and cilantro are also popular and have shown some remarkable biological properties and health benefits. In this report, we have analyzed the essential oil compositions of 19 commercial coriander and 28 commercial cilantro essential oil samples by gas chromatography–mass spectrometry (GC–MS) techniques. In addition, 5 coriander and 4 cilantro commercial essential oil samples were analyzed by chiral GC–MS. Commercial coriander essential oil is dominated by linalool (62.2%-76.7%) with lesser quantities of α-pinene (0.3%-11.4%), γ-terpinene (0.6%-11.6%), and camphor (0.0%-5.5%). Commercial cilantro essential oil is composed largely of (2 E)-decenal (16.0%-46.6%), linalool (11.8%-29.8%), (2 E)-decen-1-ol (0.0%-24.7%), decanal (5.2%-18.7%), (2 E)-dodecenal (4.1%-8.7%), and 1-decanol (0.0%-9.5%). The enantiomeric distribution of linalool was 87% (+)-linalool:13% (−)-linalool in both coriander and cilantro essential oils, while α-pinene was 93% (+):7% (−) in coriander, 90% (+):10% (−) in cilantro; and (+)-camphor:(−)-camphor was 13%:87% in both essential oils. Chiral GC–MS analysis was able to detect an adulterated coriander essential oil sample. The data provided in this study serves to establish a baseline for future evaluations of these essential oils as well as a screen for authenticity or adulteration.
Collapse
Affiliation(s)
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, USA
- Department of Chemistry, University of Alabama, Huntsville, AL, USA
| |
Collapse
|
11
|
Qiu F, Wang X, Zheng Y, Wang H, Liu X, Su X. Full-Length Transcriptome Sequencing and Different Chemotype Expression Profile Analysis of Genes Related to Monoterpenoid Biosynthesis in Cinnamomum porrectum. Int J Mol Sci 2019; 20:ijms20246230. [PMID: 31835605 PMCID: PMC6941020 DOI: 10.3390/ijms20246230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023] Open
Abstract
Leaves of C. porrectum are rich in essential oils containing monoterpenes, sesquiterpenes and aromatic compounds, but the molecular mechanism of terpenoid biosynthesis in C. porrectum is still unclear. In this paper, the differences in the contents and compositions of terpenoids among three chemotypes were analyzed using gas chromatography mass spectrometry (GC/MS). Furthermore, the differential expression of gene transcripts in the leaf tissues of the three C. porrectum chemotypes were analyzed through a comparison of full-length transcriptomes and expression profiles. The essential oil of the three C. porrectum chemotypes leaves was mainly composed of monoterpenes. In the full-length transcriptome of C. porrectum, 104,062 transcripts with 306,337,921 total bp, an average length of 2944 bp, and an N50 length of 5449 bp, were obtained and 94025 transcripts were annotated. In the eucalyptol and linalool chemotype, the camphor and eucalyptol chemotype, and the camphor and linalool chemotype comparison groups, 21, 22 and 18 terpene synthase (TPS) unigenes were identified respectively. Three monoterpene synthase genes, CpTPS3, CpTPS5 and CpTPS9, were upregulated in the eucalyptol chemotype compared to the linalool chemotype and camphor chemotype. CpTPS1 was upregulated in the camphor chemotype compared to the linalool chemotype and the eucalyptol chemotype. CpTPS4 was upregulated in the linalool chemotype compared to the camphor chemotype and the eucalyptol chemotype. Different unigenes had different expression levels among the three chemotypes, but the unigene expression levels of the 2-C-methyl-D-erythritol 4phosphate (MEP) pathway were generally higher than those of the mevalonate acid (MVA) pathway. Quantitative reverse transcription PCR(qRT-PCR) further validated these expression levels. The present study provides new clues for the functional exploration of the terpenoid synthesis mechanism and key genes in different chemotypes of C. porrectum.
Collapse
Affiliation(s)
- Fengying Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Jiangxi Academy of Forestry, Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Nanchang 30032, China; (X.W.); (Y.Z.); (X.L.)
| | - Xindong Wang
- Jiangxi Academy of Forestry, Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Nanchang 30032, China; (X.W.); (Y.Z.); (X.L.)
| | - Yongjie Zheng
- Jiangxi Academy of Forestry, Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Nanchang 30032, China; (X.W.); (Y.Z.); (X.L.)
| | - Hongming Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China;
| | - Xinliang Liu
- Jiangxi Academy of Forestry, Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Nanchang 30032, China; (X.W.); (Y.Z.); (X.L.)
