1
|
Elkama A, Şentürk K, Karahalil B. Assessment of genotoxicity biomarkers in gasoline station attendants due to occupational exposure. Toxicol Ind Health 2024; 40:337-351. [PMID: 38597775 DOI: 10.1177/07482337241247089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.
Collapse
Affiliation(s)
- Aylin Elkama
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Kerem Şentürk
- Department of Toxicology, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Bensu Karahalil
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- Department of Toxicology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Turkey
| |
Collapse
|
2
|
D'Souza LC, Kuriakose N, Raghu SV, Kabekkodu SP, Sharma A. ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis. Free Radic Biol Med 2022; 193:190-201. [PMID: 36216301 DOI: 10.1016/j.freeradbiomed.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/17/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022]
Abstract
Hematopoietic stem cells/progenitor cells (HSC/HPCs) orchestrate the hematopoietic process, effectively regulated by the hematopoietic niche under normal and stressed conditions. The hematopoietic niche provides various soluble factors which influence the differentiation and self-renewal of HSC/HSPs. Unceasing differentiation/proliferation/high metabolic activity of HSC/HPCs makes them susceptible to damage by environmental toxicants like benzene. Oxidative stress, epigenetic modifications, and DNA damage in the HSC/HPCs are the key factors of benzene-induced hematopoietic injury. However, the role of the hematopoietic niche in benzene-induced hematopoietic injury/response is still void. Therefore, the current study aims to unravel the role of the hematopoietic niche in benzene-induced hematotoxicity using a genetically tractable model, Drosophila melanogaster. The lymph gland is a dedicated hematopoietic organ in Drosophila larvae. A group of 30-45 cells called the posterior signaling center (PSC) in the lymph gland acts as a niche that regulates Drosophila HSC/HPCs maintenance. Benzene exposure to Drosophila larvae (48 h) resulted in aberrant hemocyte production, especially hyper-differentiation of lamellocytes followed by premature lymph gland dispersal and reduced adult emergence upon developmental exposure. Subsequent genetic experiments revealed that benzene-induced lamellocyte production and premature lymph gland dispersal were PSC mediated. The genetic experiments further showed that benzene generates Dual oxidase (Duox)-dependent Reactive Oxygen Species (ROS) in the PSC, activating Toll/NF-κB signaling, which is essential for the aberrant hemocyte production, lymph gland dispersal, and larval survival. Together, the study establishes a functional perspective of the hematopoietic niche in a benzene-induced hematopoietic emergency in a genetic model, Drosophila, which might be relevant to higher organisms.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Nithin Kuriakose
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India; Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Proteomics and Cancer Biology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Konaje, Karnataka, 574199, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
3
|
Alses M, Alzeer S. Evaluation of some biological parameters of gasoline station attendants in Damascus, Syria. Heliyon 2021; 7:e07056. [PMID: 34041401 PMCID: PMC8144008 DOI: 10.1016/j.heliyon.2021.e07056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/02/2021] [Accepted: 05/08/2021] [Indexed: 10/26/2022] Open
Abstract
Introduction Gasoline is a blend of organic compounds used in internal combustion engines. gasoline station attendants (GSA) are exposed to gasoline vapours, which promotes oxidative stress through the production of ROS, which can damage biological structures with the formation of new metabolites which can be used as markers of oxidant/antioxidant imbalance. This is a comparative cross-sectional study. This study aims to evaluate some biological parameters as indicators of toxicity as a result of exposure to gasoline in workers at gas stations in Damascus. Methods Blood samples were collected from GSA (n = 30) and non-exposed (NE) (n = 30) with no history of occupational exposure, and the following markers of oxidative stress were analysed: malondialdehyde (MDA), advanced oxidation protein products (AOPP), catalase activity (CAT), CBC, ALT and AST. Results We have found that the levels of MDA, AOPP, CAT, RBC and Hgb in GSA were significantly higher than NE (p = 0.000, p = 0.02, p = 0.002, p = 0.018 and p = 0.015 respectively). On the other hand, there were no statistically significant (p > 0.05) in HCT, MCV, WBC, PLT, ALT and AST between the two groups. In the GSA group, there was no effect of the smoking habit and the number of years of work on biological parameters, but alcohol consumption habit had a clear effect on increasing both levels of MDA and CAT (P = 0.021 and P = 0.036 respectively), in comparison to the non-consumers of the alcohol group. The results from our study showed that chronic gasoline exposure may result in long-lasting oxidative stress, as demonstrated by the presence of statistically significant correlations between gasoline exposure and levels of biomarkers (MDA, AOPPs, Catalase activity). Conclusions the early identification of these biomarkers can be very useful to promote programs on health protection and prevention for those populations more susceptible to the adverse effects of gasoline exposure.
