1
|
Yang Y, Ren D, Peng B, Huang J, Yang B. The role of FOXM1 in acetylcysteine improving diabetic periodontitis. J Mol Histol 2024; 56:34. [PMID: 39641827 DOI: 10.1007/s10735-024-10322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Diabetic periodontitis (DP) stems from hyperglycemia-driven oxidative stress amplification and chronic inflammation, leading to periodontal tissue breakdown. Misregulated forkhead box protein M1 (FOXM1) play key roles in this process, exacerbating both inflammation and oxidative stress. In light of N-Acetylcysteine (NAC)'s potent anti-oxidative capacity and anti-inflammatory potential, understanding how it modulates these central pathways to alleviate DP holds high scientific and clinical importance. An animal model of diabetic mice periodontitis was established, and the model mice were injected with FOXM 1 adenovirus to enrich FOXM 1, and the periodontal pathological histology of each group was evaluated by HE staining. Western blotting and RT-PCR evaluated the expression levels of factors involved in bone destruction. ELISA evaluated the amount of inflammatory factors in mice serum. FOXM 1 over-expression and NAC were treated in murine macrophages, and the intracellular reactive oxygen species(ROS) levels in macrophages were measured using a DCFH-DA probe. Receptor activator of NF-κB ligand (RANKL) and lipopolysaccharide (LPS) were used to establish the macrophage osteoclast differentiation model and test the expression level of osteoclast differentiation factors after giving NAC. Hydrogen peroxide was used to establish a peroxidation environment, the plasmid silenced C-JUN, and the DNA binding activity of activating protein-1(AP1) was detected by EMSA. The effect of peroxidation on the osteoclast differentiation level was determined by WB. Mice with DP model had epithelial damage and inflammatory infiltration in periodontal tissues, and in the FOXM1 enriched group, the periodontal epithelial damage was repaired and inflammation was alleviated. FOXM1 enrichment resulted in DP model lower expression of RANKL (P < 0.01), macrophage colony-stimulating factor (M-CSF) (P < 0.01) and elevated expression of osteoprotegerin (OPG) (P < 0.001). Serum levels of pro-inflammatory factors interleukin (IL)-1β, tumor necrosis factor (TNF-α), and inducible nitric oxide synthase (iNOS) were elevated in DP mice (P < 0.001), and anti-inflammatory factor IL-10 was reduced(P < 0.001),, and FOXM1 enrichment significantly reversed inflammatory factor levels (P < 0.01). Overexpression of FOXM1 reduced ROS content in macrophages (P < 0.001), and NAC was performed to further reduce ROS content (P < 0.01). Silencing of FOXM1 elevated the expression of osteoclast-specific genes NFATc1, TRAP and OSCAR (P < 0.01), and the addition of NAC on top of silencing of FOXM1 markedly suppressed the expression level of osteoclast-specific genes (P < 0.01). ROS increased the transcriptional activity of AP1 (P < 0.001), which promoted osteoclast-specific gene expression (P < 0.001), and osteoclast-specific gene expression was decreased after silencing C-JUN (P < 0.01). FOXM1 relieve diabetic periodontitis inflammation and promote bone formation, regulates ROS production and ROS increases the transcriptional activity of AP1 and affects the osteoclastic differentiation of macrophages, which plays a positive role in bone protection in diabetic periodontitis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China.
| | - Dongping Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Bibo Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jialin Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Bingxue Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Schimith LE, Machado da Silva V, Costa-Silva DGD, Seregni Monteiro LK, Muccillo-Baisch AL, André-Miral C, Hort MA. Preclinical toxicological assessment of polydatin in zebrafish model. Drug Chem Toxicol 2024; 47:923-932. [PMID: 38311823 DOI: 10.1080/01480545.2024.2311287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Polydatin (3,4',5-trihydroxystilbene-3-β-D-glucoside, piceid), a natural stilbenoid found in different plant sources, has gained increasing attention for its potential health benefits. However, prior to its widespread adoption in human therapeutics and consumer products, a comprehensive investigation of its toxicological effects is crucial. In this study, the toxicity of polydatin was investigated in a developmental toxicity test using zebrafish (Danio rerio) as a valuable model for preclinical assessments. We employed the Fish Embryo Test (FET test - OECD n°236) to investigate the effects of polydatin on survival, hatchability, development, and behavior of zebrafish embryo-larval stage. Remarkably, the results demonstrated that polydatin up to 435 μM showed no toxicity. Throughout the exposure period, zebrafish embryos exposed to polydatin exhibited normal development, with no significant mortality observed. Furthermore, hatching success and heartbeat rate were unaffected, and no morphological abnormalities were identified, signifying a lack of teratogenic effects and cardiotoxicity. Locomotion activity assessment revealed normal swimming patterns and response to stimuli, indicating no neurotoxic effects. Our study provides valuable insights into the toxicological profile of polydatin, suggesting that it may offer potential therapeutic benefits under a considerable concentration range. In addition, zebrafish model proves to be an efficient system for early-stage toxicological screening, guiding further investigations into the secure utilization of polydatin for human health and wellness.