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing 100091, China
- Correspondence: ; Tel.: +86-010-6288-9627
| |
Collapse
|
12
|
Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces 2018; 171:566-578. [DOI: 10.1016/j.colsurfb.2018.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
|
13
|
Feriotto G, Marchetti N, Costa V, Torricelli P, Beninati S, Tagliati F, Mischiati C. Selected terpenes from leaves of Ocimum basilicum L. induce hemoglobin accumulation in human K562 cells. Fitoterapia 2018; 127:173-178. [DOI: 10.1016/j.fitote.2018.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
|
14
|
Dietary functional flavonoids as natural hepatoprotective agents against acute liver injury from hop (Humulus lupulus L.). J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Yakefu Z, Huannixi W, Ye C, Zheng T, Chen S, Peng X, Tian Z, Wang J, Yang Y, Ma Z, Zuo Z. Inhibitory effects of extracts from Cinnamomum camphora fallen leaves on algae. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2545-2554. [PMID: 29944120 DOI: 10.2166/wst.2018.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural allelochemicals are considered as a source of algaecides. To uncover the anti-algal activity of Cinnamomum camphora fallen leaves and promote their usage as algaecides, the composition of their water and methanol extracts was analyzed, and the inhibitory effects of extracts on the growth of Microcystis aeruginosa and Chlamydomonas reinhardtii, and chlorophyll (Chl) content and photosynthetic abilities in C. reinhardtii were investigated. Twenty-five compounds were detected in the water extracts, mainly including terpenoids, esters, alcohols, and ketones. Compared to water extracts, there were more compounds and higher concentration in methanol extracts. Both water and methanol extracts inhibited the growth of the two algae, and 15 mg·ml-1 methanol extracts killed the algal cells after 48 h. The levels of Chl a and Chl b, as well as maximum quantum yield of photosystem II photochemistry (Fv/Fm) in C. reinhardtii cells reduced gradually with increasing the concentration of extracts, while the maximum quantum yield of non-photochemical de-excitation (φDO) increased gradually. At the same concentration, methanol extracts showed stronger inhibitory effects than water extracts, due to their higher number of compounds and higher concentration. Therefore, C. camphora fallen leaves have a potential value as an algaecide.
Collapse
Affiliation(s)
- Zumulati Yakefu
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Wulan Huannixi
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Chaolin Ye
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Tiefeng Zheng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Silan Chen
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Xin Peng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Zhengfeng Tian
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Junhao Wang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Youyou Yang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhongqing Ma
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| |
Collapse
|
16
|
Sabogal-Guáqueta AM, Posada-Duque R, Cortes NC, Arias-Londoño JD, Cardona-Gómez GP. Changes in the hippocampal and peripheral phospholipid profiles are associated with neurodegeneration hallmarks in a long-term global cerebral ischemia model: Attenuation by Linalool. Neuropharmacology 2018; 135:555-571. [PMID: 29680773 DOI: 10.1016/j.neuropharm.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Phospholipid alterations in the brain are associated with progressive neurodegeneration and cognitive impairment after acute and chronic injuries. Various types of treatments have been evaluated for their abilities to block the progression of the impairment, but effective treatments targeting long-term post-stroke alterations are not available. In this study, we analyzed changes in the central and peripheral phospholipid profiles in ischemic rats and determined whether a protective monoterpene, Linalool, could modify them. We used an in vitro model of glutamate (125 μM) excitotoxicity and an in vivo global ischemia model in Wistar rats. Linalool (0.1 μM) protected neurons and astrocytes by reducing LDH release and restoring ATP levels. Linalool was administered orally at a dose of 25 mg/kg every 24 h for a month, behavioral tests were performed, and a lipidomic analysis was conducted using mass spectrometry. Animals treated with Linalool displayed faster neurological recovery than untreated ischemic animals, accompanied by better motor and cognitive performances. These results were confirmed by the significant reduction in astrogliosis, microgliosis and COX-2 marker, involving a decrease of 24:0 free fatty acid in the hippocampus. The altered profiles of phospholipids composed of mono and polyunsaturated fatty acids (PC 36:1; 42:1 (24:0/18:1)/LPC 22:6)/LPE 22:6) in the ischemic hippocampus and the upregulation of PI 36:2 and other LCFA (long chain fatty acids) in the serum of ischemic rats were prevented by the monoterpene. Based on these data, alterations in the central and peripheral phospholipid profiles after long-term was attenuated by oral Linalool, promoting a phospholipid homeostasis, related to the recovery of brain function.
