1
|
Islam MS, Amin MN, Begum MD. Effects of Titanium Dioxide Nanoparticles on Chick Embryo: Immunomodulatory, Hepatic and Biochemical Alterations. Vet Med Sci 2024; 10:e70105. [PMID: 39474769 PMCID: PMC11522848 DOI: 10.1002/vms3.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The utilization of titanium dioxide nanoparticles (TiO2 NPs) has significantly increased across various industries. OBJECTIVES This study rigorously explored the impact of TiO2 NPs exposure on chicken embryos, focusing particularly on alterations in the immune system, liver functionality and key biochemical markers. METHODS The study involved three groups of 30 eggs each, subjected to increasing doses of TiO2 NPs: Group C (control), Group T1 (150 µg/mL) and Group T2 (300 µg/mL). After 48 h of incubation, the eggs in Groups T1 and T2 each received an injection of 0.3 mL of the TiO2 NPs solution. In contrast, the eggs in the control group (Group C) were injected with 0.3 mL of saline solution. Histopathological changes were analysed using haematoxylin and eosin (H&E) staining, whereas amniotic fluid's biochemical properties were examined photometrically. The study also assessed the expression of immune genes (AvBD9, IL6 and IL8L2) through quantitative PCR. The evaluations included growth metrics, amniotic fluid biochemistry and histological analysis of the liver, caecal tonsil and bursa of Fabricius. RESULTS The results revealed subcutaneous haemorrhage, significant reductions in total body weight and marked changes in biochemical markers, including urea, creatinine, alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), in the amniotic fluid of the groups treated with TiO2 NPs, compared to the control. Histological examinations indicated noticeable alterations in the liver, caecal tonsil and bursa of Fabricius following TiO2 NP exposure. These alterations were characterized by disruptions in cellular structures and variations in lymphocyte counts. Furthermore, a notable decrease in the expression of immunity genes, namely, AvBD9, IL8L2 and IL6, was observed in the TiO2 NP-treated groups compared to the control. CONCLUSION The findings underscore the need for risk assessments of TiO2 NPs exposure due to its impact on development and immunity. Future research should explore its impact on neurodevelopment and degeneration.
Collapse
Affiliation(s)
- Md. Sadequl Islam
- Department of Anatomy and HistologyFaculty of Veterinary and Animal ScienceHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Md. Nurul Amin
- Department of Animal Science and NutritionFaculty of Veterinary and Animal ScienceHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Mst. Deloara Begum
- Department of MicrobiologyFaculty of Veterinary and Animal ScienceHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| |
Collapse
|
2
|
Almeer R, Alyami NM. Effect of lycopene on TiO 2 nanoforms induced oxidative stress and neuroinflammation in SH-SY5Y cells: an in vitro study. Drug Chem Toxicol 2024:1-11. [PMID: 39227360 DOI: 10.1080/01480545.2024.2397429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Due to its antioxidant action, the carotenoid lycopene has been demonstrated to have a protective effect in several disease models; however, its effect on the nanoform of titanium oxide (nano-TiO2)-induced neurotoxicity has not yet been determined. The purpose of this study was to evaluate how lycopene affects neuronal damage brought on by nano-TiO2 and the mechanisms involved. SH-SY5Y cells were treated with different concentrations of nano-TiO2 for 48 hours, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was used after that to evaluate cell viability. IC50 of nano-TiO2 was determined and the results revealed that IC50 is equal 40 µM/mL, lycopene (10 µM) was applied to SH-SY5Y human neuroblastoma cells an hour before exposure to 40 µM nano-TiO2. Reactive oxygen species, lipid peroxidation, nitric oxide, glutathione, superoxide dismutase, and catalase, tumor necrosis factor-alpha, interleukin 1 beta, nuclear factor kappa B, and apoptotic markers (Bcl2, Bax, and caspase-3), were measured to determine the anti-oxidant effect of lycopene. In SH-SY5Y neuroblastoma cells, pretreatment with 10 µM lycopene significantly reduced the toxicity brought on by exposure to nano-TiO2, according to MTT assay findings and lactate dehydrogenase (LDH) cytotoxicity assessment. In cells exposed to nano-TiO2, lycopene pretreatment significantly boosted the activity of antioxidative enzymes and reduced oxidative stress. Furthermore, when SH-SY5Y cells were subjected to nano-TiO2, lycopene pretreatment stopped neuroinflammation and apoptosis. The findings of this study suggest that lycopene may be an effective neuroprotective against oxidative stress and neuroinflammation and may be used to stop neuronal death or injury in a variety of neurological illnesses.
Collapse
Affiliation(s)
- Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Bakitian FA. A Comprehensive Review of the Contemporary Methods for Enhancing Osseointegration and the Antimicrobial Properties of Titanium Dental Implants. Cureus 2024; 16:e68720. [PMID: 39238921 PMCID: PMC11376426 DOI: 10.7759/cureus.68720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
Titanium dental implants with various restorative options are popular for replacing missing teeth due to their comfortable fit, excellent stability, natural appearance, and impressive track record in clinical settings. However, challenges such as potential issues with osseointegration, peri-implant bone loss, and peri-implantitis might lead to implant failure, causing concern for patients and dental staff. Surface modification has the potential to significantly enhance the success rate of titanium implants and meet the needs of clinical applications. This involves the application of various physical, chemical, and bioactive coatings, as well as adjustments to implant surface topography, offering significant potential for enhancing implant outcomes in terms of osseointegration and antimicrobial properties. Many surface modification methods have been employed to improve titanium implants, showcasing the diversity of approaches in this field including sandblasting, acid etching, plasma spraying, plasma immersion ion implantation, physical vapor deposition, electrophoretic deposition, electrochemical deposition, anodization, microarc oxidation, laser treatments, sol-gel method, layer-by-layer self-assembly technology, and the adsorption of biomolecules. This article provides a comprehensive overview of the surface modification methods for titanium implants to address issues with insufficient osseointegration and implant-related infections. It encompasses the physical, chemical, and biological aspects of these methods to provide researchers and dental professionals with a robust resource to aid them in their study and practical use of dental implant materials, ensuring they are thoroughly knowledgeable and well-prepared for their endeavors.
Collapse
Affiliation(s)
- Fahad A Bakitian
- Department of Restorative Dentistry, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
4
|
Palacka K, Hermankova B, Cervena T, Rossner P, Zajicova A, Uherkova E, Holan V, Javorkova E. The Immunomodulatory Effect of Silver Nanoparticles in a Retinal Inflammatory Environment. Inflammation 2024:10.1007/s10753-024-02128-w. [PMID: 39190103 DOI: 10.1007/s10753-024-02128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Activation of immune response plays an important role in the development of retinal diseases. One of the main populations of immune cells contributing to the retinal homeostasis are microglia, which represent a population of residential macrophages. However, under pathological conditions, microglia become activated and rather support a harmful inflammatory reaction and retinal angiogenesis. Therefore, targeting these cells could provide protection against retinal neuroinflammation and neovascularization. In the recent study, we analyzed effects of silver nanoparticles (AgNPs) on microglia in vitro and in vivo. We showed that the AgNPs interact in vitro with stimulated mouse CD45/CD11b positive cells (microglia/macrophages), decrease their secretion of nitric oxide and vascular endothelial growth factor, and regulate the expression of genes for Iba-1 and interleukin-1β (IL-1β). In our in vivo experimental mouse model, the intravitreal application of a mixture of proinflammatory cytokines tumor necrosis factor-α, IL-1β and interferon-γ induced local inflammation and increased local expression of genes for inducible nitric oxide synthase, IL-α, IL-1β and galectin-3 in the retina. This stimulation of local inflammatory reaction was significantly inhibited by intravitreal administration of AgNPs. The application of AgNPs also decreased the presence of CD11b/Galectin-3 positive cells in neuroinflammatory retina, but did not influence viability of cells and expression of gene for rhodopsin in the retinal tissue. These data indicate that AgNPs regulate reactivity of activated microglia in the diseased retina and thus could provide a beneficial effect for the treatment of several retinal diseases.
