1
|
Sujitha SB, Lopez-Hernandez JF, García-Alamilla P, Morales-García SS, Márquez-Rocha FJ. Evaluation of polycyclic aromatic hydrocarbons in sediments of Balsas River Mouth, Pacific Coast, Mexico: Sources, risks, and genotoxicity. CHEMOSPHERE 2023; 332:138898. [PMID: 37169094 DOI: 10.1016/j.chemosphere.2023.138898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were assessed in sediments (n = 7) collected from the mouth of the Balsas River, Pacific Coast, Mexico. The total PAH levels ranged between 142.1 and 3944.07 μg kg-1 in the summer and 137.65-3967.38 μg kg-1 in the winter, probably reflecting the anthropogenic activities of the region. Calculation of the four analytical ratios of [Anthracene/(Anthracene + Phenanthrene)]: [Fluoranthene/(Fluoranthene + Pyrene)], [Fluoranthene/Pyrene: Fluoranthene/(Fluoranthene + Pyrene)], [Indeno [123-cd]Pyrene/(Indeno [123-cd]Pyrene + Benzo [ghi]Perylene)]: [Benzo [a]anthracene/(Benzo [a]Anthracene + Chrysene)], and [Anthracene/Phenanthrene]: [Fluoranthene/(Fluoranthene + Pyrene)] revealed a mixed PAH source, from petroleum and biomass combustion. Significant statistical correlations (r2 = 0.90) between the 4 and 5 ringed PAHs denote that adsorption is the principal mechanism for accumulation in sedimentary archives. Ecotoxicological indices (Mean Effect Range Medium Quotient and Mean Probable Effect Level Quotient) indicated moderate pollution with adverse biological impacts on ambient benthonic organisms. The calculations of Toxicity Equivalent Quotient and Mutagen Equivalent Quotient values proposed that the region is highly polluted by mutagenic and carcinogenic PAH compounds. The genotoxic evaluation of Lutjanus guttatus (Spotted rose snapper) presented significant DNA damage and discrepancies in Ethoxyresorufin-O-Deethylase activity. Based on the toxicological and genotoxicological evaluation of PAHs in sediments, the region was observed to be largely impacted from biological damage.
Collapse
Affiliation(s)
- S B Sujitha
- Escuela Superior de Ingeniería y Arquitectura (ESIA), Unidad Ticoman, Instituto Politécnico Nacional (IPN), Calz. Ticomán 600, Delg. Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Jenny-Fabiola Lopez-Hernandez
- Centro Mexicano para La Producción Más Limpia-Unidad Tabasco, Instituto Politécnico Nacional, Cunduacán, Tabasco, CP 86691, Mexico
| | - Pedro García-Alamilla
- Divison Académica de Ciencias Agropecuaria, Universidad Autónoma Juárez de Tabasco, Carretera Villahermosa -Teapa Km 25, Ranchería La Huasteca 2da Sección, C.P. 86298 Villahermosa, Tabasco, Mexico
| | - S S Morales-García
- Centro Mexicano para La Producción Más Limpia, Instituto Politécnico Nacional, Av. Acueducto S/n, Col. Barrio La Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Facundo J Márquez-Rocha
- Centro Mexicano para La Producción Más Limpia-Unidad Tabasco, Instituto Politécnico Nacional, Cunduacán, Tabasco, CP 86691, Mexico.