Collapse
Affiliation(s)
- Mohammad Alses
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Damascus, Damascus, Syria
| | - Samar Alzeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Damascus, Damascus, Syria
| |
Collapse
|
4
|
Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambò F, Briguglio G, Fenga C. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep 2020; 7:759-767. [PMID: 32612936 PMCID: PMC7322123 DOI: 10.1016/j.toxrep.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Current knowledge linking pesticide exposure, cancer and neuro-degenerative diseases to dysregulation of microRNA network was summarized. Literature indicates differential miRNA expression targeting biomolecules and pathways involved in cancer and neurodegenerative diseases. Evaluation of miRNA expression may be used to develop new non-invasive strategies for the prediction and prognosis of diseases including cancer. The application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
This review summarizes the current knowledge linking cancer and neuro-degenerative diseases to dysregulation of microRNA network following pesticide exposure. Most findings revealed differential miRNA expression targeting biomolecules and pathways involved in various neoplastic localizations and neurodegenerative diseases. A growing body of evidence in recent literature indicates that alteration of specific miRNAs can represent an early biomarker of disease following exposure to chemical agents, including pesticides. Different miRNAs seem to regulate cell proliferation, apoptosis, migration, invasion, and metastasis via many biological pathways through modulation of the expression of target mRNAs. The evaluation of miRNA expression levels may be used to develop new non-invasive strategies for the prediction and prognosis of many diseases, including cancer. However, the application of miRNAs as diagnostic and therapeutic biomarkers in the clinical field is extremely challenging.
Collapse
Affiliation(s)
- Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alessandra Rugolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Carmela Alibrando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125, Messina, Italy
- Corresponding author at: Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section, University of Messina, Policlinico Universitario “G. Martino” – pad. H, Via Consolare Valeria 1, 98125, Messina, Italy.
| |
Collapse
|
5
|
Costa C, Briguglio G, Giamb� F, Catanoso R, Teodoro M, Caccamo D, Fenga C. Association between oxidative stress biomarkers and PON and GST polymorphisms as a predictor for susceptibility to the effects of pesticides. Int J Mol Med 2020; 45:1951-1959. [DOI: 10.3892/ijmm.2020.4541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/10/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, I‑98125 Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Federica Giamb�
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Rosaria Catanoso
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| |
Collapse
|
6
|
Vieira KCDMT, Fernandes AÁ, Silva KM, Pereira VR, Pereira DR, Favareto APA. Experimental exposure to gasohol impairs sperm quality with recognition of the classification pattern of exposure groups by machine learning algorithms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3921-3931. [PMID: 30547336 DOI: 10.1007/s11356-018-3901-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Contamination caused by leakage at gas stations leads to possible exposure of the general population when in contact with contaminated water and soil. The present study aimed to evaluate the reproductive effects of exposure of adult male rats to gasohol and evaluate the performance of machine learning (ML) algorithms for pattern recognition and classification of the exposure groups. Rats were orally exposed to 0 (control), 16 (EA), 160 (EB), or 800 mg kg-1 bw day-1 of gasohol (EC), for 30 consecutive days. Sperm quality of the groups exposed to two higher doses was reduced in comparison to the control group. The sperm parameters decreased were: daily sperm production, sperm number in the caput/corpus epididymis, progressive motility, mitochondrial activity, and acrosomal membrane integrity. Sperm transit time in the epididymis cauda and sperm isolated head were increased in EB and EC. Sertoli cells number was decreased in these groups, but their support capacity was maintained. ML methods were used to identify patterns between samples of control and exposure groups. The results obtained by ML methods were very promising, obtaining about 90% of accuracy. It was concluded that the exposure of rats to different doses of gasohol impair spermatogenesis and sperm quality, with a recognizable classification pattern of exposure groups at ML.
