1
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Chen C, Shi L, Mao H, Han C, Zhao J, Zhuo Q, Li Y. Safety assessment of transgenic maize CC-2 by 90-day feeding study in Sprague-Dawley rats. Toxicol Res (Camb) 2024; 13:tfae025. [PMID: 38496381 PMCID: PMC10939339 DOI: 10.1093/toxres/tfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Objective The purpose of this study was to assess the safety of transgenic maize CC-2 through a 90-day feeding study in Sprague-Dawley rats. Methods Transgenic maize CC-2 and its parental counterpart maize Zhengdan 958 were respectively incorporated into diets at levels of 70%, 35% or 17.5% (w/w) and were administrated to rats (n = 10/sex/group) for 90 days. An additional control group of rats (n = 10/sex/group) were fed with the AIN93 breeding diet. All formulated diets were nutritionally balanced. Results There was no death and obvious toxic symptom in all rats. Food consumption, body weight, total food consumption rate, hematology, urinalysis, organ weight and organ coefficient were comparable between transgenic groups and the corresponding dose parental groups. There were significant differences of food consumption rate on some timepoint between high dose transgenic group and high dose parental group; male rats in high dose transgenic group showed significantly higher ALT/AST than high dose parental group on the middle or end of the experiment; but the differences showed no biological significance. There were no significant differences of other serum biochemistry parameters and pathological changes. Conclusion The results in this study demonstrated that the transgenic maize CC-2 didn't cause any related toxicity in rats.
Collapse
Affiliation(s)
- Chen Chen
- Key laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Nanwei Road of Xicheng District (100050), Beijing, P.R. China
| | - Lili Shi
- Key laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Nanwei Road of Xicheng District (100050), Beijing, P.R. China
| | - Hongmei Mao
- Key laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Nanwei Road of Xicheng District (100050), Beijing, P.R. China
| | - Chao Han
- Key laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Nanwei Road of Xicheng District (100050), Beijing, P.R. China
| | - Jinpeng Zhao
- Key laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Nanwei Road of Xicheng District (100050), Beijing, P.R. China
| | - Qin Zhuo
- Key laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Nanwei Road of Xicheng District (100050), Beijing, P.R. China
| | - Yan Li
- Key laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Nanwei Road of Xicheng District (100050), Beijing, P.R. China
| |
Collapse
|
3
|
|
4
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
KhokharVoytas A, Shahbaz M, Maqsood MF, Zulfiqar U, Naz N, Iqbal UZ, Sara M, Aqeel M, Khalid N, Noman A, Zulfiqar F, Al Syaad KM, AlShaqhaa MA. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Funct Integr Genomics 2023; 23:283. [PMID: 37642792 DOI: 10.1007/s10142-023-01202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Enhancing the resilience of plants to abiotic stresses, such as drought, salinity, heat, and cold, is crucial for ensuring global food security challenge in the context of climate change. The adverse effects of climate change, characterized by rising temperatures, shifting rainfall patterns, and increased frequency of extreme weather events, pose significant threats to agricultural systems worldwide. Genetic modification strategies offer promising approaches to develop crops with improved abiotic stress tolerance. This review article provides a comprehensive overview of various genetic modification techniques employed to enhance plant resilience. These strategies include the introduction of stress-responsive genes, transcription factors, and regulatory elements to enhance stress signaling pathways. Additionally, the manipulation of hormone signaling pathways, osmoprotectant accumulation, and antioxidant defense mechanisms is discussed. The use of genome editing tools, such as CRISPR-Cas9, for precise modification of target genes related to stress tolerance is also explored. Furthermore, the challenges and future prospects of genetic modification for abiotic stress tolerance are highlighted. Understanding and harnessing the potential of genetic modification strategies can contribute to the development of resilient crop varieties capable of withstanding adverse environmental conditions caused by climate change, thereby ensuring sustainable agricultural productivity and food security.
Collapse
Affiliation(s)
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan.
| | | | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usama Zafar Iqbal
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid M Al Syaad
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | |
Collapse
|
6
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
7
|
Wang Y, Zhang M, Li S, Li P, Lang Z. Effects of Insect-Resistant Maize HGK60 on Community Diversity of Bacteria and Fungi in Rhizosphere Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:2824. [PMID: 36365278 PMCID: PMC9653938 DOI: 10.3390/plants11212824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The influence of biotech crops on microbial communities in rhizosphere soil is an important issue in biosafety assessments. The transgenic maize HGK60 harboring the Bt cry1Ah gene enhanced the resistance to lepidopteran pests, while the ecological risk of HGK60 maize on rhizosphere microorganisms is unclear. In this study, we comprehensively analyzed the diversity and composition of bacterial and fungal communities in the rhizosphere soil around Bt maize HGK60 and the near-isogenic non-Bt maize ZD958 at four growth stages via a high-throughput sequencing technique. The results showed that HGK60 maize unleashed temporary effects on the bacterial and fungal diversity and richness during the study plant's development, which would be restored after one cycle of plant cultivation due to the application of the same agricultural management. The differences of bacterial and fungal communities were marked by seasonality, while the different growth stage was the important factor as opposed to the cultivar contributing to the shifts in the bacterial and fungal communities' structure. This study will provide useful information regarding the impact of Bt transgenic maize on the soil microbiome and a theoretical basis for the development of a safety assessment approach for Bt maize in China.
Collapse
Affiliation(s)
| | | | | | | | - Zhihong Lang
- Correspondence: ; Tel.: +86-10-82109842; Fax: +86-10-82106142
| |
Collapse
|
8
|
Chiab N, Aoiadni N, Nouri-Ellouz O, Ghorbel-Koubaa F, Mellouli M, Sellami-Boudawara T, Kallel C, Makni-Ayadi F, Gargouri-Bouzid R. Subacute toxicity studies of meals prepared from genetically modified potato overexpressing the StDREB1 or the VvWRKY2 transcription factor in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5883-5890. [PMID: 35426948 DOI: 10.1002/jsfa.11938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potato tubers from genetically modified plants overexpressing the StDREB1 or the VvWRKY2 transcription factors that exhibited improved tolerance to salt and resistance to Fusarium solani infection were characterized and evaluated for safety in a 30 day rat feeding study. Male Wistar rats were split into four groups and provided with a diet composed of 33% (w/w) of either one of the two genetically modified potatoes (GMPs), 33% of the commercial Spunta variety (Sp), or a control group fed with the basal rats' diet. The influence of the GMPs on rat behavior and overall health parameters was evaluated and compared with that of commercial potato (i.e. the Sp group) and control diet. RESULTS Small differences were noticed in the chemical composition of the different tubers, but all the diets were adjusted to an identical caloric level. Results showed no sign of toxic or detrimental effects on the rats' overall health as a result of these diets. The rats fed with the GMPs meal showed hematological and biochemical compositions of the plasma comparable to the control groups. No histopathological damage nor any structural disorganization, severe congestion, or acute inflammation were noticed in the rats' tissues. CONCLUSION Under these study conditions, the GMP diets did not induce any apparent or significant adverse effects on rats after 30 days of dietary administration in comparison with rats fed diets with the corresponding non-transgenic diet and the standard diet group. These two GMPs were therefore considered to be as safe as their commercial comparator. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nour Chiab
- Laboratory of Plant amelioration and valorization of Agri-Resources, National school of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Nissaf Aoiadni
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Oumèma Nouri-Ellouz
- Laboratory of Plant amelioration and valorization of Agri-Resources, National school of Engineers of Sfax (ENIS), Sfax, Tunisia
| | | | - Manel Mellouli
- Anatomy and Pathological Cytology Laboratory, The University Hospital Complex (UHC) Habib Bourguiba, Sfax, Tunisia
| | - Tahya Sellami-Boudawara
- Anatomy and Pathological Cytology Laboratory, The University Hospital Complex (UHC) Habib Bourguiba, Sfax, Tunisia
| | - Chomous Kallel
- Hematology Laboratory, The University Hospital Complex (UHC) Habib Bourguiba, Sfax, Tunisia
| | - Fatma Makni-Ayadi
- Biochemistry Laboratory, The University Hospital Complex (UHC) Habib Bourguiba, Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Laboratory of Plant amelioration and valorization of Agri-Resources, National school of Engineers of Sfax (ENIS), Sfax, Tunisia
| |
Collapse
|
9
|
Tian J, Ke XH, Yuan Y, Yang WX, Tang XQ, Pei LJ, Fan J, Zhuo Q, Yang XG, Liu JF, Fan BL. Subchronic Toxicity of GmDREB3 Gene Modified Wheat in the Third Generation Wistar Rats. PLANTS 2022; 11:plants11141823. [PMID: 35890457 PMCID: PMC9323929 DOI: 10.3390/plants11141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
The aim of the current study was to evaluate the subchronic toxicity of GmDREB3 gene modified wheat in the third generation rats. SPF Wistar rats were fed with transgenic wheat diet (Gm), parental wheat diet (Jimai22) and AIN-93 rodent diet (Control), respectively, for two generations, to produce the third generation rats which were used for this study. The selected fresh weaned offspring rats (20/sex/group) were given the same diet as their parents for 13 weeks. No toxicity-related changes were observed in rats fed with Gm diet in the following respects: clinical signs, body weights, body weight gains, food consumption, food utilization rate, urinalysis, hematology, serum biochemistry and histopathology. The results from the present study demonstrated that 13 weeks consumption of Gm wheat did not cause any adverse effects in the third generation rats when compared with the corresponding Jimai22 wheat.