Collapse
Affiliation(s)
- Angélica Maria Sabogal-Guáqueta
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia; Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Natalie Charlotte Cortes
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquía, Medellín, Colombia
| | | | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
17
|
Muhammad DRA, Dewettinck K. Cinnamon and its derivatives as potential ingredient in functional food—A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1369102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dimas Rahadian Aji Muhammad
- Laboratory of Food Technology and Engineering, Faculty of Bioscience-Engineering, Ghent University, Gent, Belgium
- Department of Food Science and Technology, Sebelas Maret University, Surakarta, Indonesia
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Faculty of Bioscience-Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
18
|
Souto-Maior FN, da Fonsêca DV, Salgado PRR, Monte LDO, de Sousa DP, de Almeida RN. Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide. PHARMACEUTICAL BIOLOGY 2017; 55:63-67. [PMID: 27622736 PMCID: PMC7012048 DOI: 10.1080/13880209.2016.1228682] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/26/2016] [Accepted: 08/22/2016] [Indexed: 05/30/2023]
Abstract
CONTEXT Linalool oxide (OXL) (a monoterpene) is found in the essential oils of certain aromatic plants, or it is derived from linalool. The motivation for this work is the lack of psychopharmacological studies on this substance. OBJECTIVE To evaluate OXL's acute toxicity, along with its anticonvulsant and antinociceptive activities in male Swiss mice. MATERIAL AND METHODS OXL (50, 100 and 150 mg/kg, i.p.) was investigated for acute toxicity and in the Rota-rod test. Antinociceptive activity was evaluated by the acetic acid-induced writhing test, and by formalin testing. Anticonvulsant effects were demonstrated by testing for pentylenetetrazol (PTZ)-induced seizures and by Maximum Electroshock headset (MES) test. OXL was administered to the animals intraperitoneally 30 min before for pharmacological tests. RESULTS OXL showed an LD50 of ∼721 (681-765) mg/kg. In the Rota-rod test, it was observed that OXL caused no damage to the animal's motor coordination. OXL significantly reduced (p < .001) the number of writhings. OXL also significantly decreased (p < .05, p < .01 or p < .001) paw-licking time in the two phases of the formalin test. OXL significantly reduced (p < .01 or p < .001) the duration of tonic seizures in the MES test, and at the dose 150 mg/kg, significantly increased (p < .01) the latency to first seizure in the PTZ test. CONCLUSION The tested doses of OXL were safe, with no motor impairment, and show clear antinociceptive and anticonvulsant potential. Future investigations with this monoterpene may lead to the development of a new molecule with even higher potency and selectivity.
Collapse
Affiliation(s)
- Flávia Negromonte Souto-Maior
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB), Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Diogo Vilar da Fonsêca
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB), Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Paula Regina Rodrigues Salgado
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB), Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Lucas de Oliveira Monte
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB), Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Damião Pergentino de Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB), Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB), Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| |
Collapse
|
19
|
Iwasaki K, Zheng YW, Murata S, Ito H, Nakayama K, Kurokawa T, Sano N, Nowatari T, Villareal MO, Nagano YN, Isoda H, Matsui H, Ohkohchi N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J Gastroenterol 2016; 22:9765-9774. [PMID: 27956800 PMCID: PMC5124981 DOI: 10.3748/wjg.v22.i44.9765] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/05/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anticancer mechanisms of the monoterpenoid alcohol linalool in human colon cancer cells.