Collapse
Affiliation(s)
- Katerina Palacka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Barbora Hermankova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Tereza Cervena
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Alena Zajicova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Eva Uherkova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, 121 08, Prague 2, Czech Republic
| | - Vladimir Holan
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Eliska Javorkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| |
Collapse
|
5
|
Ahmad I, Altameemi KKA, Hani MM, Ali AM, Shareef HK, Hassan ZF, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Redhee AH. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin Transl Oncol 2024:10.1007/s12094-024-03577-3. [PMID: 38922537 DOI: 10.1007/s12094-024-03577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | - Mohaned Mohammed Hani
- Department of Medical Instrumentation Engineering Techniques, Imam Ja'afar Al-Sadiq University, Al Muthanna, Iraq
| | - Afaq Mahdi Ali
- Department of Pharmaceutics, Al-Turath University College, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Grodzicki W, Dziendzikowska K, Gromadzka-Ostrowska J, Wilczak J, Oczkowski M, Kopiasz Ł, Sapierzyński R, Kruszewski M, Grzelak A. In Vivo Pro-Inflammatory Effects of Silver Nanoparticles on the Colon Depend on Time and Route of Exposure. Int J Mol Sci 2024; 25:4879. [PMID: 38732098 PMCID: PMC11084194 DOI: 10.3390/ijms25094879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Nanosilver is a popular nanomaterial, the potential influence of which on humans is of serious concern. Herein, we exposed male Wistar rats to two regimens: a repeated oral dose of 30 mg/kg bw silver nanoparticles (AgNPs) over 28 days and a single-dose injection of 5 mg/kg bw of AgNPs. At three different time points, we assessed antioxidant defense, oxidative stress and inflammatory parameters in the colon, as well as toxicity markers in the liver and plasma. Both experimental scenarios showed increased oxidative stress and inflammation in the colon. Oral administration seemed to be linked to increased reactive oxygen species generation and lipid peroxidation, while the effects induced by the intravenous exposure were probably mediated by silver ions released from the AgNPs. Repeated oral exposure had a more detrimental effect than the single-dose injection. In conclusion, both administration routes had a similar impact on the colon, although the underlying mechanisms are likely different.
Collapse
Affiliation(s)
- Wojciech Grodzicki
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland;
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Agnieszka Grzelak
- Cytometry Lab, Department Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
7
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
8
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Hesemans E, Saffarzadeh N, Maksoudian C, Izci M, Chu T, Rios Luci C, Wang Y, Naatz H, Thieme S, Richter C, Manshian BB, Pokhrel S, Mädler L, Soenen SJ. Cu-doped TiO 2 nanoparticles improve local antitumor immune activation and optimize dendritic cell vaccine strategies. J Nanobiotechnology 2023; 21:87. [PMID: 36915084 PMCID: PMC10009859 DOI: 10.1186/s12951-023-01844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Nanoparticle-mediated cancer immunotherapy holds great promise, but more efforts are needed to obtain nanoformulations that result in a full scale activation of innate and adaptive immune components that specifically target the tumors. We generated a series of copper-doped TiO2 nanoparticles in order to tune the kinetics and full extent of Cu2+ ion release from the remnant TiO2 nanocrystals. Fine-tuning nanoparticle properties resulted in a formulation of 33% Cu-doped TiO2 which enabled short-lived hyperactivation of dendritic cells and hereby promoted immunotherapy. The nanoparticles result in highly efficient activation of dendritic cells ex vivo, which upon transplantation in tumor bearing mice, exceeded the therapeutic outcomes obtained with classically stimulated dendritic cells. Efficacious but simple nanomaterials that can promote dendritic cancer cell vaccination strategies open up new avenues for improved immunotherapy and human health.
Collapse
Affiliation(s)
- Evelien Hesemans
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Neshat Saffarzadeh
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Mukaddes Izci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Yuqing Wang
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359, Bremen, Germany.,Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359, Bremen, Germany
| | - Hendrik Naatz
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359, Bremen, Germany.,Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359, Bremen, Germany
| | | | | | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Suman Pokhrel
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359, Bremen, Germany.,Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359, Bremen, Germany
| | - Lutz Mädler
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359, Bremen, Germany.,Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359, Bremen, Germany
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. .,Leuven Cancer Institute, KU Leuven, Leuven, Belgium. .,KU Leuven Institute of Physics-Based Modeling for In Silico Health, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Noga M, Milan J, Frydrych A, Jurowski K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int J Mol Sci 2023; 24:ijms24065133. [PMID: 36982206 PMCID: PMC10049346 DOI: 10.3390/ijms24065133] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, research on silver nanoparticles (AgNPs) has attracted considerable interest among scientists because of, among other things, their alternative application to well-known medical agents with antibacterial properties. The size of the silver nanoparticles ranges from 1 to 100 nm. In this paper, we review the progress of research on AgNPs with respect to the synthesis, applications, and toxicological safety of AgNPs, and the issue of in vivo and in vitro research on silver nanoparticles. AgNPs’ synthesis methods include physical, chemical, and biological routes, as well as “green synthesis”. The content of this article covers issues related to the disadvantages of physical and chemical methods, which are expensive and can also have toxicity. This review pays special attention to AgNP biosafety concerns, such as potential toxicity to cells, tissues, and organs.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: or
| |
Collapse
|
11
|
Khatun S, Putta CL, Hak A, Rengan AK. Immunomodulatory nanosystems: An emerging strategy to combat viral infections. BIOMATERIALS AND BIOSYSTEMS 2023; 9:100073. [PMID: 36967725 PMCID: PMC10036237 DOI: 10.1016/j.bbiosy.2023.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The viral infection spreads with the assistance of a host. Traditional antiviral therapies cannot provide long-term immunity against emerging and drug-resistant viral infections. Immunotherapy has evolved as an efficient approach for disease prevention and treatment, which include cancer, infections, inflammatory, and immune disorders. Immunomodulatory nanosystems can dramatically enhance therapeutic outcomes by combating many therapeutic challenges, such as poor immune stimulation and off-target adverse effects. Recently, immunomodulatory nanosystems have emerged as a potent antiviral strategy to intercept viral infections effectively. This review introduces major viral infections with their primary symptoms, route of transmission & targeted organ, and different stages of the viral life cycle with respective traditional blockers. The IMNs have an exceptional capacity for precisely modulating the immune system for therapeutic applications. The nano sized immunomodulatory systems permit the immune cells to interact with infectious agents enhancing lymphatic drainage and endocytosis by the over-reactive immune cells in the infected areas. Immune cells that can be modulated upon viral infection via various immunomodulatory nanosystems have been discussed. Advancement in theranostics can yield an accurate diagnosis, adequate treatment, and real-time screening of viral infections. Nanosystem-based drug delivery can continue to thrive in diagnosing, treating, and preventing viral infections. The curative medicine for remerging and drug-resistant viruses remains challenging, though certain systems have expanded our perception and initiated a new research domain in antiviral treatments.
Collapse
|
12
|
Lehotska Mikusova M, Busova M, Tulinska J, Masanova V, Liskova A, Uhnakova I, Dusinska M, Krivosikova Z, Rollerova E, Alacova R, Wsolova L, Horvathova M, Szabova M, Lukan N, Vecera Z, Coufalik P, Krumal K, Alexa L, Thon V, Piler P, Buchtova M, Vrlikova L, Moravec P, Galanda D, Mikuska P. Titanium Dioxide Nanoparticles Modulate Systemic Immune Response and Increase Levels of Reduced Glutathione in Mice after Seven-Week Inhalation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040767. [PMID: 36839135 PMCID: PMC9964099 DOI: 10.3390/nano13040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/30/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.
Collapse
Affiliation(s)
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Jana Tulinska
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Pavel Moravec
- Aerosol Chemistry and Physics Research Group, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, 165 00 Prague, Czech Republic
| | - Dusan Galanda
- Public Health Authority of the Slovak Republic, Radiation Protection Department, 82645 Bratislava, Slovakia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
13
|
Development of Ag-ZnO/AgO Nanocomposites Effectives for Leishmania braziliensis Treatment. Pharmaceutics 2022; 14:pharmaceutics14122642. [PMID: 36559136 PMCID: PMC9785243 DOI: 10.3390/pharmaceutics14122642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Tegumentary leishmaniasis (TL) is caused by parasites of the genus Leishmania. Leishmania braziliensis (L.b) is one of the most clinically relevant pathogens that affects the skin and mucosa, causing single or multiple disfiguring and life-threatening injuries. Even so, the few treatment options for patients have significant toxicity, high dropout rates, high cost, and the emergence of resistant strains, which implies the need for studies to promote new and better treatments to combat the disease. Zinc oxide nanocrystals are microbicidal and immunomodulatory agents. Here, we develop new Ag-ZnO/xAgO nanocomposites (NCPs) with three different percentages of silver oxide (AgO) nanocrystals (x = 49%, 65%, and 68%) that could act as an option for tegumentary leishmaniasis treatment. Our findings showed that 65% and 68% of AgO inhibit the extra and intracellular replication of L.b. and present a high selectivity index. Ag-ZnO/65%AgO NCPs modulate activation, expression of surface receptors, and cytokine production by human peripheral blood mononuclear cells toward a proinflammatory phenotype. These results point to new Ag-ZnO/AgO nanocomposites as a promising option for L. braziliensis treatment.