Collapse
Affiliation(s)
- Jie Tian
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
| | - Xiang-Hong Ke
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
| | - Yuan Yuan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
| | - Wen-Xiang Yang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
| | - Xiao-Qiao Tang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
| | - Lan-Jie Pei
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
| | - Jun Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
| | - Qin Zhuo
- Key Laboratory of Trace Element Nutrition of National Health Commission, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (Q.Z.); (X.-G.Y.)
| | - Xiao-Guang Yang
- Key Laboratory of Trace Element Nutrition of National Health Commission, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (Q.Z.); (X.-G.Y.)
| | - Jia-Fa Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
| | - Bo-Lin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (J.T.); (X.-H.K.); (Y.Y.); (W.-X.Y.); (X.-Q.T.); (L.-J.P.); (J.F.); (J.-F.L.)
- Correspondence:
| |
Collapse
|
10
|
Jorgensen R, Raghunath R, Gao H, Olson E, Ng PKW, Gangur V. A Mouse-Based Method to Monitor Wheat Allergens in Novel Wheat Lines and Varieties Created by Crossbreeding: Proof-of-Concept Using Durum and A. tauschii Wheats. Int J Mol Sci 2022; 23:ijms23126505. [PMID: 35742949 PMCID: PMC9224339 DOI: 10.3390/ijms23126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat allergies are potentially life-threatening because of the high risk of anaphylaxis. Wheats belong to four genotypes represented in thousands of lines and varieties. Monitoring changes to wheat allergens is critical to prevent inadvertent ntroduction of hyper-allergenic varieties via breeding. However, validated methods for this purpose are unavailable at present. As a proof-of-concept study, we tested the hypothesis that salt-soluble wheat allergens in our mouse model will be identical to those reported for humans. Groups of Balb/cJ mice were rendered allergic to durum wheat salt-soluble protein extract (SSPE). Using blood from allergic mice, a mini hyper-IgE plasma bank was created and used in optimizing an IgE Western blotting (IEWB) to identify IgE binding allergens. The LC-MS/MS was used to sequence the allergenic bands. An ancient Aegilops tauschii wheat was grown in our greenhouse and extracted SSPE. Using the optimized IEWB method followed by sequencing, the cross-reacting allergens in A. tauschii wheat were identified. Database analysis showed all but 2 of the durum wheat allergens and all A. tauschii wheat allergens identified in this model had been reported as human allergens. Thus, this model may be used to identify and monitor potential changes to salt-soluble wheat allergens caused by breeding.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Rajsri Raghunath
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Haoran Gao
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Eric Olson
- Wheat Breeding & Genetics Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Venu Gangur
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
- Correspondence: ; Tel.: +1-517-353-3330
| |
Collapse
|
11
|
Farías ME, Correa NM, Sosa L, Niebylski AM, Molina PG. A simple electrochemical immunosensor for sensitive detection of transgenic soybean protein CP4-EPSPS in seeds. Talanta 2022; 237:122910. [PMID: 34736647 DOI: 10.1016/j.talanta.2021.122910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Soybean is the most produced crop in Argentina, and 99 % corresponds to genetically modified soybean. One of the main produced varieties is Roundup Ready® soybean (RR), which was modified to express the enzyme CP4 5-enolpyruvylshikimate 3-phosphate synthase (CP4 EPSPS), which confers resistance to glyphosate, the main herbicide worldwide used. The possible impact of genetically modified organisms (GMO) has generated public concerns, thus increasing interest in the development of GMOs detection devices. In this work, an electrochemical immunosensor for CP4 EPSPS detection in soybean seeds was obtained, by using a gold electrode modified with an anti-CP4 EPSPS polyclonal antibody produced in our laboratory. The presented immunosensor resulted in a simple, low-cost, fast, and reproducible device. Also, labeling and/or signal amplification system was not necessary, since the sensor showed high sensibility with a low detection limit (lower at 0,038 % RR soybean, 38 ng mL-1 CP4 EPSPS).
Collapse
Affiliation(s)
- Marcos E Farías
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Lucas Sosa
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto de Biotecnologia Ambiental y Salud (INBIAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Ana M Niebylski
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto de Biotecnologia Ambiental y Salud (INBIAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Patricia G Molina
- Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina.
| |
Collapse
|
12
|
Zhang D, Dong S, Zhang Z, Yu C, Xu J, Wang C, Liu Y. Evaluation of the impact of transgenic maize BT799 on growth, development and reproductive function of Sprague-Dawley rats in three generations. Food Chem Toxicol 2021; 160:112776. [PMID: 34953966 DOI: 10.1016/j.fct.2021.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
BT799 was Bacillus thuringiensis-genetic modified (GM) maize, and Sprague-Dawley (SD) rats were treated with different diet formulations containing BT799 maize grain (33% and 66%) or its non-transgenic Zhengdan 958 (ZD958, 33% and 66%). The feeding lasted for 10 (P)/14 (F1 and F2) weeks. The reproductive capacity and pathological responses were detected in each generation of rats fed with BT799 and ZD958. During the growth and development of parental rats, each group showed the same trend in body weight gain and food intake, with a few fluctuations at individual time points. No statistically significant difference was observed in reproductive data (copulation index, fertility index, and live birth rate) of rats fed with transgenic maize compared with non-transgenic maize. We observed some apparent changes in reproductive data (sperm numbers and motility) and pathological responses (organ relative weights, hematological parameters, serum chemistry parameters, and sex hormone levels) among rats fed with BT799 maize grain. However, these differences were within the laboratory's historical normal range of control SD rats and not maize grain dose-dependent. These changes were not considered to be adverse or toxic. No significant difference in macroscopic or histological adverse effects was observed between rats consuming transgenic BT799 diet and non-transgenic diet. In conclusion, the long-term intake of BT799 maize was as safe as the corresponding non-transgenic maize for three-generation SD rats.