Collapse
Affiliation(s)
- Lucia Emanueli Schimith
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | | | - Dennis Guilherme da Costa-Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | | | - Ana Luiza Muccillo-Baisch
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | | | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
3
|
Du F, Li J, Zhang S, Zeng X, Nie J, Li Z. Oxidative stress in hair follicle development and hair growth: Signalling pathways, intervening mechanisms and potential of natural antioxidants. J Cell Mol Med 2024; 28:e18486. [PMID: 38923380 PMCID: PMC11196958 DOI: 10.1111/jcmm.18486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Hair follicle development and hair growth are regulated by multiple factors and multiple signalling pathways. The hair follicle, as an important skin appendage, is the basis for hair growth, and it has the functions of safeguarding the body, perceiving the environment and regulating body temperature. Hair growth undergoes a regular hair cycle, including anagen, catagen and telogen. A small amount of physiological shedding of hair occurs under normal conditions, always in a dynamic equilibrium. Hair loss occurs when the skin or hair follicles are stimulated by oxidative stress, inflammation or hormonal disorders that disrupt the homeostasis of the hair follicles. Numerous researches have indicated that oxidative stress is an important factor causing hair loss. Here, we summarize the signalling pathways and intervention mechanisms by which oxidative stress affects hair follicle development and hair growth, discuss existing treatments for hair loss via the antioxidant pathway and provide our own insights. In addition, we collate antioxidant natural products promoting hair growth in recent years and discuss the limitations and perspectives of current hair loss prevention and treatment.
Collapse
Affiliation(s)
- Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Xuemei Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| |
Collapse
|
4
|
Dai Z, Zhan Z, Chen Y, Li J. MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. Tob Induc Dis 2024; 22:TID-22-92. [PMID: 38813585 PMCID: PMC11135024 DOI: 10.18332/tid/186643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2023] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION The aim of the study is the regulatory effect of MicroRNA-210 (MiR-210) on cigarette smoke extract (CSE)-induced mouse lung epithelial type II cells (MLE-12) apoptosis and determine whether the MiR-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via Shh signaling pathway. METHODS Expression of MiR-210 in CSE-induced MLE-12 was assessed by qRT-PCR. The emphysema mouse model and MiR-210 knockdown mice were each established by inhaling cigarette smoke or intratracheal lentiviral vector instillation. The Sonic hedgehog (Shh), Ptch1, Gli1, B-cell lymphoma-2 (Bcl-2), and Caspase 3 protein expressions were detected by Western blotting. mRNA expressions of MiR-210, Shh, Ptch1, and Gli1 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Apoptotic ratios in mice and CSE-induced HPVEC were assessed using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays and flow cytometry. RESULTS Our results showed that MiR-210 mRNA levels were significantly down-regulated in the CSE-induced MLE 12. MLE 12 apoptosis with down-regulated Shh, Ptch1, Gli1, and Bcl-2 expression, increased Caspase 3 expression in the emphysema mouse model and CSE-induced MLE 12. Knockdown MiR-210 can facilitate cell apoptosis and emphysema via the Shh signaling pathway in mice. In vitro, MiR-210 can attenuate the apoptosis of CSE-exposed MLE 12. Moreover, MiR-210 regulated the Shh pathway and promoted its expression. CONCLUSIONS MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. The present study reveals that MiRNA-210 may be a key regulator of cellular apoptosis and could be explored as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhongshang Dai
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijie Zhan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Jinhua Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
5
|