Collapse
|
14
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Nie H, Pan M, Chen J, Yang Q, Hung TC, Xing D, Peng M, Peng X, Li G, Yan W. Titanium dioxide nanoparticles decreases bioconcentration of azoxystrobin in zebrafish larvae leading to the alleviation of cardiotoxicity. CHEMOSPHERE 2022; 307:135977. [PMID: 35948095 DOI: 10.1016/j.chemosphere.2022.135977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Interactions between titanium dioxide nanoparticles (n-TiO2) and pollutants in the aquatic environment may alter the bioavailability of pollutants, and thus altering their toxicity and fate. In order to investigate the bioconcentration of azoxystrobin (AZ) and its mechanism of cardiotoxicity in the presence of n-TiO2, the experiment was divided into control, n-TiO2 (100 μg/L), AZ (40, 200 and 1000 μg/L) and AZ (40, 200, 1000 μg/L) + n-TiO2 groups, and the zebrafish embryos were exposed to the exposure solution until 72 h post-fertilization. Results suggested the presence of n-TiO2 notably reduced the accumulation of AZ in larvae compared with exposure to AZ alone, thereby significantly decreasing AZ-induced cardiotoxicity, including heart rate changes, pericardium edema, venous thrombosis, increased sinus venosus and bulbus arteriosus distance and changes in cardiac-related gene expression. Further studies showed that AZ + n-TiO2 together restrained total-ATPase and Ca2+-ATPase activities, while the activity of Na+K+-ATPase increased at first and then decreased. Furthermore, there were significant changes in the expressions of oxidative phosphorylation and calcium channel-related genes, suggesting mitochondrial dysfunction may be the potential mechanism of cardiotoxicity induced by AZ and n-TiO2. This study supplies a new perspective for the joint action of AZ and environmental coexisting pollutants and provides a basis for ecological risk management of pesticides.
Collapse
Affiliation(s)
- Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Chen
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha, 410000, Hunan, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu, China
| | - Maomin Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| | - Wei Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| |
Collapse
|
16
|
Gamal A, Kortam LE, El Ghareeb AEW, El Rahman HAA. Assessment of the potential toxic effect of magnetite nanoparticles on the male reproductive system based on immunological and molecular studies. Andrologia 2022; 54:e14613. [PMID: 36216500 DOI: 10.1111/and.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Magnetite nanoparticles (MNPs) are the most conventional type of iron oxide nanoparticles used in the food industrial processes, removal of heavy metals, and biomedical applications in vivo or in vitro. Until now, there is no sufficient information that can confirm its effect on the body's immune system and reproductive health in males. The purpose of this research is to estimate the immunotoxic and reproductive toxic effects of MNPs in male rats. This study included 36 adult male albino rats divided into three groups. The experimental groups were intraperitoneally injected with MNPs at doses of 5 and 10 mg/kg body weight 3 times/week for 60 days, while the control group was injected with saline solution. MNPs caused a significant decrease in the body weight change of the high-treated group. MNPs produced changes in the lymphocyte proliferation rate which referred to a significant immunotoxic effect measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-di-phenyltetrazolium bromide reduction method. The testicular tissue of male-treated rats showed some moderate and severe degenerative changes. The sperm parameters of count, motility, and viability were significantly decreased. Sperm morphological abnormalities were detected in all treated animals. MNPs produced a significant decrease in testosterone levels, increased the level of malondialdehyde, impaired the activity of the antioxidant enzymes and induced testicular DNA damage. In conclusion, MNPs affected the normal immune state in male rats and facilitated the generation of reactive oxygen species subsequently triggering testicular oxidative stress damages. All these consequences had a negative impact on male reproductive health.
Collapse
Affiliation(s)
- Aya Gamal
- Department of Zoology, Faculty of Science, Cairo University, Egypt
| | - Laila E Kortam
- Department of Molecular Immunity, Animal Reproduction Research Institute (ARRI), Egypt
| | | | | |
Collapse
|
17
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
18
|
Pedersen JE, Hansen J. Employment and risk of female breast cancer in Denmark. Am J Ind Med 2022; 65:343-356. [PMID: 35267219 DOI: 10.1002/ajim.23342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Occupational exposures may play a role in breast cancer etiology, and research focusing on identifying high-risk workplaces is important to advance the understanding and prevention of breast cancer. METHODS We undertook a population-based nested case-control study among women who were less than 70 years of age and born in Denmark, based on registry data including 38,375 breast cancer cases and 191,875 controls matched on year of birth, with information on lifetime work history. Odds ratios for women ever employed in a job branch were adjusted for socioeconomic status and reproductive variables. RESULTS Adjusted odds ratios of less than 0.75 were observed for several occupations in agriculture, hunting, forestry, and fishing, while increased risk patterns (odds ratios greater than 1.50) were noted for a number of production occupations, including employment in graphics and printing, and metal and machinery production. In services, several military professions were also associated with a high increased breast cancer risk. CONCLUSIONS The study shows a variation in the risk of female breast cancer by employment in different industrial and occupational sectors, and suggests that certain occupational exposures, for example, outdoor work, organic solvents, polycyclic aromatic hydrocarbons (PAHs), and night-shift work may play a role in the risk of breast cancer. Further hypothesis-testing studies focusing on these employments with a detailed assessment of specific occupational exposures are warranted.
Collapse
Affiliation(s)
- Julie E. Pedersen
- Danish Cancer Society Research Center Danish Cancer Society Copenhagen Denmark
| | - Johnni Hansen
- Danish Cancer Society Research Center Danish Cancer Society Copenhagen Denmark
| |
Collapse
|
19
|
Mitarotonda R, Giorgi E, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Mishra YK, Khademhosseini A, Desimone MF, De Marzi M, Orive G. Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. BIOMATERIALS ADVANCES 2022; 135:212726. [PMID: 35475005 PMCID: PMC9023085 DOI: 10.1016/j.bioadv.2022.212726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
The development of nanoparticles (NPs) with potential therapeutic uses represents an area of vast interest in the scientific community during the last years. Recently, the pandemic caused by COVID-19 motivated a race for vaccines creation to overcome the crisis generated. This is a good demonstration that nanotechnology will most likely be the basis of future immunotherapy. Moreover, the number of publications based on nanosystems has significantly increased in recent years and it is expected that most of these developments can go on to experimentation in clinical stages soon. The therapeutic use of NPs to combat different diseases such as cancer, allergies or autoimmune diseases will depend on their characteristics, their targets, and the transported molecules. This review presents an in-depth analysis of recent advances that have been developed in order to obtain novel nanoparticulate based tools for the treatment of allergies, autoimmune diseases and for their use in vaccines. Moreover, it is highlighted that by providing targeted delivery an increase in the potential of vaccines to induce an immune response is expected in the future. Definitively, the here gathered analysis is a good demonstration that nanotechnology will be the basis of future immunotherapy.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina
| | - Tatiane Eufrasio-da-Silva
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands
| | | | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, CA 90095, USA
| | - Martin F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mauricio De Marzi
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
20
|
Mohammapdour R, Ghandehari H. Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv Drug Deliv Rev 2022; 180:114022. [PMID: 34740764 PMCID: PMC8898339 DOI: 10.1016/j.addr.2021.114022] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Careful assessment of the biological fate and immune response of inorganic nanoparticles is crucial for use of such carriers in drug delivery and other biomedical applications. Many studies have elucidated the cellular and molecular mechanisms of the interaction of inorganic nanoparticles with the components of the immune system. The biodegradation and dissolution of inorganic nanoparticles can influence their ensuing immune response. While the immunological properties of inorganic nanoparticles as a function of their physicochemical properties have been investigated in detail, little attention has been paid to the immune adverse effects towards the degradation products of these nanoparticles. To fill this gap, we herein summarize the cellular mechanisms of immune response to inorganic nanoparticles and their degradation products with specific focus on immune cells. We also accentuate the importance of designing new methods and instruments for the in situ characterization of inorganic nanoparticles in order to assess their safety as a result of degradation. This review further sheds light on factors that need to be considered in the design of safe and effective inorganic nanoparticles for use in delivery of bioactive and imaging agents.