Collapse
Affiliation(s)
- Dini Zhang
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shanshan Dong
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhenhua Zhang
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Cigang Yu
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jianya Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changyong Wang
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Yan Liu
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
13
|
Alcántara-de la Cruz R, Cruz-Hipolito HE, Domínguez-Valenzuela JA, De Prado R. Glyphosate ban in Mexico: potential impacts on agriculture and weed management. PEST MANAGEMENT SCIENCE 2021; 77:3820-3831. [PMID: 33723895 DOI: 10.1002/ps.6362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Since glyphosate was classified as potentially carcinogenic by the International Agency for Research on Cancer, public debate regarding the environmental impact and health risks from its use has intensified. Almost all regulatory agencies throughout the world have concluded that the judicious use of glyphosate does not pose risks to the environment and human health. However, on the last day of 2020 the Mexican government decreed a ban of this herbicide beginning January, 2024. In current Mexican agriculture there are no safer chemical and/or other weed management technologies that allow for the economical substitution of glyphosate for weed control. Many Mexican weed scientists agree that glyphosate use should be reduced, but not banned outright. This decree could have more negative economic and social consequences as well as environmental and human health risks than benefits, which could compromise the country's food and public security. Crop yields are projected by some to decline by up to 40% with this ban, increasing food prices, making food less accessible to low-income consumers. In addition, a black market for the smuggling and illegal sale of glyphosate is possible. The possible environmental, economic and social impacts caused by the glyphosate ban in Mexico are discussed, emphasizing the impact on weed management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ricardo Alcántara-de la Cruz
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, Brazil
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco, Mexico
| | | | | | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
14
|
|
15
|
Tian J, Ke X, Yuan Y, Yang W, Tang X, Qu J, Qu W, Fu S, Zheng Y, Fan J, Zhuo Q, Yang X, Liu J, Fan B. Two generation reproduction toxicity study of GmDREB3 gene modified wheat in Wistar rats. Food Chem Toxicol 2021; 153:112310. [PMID: 34062222 DOI: 10.1016/j.fct.2021.112310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
To study reproductive toxicity of gene modified wheat generated by introducing DREB3 (drought response element binding protein 3) gene, Wistar rats of were allocated into 3 groups and fed with DREB3 gene modified wheat mixture diet (GM group), non-gene modified wheat mixture diet (Non-GM group) and AIN-93 diet (Control group) from parental generation (F0) to the second offspring (F2). GM wheat and Non-GM wheat, Jimai22, were both formulated into diets at a ratio of 69.55% according to AIN93 diet for rodent animals. Compared with non-GM group, no biologically related differences were observed in GM group rats with respect to reproductive performance such as fertility rate, gestation rate, mean duration, hormone level, reproductive organ pathology and developmental parameters such as body weight, body length, food consumption, neuropathy, behavior, immunotoxicity, hematology and serum chemistry. In conclusion, no adverse effect were found relevant to GM wheat in the two generation reproduction toxicity study, indicating the GM wheat is a safe alternative for its counterpart wheat regarding to reproduction toxicity.
Collapse
Affiliation(s)
- Jie Tian
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Xianghong Ke
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Yuan Yuan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wenxiang Yang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Xiaoqiao Tang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jingjing Qu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wen Qu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Shaohua Fu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Yanhua Zheng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jun Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Qin Zhuo
- Key Laboratory of Trace Element Nutrition of National Health Commission(NHC), National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiaoguang Yang
- Key Laboratory of Trace Element Nutrition of National Health Commission(NHC), National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiafa Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Bolin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| |
Collapse
|
16
|
Corsato Alvarenga I, Dainton AN, Aldrich CG. A review: nutrition and process attributes of corn in pet foods. Crit Rev Food Sci Nutr 2021; 62:8567-8576. [PMID: 34078195 DOI: 10.1080/10408398.2021.1931020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Corn is one of the largest cereal crops worldwide and plays an important role in the U.S. economy. The pet food market is growing every year, and although corn is well utilized by dogs, some marketing claims have attributed a negative image to this cereal. Thus, the objective of this work was to review the literature regarding corn and its co-products, as well as describe the processing of these ingredients as they pertain to pet foods. Corn is well digested by both dogs and cats and provides nutrients. The processing of corn generates co-products such as corn gluten meal and distillers dried grains with solubles that retain quality protein, and fibrous components that dilute dietary energy. Further, corn has much functionality in extrusion processing. It may yield resistant starch under certain processing conditions, promoting colonic health. Carotenoids in corn may enhance immune support in companion animals if concentrated. Mycotoxin contamination in grains represent a health hazard but are well controlled by safety measures. Genetically modified (GM) corn is still controversial regarding its long-term potential for mutagenicity or carcinogenicity, thus more long-term studies are needed. In conclusion, the negative perception by some in the pet food market may not be warranted in pet foods using corn and its co-products.
Collapse
Affiliation(s)
| | - Amanda N Dainton
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Charles G Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
17
|
Liang C, Sun N, Zhang X, Cui W, Yu Z, Jia X. Safety assessment of phytase transgenic maize 11TPY001 by 90-day feeding study in rats. Food Chem Toxicol 2021; 153:112254. [PMID: 33971238 DOI: 10.1016/j.fct.2021.112254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
11TPY001 is a transgenic maize that expresses the Aspergillus niger phyA2 gene which could significantly improve phosphorus bioavailability in monogastric animals. The present study was conducted to investigate the potential health effects of phytase transgenic maize 11TPY001 through a 90-day subchronic rodent feeding study. Maize grains from 11TPY001 or its parental counterpart maize OSL963 were incorporated into rodent diets at 12.5%, 25% and 50% concentrations by mass and administered to Sprague-Dawley rats (n = 10/sex/group) for 90 days. An additional control group of rats (n = 10/sex/group) were fed with common maize Zhengdan958 diets at 50% by mass. All formulated diets were nutritionally balanced. Body weights, food intake, hematology, serum chemistry, absolute and relative organ weights were measured, and gross as well as microscopic pathology were examined. Compared with rats fed OSL963 maize and the common maize diet groups, no adverse diet-related differences were observed in rats fed 11TPY001 maize diets with respect to clinical signs of toxicity, body weight/gain, food consumption/efficiency, hematology, clinical chemistry, organ weights, and gross and microscopic pathology. Under the conditions of this study, the results indicated that 11TPY001 did not cause any treatment related adverse effects in rats compared with its non-transgenic parental maize OSL963.
Collapse
Affiliation(s)
- Chunlai Liang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Nana Sun
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Xin Zhang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Wenming Cui
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Zhou Yu
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| |
Collapse
|
18
|
Xia Y, Chen F, Liu B, Zhang J, Li S. Distribution and degradation of DNA during industrial soybean oil processing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Hasim NA, Amin L, Mahadi Z, Yusof NAM, Ngah AC, Yaacob M, Olesen AP, Aziz AA. The Integration and Harmonisation of Secular and Islamic Ethical Principles in Formulating Acceptable Ethical Guidelines for Modern Biotechnology in Malaysia. SCIENCE AND ENGINEERING ETHICS 2020; 26:1797-1825. [PMID: 32266581 DOI: 10.1007/s11948-020-00214-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The Malaysian government recognises the potential contribution of biotechnology to the national economy. However, ongoing controversy persists regarding its ethical status and no specific ethical guidelines have been published relating to its use. In developing such guidelines, it is important to identify the underlying principles that are acceptable to Malaysian society. This paper discusses the process of determining relevant secular and Islamic ethical principles and establishing their similarities before harmonising them. To achieve this, a series of focus group discussions were conducted with 23 knowledge experts representing various stakeholders in the biotechnology community. Notably, several principles between the secular and Islamic perspectives are indirectly or directly similar. All the experts agreed with the predominant six ethical principles of secular and Islamic philosophy and their importance and relevance in modern biotechnology. These are beneficence and non-maleficence as the main or overarching principles, the preservation of religious and moral values, the preservation of the intellect and the mind, the protection of human safety, the protection of future generations, and protection of the environment and biological diversity. Several adjustments were made to the terminologies and definitions of these six principles to formulate acceptable guiding principles for the ethics of modern biotechnology in Malaysia. These can then be adopted as core values to underpin future national guidelines on modern biotechnology ethics. These principles will be particularly important in guiding the policy makers, enforcers, industries and researchers to streamline their activities. In so doing, modern biotechnology and its products can be properly managed without jeopardising the interests of the Muslim community as well as the general public. Importantly, they are expansive and inclusive enough to embrace the religious sensitivity of diverse quarters of Malaysia.