| |
Collapse
|
2
|
Bi Y, Chen W, Miao J, Pan L, Li D. Bioaccumulation, Detoxification, and Biological Macromolecular Damage of Benzo[a]pyrene in Exposure in Tissues and Subcellular Fractions of Scallop Chlamys farreri. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2353-2364. [PMID: 35751451 DOI: 10.1002/etc.5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Because of the persistence and high toxicity of benzo[a]pyrene (B[a]P), the bioaccumulation and detoxification mechanisms of B[a]P have been studied extensively at the tissue level; but the data at the subcellular level in bivalves have not been reported. The present study was conducted to investigate the effects of B[a]P exposure on bioaccumulation, detoxification, and biomacromolecular damage in gills, digestive glands, and their subcellular fractions of the scallop Chlamys farreri. The subcellular fraction contains cytoplasm, mitochondria, microsome, nucleus, cell membrane, and overall organelle. The results demonstrated that B[a]P accumulation showed a clear time-dose effect. Based on the time-dependent accumulation of B[a]P in subcellular fractions, we speculated that the intracellular migration order of B[a]P was cell membrane, organelle, and nucleus in turn. Considering the difference of B[a]P accumulation may be related to B[a]P metabolism, we have further confirmed that the activities of B[a]P metabolizing enzymes in scallop tissues and subcellular fractions were significantly tempted by B[a]P (p < 0.05), including 7-ethoxyresorufin O-deethylase (increased), glutathione-S-transferase (GST; decreased), and superoxide dismutase (increased). First, GST was detected in bivalve cytoplasm and microsome. Second, B[a]P exposure also caused biomacromolecules damage. The results demonstrated that mitochondria and microsome were more vulnerable to lipid peroxidation than cell membrane and nucleus. Taken together, the present study fills some of the gaps in our knowledge of the bioaccumulation and detoxification mechanisms of C. farreri exposed to B[a]P in subcellular fractions and deeply explores the transportation and the main metabolic and damage sites of polycyclic aromatic hydrocarbons (PAHs) in cells, which helped us to comprehensively understand the toxic mechanism of PAHs on bivalves. Environ Toxicol Chem 2022;41:2353-2364. © 2022 SETAC.
Collapse
Affiliation(s)
- Yaqi Bi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Wei Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
3
|
Bukowska B, Mokra K, Michałowicz J. Benzo[ a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int J Mol Sci 2022; 23:6348. [PMID: 35683027 PMCID: PMC9181839 DOI: 10.3390/ijms23116348] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is the main representative of polycyclic aromatic hydrocarbons (PAHs), and has been repeatedly found in the air, surface water, soil, and sediments. It is present in cigarette smoke as well as in food products, especially when smoked and grilled. Human exposure to B[a]P is therefore common. Research shows growing evidence concerning toxic effects induced by this substance. This xenobiotic is metabolized by cytochrome P450 (CYP P450) to carcinogenic metabolite: 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), which creates DNA adducts, causing mutations and malignant transformations. Moreover, B[a]P is epigenotoxic, neurotoxic, and teratogenic, and exhibits pro-oxidative potential and causes impairment of animals' fertility. CYP P450 is strongly involved in B[a]P metabolism, and it is simultaneously expressed as a result of the association of B[a]P with aromatic hydrocarbon receptor (AhR), playing an essential role in the cancerogenic potential of various xenobiotics. In turn, polymorphism of CYP P450 genes determines the sensitivity of the organism to B[a]P. It was also observed that B[a]P facilitates the multiplication of viruses, which may be an additional problem with the widespread COVID-19 pandemic. Based on publications mainly from 2017 to 2022, this paper presents the occurrence of B[a]P in various environmental compartments and human surroundings, shows the exposure of humans to this substance, and describes the mechanisms of its toxicity.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland; (K.M.); (J.M.)
| | | | | |
Collapse
|
4
|
Xie J, Han Q, Wei Z, Wang Y, Wang S, Chen M. Phenanthrene induces autism-like behavior by promoting oxidative stress and mTOR pathway activation. Toxicology 2021; 461:152910. [PMID: 34453960 DOI: 10.1016/j.tox.2021.152910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
Autism is thought to be associated with both environmental and genetic factors. Phenanthrene (Phe) makes up a relatively high proportion of the low-ring polycyclic aromatic hydrocarbons. However, the association between exposure to Phe and Autism remain unclear. In this study, the effect and mechanisms of phenanthrene exposure on autistic behavior were investigated. Three-week-old male Kunming mice were exposed to doses of 5, 50, or 500 μg/kg/d Phe for 22 days. Exposure to phenanthrene induced a marked decrease in the activity of the mice in the central area in the open field test, and caused a significant decrease in communication with unfamiliar mice in the three-chambered social test. The hippocampus of the mice exposed to high concentrations of Phe showed pathological changes. Exposure to phenanthrene induced an increase in the levels of ROS and a decrease in levels of glutathione, and caused a significant decrease in the expression of Shank3 and Beclin1. This also led to an increase in the phosphorylation levels of Akt and mTOR. However, administering Rapamycin or vitamin E, inhibited the oxidative stress and activation of the mTOR pathway induced by Phe exposure, effectively alleviating the above-mentioned autistic-like anxious social behaviors. These results indicate that exposure to phenanthrene will lead to autism-like behavior. The underlying mechanism involves oxidative stress and the mTOR pathway.