Collapse
Affiliation(s)
| | - Andressa Ágata Fernandes
- College of Science, Letters and Education from Presidente Prudente - FACLEPP, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, Brazil
| | - Karina Martins Silva
- College of Science, Letters and Education from Presidente Prudente - FACLEPP, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, Brazil
| | - Viviane Ribas Pereira
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, 19067-175, Brazil
| | - Danillo Roberto Pereira
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, 19067-175, Brazil
| | - Ana Paula Alves Favareto
- Graduate Program in Environment and Regional Development, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, 19067-175, Brazil.
- College of Science, Letters and Education from Presidente Prudente - FACLEPP, University of Western São Paulo - UNOESTE, Presidente Prudente, SP, Brazil.
| |
Collapse
|
7
|
Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling. Clin Sci (Lond) 2018; 132:2583-2598. [PMID: 30545896 DOI: 10.1042/cs20180885] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Estrogens generated within endocrine organs and the reproductive system act as ligands for at least three types of estrogen receptors. Estrogen receptors α (ERα) and β (ERβ) belong to the so-called classical family of estrogen receptors, whereas the G protein-coupled receptor GPR30, also known as GPER-1, has been described as a novel estrogen receptor sited in the cell membrane of target cells. Furthermore, these receptors are under stimulation of a family of exogenous estrogens, known as phytoestrogens, which are a diverse group of non-steroidal plant compounds derived from plant food consumed by humans and animals. Because phytoestrogens are omnipresent in our daily diet, they are becoming increasingly important in both human health and disease. Recent evidence indicates that in addition to classical estrogen receptors, phytoestrogens also activate GPER-1 a relevant observation since GPER-1 is involved in several physiopathological disorders and especially in estrogen-dependent diseases such as breast cancer.The first estrogen receptors discovered were the classical ERα and ERβ, but from an evolutionary point of view G protein-coupled receptors trace their origins in history to over a billion years ago suggesting that estrogen receptors like GPER-1 may have been the targets of choice for ancient phytoestrogens and/or estrogens.This review provides a comprehensive and systematic literature search on phytoestrogens and its relationship with classical estrogen receptors and GPER-1 including its role in breast cancer, an issue still under discussion.
Collapse
|
8
|
Sauer E, Gauer B, Nascimento S, Nardi J, Göethel G, Costa B, Correia D, Matte U, Charão M, Arbo M, Duschl A, Moro A, Garcia SC. The role of B7 costimulation in benzene immunotoxicity and its potential association with cancer risk. ENVIRONMENTAL RESEARCH 2018; 166:91-99. [PMID: 29883905 DOI: 10.1016/j.envres.2018.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Benzene is a recognized human carcinogen; however, there are still some gaps in the knowledge regarding the mechanism of toxicity of this organic solvent and potential early biomarkers for the damage caused by it. In a previous study, our research group demonstrated that the adhesion molecules of the immune system (B7.1 and B7.2) could be potential biomarkers in the early detection of immunotoxicity caused by benzene exposure. Therefore, this study was developed to deepen the understanding regarding this important topic, aiming to contribute to the comprehension of the benzene toxicity mechanism mediated by B7.1 and B7.2 and its potential association with the risk of carcinogenicity. B7.1 and B7.2 protein expression in blood monocytes and B7.1 and B7.2 gene expression in PBMCs were evaluated. Additionally, complement C3 and C4 levels in serum were measured, as well as p53 gene expression in PBMCs. Seventy-four gas station workers (GSW group) and 71 non-occupationally exposed subjects (NEG) were evaluated. Our results demonstrated decreased levels of B7.1 and B7.2 protein and gene expression in the GSW group compared to the NEG (n = 71) (p < 0.01). Along the same lines, decreased levels of the complement system were observed in the GSW group (p < 0.01), demonstrating the impairment of this immune system pathway as well. Additionally, a reduction was observed in p53 gene expression in the GSA group (p < 0.01). These alterations were associated with both the benzene exposure biomarker evaluated, urinary trans, trans-muconic acid, and with exposure time (p < 0.05). Moreover, strong correlations were observed between the gene expression of p53 vs. B7.1 (r = 0.830; p < 0.001), p53 vs. B7.2 (r = 0.685; p < 0.001), and B7.1 vs. B7.2 (r = 0.702; p < 0.001). Taken together, these results demonstrate that the immune system co-stimulatory molecule pathway is affected by benzene exposure. Also, the decrease in p53 gene expression, even at low exposure levels, reinforces the carcinogenicity effect of benzene in this pathway. Therefore, our results suggest that the promotion of immune evasion together with a decrease in p53 gene expression may play an important role in the benzene toxicity mechanism. However, further and targeted studies are needed to confirm this proposition.