Collapse
Affiliation(s)
- Nur Asmadayana Hasim
- The Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Latifah Amin
- The Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Zurina Mahadi
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Nor Ashikin Mohamed Yusof
- Perdana School of Science, Technology and Innovation Policy (PERDANA School), Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Anisah Che Ngah
- Taylor's Law School, Taylor's University Lakeside Campus, 47500, Subang, Selangor, Malaysia
| | - Mashitoh Yaacob
- The Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Angelina Patrick Olesen
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Azwira Abdul Aziz
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
20
|
Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S. Genetically modified crops: current status and future prospects. PLANTA 2020; 251:91. [PMID: 32236850 DOI: 10.1007/s00425-020-03372-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
While transgenic technology has heralded a new era in crop improvement, several concerns have precluded their widespread acceptance. Alternative technologies, such as cisgenesis and genome-editing may address many of such issues and facilitate the development of genetically engineered crop varieties with multiple favourable traits. Genetic engineering and plant transformation have played a pivotal role in crop improvement via introducing beneficial foreign gene(s) or silencing the expression of endogenous gene(s) in crop plants. Genetically modified crops possess one or more useful traits, such as, herbicide tolerance, insect resistance, abiotic stress tolerance, disease resistance, and nutritional improvement. To date, nearly 525 different transgenic events in 32 crops have been approved for cultivation in different parts of the world. The adoption of transgenic technology has been shown to increase crop yields, reduce pesticide and insecticide use, reduce CO2 emissions, and decrease the cost of crop production. However, widespread adoption of transgenic crops carrying foreign genes faces roadblocks due to concerns of potential toxicity and allergenicity to human beings, potential environmental risks, such as chances of gene flow, adverse effects on non-target organisms, evolution of resistance in weeds and insects etc. These concerns have prompted the adoption of alternative technologies like cisgenesis, intragenesis, and most recently, genome editing. Some of these alternative technologies can be utilized to develop crop plants that are free from any foreign gene hence, it is expected that such crops might achieve higher consumer acceptance as compared to the transgenic crops and would get faster regulatory approvals. In this review, we present a comprehensive update on the current status of the genetically modified (GM) crops under cultivation. We also discuss the issues affecting widespread adoption of transgenic GM crops and comment upon the recent tools and techniques developed to address some of these concerns.
Collapse
Affiliation(s)
- Krishan Kumar
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India.
| | - Geetika Gambhir
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Abhishek Dass
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Amit Kumar Tripathi
- National Institute for Research in Environmental Health, Bhopal, 462001, India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Abhishek Kumar Jha
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Pranjal Yadava
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| |
Collapse
|
21
|
Coumoul X, Servien R, Juricek L, Kaddouch-Amar Y, Lippi Y, Berthelot L, Naylies C, Morvan ML, Antignac JP, Desdoits-Lethimonier C, Jegou B, Tremblay-Franco M, Canlet C, Debrauwer L, Le Gall C, Laurent J, Gouraud PA, Cravedi JP, Jeunesse E, Savy N, Dandere-Abdoulkarim K, Arnich N, Fourès F, Cotton J, Broudin S, Corman B, Moing A, Laporte B, Richard-Forget F, Barouki R, Rogowsky P, Salles B. The GMO90+ Project: Absence of Evidence for Biologically Meaningful Effects of Genetically Modified Maize-based Diets on Wistar Rats After 6-Months Feeding Comparative Trial. Toxicol Sci 2020; 168:315-338. [PMID: 30535037 PMCID: PMC6432862 DOI: 10.1093/toxsci/kfy298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The GMO90+ project was designed to identify biomarkers of exposure or health effects in Wistar Han RCC rats exposed in their diet to 2 genetically modified plants (GMP) and assess additional information with the use of metabolomic and transcriptomic techniques. Rats were fed for 6-months with 8 maize-based diets at 33% that comprised either MON810 (11% and 33%) or NK603 grains (11% and 33% with or without glyphosate treatment) or their corresponding near-isogenic controls. Extensive chemical and targeted analyses undertaken to assess each diet demonstrated that they could be used for the feeding trial. Rats were necropsied after 3 and 6 months. Based on the Organization for Economic Cooperation and Development test guideline 408, the parameters tested showed a limited number of significant differences in pairwise comparisons, very few concerning GMP versus non-GMP. In such cases, no biological relevance could be established owing to the absence of difference in biologically linked variables, dose-response effects, or clinical disorders. No alteration of the reproduction function and kidney physiology was found. Metabolomics analyses on fluids (blood, urine) were performed after 3, 4.5, and 6 months. Transcriptomics analyses on organs (liver, kidney) were performed after 3 and 6 months. Again, among the significant differences in pairwise comparisons, no GMP effect was observed in contrast to that of maize variety and culture site. Indeed, based on transcriptomic and metabolomic data, we could differentiate MON- to NK-based diets. In conclusion, using this experimental design, no biomarkers of adverse health effect could be attributed to the consumption of GMP diets in comparison with the consumption of their near-isogenic non-GMP controls.
Collapse
Affiliation(s)
- Xavier Coumoul
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Rémi Servien
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ludmila Juricek
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Yael Kaddouch-Amar
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laureline Berthelot
- Centre de Recherche sur l'Inflammation (CRI), INSERM UMRS 1149, Paris, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | | | - Bernard Jegou
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Université de Rennes, Rennes, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | | | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elisabeth Jeunesse
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicolas Savy
- Institut de Mathématiques de Toulouse, UMR5219-Université de Toulouse, CNRS-UPS IMT, Toulouse, France
| | | | | | | | | | | | | | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Bérengère Laporte
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Robert Barouki
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRA, University Lyon, Lyon, France
| | - Bernard Salles
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
22
|
Liu Y, Zhang S, Zhou Q, Li S, Zhang J, Zhang L, Jiang S, Zhang Q, Zhou X, Wu C, Gu Q, Qian ZY. Subchronic feeding toxicity studies of drought-tolerant transgenic wheat MGX11-10 in Wistar Han RCC rats. Food Chem Toxicol 2020; 137:111129. [PMID: 31935424 DOI: 10.1016/j.fct.2020.111129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022]
Abstract
A subchronic toxicity study were conducted in Wistar Han RCC rats to evaluate the potential health effects of genetically modified (GM), drought-tolerant wheat MGX11-10. Rats were fed a rodent diet formulated with MGX11-10 and were compared with rats fed a diet formulated with its corresponding non-transgenic control Jimai22 and rats fed a basal diet. MGX11-10 and Jimai22 were ground into flour and formulated into diets at concentrations of 16.25, 32.5, or 65%, w/w% and fed to rats (10/sex/group) for 13 weeks. Compared with rats fed Jimai22 and the basal-diet group, no biologically relevant differences were observed in rats fed the GM diet with respect to body weight/gain, food consumption/efficiency, clinical signs, mortality, ophthalmology, clinical pathology (hematology, prothrombin time, urinalysis, clinical chemistry), organ weights, and gross and microscopic pathology. Under the conditions of this study, the MGX11-10 diets did not cause any treatment-related effects in rats following at least 90 days of dietary administration as compared with rats fed diets with the corresponding non-transgenic control diet and the basal-diet group. The MGX11-10 diets are considered equivalent to the diets prepared from conventional comparators. The results demonstrated that MGX11-10 wheat is as safe and wholesome as the corresponding non-transgenic control wheat.
Collapse
Affiliation(s)
- Yinghua Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shujing Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Qinghong Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shufei Li
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Jing Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Li Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shuqing Jiang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Qian Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Xiaoli Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Chao Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Qing Gu
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| | - Zhi Yong Qian
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| |
Collapse
|
23
|
Xin W, Mao Y, Lu F, Li T, Wang J, Duan Y, Zhou M. In vitro fungicidal activity and in planta control efficacy of coumoxystrobin against Magnaporthe oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:78-85. [PMID: 31836058 DOI: 10.1016/j.pestbp.2019.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a destructive fungal disease in rice, causing serious losses in yield and quality. Coumoxystrobin is a novel methoxyacrylate strobilurin fungicide. In the current study, we determined the sensitivity of 100 M. oryzae strains to coumoxystrobin based on the mycelial growth inhibition method. The EC50 values ranged from 0.0089 to 0.0290 μg mL-1, with a mean EC50 value of 0.0163 ± 0.0036 μg mL-1, indicating that coumoxystrobin exhibits an excellent inhibitory activity in the mycelial growth of M. oryzae. In addition, the EC50 values had no significant difference among four populations from the different geographical regions. After treating with coumoxystrobin, cell membrane permeability increased, respiration decreased, and the hyphal tips were contorted, with offshoot of top increasing. Protective and curative activity tests showed that coumoxystrobin exhibited better protective and curative activities against M. oryzae in detached barley leaves in comparison to the currently used fungicides tricyclazole and azoxystrobin. Also, it was found that the protective activity was better than its curative activity. Furthermore, compared with the currently used fungicides, coumoxystrobin not only exhibited excellent control efficacy on rice blast, but also markedly reduced the dosages of chemical fungicides in the field trials. Overall, these findings provide important references for revealing the pharmacological effect of coumoxystrobin against M. oryzae and managing rice blast caused by M. oryzae.