Collapse
Affiliation(s)
- Jing Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shuwei Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
5
|
Cherif LS, Cao-Lei L, Farinelle S, Muller CP, Turner JD, Schroeder H, Grova N. Assessment of 9-OH- and 7,8-diol-benzo[a]pyrene in Blood as Potent Markers of Cognitive Impairment Related to benzo[a]pyrene Exposure: An Animal Model Study. TOXICS 2021; 9:toxics9030050. [PMID: 33800341 PMCID: PMC7998639 DOI: 10.3390/toxics9030050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/14/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022]
Abstract
The potent neurotoxicity of benzo[a]pyrene (B[a]P) has been suggested to be a susceptibility factor accelerating the onset of brain tumours and the emergence of neurobehavioural disturbances. B[a]P has been shown to be neurotoxic, acting directly on both the central and peripheral nervous systems, as well as indirectly via peripheral organs like liver and gut. By using a realistic B[a]P exposure scenario (0.02-200 mg/kg/day, 10 days) in mice, we elucidated brain-specific B[a]P metabolism and at identified hydroxylated B[a]P metabolites in serum which could be used as markers of cognitive impairment. Repeated oral administration of B[a]P led to, at the doses of 20 and 200 mg/kg/day, significant overexpression of Cyp1a1/Cyp1b1 in 2 out of the 3 brain regions considered, thereby suggesting the ability of the brain to metabolize B[a]P itself. At the same doses, mice exhibited a reduction in anxiety in both the elevated plus maze and the hole board apparatus. Concomitantly, B[a]P triggered dose-dependent changes in Nmda subunit expression (Nr1 and Nr2a/Nr2b) in areas involved in cognition. We detected 9-OH-B[a]P and 7,8-diol-B[a]P in serum at the level for which cognitive impairment was observed. We suggest that these metabolites may, in the future be exploited as potent biomarkers of B[a]P-induced cognitive impairments.
Collapse
Affiliation(s)
- Lynda Saber Cherif
- Calbinotox, EA7488, Faculty of Science and Technology, Lorraine University, 54500 Vandoeuvre-lès Nancy, France; (L.S.C.); (L.C.-L.); (H.S.)
| | - Lei Cao-Lei
- Calbinotox, EA7488, Faculty of Science and Technology, Lorraine University, 54500 Vandoeuvre-lès Nancy, France; (L.S.C.); (L.C.-L.); (H.S.)
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, LuxembourgInstitute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| | - Sophie Farinelle
- Experimental & Molecular Immunology Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| | - Claude P. Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-Sur-Alzette, Luxembourg;
- Laboratoire National de Santé, L-3583 Dudelange, Luxembourg
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, LuxembourgInstitute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| | - Henri Schroeder
- Calbinotox, EA7488, Faculty of Science and Technology, Lorraine University, 54500 Vandoeuvre-lès Nancy, France; (L.S.C.); (L.C.-L.); (H.S.)
| | - Nathalie Grova
- Calbinotox, EA7488, Faculty of Science and Technology, Lorraine University, 54500 Vandoeuvre-lès Nancy, France; (L.S.C.); (L.C.-L.); (H.S.)