Zhuang Y, Liu L, Liu M, Fu J, Ai X, Long D, Leng X, Zhang Y, Gong X, Shang X, Li C, Huang B, Zhou Y, Ning X, Dong S, Feng C. The sonic hedgehog pathway suppresses oxidative stress and senescence in nucleus pulposus cells to alleviate intervertebral disc degeneration via GPX4. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166961. [PMID: 37979732 DOI: 10.1016/j.bbadis.2023.166961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Disruption of intervertebral disc (IVD) homeostasis caused by oxidative stress and nucleus pulposus cell (NPC) senescence is a main cause of intervertebral disc degeneration (IDD). The sonic hedgehog (Shh) pathway plays an important role in IVD development, but its roles in IDD are unknown. This study aimed to investigate the effects of the Shh pathway on the alleviation of IDD and the related mechanisms. In vivo, the effect of the Shh pathway on IVD homeostasis was studied by intraperitoneal injection of recombinant Shh (rShh) and GANT61 based on puncture-induced IDD. GANT61, lentivirus-coated sh-Gli1 and rShh were used to investigate the role and mechanism of the Shh pathway in NPCs based on senescence induced by Braco19 and oxidative stress induced by TBHP. Shh pathway expression decreased, and senescence and oxidative stress increased with age. Intraperitoneal injection of rShh activated the Shh pathway to suppress oxidative stress and NPC senescence and consequently alleviated needle puncture-induced IDD. In vitro, the Shh pathway upregulated glutathione peroxidase 4 (GPX4) expression to suppress oxidative stress and senescence in NPCs. Moreover, GPX4 suppression in NPCs by si-GPX4 significantly reduced the protective effect of the Shh pathway on oxidative stress and senescence in NPCs. Our results demonstrate for the first time that the Shh pathway plays a key role in the alleviation of IDD by suppressing oxidative stress and cell senescence in NP tissues. This study provides a new potential target for the prevention and reversal of IDD.
Collapse
Affiliation(s)
- Yong Zhuang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Miao Liu
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jiawei Fu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Xuezheng Ai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Dan Long
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Xue Leng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Xunren Gong
- Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Xianwen Shang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Xu Ning
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, PR China.
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| |
Collapse
|
6
|
Bao HL, Chen CZ, Ren CZ, Sun KY, Liu H, Song SH, Fu ZR. Polydatin ameliorates hepatic ischemia-reperfusion injury by modulating macrophage polarization. Hepatobiliary Pancreat Dis Int 2024; 23:25-34. [PMID: 36058783 DOI: 10.1016/j.hbpd.2022.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Polydatin, a glucoside of resveratrol, has shown protective effects against various diseases. However, little is known about its effect on hepatic ischemia-reperfusion (I/R) injury. This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism. METHODS After gavage feeding polydatin once daily for a week, mice underwent a partial hepatic I/R procedure. Serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST), hematoxylin-eosin (H&E) and TdT-mediated dUTP nick-end labeling (TUNEL) staining were used to evaluate liver injury. The severity related to the inflammatory response and reactive oxygen species (ROS) production was also investigated. Furthermore, immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages. RESULTS Compared with the I/R group, polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis. The oxidative stress marker (dihydroethidium fluorescence, malondialdehyde, superoxide dismutase and glutathione peroxidase) and I/R related inflammatory cytokines (interleukin-1β, interleukin-10 and tumor necrosis factor-α) were significantly suppressed after polydatin treatment. In addition, the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro. Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway. CONCLUSIONS Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NF-κB signaling.
Collapse
Affiliation(s)
- Hai-Li Bao
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai 200003, China
| | - Chuan-Zhi Chen
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chang-Zhen Ren
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
| | - Ke-Yan Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shao-Hua Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Ren Fu
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai 200003, China.