Collapse
Affiliation(s)
- Wenjing Xin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Lu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
24
|
Bøhn T, Millstone E. The Introduction of Thousands of Tonnes of Glyphosate in the food Chain-An Evaluation of Glyphosate Tolerant Soybeans. Foods 2019; 8:E669. [PMID: 31835834 PMCID: PMC6963490 DOI: 10.3390/foods8120669] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023] Open
Abstract
Glyphosate-tolerant (GT) soybeans dominate the world soybean market. These plants have triggered increased use of, as well as increased residues of, glyphosate in soybean products. We present data that show farmers have doubled their glyphosate applications per season (from two to four) and that residues of late season spraying of glyphosate (at full bloom of the plant) result in much higher residues in the harvested plants and products. GT soybeans produced on commercial farms in the USA, Brazil and Argentina accumulate in total an estimated 2500-10,000 metric tonnes of glyphosate per year, which enter global food chains. We also review studies that have compared the quality of GT soybeans with conventional and organic soybeans. Feeding studies in Daphnia magna have shown dose-related adverse effects (mortality, reduced fecundity and delayed reproduction) of glyphosate residues in soybeans, even at glyphosate concentrations below allowed residue levels. We argue that GT soybeans need to be tested in fully representative and realistic contexts. However, the current risk assessment system has only required and received data from field trials with beans that were sprayed with much lower doses of glyphosate as compared to contemporary commercial farms. This has left knowledge gaps and a potentially serious underestimation of health risks to consumers.
Collapse
Affiliation(s)
- Thomas Bøhn
- Institute of Marine Research, 9006 Tromsø, Norway
| | - Erik Millstone
- Science Policy Research Unit, University of Sussex, Brighton BN1 9SL, UK;
| |
Collapse
|
25
|
Giraldo PA, Shinozuka H, Spangenberg GC, Cogan NO, Smith KF. Safety Assessment of Genetically Modified Feed: Is There Any Difference From Food? FRONTIERS IN PLANT SCIENCE 2019; 10:1592. [PMID: 31921242 PMCID: PMC6918800 DOI: 10.3389/fpls.2019.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Food security is one of major concerns for the growing global population. Modern agricultural biotechnologies, such as genetic modification, are a possible solution through enabling an increase of production, more efficient use of natural resources, and reduced environmental impacts. However, new crop varieties with altered genetic materials may be subjected to safety assessments to fulfil the regulatory requirements, prior to marketing. The aim of the assessment is to evaluate the impact of products from the new crop variety on human, animal, and the environmental health. Although, many studies on the risk assessment of genetically modified (GM) food have been published, little consideration to GM feedstuff has been given, despite that between 70 to 90% of all GM crops and their biomass are used as animal feed. In addition, in some GM plants such as forages that are only used for animal feeds, the assessment of the genetic modification may be of relevance only to livestock feeding. In this article, the regulatory framework of GM crops intended for animal feed is reviewed using the available information on GM food as the baseline. Although, the majority of techniques used for the safety assessment of GM food can be used in GM feed, many plant parts used for livestock feeding are inedible to humans. Therefore, the concentration of novel proteins in different plant tissues and level of exposure to GM feedstuff in the diet of target animals should be considered. A further development of specific methodologies for the assessment of GM crops intended for animal consumption is required, in order to provide a more accurate and standardized assessment to the GM feed safety.
Collapse
Affiliation(s)
- Paula A. Giraldo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Hiroshi Shinozuka
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Noel O.I. Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Kevin F. Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, Hamilton, VIC, Australia
| |
Collapse
|
26
|
Al-Harbi A, Lary S, Edwards MG, Qusti S, Cockburn A, Poulsen M, Gatehouse AMR. A proteomic-based approach to study underlying molecular responses of the small intestine of Wistar rats to genetically modified corn (MON810). Transgenic Res 2019; 28:479-498. [PMID: 31172414 PMCID: PMC6848250 DOI: 10.1007/s11248-019-00157-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
A genetically modified (GM) commercial corn variety, MON810, resistant to European corn borer, has been shown to be non-toxic to mammals in a number of rodent feeding studies carried out in accordance with OECD Guidelines. Insect resistance results from expression of the Cry1Ab gene encoding an insecticidal Bt protein that causes lysis and cell death in susceptible insect larvae by binding to midgut epithelial cells, which is a key determinant of Cry toxin species specificity. Whilst whole animal studies are still recognised as the 'gold standard' for safety assessment, they only provide indirect evidence for changes at the cellular/organ/tissue level. In contrast, omics-based technologies enable mechanistic understanding of toxicological or nutritional events at the cellular/receptor level. To address this important knowledge-gap and to gain insights into the underlying molecular responses in rat to MON810, differential gene expression in the epithelial cells of the small intestine of rats fed formulated diets containing MON810, its near isogenic line, two conventional corn varieties, and a commercial (Purina™) corn-based control diet were investigated using comparative proteomic profiling. Pairwise and five-way comparisons showed that the majority of proteins that were differentially expressed in the small intestine epithelial cells in response to consumption of the different diets in both 7-day and 28-day studies were related to lipid and carbohydrate metabolism and protein biosynthesis. Irrespective of the diet, a limited number of stress-related proteins were shown to be differentially expressed. However these stress-related proteins differed between diets. No adverse clinical or behavioural effects, or biomarkers of adverse health, were observed in rats fed GM corn compared to the other corn diets. These findings suggest that MON810 has negligible effects on the small intestine of rats at the cellular level compared with the well-documented toxicity observed in susceptible insects.
Collapse
Affiliation(s)
- Asmaa Al-Harbi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box: 42805, Jeddah, 21551, Kingdom of Saudi Arabia
| | - Sahira Lary
- Biochemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box: 42805, Jeddah, 21551, Kingdom of Saudi Arabia
| | - Martin G Edwards
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box: 42805, Jeddah, 21551, Kingdom of Saudi Arabia
| | - Andrew Cockburn
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
| | - Morten Poulsen
- The National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
27
|
Food Neophobia or Distrust of Novelties? Exploring Consumers’ Attitudes toward GMOs, Insects and Cultured Meat. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The food industry is constantly challenged to find new ideas to satisfy the increasingly specific consumer demand. However, innovative food products do not always become part of consumption habits or create a market. One of the major sources of resistance to novelty lies in the attitude of the consumer, who in many cases may be suspicious or hostile as a result of specific ideologies, overly attached to tradition, or affected by neophobia. This paper analyzes the construct of food neophobia (the “unwillingness to try new foods”) in its phenomenology and its actual power to explain hostility to innovation in the agri-food sector. The limits of the concept, which is not always sufficient to shed light on the many reasons that could underlie the rejection of certain foods, will also be discussed. In addition, we review the recent literature on Europeans’ attitude toward novel foods and innovation including Genetically modified organisms (GMOs), cultivated meat and insects as food. This literature reveals a number of paradoxes in consumers’ behavior, and in the many complex conditions underpinning the success of innovation in food production. These conditions can only be understood by reconstructing the meanings consumers assign to food, and are often embedded in larger social and political frameworks.
Collapse
|
28
|
High-throughput sequencing analysis of microbial community diversity in response to indica and japonica bar-transgenic rice paddy soils. PLoS One 2019; 14:e0222191. [PMID: 31498816 PMCID: PMC6733487 DOI: 10.1371/journal.pone.0222191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/25/2019] [Indexed: 11/23/2022] Open
Abstract
Potential environmental risks of genetically modified (GM) crops have raised concerns. To better understand the effect of transgenic rice on the bacterial community in paddy soil, a field experiment was carried out using pairs of rice varieties from two subspecies (indica and japonica) containing bar transgene with herbicide resistance and their parental conventional rice. The 16S rRNA gene of soil genomic DNA from different soil layers at the maturity stage was sequenced using high-throughput sequencing on the Illumina MiSeq platform to explore the microbial community diversity among different rice soils. There were no significant differences in diversity indices between transgenic japonica rice and its sister conventional rice (japonica pair) among different soil layers, but, significant differences was observed between transgenic indica rice and its conventional rice (indica pair) in the topsoil layer around concentrated rice roots according to the ace diversity index. Though the japonica rice soil and indica rice soil were shared several key genera, including Rivibacter, Anaeromyxobacter, Roseomonas, Geobacter, Thiobacillus, Clostridium, and Desulfobulbus, the primary bacterial genera in indica rice soil were different from those in japonica rice. Synechococcus and Dechloromonas were present in japonica rice samples, while Chloronema, Flexibacter, and Blastocatella were observed in indica rice soil. Moreover, the abundance of genera between GM and non-GM varieties in japonica rice was significantly different from indica rice, and several bacterial communities influenced these differences. Anaerovorax was more abundant in transgenic japonica rice soil than conventional rice soil, while it was deficient in transgenic indica rice soil compared to conventional rice soil, and opposite responses to Deferrisoma were in that of indica rice. Thus, we concluded that transgenic indica and japonica rice had different effects on soil bacteria compared with their corresponding sister conventional rice. However, these composition and abundance difference only occurred for a few genera but had no effect on the primary genera and soil characteristics were mainly contributed to these differences. Thus, differences in bacterial community structure can be ignored when evaluating the impacts of transgenic rice in the complex soil microenvironment.