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, LuxembourgInstitute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
- Correspondence: or ; Tel.: +352-26-970-422
| |
Collapse
|
6
|
Li X, Yu D, Jie H, Zhou H, Ye H, Ma G, Wan L, Li C, Shi H, Yin S. Cytochrome P450 1A2 Is Incapable of Oxidizing Bilirubin Under Physiological Conditions. Front Pharmacol 2019; 10:1220. [PMID: 31680983 PMCID: PMC6813656 DOI: 10.3389/fphar.2019.01220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Bilirubin (BR) is metabolized mainly by uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) through glucuronidation in the liver. Some studies have shown that several subtypes of cytochrome P450 (CYP) enzymes, including CYP1A2, are upregulated by inducers and proposed to be alternative BR degradation enzymes. However, no information is available on the BR degradation ability of CYP in normal rats without manipulation by CYP inducers. Methods: Quantitative real-time polymerase chain reaction (QRT-PCR), western blot, immunofluorescence, and confocal microscopy were used to find expression of CYP1A2 in the brain and the liver. BR metabolites in microsomal fractions during development were examined by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (LC-MS/MS). Results: In the present study, we observed that CYP1A2 mRNA levels increased at postnatal days (P)14 and P30 with respect to the level at P7 both in liver and brain, this increment was especially pronounced in the brain at P14. The expression of CYP1A2 in the brainstem (BS) was higher than that in the cerebellum (CLL) and cortex (COR). Meanwhile, the CYP1A2 protein level was significantly higher in the COR than in the brainstem and CLL at P14. The levels of BR and its metabolites (m/z values 301, 315, 333 and biliverdin) were statistically unaltered by incubation with liver and brain microsomal fractions. Conclusion: Our results indicated that the region-specific expression of CYP1A2 increased during development, but CYP family enzymes were physiologically incapable of metabolizing BR. The ability of CYPs to oxidize BR may be triggered by CYP inducers.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Jie
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunyan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
7
|
Parida R, Das S, Raju TR, Sathyaprabha TN. Human placental extract ameliorates cytokine and cytokine receptor signaling in the rat hippocampus upon Benzo[a]Pyrene exposure. J Chem Neuroanat 2019; 98:8-16. [PMID: 30862515 DOI: 10.1016/j.jchemneu.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
Benzo[alpha]Pyrene (B[a]P) causes toxicity via Cytochrome P450 1A1 (CYP1A1) metabolic activity in the brain. Studies have shown that neuronal IL-2 and TNF-α are associated with the hippocampus development and regulation, but their association with the CYP1A1 activity remains unidentified. Limited action of human placental extract (HPE) in the activation of tissue repair and wound healing is known, but their role in B[a]P clearance in the hippocampus is not known so far. Our study has focused on two novel concepts: (1) association of CYP1A1 activity with the inflammatory response in the brain hippocampus and (2) role of HPE in the immunomodulatory mechanisms in the hippocampus upon B[a]P exposure at cytokine receptor and nuclear level. Intrathecal administration of different concentrations of B[a]P and HPE into male wistar rat pups has been conducted. An increased CYP1A1 activity was observed in the presence of 0.25 μM B[a]P alone but in case of HPE followed by 0.25 μM B[a]P, it was equal to control. Herein we report that 5 μl of 0.1 gm HPE followed by 0.25 μM B[a]P administration enabled down-regulation of IL-2 and TNF-α levels in the hippocampus thereby modulating TNFR2 and IL2Rγc signals via NF-κB activation. Besides, localization of IL-2, TNF-α, IL2Rγc, TNFR1 and TNFR2 in the CA1, CA3 and DG regions of the hippocampus are also depicted. Altogether, these findings will project the clinical importance of HPE in the neuroinflammation suppression in the hippocampus developed due to B[a]P toxicity.
Collapse
Affiliation(s)
- Rajeshwari Parida
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, Karnataka, India
| | - Sanjay Das
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, Karnataka, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, Karnataka, India
| | - Talakad N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
8
|
Alsaad AMS. Dasatinib induces gene expression of CYP1A1, CYP1B1, and cardiac hypertrophy markers (BNP, β-MHC) in rat cardiomyocyte H9c2 cells. Toxicol Mech Methods 2018; 28:678-684. [DOI: 10.1080/15376516.2018.1497746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Abdulaziz M. S. Alsaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Maturu P, Wei-Liang Y, Jiang W, Wang L, Lingappan K, Barrios R, Liang Y, Moorthy B, Couroucli XI. Newborn Mice Lacking the Gene for Cyp1a1 Are More Susceptible to Oxygen-Mediated Lung Injury, and Are Rescued by Postnatal β-Naphthoflavone Administration: Implications for Bronchopulmonary Dysplasia in Premature Infants. Toxicol Sci 2018; 157:260-271. [PMID: 28201809 DOI: 10.1093/toxsci/kfx036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prolonged hyperoxia contributes to bronchopulmonary dysplasia (BPD) in preterm infants. β-Naphthoflavone (BNF) is a potent inducer of cytochrome P450 (CYP)1A enzymes, which have been implicated in hyperoxic injuries in adult mice. In this investigation, we tested the hypothesis that newborn mice lacking the Cyp1a1 gene would be more susceptible to hyperoxic lung injury than wild-type (WT) mice