1
|
Ramos L, Harr AE, Zakas FL, Essig SR, Kempskie GJ, Fadil NA, Schmid MG, Pompy MD, Curley MC, Gabel LA, Hallock HL. Overexpression of the Apoe gene in the frontal cortex of mice causes sex-dependent changes in learning, attention, and anxiety-like behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607225. [PMID: 39149404 PMCID: PMC11326296 DOI: 10.1101/2024.08.08.607225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Apolipoprotein E (ApoE) is a protein that is important for lipid storage, transport, and metabolism. APOE gene variants are associated with Alzheimer's disease (AD), as well as attentional function in healthy humans. Previous research has shown that Apoe transcription is increased following stimulation of the pathway between the locus coeruleus (LC) and frontal cortex (FC) in mice. This result suggests that Apoe may affect attentional function by virtue of its expression in circuits that control attention. Does Apoe causally regulate attention, or is its expression simply a byproduct of neuronal activity in the LC and FC? To answer this question, we synthetically induced Apoe transcription in the FC of male and female mice, and subsequently tested their ability to learn a touchscreen-based rodent version of the continuous performance test of sustained attention (the rCPT). We found that increased Apoe transcription impaired performance when attentional demand was increased in male mice, while in female mice, increased Apoe transcription significantly accelerated rCPT learning. We further found that this increase in Apoe transcription affected subsequent anxiety-like behavior and cellular activity in the FC in a sex-dependent manner. The results of this study provide insight into how Apoe causally regulates translationally relevant behaviors in rodent models.
Collapse
Affiliation(s)
- Lizbeth Ramos
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Abigail E. Harr
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Finian L. Zakas
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Samuel R. Essig
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | | - Nelly A. Fadil
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | | | | | | - Lisa A. Gabel
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | |
Collapse
|
2
|
Mostafalou S, Abdollahi M. The susceptibility of humans to neurodegenerative and neurodevelopmental toxicities caused by organophosphorus pesticides. Arch Toxicol 2023; 97:3037-3060. [PMID: 37787774 DOI: 10.1007/s00204-023-03604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Biosca-Brull J, Guardia-Escote L, Basaure P, Cabré M, Blanco J, Pérez-Fernández C, Sánchez-Santed F, Domingo JL, Colomina MT. Exposure to chlorpyrifos during pregnancy differentially affects social behavior and GABA signaling elements in an APOE- and sex-dependent manner in a transgenic mouse model. ENVIRONMENTAL RESEARCH 2023; 224:115461. [PMID: 36796608 DOI: 10.1016/j.envres.2023.115461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The massive use of chlorpyrifos (CPF) has been associated with an increased prevalence of neurodevelopmental disorders. Some previous studies have shown that prenatal, but not postnatal, CPF exposure causes social behavior deficits in mice depending on sex while others have found that in transgenic mice models carrying the human apolipoprotein E (APOE) ε3 and ε4 allele confer different vulnerabilities to either behavioral or metabolic disorders after CPF exposure. This study aims to evaluate, in both sexes, how prenatal CPF exposure and APOE genotype impact on social behavior and its relation to changes in GABAergic and glutamatergic systems. For this purpose, apoE3 and apoE4 transgenic mice were exposed through the diet to 0 or 1 mg/kg/day of CPF, between gestational day 12 and 18. A three-chamber test was used to assess social behavior on postnatal day (PND) 45. Then, mice were sacrificed, and hippocampal samples were analyzed to study the gene expression of GABAergic and glutamatergic elements. Results showed that prenatal exposure to CPF impaired social novelty preference and increased the expression of GABA-A α1 subunit in females of both genotypes. In addition, the expression of GAD1, the ionic cotransporter KCC2 and the GABA-A α2 and α5 subunits were increased in apoE3 mice, whereas CPF treatment only accentuated the expression of GAD1 and KCC2. Nevertheless, future research is needed to evaluate whether the influences detected in the GABAergic system are present and functionally relevant in adults and old mice.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain.
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain.