| |
Collapse
|
7
|
Wruck W, Genfi AKA, Adjaye J. Natural Products in Renal-Associated Drug Discovery. Antioxidants (Basel) 2023; 12:1599. [PMID: 37627594 PMCID: PMC10451693 DOI: 10.3390/antiox12081599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The global increase in the incidence of kidney failure constitutes a major public health problem. Kidney disease is classified into acute and chronic: acute kidney injury (AKI) is associated with an abrupt decline in kidney function and chronic kidney disease (CKD) with chronic renal failure for more than three months. Although both kidney syndromes are multifactorial, inflammation and oxidative stress play major roles in the diversity of processes leading to these kidney malfunctions. Here, we reviewed various publications on medicinal plants with antioxidant and anti-inflammatory properties with the potential to treat and manage kidney-associated diseases in rodent models. Additionally, we conducted a meta-analysis to identify gene signatures and associated biological processes perturbed in human and mouse cells treated with antioxidants such as epigallocatechin gallate (EGCG), the active ingredient in green tea, and the mushroom Ganoderma lucidum (GL) and in kidney disease rodent models. We identified EGCG- and GL-regulated gene signatures linked to metabolism; inflammation (NRG1, E2F1, NFKB1 and JUN); ion signalling; transport; renal processes (SLC12A1 and LOX) and VEGF, ERBB and BDNF signalling. Medicinal plant extracts are proving to be effective for the prevention, management and treatment of kidney-associated diseases; however, more detailed characterisations of their targets are needed to enable more trust in their application in the management of kidney-associated diseases.
Collapse
Affiliation(s)
- Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Afua Kobi Ampem Genfi
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, University for Development Studies, Nyankpala P.O. Box TL 1882, Ghana
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- EGA Institute for Women's Health, Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
8
|
Karkon-Shayan S, Aliashrafzadeh H, Dianat-Moghadam H, Rastegar-Pouyani N, Majidi M, Zarei M, Moradi-Vastegani S, Bahramvand Y, Babaniamansour S, Jafarzadeh E. Resveratrol as an antitumor agent for glioblastoma multiforme: Targeting resistance and promoting apoptotic cell deaths. Acta Histochem 2023; 125:152058. [PMID: 37336070 DOI: 10.1016/j.acthis.2023.152058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive brain and spinal cord tumors. Despite the significant development in application of antitumor drugs, no significant increases have been observed in the survival rates of patients with GBM, as GBM cells acquire resistance to conventional anticancer therapeutic agents. Multiple studies have revealed that PI3K/Akt, MAPK, Nanog, STAT 3, and Wnt signaling pathways are involved in GBM progression and invasion. Besides, biological processes such as anti-apoptosis, autophagy, angiogenesis, and stemness promote GBM malignancy. Resveratrol (RESV) is a non-flavonoid polyphenol with high antitumor activity, the potential of which, regulating signaling pathways involved in cancer malignancy, have been demonstrated by many studies. Herein, we present the potential of RESV in both single and combination therapy- targeting various signaling pathways- which induce apoptotic cell death, re-sensitize cancer cells to radiotherapy, and induce chemo-sensitizing effects to eventually inhibit GBM progression.
Collapse
Affiliation(s)
- Sepideh Karkon-Shayan
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hasan Aliashrafzadeh
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Majidi
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahdi Zarei
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Moradi-Vastegani
- Department of physiology, faculty of medicine, physiology research center, Ahvaz jundishapur university of medical sciences, Ahvaz, Iran
| | - Yaser Bahramvand
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Babaniamansour