Collapse
Affiliation(s)
- Elisa Sauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Nascimento
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jessica Nardi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bárbara Costa
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Douglas Correia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ursula Matte
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariele Charão
- Instituto de Ciências das Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marcelo Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Angela Moro
- Faculdade Especializada na Área de Saúde do Rio Grande do Sul, Passo Fundo, RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Montero-Montoya R, López-Vargas R, Arellano-Aguilar O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann Glob Health 2018; 84:225-238. [PMID: 30873816 PMCID: PMC6748254 DOI: 10.29024/aogh.910] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Toxic volatile organic compounds (VOC), like benzene, toluene, ethylbenzene and xylenes (BTEX), are atmospheric pollutants representing a threat to human health. They are released into the environment from mobile sources in urban settings, but newly polluted areas are gaining importance in countries where accelerated industrialization is taking place in suburban or rural settings. METHODS The review includes studies done in Mexico and Latin-America and countries considered to have emerging economies and are compared with similar studies in developed countries. Data about environmental VOC levels and exposure of children have been included. Also, information about health effects was reviewed. Articles were searched in PubMed and Scopus, and information was also obtained from the United States Environmental Protection Agency (EPA), the EPAs Integrated Risk Information System (IRIS-EPA) and state reports on air quality of Mexican cities. RESULTS VOC or BTEX levels reported in industrial and suburban areas were found to be higher due to the burning of fossil fuels and waste emission; whereas, in big cities, VOC emissions were mainly due to mobile sources. Even though TEX levels were under reference values, benzene was found at levels several times over this value in cities and even higher in industrial zones. Elevated VOC emissions were also reported in cities with industrial development in their peripheral rural areas.Public health relevance: Industrial activities have changed the way of life of small towns, which previously had no concern about environmental pollution and chemicals. No air monitoring is done in these places where toxic chemicals are released into rivers and the atmosphere. This work demonstrates the need for environmental monitors to protect human life in suburban and rural areas where industrial growth occurs without planning and ecological or health protection, compromising the health of new generations beginning in fetal development.
Collapse
Affiliation(s)
| | - Rocío López-Vargas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, MX
| | | |
Collapse
|
10
|
Vergallo A, Giampietri L, Baldacci F, Volpi L, Chico L, Pagni C, Giorgi FS, Ceravolo R, Tognoni G, Siciliano G, Bonuccelli U. Oxidative Stress Assessment in Alzheimer's Disease: A Clinic Setting Study. Am J Alzheimers Dis Other Demen 2018; 33:35-41. [PMID: 28931301 PMCID: PMC10852477 DOI: 10.1177/1533317517728352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Oxidative stress (OS) is a physiological age-related brain process, dramatically overexpressed in neurodegenerative disorders like Alzheimer's disease (AD). Nevertheless, the pathophysiological role of OS in AD pathology has not been clarified yet. OS as a biomarker for AD is a controversial issue. A comparison of previous data is difficult due to a remarkable methodological variability. Most of the previous studies have shown higher levels of OS markers and lower antioxidant power in patients with dementia when compared to mild cognitive impairment (MCI) and healthy controls. METHODS We followed a strict protocol in order to limit intrasite variability of OS assessment. In addition, we have taken into account possible confounding factors. RESULTS In agreement with previous reports, we found both lower plasmatic OS and higher plasmatic antioxidant defenses when comparing patients with AD having dementia that is stably treated to patients with MCI-AD. DISCUSSION A speculative hypothesis based on correlative data is provided.