| |
Collapse
|
4
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Colomina MT, Giménez E, Sánchez-Santed F. Postnatal exposure to low doses of Chlorpyrifos induces long-term effects on 5C-SRTT learning and performance, cholinergic and GABAergic systems and BDNF expression. Exp Neurol 2020; 330:113356. [DOI: 10.1016/j.expneurol.2020.113356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
|
6
|
Peris-Sampedro F, Guardia-Escote L, Basaure P, Cabré M, Colomina MT. Improvement of APOE4-dependent non-cognitive behavioural traits by postnatal cholinergic stimulation in female mice. Behav Brain Res 2020; 384:112552. [DOI: 10.1016/j.bbr.2020.112552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 02/08/2023]
|
7
|
APOE genetic background and sex confer different vulnerabilities to postnatal chlorpyrifos exposure and modulate the response to cholinergic drugs. Behav Brain Res 2019; 376:112195. [DOI: 10.1016/j.bbr.2019.112195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/30/2023]
|
8
|
Basaure P, Guardia-Escote L, Biosca-Brull J, Blanco J, Cabré M, Peris-Sampedro F, Sánchez-Santed F, Domingo JL, Colomina MT. Exposure to chlorpyrifos at different ages triggers APOE genotype-specific responses in social behavior, body weight and hypothalamic gene expression. ENVIRONMENTAL RESEARCH 2019; 178:108684. [PMID: 31472362 DOI: 10.1016/j.envres.2019.108684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
To date, we have shown that apolipoprotein E (APOE) polymorphisms differentially modulate the neurobehavioral and metabolic effects of chlorpyrifos (CPF), a widely used pesticide, which is detected as residue in food. We previously reported that, after being exposed to CPF, APOE3 subjects exhibit metabolic dysfunctions while APOE4 subjects undergo changes in behavior. In the current study, we investigated the effects of a double exposure to CPF on social behavior and hypothalamic gene expression in apoE-targeted replacement (TR) mice. Male apoE3-and apoE4-TR mice were exposed to CPF at 0 or 1 mg/kg/day on postnatal days 10-15 and then, during adulthood (5 months of age), fed a CPF-supplemented diet (0 or 2 mg/kg/day) for 15 days. During adult exposure to CPF, body weight gain and food intake were monitored. At the end of the adult exposure period, we evaluated social behavior in a three-chamber test, as well as mRNA levels of hypothalamic neuropeptides and receptors related to social behavior and feeding control. Adult CPF exposure increased food intake in general, but only apoE4 mice increased their body weight. Postnatal CPF exposure improved preference for the social contexts in apoE4 mice while adult CPF exposure did the same in apoE3 mice. Anorexigenic-peptide and social-related behavior gene expression decreased as a result of adult CPF exposure in apoE4 mice, and neuropeptide Y was more expressed in apoE4 mice. These results indicate that CPF exposure produces orexigenic and metabolic effects and enlarges individual differences in social behavior, especially in apoE3 mice.
Collapse
Affiliation(s)
- Pia Basaure
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Guardia-Escote
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Blanco
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Fiona Peris-Sampedro
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
9
|
Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 2019; 13:139. [PMID: 31333425 PMCID: PMC6620897 DOI: 10.3389/fnbeh.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Impulsive and compulsive traits represent a variety of maladaptive behaviors defined by the difficulties to stop an improper response and the control of a repeated behavioral pattern without sensitivity to changing contingencies, respectively. Otherwise, human beings are continuously exposed to plenty neurotoxicological agents which have been systematically linked to attentional, learning, and memory dysfunctions, both preclinical and clinical studies. Interestingly, the link between both impulsive and compulsive behaviors and the exposure to the most important xenobiotic compounds have been extensively developed; although the information has been rarely summarized. For this, the present systematic review schedule and analyze in depth the most important works relating different subtypes of the above-mentioned behaviors with 4 of the most important xenobiotic compounds: Lead (Pb), Methylmercury (MeHg), Polychlorinated biphenyls (PCB), and Organophosphates (OP) in both preclinical and clinical models. Methods: Systematic search strategy on PubMed databases was developed, and the most important information was structured both in text and in separate tables based on rigorous methodological quality assessment. Results: For Lead, Methylmercury, Polychlorinated biphenyls and organophosphates, a total of 44 (31 preclinical), 34 (21), 38 (23), and 30 (17) studies were accepted for systematic synthesis, respectively. All the compounds showed an important empirical support on their role in the modulation of impulsive and, in lesser degree, compulsive traits, stronger and more solid in animal models with inconclusive results in humans in some cases (i.e., MeHg). However, preclinical and clinical studies have systematically focused on different subtypes of the above-mentioned behaviors, as well as impulsive choice or habit conformations have been rarely studied. Discussion: The strong empirical support in preclinical studies contrasts with the lack of connection between preclinical and clinical models, as well as the different methodologies used. Further research should be focused on dissipate these differences as well as deeply study impulsive choice, decision making, risk taking, and cognitive flexibility, both in experimental animals and humans.