- Department of Pathology, School of Medicine, Islamic Azad University Tehran Faculty of Medicine, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Liu L, Zhang Y, Fu J, Ai X, Long D, Leng X, Zhang Y, Huang B, Li C, Zhou Y, Feng C. Gli1 depletion induces oxidative stress and apoptosis of nucleus pulposus cells via Fos in intervertebral disc degeneration. J Orthop Translat 2023; 40:116-131. [PMID: 37457313 PMCID: PMC10338909 DOI: 10.1016/j.jot.2023.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/01/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is the most common chronic disease. Oxidative stress and apoptosis of nucleus pulposus (NP) cells disrupt intervertebral disc (IVD) homeostasis, which is the main cause of IDD. Glioma-associated oncogene 1 (Gli1) is an important transcription factor in the Hedgehog (Hh) pathway. Depletion of Gli1 accelerates the occurrence and development of degenerative diseases. This study aimed to explore the role of aging related Gli1 depletion in the progression of IDD. Methods The relationship between aging related Gli1 depletion and IDD was studied in the NP tissues of human and rats of different ages, and the levels of oxidative stress and NP cell apoptosis during IDD were explored. Gli1 depletion of NP cells were established by targeting inhibitor GANT61 or lentivirus-coated Gli1 sh-RNA (sh-Gli1) to explore the role of Gli1 in NP cells and underlying mechanism. Exogenous Gli1 depletion induced IDD of rats was established by intraperitoneal injection of GANT61. Also, the roles of Fos in the Gli1 depletion induced NP cell oxidative stress, apoptosis and IDD were investigated. Results Gli1 was down-regulated in the tissues of degenerative NP, and the level of Gli1 was negatively correlated with the severity of aging related IDD in human and rats. Furthermore, we found enhanced oxidative stress and apoptosis in degenerative NP tissues. Gli1 depletion promoted oxidative stress and apoptosis of NP cells and resulted in the degradation of extracellular matrix (ECM) and decreased ECM synthesis. Transcriptome sequencing showed that Gli1 depletion caused Fos activation in NP cells. the effect of Gli1 depletion on the oxidative stress and apoptosis of NP cells were retarded by Fos inhibitor. In vivo, Fos inhibition alleviated the IDD induced by exogenous Gli1 depletion. Conclusions This study revealed for the first time that Gli1 is gradually depleted in NP with IDD progression. Exogenous Gli1 depletion causes oxidative stress and apoptosis of NP cells both in vivo and in vitro. Fos suppression effectively retards the destructive effects of Gli1 depletion on IVD homoeostasis.The translational potential of this article: This study may provide new potential targets for preventing and reversing IDD. Maintaining Gli1 expression in NP and suppressing Fos activation may be an effective treatment strategy for IDD.
Collapse
|
10
|
Du YW, Li XK, Wang TT, Zhou L, Li HR, Feng L, Ma H, Liu HB. Cyanidin-3-glucoside inhibits ferroptosis in renal tubular cells after ischemia/reperfusion injury via the AMPK pathway. Mol Med 2023; 29:42. [PMID: 37013504 PMCID: PMC10069074 DOI: 10.1186/s10020-023-00642-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Ferroptosis, which is characterized by lipid peroxidation and iron accumulation, is closely associated with the pathogenesis of acute renal injury (AKI). Cyanidin-3-glucoside (C3G), a typical flavonoid that has anti-inflammatory and antioxidant effects on ischemia‒reperfusion (I/R) injury, can induce AMP-activated protein kinase (AMPK) activation. This study aimed to show that C3G exerts nephroprotective effects against I/R-AKI related ferroptosis by regulating the AMPK pathway. METHODS Hypoxia/reoxygenation (H/R)-induced HK-2 cells and I/R-AKI mice were treated with C3G with or without inhibiting AMPK. The level of intracellular free iron, the expression of the ferroptosis-related proteins acyl-CoA synthetase long chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4), and the levels of the lipid peroxidation markers 4-hydroxynonenal (4-HNE), lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were examined. RESULTS We observed the inhibitory effect of C3G on ferroptosis in vitro and in vivo, which was characterized by the reversion of excessive intracellular free iron accumulation, a decrease in 4-HNE, lipid ROS, MDA levels and ACSL4 expression, and an increase in GPX4 expression and glutathione (GSH) levels. Notably, the inhibition of AMPK by CC significantly abrogated the nephroprotective effect of C3G on I/R-AKI models in vivo and in vitro. CONCLUSION Our results provide new insight into the nephroprotective effect of C3G on acute I/R-AKI by inhibiting ferroptosis by activating the AMPK pathway.