Collapse
Affiliation(s)
- Raziye Mohammapdour
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. NANOMATERIALS 2021; 11:nano11092354. [PMID: 34578667 PMCID: PMC8465434 DOI: 10.3390/nano11092354] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/23/2023]
Abstract
Nanotechnology has enabled tremendous breakthroughs in the development of materials and, nowadays, is well established in various economic fields. Among the various nanomaterials, TiO2 nanoparticles (NPs) occupy a special position, as they are distinguished by their high availability, high photocatalytic activity, and favorable price, which make them useful in the production of paints, plastics, paper, cosmetics, food, furniture, etc. In textiles, TiO2 NPs are widely used in chemical finishing processes to impart various protective functional properties to the fibers for the production of high-tech textile products with high added value. Such applications contribute to the overall consumption of TiO2 NPs, which gives rise to reasonable considerations about the impact of TiO2 NPs on human health and the environment, and debates regarding whether the extent of the benefits gained from the use of TiO2 NPs justifies the potential risks. In this study, different TiO2 NPs exposure modes are discussed, and their toxicity mechanisms—evaluated in various in vitro and in vivo studies—are briefly described, considering the molecular interactions with human health and the environment. In addition, in the conclusion of this study, the toxicity and biocompatibility of TiO2 NPs are discussed, along with relevant risk management strategies.
Collapse
|
22
|
Pereira MB, Sydor BG, Memare KG, Verzignassi Silveira TG, Alessi Aristides SM, Dalmarco EM, Vieira Teixeira JJ, Campana Lonardoni MV, Demarchi IG. In vivo efficacy of meglumine antimoniate-loaded nanoparticles for cutaneous leishmaniasis: a systematic review. Nanomedicine (Lond) 2021; 16:1505-1518. [PMID: 34189952 DOI: 10.2217/nnm-2021-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background: Nanotechnology is a promising strategy to improve existing antileishmanial agents. Objective: To explore the evidence of encapsulated meglumine antimoniate for cutaneous leishmaniasis treatment in animal models. Materials & methods: The studies were recovered from PubMed, Scopus, EMBASE, LILACS, WoS and Google according to eligibility criteria following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population, Intervention, Comparison, Outcomes and Study design (PICOS) strategy. Study appraisal was assessed using the Animal Research Reporting of In Vivo Experiments, SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations. Results: Five studies were included. Liposomes, metallic and polymeric nanoparticles were tested in BALB/c mice against Leishmania major, L. tropica or L. amazonensis. Limitations: Few studies were found to meet the eligibility criteria. Conclusion: All formulations had a significant efficacy, similar to the meglumine antimoniate reference treatment concerning the lesion size and parasite burden. The studies had a high and moderate risk of bias, and the confidence in cumulative evidence was considered low. Therefore, we encourage the development of high-quality preclinical studies. Registration: PROSPERO register CRD42020170191.
Collapse
Affiliation(s)
- Meliana Borilli Pereira
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Bruna Gomes Sydor
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Karla Gabriela Memare
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Thaís Gomes Verzignassi Silveira
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Sandra Mara Alessi Aristides
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Eduardo Monguilhott Dalmarco
- Health Sciences Center - Department of Clinical Analysis, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, s/n°, Bairro Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Jorge Juarez Vieira Teixeira
- Department of Clinical Analysis & Biomedicine, State University Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil.,Post Graduation Program in Bioscience & Physiopathology, State University Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Maria Valdrinez Campana Lonardoni
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil
| | - Izabel Galhardo Demarchi
- Graduate Program in Health Sciences, State University of Maringá, Avenida Colombo, 5790, Jardim Universitário, Maringá, 87020-900, PR, Brazil.,Health Sciences Center - Department of Clinical Analysis, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, s/n°, Bairro Trindade, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
23
|
Andreoli C, Prota V, De Angelis I, Facchini E, Zijno A, Meccia E, Barletta B, Butteroni C, Corinti S, Chatgilialoglu C, Krokidis MG, Masi A, Condello M, Meschini S, Di Felice G, Barone F. A harmonized and standardized in vitro approach produces reliable results on silver nanoparticles toxicity in different cell lines. J Appl Toxicol 2021; 41:1980-1997. [PMID: 33982300 DOI: 10.1002/jat.4178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/08/2022]
Abstract
Despite the widespread use of silver nanoparticles (AgNPs) in different fields and the amount of investigations available, to date, there are many contradictory results on their potential toxicity. In the present study, extensively characterized 20-nm AgNPs were investigated using optimized protocols and standardized methods to test several toxicological endpoints in different cell lines. The agglomeration/aggregation state of AgNPs in culture media was measured by dynamic light scattering (DLS). DNA and chromosomal damage on BEAS-2B and RAW 264.7 cells were evaluated by comet and micronucleus assays, while oxidative DNA damage by modified comet assay and 8-oxodG/8-oxodA detection. We also investigated immunotoxicity and immunomodulation by cytokine release and NO production in RAW 264.7 and MH-S cells, with or without lipopolysaccharide (LPS) stimulus. Transmission electron microscope (TEM) analysis was used to analyze cellular uptake of AgNPs. Our results indicate different values of AgNPs hydrodynamic diameter depending on the medium, some genotoxic effect just on BEAS-2B and no or slight effects on function of RAW 264.7 and MH-S in absence or presence of LPS stimulus. This study highlights the relevance of using optimized protocols and multiple endpoints to analyze the potential toxicity of AgNPs and to obtain reliable and comparable results.
Collapse
Affiliation(s)
- Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Prota
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella De Angelis
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Emiliano Facchini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Zijno
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ettore Meccia
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Bianca Barletta
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Butteroni
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Corinti
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Marios G Krokidis
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
| | - Maria Condello
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Meschini
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriella Di Felice
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Barone
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
24
|
Ahamad N, Kar A, Mehta S, Dewani M, Ravichandran V, Bhardwaj P, Sharma S, Banerjee R. Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials 2021; 274:120875. [PMID: 34010755 DOI: 10.1016/j.biomaterials.2021.120875] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory disease (ID) is an umbrella term encompassing all illnesses involving chronic inflammation as the central manifestation of pathogenesis. These include, inflammatory bowel diseases, hepatitis, pulmonary disorders, atherosclerosis, myocardial infarction, pancreatitis, arthritis, periodontitis, psoriasis. The IDs create a severe burden on healthcare and significantly impact the global socio-economic balance. Unfortunately, the standard therapies that rely on a combination of anti-inflammatory and immunosuppressive agents are palliative and provide only short-term relief. In contrast, the emerging concept of immunomodulatory nanosystems (IMNs) has the potential to address the underlying causes and prevent reoccurrence, thereby, creating new opportunities for treating IDs. The IMNs offer exquisite ability to precisely modulate the immune system for a therapeutic advantage. The nano-sized dimension of IMNs allows them to efficiently infiltrate lymphatic drainage, interact with immune cells, and subsequently to undergo rapid endocytosis by hyperactive immune cells (HICs) at inflamed sites. Thus, IMNs serve to restore dysfunctional or HICs and alleviate the inflammation. We identified that different IMNs exert their immunomodulatory action via either of the seven mechanisms to modulate; cytokine production, cytokine neutralization, cellular infiltration, macrophage polarization, HICs growth inhibition, stimulating T-reg mediated tolerance and modulating oxidative-stress. In this article, we discussed representative examples of IMNs by highlighting their rationalization, design principle, and mechanism of action in context of treating various IDs. Lastly, we highlighted technical challenges in the application of IMNs and explored the future direction of research, which could potentially help to overcome those challenges.