Collapse
|
29
|
Relationship between faecal microbiota and plasma metabolome in rats fed NK603 and MON810 GM maize from the GMO90+ study. Food Chem Toxicol 2019; 131:110547. [DOI: 10.1016/j.fct.2019.05.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
|
30
|
Talyn B, Lemon R, Badoella M, Melchiorre D, Villalobos M, Elias R, Muller K, Santos M, Melchiorre E. Roundup ®, but Not Roundup-Ready ® Corn, Increases Mortality of Drosophila melanogaster. TOXICS 2019; 7:E38. [PMID: 31370250 PMCID: PMC6789507 DOI: 10.3390/toxics7030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Genetically modified foods have become pervasive in diets of people living in the US. By far the most common genetically modified foods either tolerate herbicide application (HT) or produce endogenous insecticide (Bt). To determine whether these toxicological effects result from genetic modification per se, or from the increase in herbicide or insecticide residues present on the food, we exposed fruit flies, Drosophila melanogaster, to food containing HT corn that had been sprayed with the glyphosate-based herbicide Roundup®, HT corn that had not been sprayed with Roundup®, or Roundup® in a variety of known glyphosate concentrations and formulations. While neither lifespan nor reproductive behaviors were affected by HT corn, addition of Roundup® increased mortality with an LC50 of 7.1 g/L for males and 11.4 g/L for females after 2 days of exposure. Given the many genetic tools available, Drosophila are an excellent model system for future studies about genetic and biochemical mechanisms of glyphosate toxicity.
Collapse
Affiliation(s)
- Becky Talyn
- College of Natural Science, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA.
| | - Rachael Lemon
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maryam Badoella
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | | | - Maryori Villalobos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Raquel Elias
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Kelly Muller
- Chemistry and Biochemistry Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maggie Santos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Erik Melchiorre
- Geology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| |
Collapse
|
31
|
Bhatti F, Asad S, Khan QM, Mobeen A, Iqbal MJ, Asif M. Risk assessment of genetically modified sugarcane expressing AVP1 gene. Food Chem Toxicol 2019; 130:267-275. [PMID: 31132391 DOI: 10.1016/j.fct.2019.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Biosafety is a multidisciplinary approach that encompasses social, societal, ethical issues and policies for the regulations of genetically modified (GM) organisms. The potential health risks associated with GM sugarcane containing AVP1 gene confers resistance against drought and salinity were evaluated by animal feeding studies and some genotoxicity assays. Acute and sub-chronic toxicity examinations were carried out via oral dose administration of GM sugarcane juice supplemented with the normal diet (modified from certified rodent standard diet) on Wistar rats. AVP1 protein concentration in sugarcane juice was 1mg/1 mL. Biochemical, haematological blood analyses were performed and the results revealed that there were non-significant differences among all the treatment groups; GM sugarcane juice, non-GM sugarcane juice and the control group (normal diet and water). Genotoxicity assessment based on the comet assay and the micronucleus assay data exhibited that AVP1 GM sugarcane was not genotoxic or cytotoxic in rat's peripheral blood. These research findings supported the conclusion that GM AVP1 sugarcane was non-toxic in experimental animals. Therefore, data generated through this research work would be helpful for the commercial release of GM AVP1 sugarcane.
Collapse
Affiliation(s)
- Farheen Bhatti
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS) University, Islamabad, Pakistan
| | - Shaheen Asad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Qaiser Mahmood Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Ameena Mobeen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Javed Iqbal
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
32
|
Zhu P, Fu W, Wei S, Liu X, Wang C, Lu Y, Shang Y, Wu X, Wu Y, Zhu S. A high-throughput and ultrasensitive identification methodology for unauthorized GMP component based on suspension array and logical calculator. Sci Rep 2019; 9:7311. [PMID: 31086245 PMCID: PMC6513989 DOI: 10.1038/s41598-019-43863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
To solve the problem of the unauthorized GMP components within import and export goods, the LI-US (Logic Identification of unauthorized GMP content by Universal-primer Suspension-array) system, which takes advantage of suspension array and logic calculator, was developed in the present study. Seventeen signal input channels have been optimized and validated in our research to ensure the multiplex practicality of the LI-US system. Three LI-US logic gates, including a YES gate, an OR gate and an AND gate, were designed as different detection strategies for GMP identification. The feasibility and specificity of the LI-US system were validated in the present study. Combining the optimization and evaluation of the signal input procedure, the sensitivity of this LI-US system reached 0.05% of the GMP mass concentration. The practicability evaluation of LI-US demonstrated its application within different substrates and varieties. In conclusion, the LI-US system was developed with extremely high specificity, sensitivity and practicability among different substrates and varieties, which could meet the demands of unauthorized GMP contents for both import and export goods.
Collapse
Affiliation(s)
- Pengyu Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Wei Fu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Shuang Wei
- Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangdong, 510000, China
| | - Xiao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Chenguang Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Yun Lu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Ying Shang
- Yunnan Insititute of Food Safety, Kunmming University of Science and technology, Yunnan, 650500, China
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510000, China
| | - Yuping Wu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China.
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100029, China.
| |
Collapse
|
33
|
Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. METHODS IN RHIZOSPHERE BIOLOGY RESEARCH 2019. [DOI: 10.1007/978-981-13-5767-1_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Ogwu MC. Lifelong Consumption of Plant-Based GM Foods. ENVIRONMENTAL EXPOSURES AND HUMAN HEALTH CHALLENGES 2019. [DOI: 10.4018/978-1-5225-7635-8.ch008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically modified (GM) crops are cultivated in over 30 countries with their products and by-products imported by over 60 countries. This chapter seeks to highlight general concerns and potential lifelong effects of consuming GM plant-based food. The consumption of GM plant-based food is as risky as consuming conventional plant-based food. However, the alien genes in these products may be unstable leading to antinutritional and unintended short-term consequences. Due to the paucity of research, no long-term effects have been attributed to the lifelong consumption of these products. Nonetheless, possible lifelong health and socioeconomic effects may result from outcrossing of genes, increasing antibiotic resistance, development of new diseases, as well as potential effects on the environment and biodiversity. Biotechnology companies need to invest more in interdisciplinary research addressing the potential lifelong effects of these products. Although GM foods are safe for consumption, clarification of current risks and lifelong effects are required.
Collapse
|
35
|
Rat feeding trials: A comprehensive assessment of contaminants in both genetically modified maize and resulting pellets. Food Chem Toxicol 2018; 121:573-582. [PMID: 30253247 DOI: 10.1016/j.fct.2018.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
Abstract
We analyzed a comprehensive set of contaminants in MON810 and NK603 genetically modified (GM) maize, and their non-GM counterparts, used in a rat feeding study (the GMO90 + project). Both the maize grains and the manufactured pellets were characterized. Only minor differences in contaminant levels between GM and corresponding non-GM harvests were evidenced. Fumonisin and deoxynivalenol mycotoxins were the pollutants present in the highest amounts, with concentrations that were however largely below acceptance reference values. Our data reporting slightly lower levels of fumonisin in MON810 compared to its non-GM counterpart corroborate the lower susceptibility of insect resistant Bt maize to fumonisin-producing fungi. Traces of glyphosate (0.016 mg/kg) were evidenced in grains from NK603 treated crops. Regarding the pellets, analysis of more than 650 potentially toxic substances revealed low amounts of various mycotoxins, pesticides and heavy metals. Concentrations of contaminants quantified in the pellets were however far below the maximum level of residues values set by regulatory agencies, and no substantial differences in contaminants between GM and non-GM pellets were observed. Moreover, when comparing the contamination status of grains and pellets, we demonstrate yet again that characterizing the grains is actually not sufficient to foresee the quality of the produced pellets.