Collapse
Affiliation(s)
- Yi-Wei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Xiao-Kang Li
- Department of Cardiology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Ting-Ting Wang
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Hui-Rong Li
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| | - Hong-Bao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| |
Collapse
|
11
|
Liu P, Ma G, Wang Y, Wang L, Li P. Therapeutic effects of traditional Chinese medicine on gouty nephropathy: Based on NF-κB signalingpathways. Biomed Pharmacother 2023; 158:114199. [PMID: 36916428 DOI: 10.1016/j.biopha.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
As the final product of purine metabolism, excess serum uric acid (SUA) aggravates the process of some metabolic diseases. SUA causes renal tubule damage, interstitial fibrosis, and glomerular hardening, leading to gouty nephropathy (GN). A growing number of investigations have shown that NF-κB mediated inflammation and oxidative stress have been directly involved in the pathogenesis of GN. Traditional Chinese medicine's treatment methods of GN have amassed a wealth of treatment experience. In this review, we first describe the mechanism of NF-κB signaling pathways in GN. Subsequently, we highlight traditional Chinese medicine that can treat GN through NF-κB pathways. Finally, commenting on promising candidate targets of herbal medicine for GN treatment via suppressing NF-κB signaling pathways was summarized.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Station East 5, Shunyi District, Beijing 101300, China
| | - Guijie Ma
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
12
|
Lan TY, Dun RL, Yao DS, Wu F, Qian YL, Zhou Y, Zhan TT, Shao MH, Gao JD, Wang C. Effects of resveratrol on renal ischemia-reperfusion injury: A systematic review and meta-analysis. Front Nutr 2023; 9:1064507. [PMID: 36687723 PMCID: PMC9845714 DOI: 10.3389/fnut.2022.1064507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury may lead to acute kidney injury, which is characterized by high morbidity and mortality rates. Resveratrol (RSV) can be extracted from Chinese herbs, and multiple animal experiments have demonstrated its potential for renal protection. This systematic review evaluates the protective effect of RSV against renal I/R injury in animal models. The PubMed, Embase, Web of Science, and Science Direct databases were searched for animal experiments related to RSV in renal I/R injury from their establishment to June 2022. In total, 19 studies were included with 249 animals (129 treated with RSV and 120 as controls). The pooled analysis revealed that RSV administration significantly decreased serum creatinine (SCr) levels (16 studies, n = 243, WMD = -58.13, 95% CI = -79.26 to -37.00, p < 0.00001) and blood urea nitrogen (BUN) levels (12 studies, n = 163, WMD = -34.37, 95% CI = -46.70 to -22.03, p < 0.00001) in the renal I/R injury model. The level of malondialdehyde (MDA), an oxidative stress index, was alleviated [7 studies, n = 106, standardized mean difference (SMD) = -6.05, 95% CI = -8.90 to -3.21, p < 0.0001] and antioxidant enzymes such as glutathione (GSH) (7 studies, n = 115, SMD = 9.25, 95% CI = 5.51-13.00, p < 0.00001) and catalase (CAT) (4 studies, n = 59, SMD = 8.69, 95% CI = 4.35-13.03, p < 0.0001) were increased after treatment of RSV. The subgroup analysis suggested that 5-10 mg/kg of RSV optimally protects against renal I/R injury as both the BUN and SCr levels were significantly decreased at this dosage. The protective effects of RSV against renal I/R injury might be attributed to multiple mechanisms, such as inhibiting oxidative stress, apoptosis, inflammation, fibrillation, and promoting autophagy. For a deeper understanding of the protective effects of RSV, experimental studies on animal models and large randomized controlled trials in humans are needed.
Collapse
Affiliation(s)
- Tian-ying Lan
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong-liang Dun
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong-sheng Yao
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Wu
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-ling Qian
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zhou
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-tian Zhan
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-hai Shao
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-dong Gao
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Wang,
| |
Collapse
|
13
|
Gupta R, Mehan S, Chhabra S, Giri A, Sherawat K. Role of Sonic Hedgehog Signaling Activation in the Prevention of Neurological Abnormalities Associated with Obsessive-Compulsive Disorder. Neurotox Res 2022; 40:1718-1738. [PMID: 36272053 DOI: 10.1007/s12640-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
The smoothened sonic hedgehog (Smo-Shh) pathway is one mechanism that influences neurogenesis, including brain cell differentiation and development during childhood. Shh signaling dysregulation leads to decreased target gene transcription, which contributes to increased neuronal excitation, apoptosis, and neurodegeneration, eventually leading to neurological deficits. Neuropsychiatric disorders such as OCD and related neurological dysfunctions are characterized by neurotransmitter imbalance, neuroinflammation, oxidative stress, and impaired neurogenesis, disturbing the cortico-striato-thalamo-cortical (CSTC) link neuronal network. Despite the availability of several treatments, such as selective serotonin reuptake inhibitors, some individuals may not benefit much from them. Several trials on the use of antipsychotics in the treatment of OCD have also produced inadequate findings. This evidence-based review focuses on a potential pharmacological approach to alleviating OCD and associated neuronal deficits by preventing neurochemical alterations, in which sonic hedgehog activators are neuroprotective, lowering neuronal damage while increasing neuronal maintenance and survival. As a result, stimulating SMO-Shh via its potential activators may have neuroprotective effects on neurological impairment associated with OCD. This review investigates the link between SMO-Shh signaling and the neurochemical abnormalities associated with the progression of OCD and associated neurological dysfunctions. Role of Smo-Shh signaling in serotonergic neurogenesis and in maintaining their neuronal identity. The Shh ligand activates two main transcriptional factors known as Foxa2 and Nkx2.2, which again activates another transcriptional factor, GATA (GATA2 and GATA3), in post mitotic precursor cells of serotonergic neurons-following increased expression of Pet-1 and Lmx1b after GATA regulates the expression of many serotonergic enzymes such as TPH2, SERT, VMAT, slc6a4, Htr1a, Htr1b (Serotonin receptor enzymes), and MAO that regulate and control the release of serotonin and maintain their neuronal identity after their maturation. Abbreviation: Foxa2: Forkhead box; GATA: Globin transcription factor; Lmx1b: LIM homeobox transcription factor 1 beta; TPH2: Tryptophan hydroxylase 2; Htr1a: Serotonin receptor 1a; Htr1b: Serotonin receptor 1b; SERT: Serotonin transporter; VMAT: Vesicular monoamine transporter; MAO: Monoamine oxidase.