and that postnatal BNF treatment would rescue this phenotype by mechanisms involving CYP1A and/or NAD(P)H quinone oxidoreductase (NQO1) enzymes. Newborn WT or Cyp1a1-null mice were treated with BNF (10 mg/kg) or the vehicle corn oil (CO) i.p., from postnatal day (PND) 2 to 14 once every other day, while being maintained in room air or hyperoxia (85% O2) for 14 days. Both genotypes showed lung injury, inflammation, and alveolar simplification in hyperoxia, with Cyp1a1-null mice displaying increased susceptibility compared to WT mice. BNF treatment resulted in significant attenuation of lung injury and inflammation, with improved alveolarization in both WT and Cyp1a1-null mice. BNF exposed normoxic or hyperoxic WT mice showed increased expression of hepatic CYP1A1/1A2, pulmonary CYP1A1, and NQO1 expression at both mRNA and protein levels, compared with vehicle controls. However, BNF caused greater induction of hepatic CYP1A2 and pulmonary NQO1 enzymes in the Cyp1a1-null mice, suggesting that BNF protects against hyperoxic lung injury in WT and Cyp1a1-null mice through the induction of CYP1A and NQO1 enzymes. Further studies on the protective role of flavonoids against hyperoxic lung injury in newborns could lead to novel strategies for the prevention and/or treatment of BPD.
Collapse
Affiliation(s)
- Paramahamsa Maturu
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Yanhong Wei-Liang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, Houston, Texas, USA
| | - Yao Liang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xanthi I Couroucli
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Chaousis S, Leusch FDL, van de Merwe JP. Charting a path towards non-destructive biomarkers in threatened wildlife: A systematic quantitative literature review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:59-70. [PMID: 29156442 DOI: 10.1016/j.envpol.2017.11.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Threatened species are susceptible to irreversible population decline caused by adverse sub-lethal effects of chemical contaminant exposure. It is therefore vital to develop the necessary tools to predict and detect these effects as early as possible. Biomarkers of contaminant exposure and effect are widely applied to this end, and a significant amount of research has focused on development and validation of sensitive and diagnostic biomarkers. However, progress in the use biomarkers that can be measured using non-destructive techniques has been relatively slow and there are still many difficulties to overcome in the development of sound methods. This paper systematically quantifies and reviews studies that have aimed to develop or validate non-destructive biomarkers in wildlife, and provides an analysis of the successes of these methods based on the invasiveness of the methods, the potential for universal application, cost, and the potential for new biomarker discovery. These data are then used to infer what methods and approaches appear the most effective for successful development of non-destructive biomarkers of contaminant exposure in wildlife. This review highlights that research on non-destructive biomarkers in wildlife is severely lacking, and suggests further exploration of in vitro methods in future studies.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia.
| | - Frederic D L Leusch
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia
| | - Jason P van de Merwe
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia
| |
Collapse
|
11
|
Grova N, Faÿs F, Hardy EM, Appenzeller BMR. New insights into urine-based assessment of polycyclic aromatic hydrocarbon-exposure from a rat model: Identification of relevant metabolites and influence of elimination kinetics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:484-495. [PMID: 28575812 DOI: 10.1016/j.envpol.2017.03.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/25/2017] [Indexed: 05/18/2023]
Abstract
A gas chromatography tandem mass-spectrometry method dedicated to the analysis of 50 metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) was applied to urine specimens collected from female Long Evans rats under controlled exposure to a mixture of PAHs (at 7 doses ranging from 0.01 to 0.8 mg/kg, by gavage, 3 times per week for 90 days). On four occasions (day 1, 28, 60 and 90), urine samples were collected over a 24 h period. Among these 50 OH-PAHs, 41 were detected in urine samples. Seven additional OH-PAHs were identified for the first time: 1 corresponding to metabolite of pyrene and 3 of anthracene. Strong linear dose versus urinary concentration relationships were observed for 25 of the 41 OH-PAHs detected in rat urine, confirming their suitability for assessing exposure to their respective parent compound. In addition, some isomers (e.g. 1-OH-pyrene, 3-OH-/4-OH-chrysene, 10-OH-benz[a]anthracene, 8-OH-benzo[k]fluoranthene, 11-OH-benzo[b]fluoranthene and 3-OH-benzo[a]pyrene) that were detected starting from the lowest levels of exposure or even in controls were considered particularly relevant biomarkers compared to metabolites only detected at higher levels of exposure. Finally, on the basis of the excretion profiles (on days 1, 28, 60 and 90) and urinary elimination kinetics of each OH-PAH detected at days 1 and 60, this study highlighted the fact that sampling time may influence the measurement of metabolites in urine. Taken together, these results provide interesting information on the suitability of the analysis of OH-PAHs in urine for the assessment of PAH exposure, which could be taken into consideration for the design of epidemiological studies in the future.