Collapse
Affiliation(s)
| | - Pilar Flores
- Department of Psychology and Health Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
10
|
Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Arch Toxicol 2019; 93:693-707. [DOI: 10.1007/s00204-019-02387-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
|
11
|
Guardia-Escote L, Basaure P, Blanco J, Cabré M, Pérez-Fernández C, Sánchez-Santed F, Domingo JL, Colomina MT. Postnatal exposure to chlorpyrifos produces long-term effects on spatial memory and the cholinergic system in mice in a sex- and APOE genotype-dependent manner. Food Chem Toxicol 2018; 122:1-10. [DOI: 10.1016/j.fct.2018.09.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/22/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
|
12
|
Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens Bioelectron 2018; 116:37-50. [DOI: 10.1016/j.bios.2018.05.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
|
13
|
Oleoylethanolamide treatment reduces neurobehavioral deficits and brain pathology in a mouse model of Gulf War Illness. Sci Rep 2018; 8:12921. [PMID: 30150699 PMCID: PMC6110778 DOI: 10.1038/s41598-018-31242-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
There are nearly 250,000 Gulf War (GW) veterans who suffer from Gulf War Illness (GWI), a multi-symptom condition that remains untreatable. The main objective was to determine if targeting peroxisomal function could be of therapeutic value in GWI. We performed a pilot study that showed accumulation of very long chain fatty acids (VLCFA), which are metabolized in peroxisomes, in plasma from veterans with GWI. We then examined if targeting peroxisomal β-oxidation with oleoylethanolamide (OEA) restores these lipids to the normal levels and mitigates neuroinflammation and neurobehavioral deficits in a well-established mouse model of GWI. In GWI mice, treatment with OEA corresponded with cognitive benefits and reduced fatigue and disinhibition-like behavior in GWI mice. Biochemical and molecular analysis of the brain tissue showed reduced astroglia and microglia staining, decreased levels of chemokines and cytokines, and decreased NFκB phosphorylation. Treatment with OEA reduced accumulation of peroxisome specific VLCFA in the brains of GWI mice. These studies further support the translational value of targeting peroxisomes. We expect that OEA may be a potential therapy for treating neurobehavioral symptoms and the underlying lipid dysfunction and neuroinflammation associated with GWI. Oleoylethanolamide is available as a dietary supplement, making it appealing for human translational studies.
Collapse
|
14
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
15
|
Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentially affect cholinergic expression and developmental parameters in transgenic mice. Food Chem Toxicol 2018; 118:42-52. [DOI: 10.1016/j.fct.2018.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
|
16
|
New mechanistic insights on the metabolic-disruptor role of chlorpyrifos in apoE mice: a focus on insulin- and leptin-signalling pathways. Arch Toxicol 2018; 92:1717-1728. [DOI: 10.1007/s00204-018-2174-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
|
17
|
Tangwongchai S, Supasitthumrong T, Hemrunroj S, Tunvirachaisakul C, Chuchuen P, Houngngam N, Snabboon T, Tawankanjanachot I, Likitchareon Y, Phanthumchindad K, Maes M. In Thai Nationals, the ApoE4 Allele Affects Multiple Domains of Neuropsychological, Biobehavioral, and Social Functioning Thereby Contributing to Alzheimer's Disorder, while the ApoE3 Allele Protects Against Neuropsychiatric Symptoms and Psychosocial Deficits. Mol Neurobiol 2018; 55:6449-6462. [PMID: 29307083 DOI: 10.1007/s12035-017-0848-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023]
Abstract
The apolipoprotein E epsilon 4 (ApoE4) allele is the strongest genetic risk factor for Alzheimer's disorder (AD) and is associated with semantic and episodic memory deficits. The aim of this study was to examine the associations between ApoE alleles (E2, E3, E4) and genotypes and neuropsychological tests, behavioral functions, and dementia symptoms as assessed using Consortium to Establish a Registry for Alzheimer's Disease (CERAD). This study included 60 patients with Alzheimer's disorder (AD), 60 with mild cognitive disorder (MCI), and 62 normal volunteers. ApoE4 carriers and individuals with E3/E4 and E4/E4 genotypes show an increased incidence of AD, but not MCI. ApoE4 carriers and especially E4/E4 homozygotes show a worse outcome on the CERAD total score, Blessed Dementia Scale, and Short Blessed Test and lower scores on the Verbal Fluency Test, Boston Naming Test, Constructional Praxis Recall, and Word List Memory, Recall, and Recognition. ApoE4 carriers and E4/E3 heterozygotes show higher scores on the Clock Drawing Test. ApoE4 carriers show a worse outcome on the CERAD clinical history scores of memory, language, personality, ADL, orientation, and social skills, while allele AopE3 carriers show better scores on activities of daily living (ADL) and social skills. ApoE3 carriers show lower total weighted, irritability/aggression, and behavioral dysregulation scores on the Behavior Rating Scale for Dementia. The results show that in Thai individuals, the presence of ApoE4 allele is accompanied by a multifarious decline in neurocognitive functions and behavioral features and that ApoE3 may convey protection against neuropsychiatric symptoms and a decline in social skills. ApoE4 and especially the E4/E4 genotype may affect multiple domains of cognitive, biobehavioral, and social functioning thereby contributing to AD phenomenology.
Collapse
Affiliation(s)
| | | | - Solaphat Hemrunroj
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Phenphichcha Chuchuen
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natnicha Houngngam
- Excellence Center of Diabetes, Hormones and Metabolism, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thiti Snabboon
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Yuthachai Likitchareon
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kamman Phanthumchindad
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria. .,IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
18
|
Two cholinesterase inhibitors trigger dissimilar effects on behavior and body weight in C57BL/6 mice: The case of chlorpyrifos and rivastigmine. Behav Brain Res 2017; 318:1-11. [DOI: 10.1016/j.bbr.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023]
|