Collapse
Affiliation(s)
- Andrea Vergallo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Linda Giampietri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leda Volpi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Pagni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
12
|
Shrivastava P, Naoghare PK, Gandhi D, Devi SS, Krishnamurthi K, Bafana A, Kashyap SM, Chakrabarti T. Application of cell-based assays for toxicity characterization of complex wastewater matrices: Possible applications in wastewater recycle and reuse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:555-566. [PMID: 28482324 DOI: 10.1016/j.ecoenv.2017.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Exposure to pre-concentrated inlet or outlet STP wastewater extracts at different concentrations (0.001% to 1%) induced dose-dependent toxicity in MCF-7 cells, whereas drinking water extracts did not induce cytotoxicity in cells treated. GC-MS analysis revealed the occurrence of xenobiotic compounds (Benzene, Phthalate, etc.) in inlet/outlet wastewater extracts. Cells exposed to inlet/outlet extract showed elevated levels of reactive oxygen species (ROS: inlet: 186.58%, p<0.05, outlet, 147.8%, p<0.01) and loss of mitochondrial membrane potential (Δψm: inlet, 74.91%, p<0.01; outlet, 86.70%, p<0.05) compared to the control. These concentrations induced DNA damage (Tail length: inlet: 34.4%, p<0.05, outlet, 26.7%, p<0.05) in treated cells compared to the control (Tail length: 7.5%). Cell cycle analysis displayed drastic reduction in the G1 phase in treated cells (inlet, G1:45.0%; outlet, G1:58.3%) compared to the control (G1:67.3%). Treated cells showed 45.18% and 28.0% apoptosis compared to the control (1.2%). Drinking water extracts did not show any significant alterations with respect to ROS, Δψm, DNA damage, cell cycle and apoptosis compared to the control. Genes involved in cell cycle and apoptosis were found to be differentially expressed in cells exposed to inlet/outlet extracts. Herein, we propose cell-based toxicity assays to evaluate the efficacies of wastewater treatment and recycling processes.
Collapse
Affiliation(s)
- Preeti Shrivastava
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Pravin K Naoghare
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| | - Deepa Gandhi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - S Saravana Devi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Kannan Krishnamurthi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Amit Bafana
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sanjay M Kashyap
- Analytical Instrumentation Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | | |
Collapse
|
13
|
Jaiswal SK, Gupta VK, Ansari MD, Siddiqi NJ, Sharma B. Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro. Toxicol Rep 2017; 4:265-273. [PMID: 28959648 PMCID: PMC5615148 DOI: 10.1016/j.toxrep.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/25/2022] Open
Abstract
The observations of liver slices when treated with different concentrations of carbofuran were as follows:- increased LPO decreased SOD, CAT, & protein content in all the treatments
The observations of liver slices when treated with different concentrations of carbofuran along with vitamin C were as follows:- the levels of LPO, SOD, CAT & total protein content reinstated towards normal level only in liver slices treated with low concentration at higher concentration of carbofuran treatment Vitamin C does not ameliorate the hepatic toxicity induced by carbofuran
The in vitro liver slice culture may prove to be a useful model for hepatotoxicological studies and Vitamin C, as a hepatoprotectant in mammalian system. Carbamates, most commonly used pesticides in agricultural practices, have been reported to produce free radicals causing deleterious effects in animals. The present study was designed to assess the carbofuran induced oxidative stress in rat liver slices in vitro and also to evaluate protective role of vitamin C by incubating them in Krebs-Ringer HEPES Buffer (KRHB) containing incubation media (Williams medium E (WME) supplemented with glucose and antibiotics) with different concentrations of carbofuran. The results demonstrated that carbofuran caused significant increase in lipid peroxidation and inhibition in the activity of hepatic superoxide dismutase (SOD) in concentration dependent manner. The data with incubation medium reflected that carbofuran at lowest concentration caused an increase in SOD activity followed by its inhibition at higher concentration. Carbofuran treatment caused inhibition in the activity of catalase in liver slices and WME incubation medium. Pre-incubation of liver slices and the WME media with vitamin C restored the values of biochemical indices tested. The results indicated that carbofuran might induce oxidative stress in hepatocytes. The pretreatment with vitamin C may offer hepatoprotection from toxicity of pesticide at low concentration only.