Collapse
Affiliation(s)
- N Grova
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| | - F Faÿs
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - E M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - B M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
12
|
Wang L, Xu W, Ma L, Zhang S, Zhang K, Ye P, Xing G, Zhang X, Cao Y, Xi J, Gu J, Luan Y. Detoxification of benzo[a]pyrene primarily depends on cytochrome P450, while bioactivation involves additional oxidoreductases including 5-lipoxygenase, cyclooxygenase, and aldo-keto reductase in the liver. J Biochem Mol Toxicol 2017; 31. [PMID: 28111842 DOI: 10.1002/jbt.21902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/02/2023]
Abstract
Cytochrome P450s are involved in detoxification and activation of benzo[a]pyrene (BaP) with unclear balance and unknown contribution of other oxidoreductases. Here, we investigated the BaP and BaP-induced mutagenicity in hepatic and extra-hepatic tissues using hepatic P450 reductase null (HRN) gpt mice. After 2-week treatment (50 mg/kg, i.p. 4 days), BaP in the liver and lung of HRN-gpt mice were increased. BaP promoted gpt mutant frequency (MF) in HRN-gpt mice liver. MF of gpt in the lung and Pig-a in hematopoietic cells induced by BaP in HRN-gpt mice were increased than in gpt mice. BaP-7,8-diol-9,10-epoxide (BPDE)-DNA adducts in vitro was analyzed for enzymes detection in BaP bioactivation. Specific inhibitors of 5-lipoxygenase, cyclooxygenase-1&2, and aldo-keto reductase resulted in more than 80% inhibition rate in the DNA adduct formation, further confirmed by Macaca fascicularis hepatic S9 system. Our results suggested the detoxification of BaP primarily depends on cytochrome P450, while the bioactivation involves additional oxidoreductases.
Collapse
Affiliation(s)
- Liupeng Wang
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Wenwei Xu
- Tong Ren Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People's Republic of China
| | - Leilei Ma
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Suxing Zhang
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Kezhi Zhang
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Peizhen Ye
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Guozhen Xing
- Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, Nanjing, People's Republic of China
| | - Xuefeng Zhang
- Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, Nanjing, People's Republic of China
| | - Yiyi Cao
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jing Xi
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jun Gu
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201-0509, USA
| | - Yang Luan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
13
|
Siebert MN, Mattos JJ, Piazza CE, de Lima D, Gomes CHA, de Melo CM, Bainy AC. Characterization of ethoxyresorufin O-deethylase activity (EROD) in oyster Crassostrea brasiliana. Comp Biochem Physiol B Biochem Mol Biol 2017; 203:115-121. [DOI: 10.1016/j.cbpb.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/04/2016] [Accepted: 10/15/2016] [Indexed: 12/16/2022]
|
14
|
Toselli F, Dodd PR, Gillam EMJ. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs. Drug Metab Rev 2016; 48:379-404. [DOI: 10.1080/03602532.2016.1221960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Rhon-Calderón EA, Galarza RA, Lomniczi A, Faletti AG. The systemic and gonadal toxicity of 3-methylcholanthrene is prevented by daily administration of α-naphthoflavone. Toxicology 2016; 353-354:58-69. [PMID: 27163632 DOI: 10.1016/j.tox.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 11/24/2022]
Abstract
In the present study, we investigated the effect of 3-methylcholanthrene (3MC) on sexual maturity and the ability of α-naphthoflavone (αNF) to prevent this action. To this end, immature rats were daily injected intraperitoneally with 3MC (0.1 or 1mg/kg) and/or αNF (80mg/kg). Body weight, vaginal opening and estrous cycle were recorded and ovaries were obtained on the day of estrus. Ovarian weight, ovulation rate (measured by the number of oocytes within oviducts), and follicular development (determined by histology) were studied. No differences were found in body weight, ovarian weight, day of vaginal opening, or the establishment of the estrous cycle among the different groups of rats. However, animals treated with 3MC, at both doses, exhibited a lower number of primordial, primary, preantral and antral follicles than controls. Also, 3MC inhibited the ovulation rate and induced an overexpression of both the Cyp1a1 and Cyp1b1 genes, measured by chromatin immunoprecipitation assay. The daily treatment with αNF alone increased the number of follicles in most of the stages analyzed when compared with controls. Moreover, the αNF treatment prevented completely not only the 3MC-induced decrease in all types of follicles but also the 3MC-induced overexpression of Cyp enzymes and the genetic damage in bone marrow cells and oocytes. These results suggest that (i) daily exposure to 3MC during the pubertal period destroys the follicle reserve and alters the ovulation rate; (ii) the 3MC action seems to be mediated by an aryl hydrocarbon receptor-dependent mechanism; (iii) daily administration of αNF has a clear stimulatory action on the ovarian function; and (iv) αNF may prevent both the systemic and gonadal 3MC-induced toxicity.