Collapse
|
36
|
Bernillon S, Maucourt M, Deborde C, Chéreau S, Jacob D, Priymenko N, Laporte B, Coumoul X, Salles B, Rogowsky PM, Richard-Forget F, Moing A. Characterization of GMO or glyphosate effects on the composition of maize grain and maize-based diet for rat feeding. Metabolomics 2018; 14:36. [PMID: 30830357 DOI: 10.1007/s11306-018-1329-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 01/10/2023]
Abstract
INTRODUCTION In addition to classical targeted biochemical analyses, metabolomic analyses seem pertinent to reveal expected as well as unexpected compositional differences between plant genetically modified organisms (GMO) and non-GMO samples. Data previously published in the existing literature led to divergent conclusions on the effect of maize transgenes on grain compositional changes and feeding effects. Therefore, a new study examining field-grown harvested products and feeds derived from them remains useful. OBJECTIVES Our aim was to use a metabolomics approach to characterize grain and grain-based diet compositional changes for two GMO events, one involving Bacillus thuringiensis toxin to provide insect resistance and the other one conferring herbicide tolerance by detoxification of glyphosate. We also investigated the potential compositional modifications induced by the use of a glyphosate-based herbicide on the transgenic line conferring glyphosate tolerance. RESULTS The majority of statistically significant differences in grain composition, evidenced by the use of 1H-NMR profiling of polar extracts and LC-ESI-QTOF-MS profiling of semi-polar extracts, could be attributed to the combined effect of genotype and environment. In comparison, transgene and glyphosate effects remained limited in grain for the compound families studied. Some but not all compositional changes observed in grain were also detected in grain-based diets formulated for rats. CONCLUSION Only part of the data previously published in the existing literature on maize grains of plants with the same GMO events could be reproduced in our experiment. All spectra have been deposited in a repository freely accessible to the public. Our grain and diet characterization opened the way for an in depth study of the effects of these diets on rat health.
Collapse
Affiliation(s)
- Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Sylvain Chéreau
- UR MycSA, INRA, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Daniel Jacob
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Nathalie Priymenko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Bérengère Laporte
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Xavier Coumoul
- UMRS1124, Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM, Univ. Paris Descartes, 75000, Paris, France
| | - Bernard Salles
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1 CNRS, INRA, 69000, Lyon, France
| | - Florence Richard-Forget
- UR MycSA, INRA, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
| |
Collapse
|
37
|
Jacob P, Avni A, Bendahmane A. Translational Research: Exploring and Creating Genetic Diversity. TRENDS IN PLANT SCIENCE 2018; 23:42-52. [PMID: 29126790 DOI: 10.1016/j.tplants.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/10/2017] [Accepted: 10/18/2017] [Indexed: 05/21/2023]
Abstract
The crop selection process has created a genetic bottleneck ultimately restricting breeding output. Wild relatives of major crops as well as the so-called 'neglected plant' species represent a reservoir of genetic diversity that remains underutilized. These species could be used as a tool to discover new alleles of agronomic interest or could be the target of breeding programs. Targeted induced local lesions in the genome (TILLING) can be used to translate in neglected crops what has been discovered in major crops and reciprocally. However, random mutagenesis, used in TILLING approaches, provides only a limited density of mutational events at a defined target locus. Alternatively, clustered regularly interspaced short palindromic repeats (CRISPR) associated 9 (Cas9) fused to a cytidine deaminase could serve as a localized mutagenic agent to produce high-density mutant populations. Artificial evolution is at hand.
Collapse
Affiliation(s)
- Pierre Jacob
- Institute of Plant Science - Paris-Saclay, INRA, 91190 Gif-sur-Yvette, France
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
38
|
Liu H, He X, Xu W, Huang K, Zhang J. Safety evaluation of subchronic feeding ofnisItransformedLactobacillus plantarumin Sprague-Dawley rats. J Food Saf 2017. [DOI: 10.1111/jfs.12427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Haiyan Liu
- School of Public Health; North China University of Science and Technology; Tangshan Hebei China
| | - Xiaoyun He
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Ministry of Agriculture; The Supervision, Inspection & Testing Center of Genetically Modified Organisms; Beijing China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Ministry of Agriculture; The Supervision, Inspection & Testing Center of Genetically Modified Organisms; Beijing China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Ministry of Agriculture; The Supervision, Inspection & Testing Center of Genetically Modified Organisms; Beijing China
| | - Jianwei Zhang
- Physical Education Department; Tangshan Normal University; Tangshan Hebei China
| |
Collapse
|
39
|
Vallaeys V, Tyson RC, Lane WD, Deleersnijder E, Hanert E. A Lévy-flight diffusion model to predict transgenic pollen dispersal. J R Soc Interface 2017; 14:rsif.2016.0889. [PMID: 28123097 DOI: 10.1098/rsif.2016.0889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/03/2017] [Indexed: 11/12/2022] Open
Abstract
The containment of genetically modified (GM) pollen is an issue of significant concern for many countries. For crops that are bee-pollinated, model predictions of outcrossing rates depend on the movement hypothesis used for the pollinators. Previous work studying pollen spread by honeybees, the most important pollinator worldwide, was based on the assumption that honeybee movement can be well approximated by Brownian motion. A number of recent studies, however, suggest that pollinating insects such as bees perform Lévy flights in their search for food. Such flight patterns yield much larger rates of spread, and so the Brownian motion assumption might significantly underestimate the risk associated with GM pollen outcrossing in conventional crops. In this work, we propose a mechanistic model for pollen dispersal in which the bees perform truncated Lévy flights. This assumption leads to a fractional-order diffusion model for pollen that can be tuned to model motion ranging from pure Brownian to pure Lévy. We parametrize our new model by taking the same pollen dispersal dataset used in Brownian motion modelling studies. By numerically solving the model equations, we show that the isolation distances required to keep outcrossing levels below a certain threshold are substantially increased by comparison with the original predictions, suggesting that isolation distances may need to be much larger than originally thought.
Collapse
Affiliation(s)
- Valentin Vallaeys
- Institute of Mechanics, Materials and Civil Engineering (IMMC), Université catholique de Louvain, 4 Avenue G. Lemaître, 1348 Louvain-la-Neuve, Belgium
| | - Rebecca C Tyson
- IKBSAS 5 BLDG SCI, University of British Columbia Okanagan, 3333 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - W David Lane
- Blue Comet Agro Inc., 8345 Canyon View Road, Summerland, British Columbia, Canada V0H 1Z2
| | - Eric Deleersnijder
- Institute of Mechanics, Materials and Civil Engineering (IMMC), Université catholique de Louvain, 4 Avenue G. Lemaître, 1348 Louvain-la-Neuve, Belgium.,Earth and Life Institute (ELI), Université catholique de Louvain, 4 Avenue G. Lemaître, 1348 Louvain-la-Neuve, Belgium.,Delft Institute of Applied Mathematics (DIAM), Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands
| | - Emmanuel Hanert
- Earth and Life Institute (ELI), Université catholique de Louvain, Croix du Sud 2 box L7.05.16, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
40
|
Ozuna CV, Barro F. Safety evaluation of transgenic low-gliadin wheat in Sprague Dawley rats: An alternative to the gluten free diet with no subchronic adverse effects. Food Chem Toxicol 2017; 107:176-185. [DOI: 10.1016/j.fct.2017.06.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
|
41
|
Tsatsakis AM, Nawaz MA, Kouretas D, Balias G, Savolainen K, Tutelyan VA, Golokhvast KS, Lee JD, Yang SH, Chung G. Environmental impacts of genetically modified plants: A review. ENVIRONMENTAL RESEARCH 2017; 156:818-833. [PMID: 28347490 DOI: 10.1016/j.envres.2017.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Powerful scientific techniques have caused dramatic expansion of genetically modified crops leading to altered agricultural practices posing direct and indirect environmental implications. Despite the enhanced yield potential, risks and biosafety concerns associated with such GM crops are the fundamental issues to be addressed. An increasing interest can be noted among the researchers and policy makers in exploring unintended effects of transgenes associated with gene flow, flow of naked DNA, weediness and chemical toxicity. The current state of knowledge reveals that GM crops impart damaging impacts on the environment such as modification in crop pervasiveness or invasiveness, the emergence of herbicide and insecticide tolerance, transgene stacking and disturbed biodiversity, but these impacts require a more in-depth view and critical research so as to unveil further facts. Most of the reviewed scientific resources provide similar conclusions and currently there is an insufficient amount of data available and up until today, the consumption of GM plant products are safe for consumption to a greater extent with few exceptions. This paper updates the undesirable impacts of GM crops and their products on target and non-target species and attempts to shed light on the emerging challenges and threats associated with it. Underpinning research also realizes the influence of GM crops on a disturbance in biodiversity, development of resistance and evolution slightly resembles with the effects of non-GM cultivation. Future prospects are also discussed.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Department of Toxicology and Forensics, School of Medicine, University of Crete, Heraklion, Crete, Greece; Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, Larisa, Greece
| | | | - Kai Savolainen
- Finnish Institute of Occupational Health, POB 40 Helsinki, Finland
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russian Federation; Pacific Institute of Geography, FEB RAS, Vladivostok 690041, Russian Federation
| | - Jeong Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea.