Collapse
Affiliation(s)
- Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhinanda Kar
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourabh Mehta
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India; IITB-Monash Research Academy IIT Bombay, Powai, Mumbai, 400076, India
| | - Mahima Dewani
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Vasanthan Ravichandran
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prateek Bhardwaj
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
25
|
Albashari AA, He Y, Albaadani MA, Xiang Y, Ali J, Hu F, Zhang Y, Zhang K, Luo L, Wang J, Ye Q. Titanium Nanotube Modified With Silver Cross-Linked Basic Fibroblast Growth Factor Improves Osteoblastic Activities of Dental Pulp Stem Cells and Antibacterial Effect. Front Cell Dev Biol 2021; 9:654654. [PMID: 33869214 PMCID: PMC8047219 DOI: 10.3389/fcell.2021.654654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Titanium modifications with different silver loading methods demonstrate excellent antibacterial properties. Yet pure silver nanoparticles with limited bioactive properties may delay regeneration of bone surrounding the dental implant. Therefore, loading silver with bioactive drugs on titanium surfaces seems to be a very promising strategy. Herein, we designed a silver (Ag) step-by-step cross-linking with the basic fibroblast growth factor (bFGF) by polydopamine (PDA) and heparin on titanium nanotube (TNT) as its cargo (TNT/PDA/Ag/bFGF) to improve the implant surface. Our results showed that TNT/PDA/Ag/bFGF significantly enhanced the osteogenic differentiation of dental pulp stem cells (DPSCs). It also showed an excellent effect in bacterial inhibition and a reduction of pro-inflammatory factors through inhibition of M1 macrophage activity. These results showed that bFGF cross-linked silver coating on TNTs presented good osteogenic differentiation and early anti-infiammatory and antibacterial properties. Together, this novel design on titanium provides a promising therapeutic for dental implants.
Collapse
Affiliation(s)
| | - Yan He
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | | | - Yangfan Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jihea Ali
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yuan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jianming Wang
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Zhou Z, Shi Q, Wang J, Chen X, Hao Y, Zhang Y, Wang X. The unfavorable role of titanium particles released from dental implants. Nanotheranostics 2021; 5:321-332. [PMID: 33732603 PMCID: PMC7961127 DOI: 10.7150/ntno.56401] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Titanium is considered to be a metal material with the best biological safety. Studies have proved that the titanium implanted in the bone continuously releases titanium particles (Ti particles), significantly increasing the total titanium content in human body. Generally, Ti particles are released slowly without causing a systemic immune response. However, the continuous increased local concentration may result in damage to the intraepithelial homeostasis, aggravation of inflammatory reaction in the surrounding tissues, bone resorption and implant detachment. They also migrate with blood flow and aggregate in the distal organ. The release of Ti particles is affected by the score of the implant surface structure, microenvironment wear and corrosion, medical operation wear, and so on, but the specific mechanism is not clear. Thus, it difficult to prevent the release completely. This paper reviews the causes of the Ti particles formation, the damage to the surrounding tissue, and its mechanism, in particular, methods for reducing the release and toxicity of the Ti particles.
Collapse
Affiliation(s)
- Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Quan Shi
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
27
|
Ramos JC, Dos Santos ES, Normando AGC, Alves FA, Kowalski LP, Santos-Silva AR, Vargas PA, Lopes MA. Oral squamous cell carcinoma around dental implants: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 131:660-674. [PMID: 33653646 DOI: 10.1016/j.oooo.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE This systematic review aimed to evaluate the epidemiologic profile, screen for possible risk factors, and evaluate the spectrum of clinical characteristics of oral squamous cell carcinoma (OSCC) around dental implants (DIs). METHODS The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta- Analyses statement. RESULTS Thirty-three articles met the eligibility criteria. In total, the sample consisted of 63 patients, and women comprised the majority (55.5%). The mean age of patients was 66.7 years. Oral potentially malignant disorders were reported in 46% of patients, of which 65.5% occurred in women. The most common lesion found in women was oral lichen planus (52.6%). In 88.8% of patients OSCC around DIs occurred in the mandible, and the most common clinical appearance of the lesions was an exophytic mass (46%). Most of these lesions were initially treated as peri-implantitis. CONCLUSIONS Most patients with OSCC around DIs were women without known risk factors. It is important to emphasize that these lesions may present clinical and radiographic features that could resemble peri-implantitis, which can lead to delay in the diagnosis and subsequent treatment.
Collapse
Affiliation(s)
- Joab Cabral Ramos
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | | | - Fábio Abreu Alves
- Department of Stomatology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, and Head and Neck Surgery Department, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Marcio Ajudarte Lopes
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil.
| |
Collapse
|
28
|
Carrola J, Bastos V, Daniel‐da‐Silva AL, Gil AM, Santos C, Oliveira H, Duarte IF. Macrophage Metabolomics Reveals Differential Metabolic Responses to Subtoxic Levels of Silver Nanoparticles and Ionic Silver. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joana Carrola
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810‐193 Aveiro Portugal
| | - Verónica Bastos
- CESAM & Department of Biology University of Aveiro 3810‐193 Aveiro Portugal
| | - Ana L. Daniel‐da‐Silva
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810‐193 Aveiro Portugal
| | - Ana M. Gil
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810‐193 Aveiro Portugal
| | - Conceição Santos
- CESAM & Department of Biology University of Aveiro 3810‐193 Aveiro Portugal
- Department of Biology Faculty of Sciences University of Porto 4169‐007 Porto Portugal
| | - Helena Oliveira
- CESAM & Department of Biology University of Aveiro 3810‐193 Aveiro Portugal
| | - Iola F. Duarte
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810‐193 Aveiro Portugal
| |
Collapse
|
29
|
Alsaleh NB, Minarchick VC, Mendoza RP, Sharma B, Podila R, Brown JM. Silver nanoparticle immunomodulatory potential in absence of direct cytotoxicity in RAW 264.7 macrophages and MPRO 2.1 neutrophils. J Immunotoxicol 2020; 16:63-73. [PMID: 31282784 PMCID: PMC7135879 DOI: 10.1080/1547691x.2019.1588928] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Engineered nanomaterials (ENM) are being used in a wide range of consumer products and pharmaceuticals; hence, there is an increasing risk for human exposure and potential adverse outcomes. The immune system, vital in host defense and protection against environmental agents, is typically initiated and executed by innate effector immune cells including macrophages and neutrophils. Previous literature has reported the immune system as a major target of ENM toxicity; however, there is inconsistency regarding the immunotoxicity of ENM. This could be attributed to differences in ENM physicochemical properties, cellular models examined, biocorona formation, etc. Thus, the current study examined the toxicity and immunomodulatory effects of silver nanoparticles (AgNP), one of the most utilized ENM in consumer and medical products, in two key innate immune cell models, e.g. RAW 264.7 cells (macrophages) and differentiated MPRO 2.1 cells (promyelocytes/neutrophils). The results showed that despite a generation of reactive oxygen species, exposure to 20 nm citrate-coated AgNP was not associated with major oxidative damage, inflammatory responses, nor cytotoxicity. Nevertheless, and most importantly, pre-exposure to the AgNP for 24 h enhanced RAW 264.7 cell phagocytic ability as well as the release of inflammatory cytokine interleukin-6 in response to lipopolysaccharide (LPS). In MPRO 2.1 cells, AgNP pre-exposure also resulted in enhanced phagocytic ability; however, these cells manifest reduced cell degranulation (elastase release) and oxidative burst in response to phorbol myristate acetate (PMA). Taken together, these findings indicated to us that exposure to AgNP, despite not being directly (cyto)toxic to these cells, had the potential to alter immune cell responses. The findings underscore the import of assessing immune cell function post-exposure to ENM beyond the standard endpoints such as oxidative stress and cytotoxicity. In addition, these findings further illustrate the importance of understanding the underlying molecular mechanisms of ENM-cellular interactions, particularly in the immune system.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Valerie C Minarchick
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Ryan P Mendoza
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Bipin Sharma
- b Department of Physics and Astronomy, Laboratory of Nano-biophysics , Clemson University , Clemson , SC , USA
| | - Ramakrishna Podila
- b Department of Physics and Astronomy, Laboratory of Nano-biophysics , Clemson University , Clemson , SC , USA
| | - Jared M Brown
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
30
|
Bělinová T, Machová I, Beke D, Fučíková A, Gali A, Humlová Z, Valenta J, Hubálek Kalbáčová M. Immunomodulatory Potential of Differently-Terminated Ultra-Small Silicon Carbide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E573. [PMID: 32235697 PMCID: PMC7153366 DOI: 10.3390/nano10030573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Ultra-small nanoparticles with sizes comparable to those of pores in the cellular membrane possess significant potential for application in the field of biomedicine. Silicon carbide ultra-small nanoparticles with varying surface termination were tested for the biological system represented by different human cells (using a human osteoblastic cell line as the reference system and a monocyte/macrophage cell line as immune cells). The three tested nanoparticle surface terminations resulted in the observation of different effects on cell metabolic activity. These effects were mostly noticeable in cases of monocytic cells, where each type of particle caused a completely different response ('as-prepared' particles, i.e., were highly cytotoxic, -OH terminated particles slightly increased the metabolic activity, while -NH2 terminated particles caused an almost doubled metabolic activity) after 24 h of incubation. Subsequently, the release of cytokines from such treated monocytes and their differentiation into activated cells was determined. The results revealed the potential modulation of immune cell behavior following stimulation with particular ultra-small nanoparticles, thus opening up new fields for novel silicon carbide nanoparticle biomedical applications.