METHODS The cytotoxic effect of linalool on the human colon cancer cell lines and a human fibroblast cell line was examined using the WST-8 assay. The apoptosis-inducing effect of linalool was measured using the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and flow cytometry with Annexin V. Oxidative stress was investigated by staining for diphenyl-1-pyrenylphosphine, which is a cellular lipid peroxidation marker, and electron spin resonance spectroscopy. Sixteen SCID mice xenografted with human cancer cells were randomized into 3 groups for in vivo analysis: control and low-dose and high-dose linalool groups. The control group was administered tap water orally every 3 d. The linalool treatment groups were administered 100 or 200 μg/kg linalool solution orally for the same period. All mice were sacrificed under anesthesia 21 d after tumor inoculation, and tumors and organs were collected for immunohistochemistry using an anti-4-hydroxynonenal antibody. Tumor weights were measured and compared between groups.
RESULTS Linalool induced apoptosis of cancer cells in vitro, following the cancer-specific induction of oxidative stress, which was measured based on spontaneous hydroxyl radical production and delayed lipid peroxidation. Mice in the high-dose linalool group exhibited a 55% reduction in mean xenograft tumor weight compared with mice in the control group (P < 0.05). In addition, tumor-specific lipid peroxidation was observed in the in vivo model.
CONCLUSION Linalool exhibited an anticancer effect via cancer-specific oxidative stress, and this agent has potential for application in colon cancer therapy.
Collapse
|
20
|
Shi F, Zhao Y, Firempong CK, Xu X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. PHARMACEUTICAL BIOLOGY 2016; 54:2320-2328. [PMID: 26986932 DOI: 10.3109/13880209.2016.1155630] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Linalool (LL) is associated with numerous pharmacological activities. However, its poor solubility usually results in poor bioavailability, and further limited its applications. Objective To reduce volatilization and improve bioavailability of LL, linalool-loaded nanostructured lipid carriers (LL-NLCs) were prepared. Materials and methods LL-NLCs were prepared using high-pressure homogenization method and optimized via response surface methodology-central composite design, followed by characterization, including particle size (PS), zeta potential (ZP), transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and in vitro release study. Rats were administered 300 mg × kg (-) (1) LL with each preparation (LL-NLCs or LL) via oral gavage. Results LL-NLCs had a PS of 52.72 nm with polydispersity index of 0.172, and ZP of -16.0 mV. The encapsulation efficiency and drug loading gave 79.563 and 7.555%, respectively. The cumulative release of LL from free LL reached 51.414% at 180 min, while LL from LL-NLCs was 15.564%. All the pharmacokinetics parameters of LL-NLCs were better than those of LL, including Cmax (from 1915.45 to 2182.45 ng × mL (-) (1)), AUC0-t (from 76003.40 to 298948.46 ng × min × mL (-) (1)) and relative bioavailability (393.34%). The t1/2, MRT and tmax of LL-NLCs (110.50, 146.66 and 60 min) were also longer than that of LL (44.72, 45.66 and 40 min). Discussion and conclusion LL-NLCs were for the first time prepared and its oral administration in rats thoroughly investigated. LL-NLCs exhibited sustained release effect and increased absorption of LL. Therefore, these findings might provide a potential possibility for clinical application of LL.
Collapse
Affiliation(s)
- Feng Shi
- a Department of Pharmaceutics , School of Pharmacy Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , PR China
| | - Yingying Zhao
- a Department of Pharmaceutics , School of Pharmacy Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , PR China
| | - Caleb Kesse Firempong
- a Department of Pharmaceutics , School of Pharmacy Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , PR China
| | - Ximing Xu
- a Department of Pharmaceutics , School of Pharmacy Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , PR China
| |
Collapse
|
21
|
Dogenski M, Ferreira NJ, Oliveira ALD. Extraction of Corymbia citriodora essential oil and resin using near and supercritical carbon dioxide. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Karabín M, Hudcová T, Jelínek L, Dostálek P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr Rev Food Sci Food Saf 2016; 15:542-567. [PMID: 33401815 DOI: 10.1111/1541-4337.12201] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Although female cones of the hop plant (Humulus lupulus) are known primarily as raw material supplying characteristic bitterness and aroma to beer, their equally significant health-promoting effects have been known to mankind for several thousand years and hop is a plant traditionally utilized in folk medicine. This paper summarizes the scientific knowledge on the effects of all 3 major groups of secondary metabolites of hops; polyphenols, essential oils, and resins. Because of their chemical diversity, it is no coincidence that these compounds exhibit a wide range of pharmacologically important properties. In addition to antioxidant, anti-inflammatory, and anticancer-related properties, particular attention is being paid to prenylflavonoids that occur almost exclusively in hops and are considered to be some of the most active phytoestrogens known. Hop oils and resins are well known for their sedative and other neuropharmacological properties, but in addition, these compounds exhibit antibacterial and antifungal effects. Recently, alpha bitter acids have been shown to block the development of a number of complex lifestyle diseases that are referred to by the collective name "metabolic syndrome." Information presented in this review confirms the significant potential for the use of hops in the pharmaceutical industry and provides an understanding of beer as a natural drink that, although moderately consumed, may become a source of many health-promoting compounds.