| |
Collapse
|
42
|
Tsatsakis AM, Nawaz MA, Tutelyan VA, Golokhvast KS, Kalantzi OI, Chung DH, Kang SJ, Coleman MD, Tyshko N, Yang SH, Chung G. Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food. Food Chem Toxicol 2017. [PMID: 28645870 DOI: 10.1016/j.fct.2017.06.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Engineering School, Far Eastern Federal Univeristy, 37 Pushkinskaya Street, 690950, Vladivostok, Russian Federation
| | | | - Duck Hwa Chung
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sung Jo Kang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Geyongnam 52828, Republic of Korea
| | - Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Nadia Tyshko
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
43
|
Jiang Q, Sun X, Niu F, Hu Z, Chen R, Zhang H. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds. PLoS One 2017; 12:e0175924. [PMID: 28459812 PMCID: PMC5411081 DOI: 10.1371/journal.pone.0175924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/03/2017] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small regulators of gene expression that act on many different molecular and biochemical processes in eukaryotes. To date, miRNAs have not been considered in the current evaluation system for GM crops. In this study, small RNAs from the dry seeds of a GM wheat line overexpressing GmDREB1 and non-GM wheat cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, 23 differentially expressed miRNAs in dry seeds were identified and confirmed between GM wheat and a non-GM acceptor. Notably, more differentially expressed tae-miRNAs between non-GM wheat varieties were found, indicating that the degree of variance between non-GM cultivars was considerably higher than that induced by the transgenic event. Most of the target genes of these differentially expressed miRNAs between GM wheat and a non-GM acceptor were associated with abiotic stress, in accordance with the product concept of GM wheat in improving drought and salt tolerance. Our data provided useful information and insights into the evaluation of miRNA expression in edible GM crops.
Collapse
Affiliation(s)
- Qiyan Jiang
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianjun Sun
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengjuan Niu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Hu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- * E-mail: (RC); (HZ)
| | - Hui Zhang
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (RC); (HZ)
| |
Collapse
|
44
|
Yang QQ, He XY, Wu HY, Zhang CQ, Zou SY, Lang TQ, Sun SSM, Liu QQ. Subchronic feeding study of high-free-lysine transgenic rice in Sprague-Dawley rats. Food Chem Toxicol 2017; 105:214-222. [PMID: 28442410 DOI: 10.1016/j.fct.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
Lysine is considered to be the first essential amino acid in rice. An elite High-Free-Lysine transgenic line HFL1 was previously produced by metabolic engineering to regulate lysine metabolism. In this study, a 90-day toxicology experiment was undertaken to investigate the potential health effect of feeding different doses of HFL1 rice to Sprague-Dawley rats. During the trial, body weight gain, food consumption and food efficiency were recorded, and no adverse effect was observed in rats fed transgenic (T) rice diets compared with non-transgenic (N) or control diets. At both midterm and final assessments, hematological parameters and serum chemistry were measured, and organ weights and histopathology were examined at the end of the trial. There was no diet-related difference in most hematological or serum chemistry parameters or organ weights between rats fed the T diets and those fed the N or control diets. Some parameters were found to differ between T groups and their corresponding N and/or control groups, but no adverse histological effect was observed. Taken together, the data from the current trial demonstrates that high lysine transgenic rice led to no adverse effect in Sprague-Dawley rats given a diet containing up to 70% HFL1 rice in 90 days.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiao-Yun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hong-Yu Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Shi-Ying Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tian-Qi Lang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
45
|
Selb R, Wal JM, Moreno FJ, Lovik M, Mills C, Hoffmann-Sommergruber K, Fernandez A. Assessment of endogenous allergenicity of genetically modified plants exemplified by soybean - Where do we stand? Food Chem Toxicol 2017; 101:139-148. [PMID: 28111299 DOI: 10.1016/j.fct.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
According to EU regulation, genetically modified (GM) plants considered to be allergenic have to be assessed concerning their endogenous allergens before placement on the EU market, in line with the international standards described in Codex Alimentarius. Under such premises, a quantitative relevant increase in allergens might occur in GM plants as an unintended effect compared with conventionally produced crops, which could pose a risk to consumers. Currently, data showing a connection between dose and allergic sensitisation are scarce since the pathophysiological mechanisms of sensitisation are insufficiently understood. In contrast, data on population dose-distribution relationships acquired by oral food challenge are available showing a connection between quantity of allergenic protein consumed and the population of allergic individuals experiencing reactions. Soybean is currently the only recognised allergenic GM food by law for which EFSA has received applications and was therefore taken as an example for defining an assessment strategy. Identification of potential allergens, methodology for quantification as well as risk assessment considerations, are discussed. A strategy is proposed for the identification, assessment and evaluation of potential hazards/risks concerning endogenous allergenicity in food derived from plants developed by biotechnology. This approach could be expanded to other allergenic foods in the future, whenever required.
Collapse
Affiliation(s)
- R Selb
- European Food Safety Authority, Parma, Italy
| | - J M Wal
- INRA-CEA, Gif sur Yvette Cedex, France
| | - F J Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - M Lovik
- Norwegian Institute of Public Health, Oslo, Norway
| | - C Mills
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - A Fernandez
- European Food Safety Authority, Parma, Italy.
| |
Collapse
|
46
|
Chen X, Gao MQ, Liang D, Yin S, Yao K, Zhang Y. Safety assessment of genetically modified milk containing human beta-defensin-3 on rats by a 90-day feeding study. Food Chem Toxicol 2017; 100:34-41. [DOI: 10.1016/j.fct.2016.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 01/05/2023]
|
47
|
Hu Y, Zhuo Q, Gong Z, Piao J, Yang X. Three-generation reproduction toxicity study of genetically modified rice with insect resistant genes. Food Chem Toxicol 2017; 99:190-198. [DOI: 10.1016/j.fct.2016.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022]
|
48
|
Almeraya EV, Sánchez-de-Jiménez E. Intragenic modification of maize. J Biotechnol 2016; 238:35-41. [PMID: 27641689 DOI: 10.1016/j.jbiotec.2016.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
The discovery of plant DNA recombination techniques triggered the development of a wide range of genetically modified crops. The transgenics were the first generation of modified plants; however, these crops were quickly questioned due to the artificial combination of DNA between different species. As a result, the second generation of modified plants known as cisgenic and/or intragenic crops arose as an alternative to genetic plant engineering. Cisgenic and/or intragenic crops development establishes the combination of DNA from the plant itself or related species avoiding the introduction of foreign genetic material, such as selection markers and/or reporter genes. Nowadays it has been made successful cisgenic and/or intragenic modifications in crops such as potato and apple. The present study shows the possibility of reaching similar approach in corn plants. This research was focused on achieve intragenic overexpression of the maize Rubisco activase (Rca) protein. The results were compared with changes in the expression of the same protein, in maize plants grown after 23 cycles of conventional selection and open field planting. Experimental evidence shows that maize intragenic modification is possible for increasing specific gene expression, preserving plant genome free of foreign DNA and achieving further significant savings in time and man labor for crop improvement.
Collapse
|