Collapse
Affiliation(s)
- Tereza Bělinová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Iva Machová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - David Beke
- Wigner Research Centre for Physics, 1121 Budapest, Hungary
- Department of Atomic Physics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Anna Fučíková
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Adam Gali
- Wigner Research Centre for Physics, 1121 Budapest, Hungary
- Department of Atomic Physics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Zuzana Humlová
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic
| | - Jan Valenta
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Marie Hubálek Kalbáčová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic
| |
Collapse
|
31
|
Gan J, Sun J, Chang X, Li W, Li J, Niu S, Kong L, Zhang T, Wu T, Tang M, Xue Y. Biodistribution and organ oxidative damage following 28 days oral administration of nanosilver with/without coating in mice. J Appl Toxicol 2020; 40:815-831. [DOI: 10.1002/jat.3946] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Junying Gan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Jindu Sun
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Wenhua Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
32
|
Marsi TCO, Ricci R, Toniato TV, Vasconcellos LMR, Elias CDMV, Silva ADR, Furtado ASA, Magalhães LSSM, Silva-Filho EC, Marciano FR, Zille A, Webster TJ, Lobo AO. Electrospun Nanofibrous Poly (Lactic Acid)/Titanium Dioxide Nanocomposite Membranes for Cutaneous Scar Minimization. Front Bioeng Biotechnol 2019; 7:421. [PMID: 31921824 PMCID: PMC6932955 DOI: 10.3389/fbioe.2019.00421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022] Open
Abstract
Poly (lactic acid) (PLA) has been increasingly used in cutaneous tissue engineering due to its low cost, ease of handling, biodegradability, and biocompatibility, as well as its ability to form composites. However, these polymers possess a structure with nanoporous that mimic the cellular environment. In this study, nanocomposites are prepared using PLA and titanium dioxide (TiO2) (10 and 35%-w/w) nanoparticles that also function as an active anti-scarring agent. The nanocomposites were prepared using an electrospinning technique. Three different solutions were prepared as follows: PLA, 10% PLA/TiO2, and 35% PLA/TiO2 (w/w%). Electrospun PLA and PLA/TiO2 nanocomposites were characterized morphologically, structurally, and chemically using electron scanning microscopy, transmission electron microscopy, goniometry, and X-ray diffraction. L929 fibroblast cells were used for in vitro tests. The cytotoxic effect was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Versicam (VCAN), biglicam (BIG), interleukin-6 (IL6), interleukin-10 (IL-10), and type-1 collagen (COL1A1) genes were evaluated by RT-qPCR. In vivo tests using Wistar rats were conducted for up to 15 days. Nanofibrous fibers were obtained for all groups that did not contain residual solvents. No cytotoxic effects were observed for up to 168 h. The genes expressed showed the highest values of versican and collagen-1 (p < 0.05) for PLA/TiO2 nanocomposite scaffolds when compared to the control group (cells). Histological images showed that PLA at 10 and 35% w/w led to a discrete inflammatory infiltration and expression of many newly formed vessels, indicating increased metabolic activity of this tissue. To summarize, this study supported the potential of PLA/TiO2 nanocomposites ability to reduce cutaneous scarring in scaffolds.
Collapse
Affiliation(s)
- Teresa C. O. Marsi
- Institute of Research and Development, University of Vale Do Paraiba, São José dos Campos, Brazil
| | - Ritchelli Ricci
- Institute of Research and Development, University of Vale Do Paraiba, São José dos Campos, Brazil
| | - Tatiane V. Toniato
- Institute of Research and Development, University of Vale Do Paraiba, São José dos Campos, Brazil
| | - Luana M. R. Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São Paulo, Brazil
| | | | | | - Andre S. A. Furtado
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina, Brazil
| | - Leila S. S. M. Magalhães
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina, Brazil
| | - Edson C. Silva-Filho
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina, Brazil
| | | | - Andrea Zille
- Department of Textile Engineering, Centre for Textile Science and Technology, University of Minho, Guimarães, Portugal
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Anderson O. Lobo
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina, Brazil
| |
Collapse
|
33
|
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2019; 207:107456. [PMID: 31863820 DOI: 10.1016/j.pharmthera.2019.107456] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Chemotherapy, surgery, and radiation are accepted as the preferred treatment modalities against cancer, but in recent years the use of immunotherapeutic approaches has gained prominence as the fourth treatment modality in cancer patients. In this approach, a patient's innate and adaptive immune systems are activated to achieve clearance of occult cancerous cells. In this review, we discuss the preclinical and clinical immunotherapeutic (e.g., immunoadjuvants (in-situ vaccines, oncolytic viruses, CXC antagonists, device activated agents), organic and inorganic nanoparticles, and checkpoint blockade) that are under investigation for cancer therapy and diagnostics. Additionally, the innovations in imaging of immune cells for tracking therapeutic responses and limitations (e.g., toxicity, inefficient immunomodulation, etc.) are described. Existing data suggest that if immune therapy is optimized, it can be a real and potentially paradigm-shifting cancer treatment frontier.
Collapse
Affiliation(s)
- Michael-Joseph Gorbet
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA.
| |
Collapse
|
34
|
Hu Q, Zhao F, Fan M, He C, Yang X, Huang Z, Fu Z. The influence of titanium dioxide nanoparticles on their cellular response to macrophage cells. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:42-52. [PMID: 31082463 DOI: 10.1016/j.cbpc.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
As the most widely application of nanomaterials in biology and medicine, their interaction with biological system and the afterwards cellular responses would be addressed. Here, the agglomerate states of two kinds of TiO2 NPs in culture medium were characterized and the cluster specific cellular responses in RAW264.7 cells were investigated. Owing to the smaller aggregates and more positively charged surface, 21 nm TiO2 NPs exhibited higher cytotoxicity, which correlated with their ability to cause damage to mitochondria. While for 35 nm TiO2 NPs, higher level of cell autophagy and stronger pro-inflammatory immune response were observed, which are responsible for their lower cytotoxicity. These results suggest that physiochemical properties of TiO2 NPs in culture medium are important factor affecting their cellular response to RAW264.7 cells.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Mengqi Fan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Chao He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Xiaole Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Zeming Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032 Hangzhou, China.
| |
Collapse
|
35
|
Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss. MATERIALS 2019; 12:ma12122036. [PMID: 31242601 PMCID: PMC6630980 DOI: 10.3390/ma12122036] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Peri-implantitis is an inflammatory disease affecting tissues surrounding dental implants. Although it represents a common complication of dental implant treatments, the underlying mechanisms have not yet been fully described. The aim of this study is to identify the role of titanium nanoparticles released form the implants on the chronic inflammation and bone lysis in the surrounding tissue. We analyzed the in vitro effect of titanium (Ti) particle exposure on mesenchymal stem cells (MSCs) and fibroblasts (FU), evaluating cell proliferation by MTT test and the generation of reactive oxygen species (ROS). Subsequently, in vivo analysis of peri-implant Ti particle distribution, histological, and molecular analyses were performed. Ti particles led to a time-dependent decrease in cell viability and increase in ROS production in both MSCs and FU. Tissue analyses revealed presence of oxidative stress, high extracellular and intracellular Ti levels and imbalanced bone turnover. High expression of ZFP467 and the presence of adipose-like tissue suggested dysregulation of the MSC population; alterations in vessel morphology were identified. The results suggest that Ti particles may induce the production of high ROS levels, recruiting abnormal quantity of neutrophils able to produce high level of metalloproteinase. This induces the degradation of collagen fibers. These events may influence MSC commitment, with an imbalance of bone regeneration.