Collapse
Key Words
- Antioxidant
- BSA, Bovine serum albumin
- CaCl2, calcium chloride
- Carbofuran
- CuSO4, copper sulphate
- DMSO, Dimethylsulfoxide
- EDTA, Ethylenediaminetetraacetic acid
- Hepatotoxicity
- In vitro
- KCl, potassium chloride
- KRHB, Krebs-Ringer HEPES Buffer
- MgSO4, magnesium sulfate
- NADH, nicotinamide adenine dinucleotide
- NaCl, sodium chloride
- NaOH, sodium hydroxide and MDA Malonaldialdehyde
- Oxidative stress
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBA, thiobarbituric acid
- TCA, trichloroacetic acid
- WME, Williams medium E
Collapse
Affiliation(s)
| | - Vivek Kumar Gupta
- Department of Biochemistry, University of Allahabad, 211002, UP, India
| | - Md Dilshad Ansari
- Department of Biochemistry, VBS Poorvanchal University, Jaunpur, 211002, UP, India
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, 211002, UP, India
| |
Collapse
|
14
|
Karaulov AV, Mikhaylova IV, Smolyagin AI, Boev VM, Kalogeraki A, Tsatsakis AM, Engin AB. The immunotoxicological pattern of subchronic and chronic benzene exposure in rats. Toxicol Lett 2017; 275:1-5. [DOI: 10.1016/j.toxlet.2017.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/27/2023]
|
15
|
Fenga C, Gangemi S, Teodoro M, Rapisarda V, Golokhvast K, Docea AO, Tsatsakis AM, Costa C. 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol Rep 2017; 4:291-295. [PMID: 28959652 PMCID: PMC5615153 DOI: 10.1016/j.toxrep.2017.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 01/25/2023] Open
Abstract
Gasoline station attendants have higher urinary t,t,-MA and 8-OHdG levels. There is strong correlation between 8-OHdG and benzene exposure level. 8-OHdG levels are significantly correlated also with job seniority. Low-level chronic exposure to benzene can determine oxidative damage on DNA.
The present study aims to investigate the relation between exposure to low-dose benzene and the occurrence of oxidative DNA damage in gasoline station workers, as well as the possible role of interfering or confounding factors. Urine levels of 8-OHdG were evaluated by a competitive immunoassay in a group of 80 men, employed in gasoline stations located in East Sicily and compared with a control group (n = 63) of male office employees not occupationally exposed to benzene. Information regarding socio-demographic characteristics, lifestyle and job-related records were provided through a questionnaire. Significantly higher (p < 0.05) urinary t,t,-MA and 8-OHdG levels were observed in gasoline station attendants compared to subjects not exposed to benzene. Pearson’s test demonstrated a strong correlation (r = 0.377, p < 0.001) between 8-OHdG and benzene exposure level. 8-OHdG significantly correlated also with job seniority, (r = 0.312, p < 0.01), whereas the relation with age resulted weaker (r = 0.242, p < 0.05). Multiple linear regression analysis, performed to exclude a role for confounding factors, showed that variables like gender, smoking habit, alcohol consumption and BMI did not have a significant influence on the measured biomarkers. No subject enrolled in the study presented signs or symptoms of work-related disease or other illness linked to oxidative stress. These results suggest that low-level chronic exposure to benzene among gasoline station attendants can determine oxidative damage on DNA, as indicated by alteration of 8-OHdG which may represent a non-invasive biomarker of early genotoxic damage in exposed subjects.