Collapse
Affiliation(s)
- Ria Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
14
|
He M, Feng L, Chen Y, Gao B, Du Y, Zhou L, Li F, Liu H. Polydatin attenuates tubulointerstitial fibrosis in diabetic kidney disease by inhibiting YAP expression and nuclear translocation. Front Physiol 2022; 13:927794. [PMID: 36277194 PMCID: PMC9585250 DOI: 10.3389/fphys.2022.927794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
The activation of Yes-associated protein (YAP) pathway is mutually causal with the increase of extracellular matrix (ECM) stiffness. Polydatin (PD) has been proved to have anti-fibrosis effect in diabetic kidney disease (DKD), but it is still a mystery whether PD participates in YAP-related mechano-transduction. Therefore, this study intends to solve the following two problems: 1) To construct an in vitro system of polyacrylamide hydrogels (PA gels) based on the true stiffness of kidneys in healthy and DKD rats, and observe the effect of PD on pathological matrix stiffness-induced YAP expression in renal fibroblasts; 2) Compared with verteporfin (VP), a pharmacological inhibitor of YAP, to explore whether the therapeutic effect of PD on DKD in vivo model is related to the regulation of YAP. In this study, the in vitro system of PA gels with 3 kPa, 12 kPa and 30 kPa stiffness was constructed and determined for the first time to simulate the kidney stiffness of healthy rats, rats with DKD for 8 weeks and 16 weeks, respectively. Compared with the PA gels with 3 kPa stiffness, the PA gels with 12 kPa and 30 kPa stiffness significantly increased the expression of YAP, α-smooth muscle actin (α-SMA) and collagen I, and the production of reactive oxygen species (ROS) in renal fibroblasts, and the PA gels with 30 kPa stiffness were the highest. PD significantly inhibited the above-mentioned changes of fibroblasts induced by pathological matrix stiffness, suggesting that the inhibition of PD on fibroblast-to-myofibroblast transformation and ECM production was at least partially associated with regulating YAP-related mechano-transduction pathway. Importantly, the inhibitory effect of PD on YAP expression and nuclear translocation in kidneys of DKD rats is similar to that of VP, but PD is superior to VP in reducing urinary protein, blood glucose, blood urea nitrogen and serum creatinine, as well as decreasing the expression of α-SMA and collagen I, ROS overproduction and renal fibrosis. Our results prove for the first time from the biomechanical point of view that PD is a potential therapeutic strategy for delaying the progression of renal fibrosis by inhibiting YAP expression and nuclear translocation.