Collapse
|
36
|
Silver nanoparticles engineered by thermal co-reduction approach induces liver damage in Wistar rats: acute and sub-chronic toxicity analysis. 3 Biotech 2019; 9:125. [PMID: 30863704 DOI: 10.1007/s13205-019-1651-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/23/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, nanotechnology applications have increased tremendously in consumer products. However, it has been observed that these nanoparticles can cause a potential risk to the environment as well as human health. In the present manuscript, we have analyzed acute and sub-chronic toxicity of engineered silver nanoparticles (AgNPs) by assessing the impact on Wistar rats. AgNPs were synthesized by a novel approach-thermal co-reduction-with spherical shape and a uniform size distribution of 60 nm. The estimated LD50 value was observed to be more than 2000 mg/kg bw in acute toxicity studies. Sub-chronic toxicity indicated impairment of liver and kidney enzymes and various hematological and biochemical parameters. Tissue distribution studies indicated the target organ for accumulation is liver after treatment with AgNP. Particle deposition and congestion was observed in major organs-though, and heart and pancreatic tissues were not affected even by the higher doses. On the basis of the observations of this study, it is concluded that up to 40 mg/kgbw is a safer dose of AgNPs (60 nm, engineered by thermal co-reduction approach) and further research will be required to validate the long-term accumulation in body. In addition, it can also be considered by policymakers for the safer use of AgNPs.
Collapse
|
37
|
Piktel E, Wnorowska U, Cieśluk M, Deptula P, Pogoda K, Misztalewska-Turkowicz I, Paprocka P, Niemirowicz-Laskowska K, Wilczewska AZ, Janmey PA, Bucki R. Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. J Nanobiotechnology 2019; 17:22. [PMID: 30711007 PMCID: PMC6359803 DOI: 10.1186/s12951-019-0455-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Human plasma gelsolin (pGSN) is a multifunctional actin-binding protein involved in a variety of biological processes, including neutralization of pro-inflammatory molecules such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and modulation of host inflammatory response. It was found that PBP10, a synthetic rhodamine B-conjugated peptide, based on the phosphoinositide-binding site of pGSN, exerts bactericidal activity against Gram-positive and Gram-negative bacteria, interacts specifically with LPS and LTA, and limits microbial-induced inflammatory effects. The therapeutic efficiency of PBP10 when immobilized on the surface of iron oxide-based magnetic nanoparticles was not evaluated, to date. Results Using the human keratinocyte cell line HaCaT stimulated by bacterially-derived LPS and LTA as an in vitro model of bacterial infection, we examined the anti-inflammatory effects of nanosystems consisting of iron oxide-based magnetic nanoparticles with aminosilane (MNP@NH2) or gold shells (MNP@Au) functionalized by a set of peptides, derived from the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding site of the human plasma protein gelsolin, which also binds LPS and LTA. Our results indicate that these nanosystems can kill both Gram-positive and Gram-negative bacteria and limit the production of inflammatory mediators, including nitric oxide (NO), reactive oxygen species (ROS), and interleukin-8 (IL-8) in the response to heat-killed microbes or extracted bacterial cell wall components. The nanoparticles possess the potential to improve therapeutic efficacy and are characterized by lower toxicity and improved hemocompatibility when compared to free peptides. Atomic force microscopy (AFM) showed that these PBP10-based nanosystems prevented changes in nanomechanical properties of cells that were otherwise stimulated by LPS. Conclusions Neutralization of endotoxemia-mediated cellular effects by gelsolin-derived peptides and PBP10-containing nanosystems might be considered as potent therapeutic agents in the improved therapy of bacterial infections and microbial-induced inflammation.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Mateusz Cieśluk
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Piotr Deptula
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Katarzyna Pogoda
- IInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | | | - Paulina Paprocka
- Department of Microbiology and Immunology, The Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | | | - Paul A Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| |
Collapse
|
38
|
Chen Z, Zhou D, Wang Y, Zhao L, Hu G, Liu J, Feng H, Long C, Yan T, Zhou S, Jia G. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. J Appl Toxicol 2018; 39:590-602. [PMID: 30427543 DOI: 10.1002/jat.3750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have already been used as food additive in various products and are usually consumed with a considerable amount of sugar. Oral consumption of TiO2 NPs poses concerning health risks; however, research on the combined effect of ingested TiO2 NPs and glucose is limited. We examined young Sprague-Dawley rats administrated TiO2 NPs orally at doses of 0, 2, 10 and 50 mg/kg body weight per day with and without 1.8 g/kg body weight glucose for 30 and 90 days. Heart rate, systolic and diastolic blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. The results showed that oral exposure to TiO2 NPs and high doses of glucose both could induce cardiovascular injuries. The toxic effects were dose-, time- and gender-dependent. The interaction effects between oral-exposed TiO2 NPs and glucose existed and revealed to be antagonism in most of the biological parameters. However, toxic effects of the high-dose glucose seemed to be more severe than TiO2 NPs and the interaction of TiO2 NPs with glucose. These results suggest that it may be more important to control the sugar intake than TiO2 NPs for protecting the health of TiO2 NP consumers.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Di Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lin Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiaxing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Huimin Feng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Changmao Long
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Tenglong Yan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
39
|
Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM. Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng 2018; 9:2041731418789838. [PMID: 30083308 PMCID: PMC6071164 DOI: 10.1177/2041731418789838] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
The use of biomaterials in orthopaedics for joint replacement, fracture healing and bone regeneration is a rapidly expanding field. Infection of these biomaterials is a major healthcare burden, leading to significant morbidity and mortality. Furthermore, the cost to healthcare systems is increasing dramatically. With advances in implant design and production, research has predominately focussed on osseointegration; however, modification of implant material, surface topography and chemistry can also provide antibacterial activity. With the increasing burden of infection, it is vitally important that we consider the bacterial interaction with the biomaterial and the host when designing and manufacturing future implants. During this review, we will elucidate the interaction between patient, biomaterial surface and bacteria. We aim to review current and developing surface modifications with a view towards antibacterial orthopaedic implants for clinical applications.
Collapse
Affiliation(s)
- Wich Orapiriyakul
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Peter S Young
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Laila Damiati
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Gulati K, Hamlet SM, Ivanovski S. Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants. J Mater Chem B 2018; 6:2677-2689. [PMID: 32254221 DOI: 10.1039/c8tb00450a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to its biocompatibility and corrosion resistance, titanium is one of the most commonly used implantable biomaterials. Numerous in vitro and in vivo investigations have established that titanium surfaces with a nanoscale topography outperform conventional smooth or micro-rough surfaces in terms of achieving desirable bonding with bone (i.e. enhanced bioactivity). Among these nanoscale topographical modifications, ordered nanostructures fabricated via electrochemical anodization, especially titania nanotubes (TNTs), are particularly attractive. This is due to their ability to augment bioactivity, deliver drugs and the potential for easy/cost-effective translation into the current implant market. However, the potential of TNT-modified implants to modulate the host immune-inflammatory response, which is critical for achieving timely osseointegration, remains relatively unexplored. Such immunomodulatory effects may be achieved by modifying the physical and chemical properties of the TNTs. Furthermore, therapeutic/bioactive enhancements performed on these nano-engineered implants (such as antibacterial or osteogenic functions) are likely to illicit an immune response which needs to be appropriately controlled. The lack of sufficient in-depth studies with respect to immune cell responses to TNTs has created research gaps that must be addressed in order to facilitate the design of the next generation of immuno-modulatory titanium implants. This review article focuses on the chemical, topographical and mechanical features of TNT-modified implants that can be manipulated in order to achieve immuno-modulation, as well as providing an insight into how modulating the immune response can augment implant performance.