Collapse
Affiliation(s)
- Marcel Karabín
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tereza Hudcová
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukáš Jelínek
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Dostálek
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
23
|
Han HD, Cho YJ, Cho SK, Byeon Y, Jeon HN, Kim HS, Kim BG, Bae DS, Lopez-Berestein G, Sood AK, Shin BC, Park YM, Lee JW. Linalool-Incorporated Nanoparticles as a Novel Anticancer Agent for Epithelial Ovarian Carcinoma. Mol Cancer Ther 2016; 15:618-27. [PMID: 26861249 DOI: 10.1158/1535-7163.mct-15-0733-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/30/2016] [Indexed: 11/16/2022]
Abstract
Although cytotoxic chemotherapy is widely used against epithelial ovarian cancer (EOC), adverse side effects and emergence of resistance can limit its utility. Therefore, new drugs with systemic delivery platforms are urgently needed for this disease. In this study, we developed linalool-incorporated nanoparticles (LIN-NP) as a novel anticancer agent. We prepared LIN-NPs by the self-assembly water-in-oil-in-water (w/o/w) emulsion method. LIN-NP-mediated cytotoxicity and apoptosis was assessed in EOC cells, and the role of reactive oxygen species (ROS) generation as the mechanism of action was evaluated. In addition, therapeutic efficacy of LIN-NP was assessed in cell lines and patient-derived xenograft (PDX) models for EOC. LIN-NPs had significant cytotoxicity and apoptotic activity against EOC cells, including A2780, HeyA8, and SKOV3ip1. LIN-NP treatment increased apoptosis in EOC cells through ROS generation and a subsequent decrease in mitochondrial membrane potential and increase in caspase-3 levels. In addition, 100 mg/kg LIN-NPs significantly decreased tumor weight in the HeyA8 (P < 0.001) and SKOV3ip1 (P = 0.006) in vivo models. Although treatment with 50 mg/kg LIN-NP did not decrease tumor weight compared with the control group, combination treatment with paclitaxel significantly decreased tumor weight compared with paclitaxel alone in SKOV3ip1 xenografts (P = 0.004) and the patient-derived xenograft model (P = 0.020). We have developed LIN-NPs that induce ROS generation as a novel anticancer agent for EOC. These findings have broad applications for cancer therapy. Mol Cancer Ther; 15(4); 618-27. ©2016 AACR.
Collapse
Affiliation(s)
- Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Sung Keun Cho
- Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Yeongseon Byeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hat Nim Jeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hye-Sun Kim
- Department of Pathology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Gyeonggi-do, South Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Byung Cheol Shin
- Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea.
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
24
|
Asbahani AE, Miladi K, Badri W, Sala M, Addi EA, Casabianca H, Mousadik AE, Hartmann D, Jilale A, Renaud F, Elaissari A. Essential oils: From extraction to encapsulation. Int J Pharm 2015; 483:220-43. [DOI: 10.1016/j.ijpharm.2014.12.069] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/10/2014] [Accepted: 12/27/2014] [Indexed: 01/06/2023]
|
25
|
Antitumor activity of monoterpenes found in essential oils. ScientificWorldJournal 2014; 2014:953451. [PMID: 25401162 PMCID: PMC4220615 DOI: 10.1155/2014/953451] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented.
Collapse
|
26
|
Aprotosoaie AC, Hăncianu M, Costache II, Miron A. Linalool: a review on a key odorant molecule with valuable biological properties. FLAVOUR FRAG J 2014. [DOI: 10.1002/ffj.3197] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Clara Aprotosoaie
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| | - Irina-Iuliana Costache
- Department of Internal Medicine, Faculty of Medicine; “Sf. Spiridon” University Hospital Iasi; Romania
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| |
Collapse
|