Collapse
Affiliation(s)
- Eric Alejandro Rhon-Calderón
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Alejandra Galarza
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Alicia Graciela Faletti
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Peiffer J, Grova N, Hidalgo S, Salquèbre G, Rychen G, Bisson JF, Appenzeller BM, Schroeder H. Behavioral toxicity and physiological changes from repeated exposure to fluorene administered orally or intraperitoneally to adult male Wistar rats: A dose–response study. Neurotoxicology 2016; 53:321-333. [DOI: 10.1016/j.neuro.2015.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
|
17
|
Rodríguez-Estival J, North MA, Smits JEG. Sublethal health effects in laboratory rodents from environmentally relevant exposures to oil sands contaminants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2884-2897. [PMID: 26139097 DOI: 10.1002/etc.3145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/26/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
Increasing activity of oil sands extraction and processing in northern Alberta is marked by ongoing controversy about the nature and extent of associated environmental impacts. Bitumen contains a mixture of toxic chemicals, including metals and residual polycyclic aromatic hydrocarbons (PAHs), whose release into the environment poses a distinct risk to the surrounding environment, plus wildlife and human health. In the present study, the authors evaluated several subclinical biomarkers of exposure and effect to mixtures of metals (Pb, Cd, and Hg) and/or PAHs (3 alkylated forms) at environmentally relevant concentrations (100-fold and 10-fold higher than the maximum dissolved concentrations found in snow, to simulate a worst-case scenario), using laboratory mice as a model for future studies of small mammals in the wild. Both metals and alkyl-PAHs exposure were associated with 1) increased relative liver, kidney, and spleen size; 2) alterations in the homeostasis of the antioxidant vitamins A and E in liver; and 3) compromised glutathione redox status in testes, with results also indicating synergistic interactions from co-exposure. The combination of morphometric and oxidative stress biomarkers provide reliable and sensitive measures of the response to contaminant exposure in a mammalian model, suggesting associated physiological costs. Based on the present experimental study, the authors propose that wild small mammals will prove to be valuable sentinel species reflecting sublethal health effects from oil sands-related contaminants. The present study's results also present a basis for the interpretation of future field data.
Collapse
Affiliation(s)
- Jaime Rodríguez-Estival
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michelle A North
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Judit E G Smits
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Kamal A, Cincinelli A, Martellini T, Malik RN. A review of PAH exposure from the combustion of biomass fuel and their less surveyed effect on the blood parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4076-4098. [PMID: 25410307 DOI: 10.1007/s11356-014-3748-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Many epidemiological studies from all over the world have reported that populations of rural and urban environments differ in their health issues due to the differences in the countrywide pollution pattern. In developing countries, various occupational cohorts and subsections of the population in urban and rural areas are routinely exposed to several environmentally widespread contaminants. Polycyclic aromatic hydrocarbons (PAHs) are a group of over hundred different compounds and have ubiquitous presence in rural and urban environments. Smoke from the combustion of biomass fuel contains a high concentration of carcinogenic PAHs, which are related with several human morbidities. The sources and types of biomass fuel are diverse and wide in distribution. Limited numbers of literature reports have focused the significant impact of PAHs on several components of blood, both in human and wildlife. The toxicity of PAHs to rapidly dividing cells (e.g., bone marrow cells) and other tissues is largely attributed to their reactive oxygenated metabolites, potential of causing oxidative stress, and the adducts of their metabolites with DNA. This review aims to encompass the blood-related effects of PAHs and associated human health risks-an aspect that needs further research-on the population of developing countries of the world in particular.