Collapse
Affiliation(s)
- Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging - Occupational Medicine Section - University of Messina, 98125 Messina, Italy
| | - Silvia Gangemi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging - Occupational Medicine Section - University of Messina, 98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging - Occupational Medicine Section - University of Messina, 98125 Messina, Italy
| | - Venerando Rapisarda
- Department of Clinical and Experimental Medicine - Occupational Medicine Section - University of Catania, 95131 Catania, Italy
| | - Kirill Golokhvast
- Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690001, Russia
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Chiara Costa
- Department of Clinical and Experimental Medicine - University of Messina, Messina 98125, Italy
| |
Collapse
|
16
|
Alamolhodaei NS, Tsatsakis AM, Ramezani M, Hayes AW, Karimi G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem Toxicol 2017; 103:223-232. [DOI: 10.1016/j.fct.2017.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/05/2017] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
|
17
|
Fenga C, Gangemi S, Di Salvatore V, Falzone L, Libra M. Immunological effects of occupational exposure to lead (Review). Mol Med Rep 2017; 15:3355-3360. [PMID: 28339013 DOI: 10.3892/mmr.2017.6381] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/23/2017] [Indexed: 01/04/2023] Open
Abstract
It is well-known that occupational and environmental exposure to several factors, including benzene, heavy metals, chemicals and mineral fibers, is associated with the risk of developing a great number of diseases. Numerous studies have been carried out in order to investigate the mechanisms of toxicity of these substances, with particular regard to the possible toxic effects on the immune system. However, little is known about the influence of heavy metals, such as lead, on the immune system in human populations. Lead is a heavy metal still used in many industrial activities. Human exposure to lead can induce various biological effects depending upon the level and duration of exposure, such as toxic effects on haematological, cardiovascular, nervous and reproductive systems. Several studies demonstrated that exposure to lead is associated to toxic effects also on the immune system, thus increasing the incidence of allergy, infectious disease, autoimmunity or cancer. However, the effects of lead exposure on the human immune system are not conclusive, mostly in occupationally exposed subjects; nevertheless some immunotoxic abnormalities induced by lead have been suggested. In particular, in vivo, in vitro and ex vivo lead is able to improve T helper 2 (Th2) cell development affecting Th1 cell proliferation. Further studies are required to better understand the mechanisms of lead immunotoxicity and the ability of lead to affect preferentially one type of immune response.
Collapse
Affiliation(s)
- Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Section of Occupational Medicine, 'Policlinico G. Martino' Hospital, University of Messina, I-98125 Messina, Italy
| | - Silvia Gangemi
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Section of Occupational Medicine, 'Policlinico G. Martino' Hospital, University of Messina, I-98125 Messina, Italy
| | - Valentina Di Salvatore
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| |
Collapse
|
18
|
Costa C, Miozzi E, Teodoro M, Briguglio G, Rapisarda V, Fenga C. New insights on 'old' toxicants in occupational toxicology (Review). Mol Med Rep 2017; 15:3317-3322. [PMID: 28339055 DOI: 10.3892/mmr.2017.6374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
In order to deliver the best possible working environment, it is essential to identify professional conditions that could be harmful for worker's health and prevent (or limit) the occurrence of such conditions. The appropriate use of personal protective equipment and the development of appropriate regulations allowed to reduce the prevalence of 'classic' occupational diseases, such as occupational hearing loss or asbestosis, just to name a few. Nowadays, environmental pollution seems to be one of the most relevant concerns for human and animal health, and toxicology is becoming one of the most prominent fields of interest in occupational settings. An increasing number of studies demonstrate that the presence of toxicants in the workplace could be responsible for the development of chronic diseases, even at doses that were considered 'safe'. The present review summarizes some of the most recent advancements in occupational toxicology, focusing on topics that have long been debated in the past and that have recently returned to the fore.