Collapse
Affiliation(s)
- Karan Gulati
- School of Dentistry, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| | | | | |
Collapse
|
41
|
Zhao F, Wang C, Yang Q, Han S, Hu Q, Fu Z. Titanium dioxide nanoparticle stimulating pro-inflammatory responses in vitro and in vivo for inhibited cancer metastasis. Life Sci 2018; 202:44-51. [PMID: 29625194 DOI: 10.1016/j.lfs.2018.03.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 01/07/2023]
Abstract
AIMS The interaction of engineered nanoparticles (NPs) with the immune system and the possibility of inflammation induction are of particularly interest. Titanium dioxide nanoparticles (TiO2 NPs) are one of the most popular manufactured nanomaterials. In this study, we focused on the immune-modulatory effect of commercial P-25 TiO2 NPs in vivo and in vitro and their crucial role in cancer metastasis. MAIN METHODS The female C57BL/6 mice were injected into abdominal cavity with PBS or P-25 TiO2 to investigate the immune-modulatory function of P-25. And breast cancer cells were intravenously (i.v.) injected into mouse to establish the liver and lung cancer metastasis model. Peritoneal macrophage was used to investigate the macrophage polarization in vitro. KEY FINDINGS Results showed us that peritoneal macrophage exposed to P-25 TiO2 NPs displayed activated M1 macrophage response, as evidenced by the increased mRNA expression of interleukin-1β (IL1β), IL6, TNFα, CCR7 and inducible nitric oxide synthase (iNOS). After exposure of TiO2 NPs in vivo for 21 days, the body weights of mice decreased significantly, which were accompanied by an infiltration of immune cells in liver and spleen in 20 mg/kg BW treated group. Importantly, the production of pro-inflammatory cytokines in liver, spleen and the serum were amplified, which indicated the tissue and systemic inflammation induced by TiO2 NPs. In addition, the activation of immune response induced by P-25 TiO2 NPs was correlated with their ability to inhibit cancer metastasis. SIGNIFICANCE Our results delineated the stimulating pro-inflammatory response induced by P-25 TiO2 NPs and their outcome in vivo for cancer metastasis.
Collapse
Affiliation(s)
- Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Chengcheng Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Qiaolei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Shuhong Han
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| |
Collapse
|
42
|
Galbiati V, Cornaghi L, Gianazza E, Potenza MA, Donetti E, Marinovich M, Corsini E. In vitro assessment of silver nanoparticles immunotoxicity. Food Chem Toxicol 2018; 112:363-374. [PMID: 29331734 DOI: 10.1016/j.fct.2017.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
This study aimed to characterize unwanted immune effects of nanoparticles (NP) using THP-1 cells, human whole blood and enriched peripheral blood monocytes. Commercially available silver NP (AgNP < 100 nm, also confirmed by Single Particle Extinction and Scattering) were used as prototypical NP. Cells were treated with AgNP alone or in combination with classical immune stimuli (i.e. LPS, PHA, PWM) and cytokine assessed; in addition, CD54 and CD86 expression was evaluated in THP-1 cells. AgNP alone induced dose-related IL-8 production in all models, with higher response observed in THP-1 cells, possibly connected to different protein corona formation in bovine versus human serum. AgNP potentiated LPS-induced IL-8 and TNF-α, but not LPS-induced IL-10. AgNP alone induced slight increase in IL-4, and no change in IFN-γ production. While responses to PHA in term of IL-4 and IFN-γ production were not affected, increased PWM-induced IL-4 and IFN-γ production were observed, suggesting potentiation of humoral response. Reduction in PHA-induced IL-10 was observed. Overall, results indicate immunostimulatory effects. THP-1 cells work as well as primary cells, representing a useful and practical alternative, with the awareness that from a physiological point of view the whole blood assay is the one that comes closest to reality.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Laura Cornaghi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Gianazza
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco A Potenza
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Donetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
43
|
Cytotoxicity and immunomodulatory effects of sol-gel combustion based titanium dioxide (TiO 2 ) particles of large surface area on RAW 264.7 macrophages. Toxicol In Vitro 2017; 43:92-103. [DOI: 10.1016/j.tiv.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 01/23/2023]
|
44
|
Johnson MM, Mendoza R, Raghavendra AJ, Podila R, Brown JM. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep 2017; 7:43570. [PMID: 28262689 PMCID: PMC5337938 DOI: 10.1038/srep43570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcεRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.
Collapse
Affiliation(s)
- Monica M Johnson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Ryan Mendoza
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.,Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 296225, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.,Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 296225, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
45
|
Ahmed OB, Mahmoud UT, Elganady S, Nafady AM, Afifi SMH. Immunomodulatory effect of gelatin-coated silver nanoparticles in mice: Ultrastructural evaluation. Ultrastruct Pathol 2016; 40:342-350. [DOI: 10.1080/01913123.2016.1239666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
|
47
|
Cao Y, Li J, Liu F, Li X, Jiang Q, Cheng S, Gu Y. Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:206-210. [PMID: 27497726 DOI: 10.1016/j.etap.2016.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles (NPs) are increasingly used in food, and the toxicity of NPs following oral exposure should be carefully assessed to ensure the safety. Indeed, a number of studies have shown that oral exposure to NPs, especially solid NPs, may induce toxicological responses both in vivo and in vitro. However, most of the toxicological studies only used NPs for oral exposure, and the potential interaction between NPs and food components in real life was ignored. In this review, we summarized the relevant studies and suggested that the interaction between NPs and food components may exist by that 1) NPs directly affect nutrients absorption through disruption of microvilli or alteration in expression of nutrient transporter genes; 2) food components directly affect NP absorption through physico-chemical modification; 3) the presence of food components affect oxidative stress induced by NPs. All of these interactions may eventually enhance or reduce the toxicological responses induced by NPs following oral exposure. Studies only using NPs for oral exposure may therefore lead to misinterpretation and underestimation/overestimation of toxicity of NPs, and it is necessary to assess the synergistic effects of NPs in a complex system when considering the safety of NPs used in food.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Fang Liu
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Xiyue Li
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Qin Jiang
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Shanshan Cheng
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Yuxiu Gu
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| |
Collapse
|
48
|
Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic Nanomaterials and Their Applications in the Treatment of Oral Diseases. Molecules 2016; 21:E207. [PMID: 26867191 PMCID: PMC6273611 DOI: 10.3390/molecules21020207] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
There is a growing interest in the development of organic nanomaterials for biomedical applications. An increasing number of studies focus on the uses of nanomaterials with organic structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found for several advantages of using natural or synthetic organic nanostructures in a wide variety of dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers or their combinations, but new nanocomposites are constantly being developed. The present work reviews in detail current research on organic nanoparticles and their potential applications in the dental field.
Collapse
Affiliation(s)
- Maria Justina Roxana Virlan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Cristina M Sabliov
- Agricultural and Biological Engineering Department, Louisiana State University and LSU Ag Center, 149 EB Doran Building, Baton Rouge, LA 70803, USA.
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| |
Collapse
|
49
|
|
50
|
Nanotoxicology and Metalloestrogens: Possible Involvement in Breast Cancer. TOXICS 2015; 3:390-413. [PMID: 29051471 PMCID: PMC5606640 DOI: 10.3390/toxics3040390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
As the use of nanotechnology has expanded, an increased number of metallic oxides have been manufactured, yet toxicology testing has lagged significantly. Metals used in nano-products include titanium, silicon, aluminum, silver, zinc, cadmium, cobalt, antimony, gold, etc. Even the noble metals, platinum and cerium, have been used as a treatment for cancer, but the toxicity of these metals is still unknown. Significant advances have been made in our understanding and treatment of breast cancer, yet millions of women will experience invasive breast cancer in their lifetime. The pathogenesis of breast cancer can involve multiple factors; (1) genetic; (2) environmental; and (3) lifestyle-related factors. This review focuses on exposure to highly toxic metals, ("metalloestrogens" or "endocrine disruptors") that are used as the metallic foundation for nanoparticle production and are found in a variety of consumer products such as cosmetics, household items, and processed foods, etc. The linkage between well-understood metalloestrogens such as cadmium, the use of these metals in the production of nanoparticles, and the relationship between their potential estrogenic effects and the development of breast cancer will be explored. This will underscore the need for additional testing of materials used in nano-products. Clearly, a significant amount of work needs to be done to further our understanding of these metals and their potential role in the pathogenesis of breast cancer.
Collapse
|