Collapse
Affiliation(s)
- Atif Kamal
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan,
| | | | | | | |
Collapse
|
19
|
Susceptibility Based Upon Chemical Interaction with Disease Processes: Potential Implications for Risk Assessment. Curr Environ Health Rep 2014. [DOI: 10.1007/s40572-014-0030-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Development of cardiac hypertrophy by sunitinib in vivo and in vitro rat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Arch Toxicol 2013; 88:725-38. [PMID: 24247421 DOI: 10.1007/s00204-013-1159-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 11/05/2013] [Indexed: 12/23/2022]
Abstract
Sunitinib (SUN) is a new tyrosine kinase inhibitor that possesses both anti-angiogenic and anti-tumor activities. Although SUN has improved survival rate in cancer patients, cardiotoxicity has been reported as a significant side effect. Several studies suggested a role for the aryl hydrocarbon receptor (AhR) and its regulated genes such as cytochrome P4501A1 (CYP1A1) in the pathogenesis of heart failure and cardiac hypertrophy. To test the hypothesis that SUN induces cardiac hypertrophy through the modulation of AhR, Wistar albino rats were treated for 15 and 30 days with increasing doses of SUN (25, 50, and 100 mg/kg), whereas at the in vitro level, rat cardiomyocyte H9c2 cells were incubated with SUN (1, 2.5, and 5 μM). Thereafter, cardiac hypertrophy parameters were determined at the biochemical, histopathology, and gene expression levels. SUN treatment causes increase in cardiac enzymes, changes in histopathology, and induction in several hypertrophic markers. This was associated with proportional increase in the CYP1A1 gene in a concentration- and time-dependent manner. The direct involvement of AhR in the SUN-induced cardiac hypertrophy in H9c2 cells was supported by the ability of resveratrol, an AhR antagonist, to block the SUN-induced hypertrophy and the ability of SB203580, a novel AhR agonist, to potentiate SUN-induced hypertrophic genes. This is the first demonstration that SUN induces hypertrophic genes in vivo and in vitro rat cardiomyocyte through AhR/CYP1A1-mediated mechanism.
Collapse
|
21
|
Lepers C, André V, Dergham M, Billet S, Verdin A, Garçon G, Dewaele D, Cazier F, Sichel F, Shirali P. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS-2B cell line: geographical and seasonal influence. J Appl Toxicol 2013; 34:703-13. [DOI: 10.1002/jat.2931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/25/2013] [Accepted: 08/13/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Capucine Lepers
- Université Lille Nord de France; France
- ULCO, UCEIV EA4492; F-59140 Dunkerque France
| | - Véronique André
- Normandie Université; France
- UCBN, ABTE EA4651; F-14032 Caen France
- Centre François Baclesse; F-14076 Caen France
| | - Mona Dergham
- Université Lille Nord de France; France
- ULCO, UCEIV EA4492; F-59140 Dunkerque France
| | - Sylvain Billet
- Université Lille Nord de France; France
- ULCO, UCEIV EA4492; F-59140 Dunkerque France
| | - Anthony Verdin
- Université Lille Nord de France; France
- ULCO, UCEIV EA4492; F-59140 Dunkerque France
| | - Guillaume Garçon
- Université Lille Nord de France; France
- ULCO, UCEIV EA4492; F-59140 Dunkerque France
| | - Dorothée Dewaele
- Université Lille Nord de France; France
- ULCO, Centre Commun de Mesure; F-59140 Dunkerque France
| | - Fabrice Cazier
- Université Lille Nord de France; France
- ULCO, Centre Commun de Mesure; F-59140 Dunkerque France
| | - François Sichel
- Normandie Université; France
- UCBN, ABTE EA4651; F-14032 Caen France
- Centre François Baclesse; F-14076 Caen France
| | - Pirouz Shirali
- Université Lille Nord de France; France
- ULCO, UCEIV EA4492; F-59140 Dunkerque France
| |
Collapse
|