Collapse
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| | - Edoardo Miozzi
- Section of Occupational Medicine, Department of Biomedical, Odontoiatric, Morphological and Functional Images, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| | - Michele Teodoro
- Section of Occupational Medicine, Department of Biomedical, Odontoiatric, Morphological and Functional Images, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| | - Giusi Briguglio
- Section of Occupational Medicine, Department of Biomedical, Odontoiatric, Morphological and Functional Images, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| | - Venerando Rapisarda
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I‑95124 Catania, Italy
| | - Concettina Fenga
- Section of Occupational Medicine, Department of Biomedical, Odontoiatric, Morphological and Functional Images, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| |
Collapse
|
19
|
Salemi R, Marconi A, Di Salvatore V, Franco S, Rapisarda V, Libra M. Epigenetic alterations and occupational exposure to benzene, fibers, and heavy metals associated with tumor development. Mol Med Rep 2017; 15:3366-3371. [DOI: 10.3892/mmr.2017.6383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/16/2017] [Indexed: 11/05/2022] Open
|
20
|
Gangemi S, Miozzi E, Teodoro M, Briguglio G, De Luca A, Alibrando C, Polito I, Libra M. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans (Review). Mol Med Rep 2016; 14:4475-4488. [PMID: 27748877 PMCID: PMC5101964 DOI: 10.3892/mmr.2016.5817] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
Abstract
It is well known that pesticides are widely used compounds. In fact, their use in agriculture, forestry, fishery and the food industry has granted a huge improvement in terms of productive efficiency. However, a great number of epidemiological surveys have demonstrated that these toxic compounds can interact and exert negative effects not only with their targets (pests, herbs and fungi), but also with the rest of the environment, including humans. This is particularly relevant in the case of workers involved in the production, transportation, preparation and application of these toxicants. Accordingly, a growing body of evidence has demonstrated the correlation between occupational exposure to pesticides and the development of a wide spectrum of pathologies, ranging from eczema to neurological diseases and cancer. Pesticide exposure is often quite difficult to establish, as many currently used modules do not take into account all of the many variables that can occur in a diverse environment, such as the agricultural sector, and the assessment of the real risk for every single worker is problematic. Indeed, the use of personal protection equipment is necessary while handling these toxic compounds, but education of workers can be even more important: personal contamination with pesticides may occur even in apparently harmless situations. This review summarises the most recent findings describing the association between pesticide occupational exposure and the development of chronic diseases.
Collapse
Affiliation(s)
- Silvia Gangemi
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Edoardo Miozzi
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Annamaria De Luca
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Carmela Alibrando
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Irene Polito
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, I‑95124 Catania, Italy
| |
Collapse
|
21
|
Falzone L, Marconi A, Loreto C, Franco S, Spandidos DA, Libra M. Occupational exposure to carcinogens: Benzene, pesticides and fibers (Review). Mol Med Rep 2016; 14:4467-4474. [PMID: 27748850 PMCID: PMC5101963 DOI: 10.3892/mmr.2016.5791] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023] Open
Abstract
It is well known that the occupational exposure to contaminants and carcinogens leads to the development of cancer in exposed workers. In the 18th century, Percivall Pott was the first to hypothesize that chronic exposure to dust in the London chimney sweeps was associated with an increased risk of developing cancer. Subsequently a growing body of evidence indicated that other physical factors were also responsible for oncogenic mutations. Over the past decades, many carcinogens have been found in the occupational environment and their presence is often associated with an increased incidence of cancer. Occupational exposure involves several factors and the association between carcinogens, occupational exposure and cancer is still unclear. Only a fraction of factors is recognized as occupational carcinogens and for each factor, there is an increased risk of cancer development associated with a specific work activity. According to the International Agency for Research on Cancer (IARC), the majority of carcinogens are classified as 'probable' and 'possible' human carcinogens, while, direct evidence of carcinogenicity is provided in epidemiological and experimental studies. In the present review, exposures to benzene, pesticides and mineral fibers are discussed as the most important cancer risk factors during work activities.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Andrea Marconi
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, I-95124 Catania, Italy
| | - Sabrina Franco
- Department of Medical, Surgical and Advanced Technology Sciences ‘G.F. Ingrassia’, University of Catania, I-95124 Catania, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| |
Collapse
|