Collapse
Affiliation(s)
- Manlin He
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Chen
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| |
Collapse
|
15
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
16
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury via SIRT6-Mediated Autophagy Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9035547. [PMID: 36160707 PMCID: PMC9507782 DOI: 10.1155/2022/9035547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
In the treatment of malignant tumors, the effectiveness of cisplatin (CP) is limited by its nephrotoxicity, leading to cisplatin-induced acute kidney injury (CP-AKI). Polydatin (PD) has been demonstrated to regulate autophagy in tumors, sepsis, and diabetes. We have recently confirmed that PD attenuated CP-AKI by inhibiting ferroptosis, but it is not clear whether PD can regulate autophagy to protect from CP-AKI. The purpose of this study was to investigate the effect of PD on autophagy in CP-treated HK-2 cells and CP-AKI mouse models, exploring the role of sirtuin 6 (SIRT6) upregulated by PD. In this study, the blocking of autophagy flux was observed in both CP-treated HK-2 cells in vitro and CP-AKI mouse models in vivo, whereas this blocking was reversed by PD, which was characterized by the increase of autophagy microtubule-associated protein light chain 3 II expression and autophagolysosome/autophagosome ratio and the decrease of p62 expression. Furthermore, PD also significantly increased the expression of SIRT6 in vivo and in vitro. The protective effect of PD manifested by the stimulating of autophagy flux, with the reducing of inflammatory response and oxidative stress, which included downregulation of tumor necrosis factor-α and interleukin-1β, decreased activity of myeloperoxidase and content of malondialdehyde, and increased activity of superoxide dismutase and level of glutathione, both in vivo and in vitro, was reversed by either inhibition of autophagy flux by chloroquine or downregulation of SIRT6 by OSS-128167. Taken together, the present findings provide the first evidence demonstrating that PD exhibited nephroprotective effects on CP-AKI by restoring SIRT6-mediated autophagy flux mechanisms.
Collapse
|
17
|
Liu S, Zhang R, Zhang X, Zhu S, Liu S, Yang J, Li Z, Gao T, Liu F, Hu H. The Invasive Species Reynoutria japonica Houtt. as a Promising Natural Agent for Cardiovascular and Digestive System Illness. Front Pharmacol 2022; 13:863707. [PMID: 35770098 PMCID: PMC9234309 DOI: 10.3389/fphar.2022.863707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Polygoni Cuspidati Rhizoma et Radix, the dry roots and stems of Reynoutria japonica Houtt (called Huzhang, HZ in Chinese), is a traditional and popular chinese medicinal herb for thousands of years. As a widely used ethnomedicine in Asia including China, Japan, and Korea, HZ can invigorate the blood, cool heat, and resolve toxicity, which is commonly used in the treatment of favus, jaundice, scald, and constipation. However, HZ is now considered an invasive plant in the United States and many European countries. Therefore, in order to take advantage of HZ and solve the problem of biological invasion, scholars around the world have carried out abundant research studies on HZ. Until now, about 110 compounds have been isolated and identified from HZ, in which anthraquinones, stilbenes, and flavonoids would be the main bioactive ingredients for its pharmacological properties, such as microcirculation improvement, myocardial protective effects, endocrine regulation, anti-atherosclerotic activity, anti-oxidant activity, anti-tumor activity, anti-viral activity, and treatment of skin inflammation, burns, and scalds. HZ has a variety of active ingredients and broad pharmacological activities. It is widely used in health products, cosmetics, and even animal husbandry feed and has no obvious toxicity. Efforts should be made to develop more products such as effective drugs, health care products, cosmetics, and agricultural and animal husbandry products to benefit mankind.
Collapse
Affiliation(s)
- Shaoyang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shun Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jue Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiping Li
- Sichuan Quantaitang Chinese Herbal Slices Co, Ltd., Chengdu, China
| | - Tianhui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Tianhui Gao, ; Fang Liu,
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Tianhui Gao, ; Fang Liu,
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Schimith LE, Dos Santos MG, Arbo BD, André-Miral C, Muccillo-Baisch AL, Hort MA. Polydatin as a therapeutic alternative for central nervous system disorders: A systematic review of animal studies. Phytother Res 2022; 36:2852-2877. [PMID: 35614539 DOI: 10.1002/ptr.7497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022]
Abstract
Polydatin, or piceid, is a natural stilbene found in grapes, peanuts, and wines. Polydatin presents pharmacological activities, including neuroprotective properties, exerting preventive and/or therapeutic effects in central nervous system (CNS) disorders. In the present study, we summarize and discuss the neuroprotective effects of polydatin in CNS disorders and related pathological conditions in preclinical animal studies. A systematic review was performed by searching online databases, returning a total of 110 records, where 27 articles were selected and discussed here. The included studies showed neuroprotective effects of polydatin in experimental models of neurological disorders, including cerebrovascular disorders, Parkinson's disease, traumatic brain injuries, diabetic neuropathy, glioblastoma, and neurotoxicity induced by chemical agents. Most studies were focused on stroke (22.2%) and conducted in male rodents. The intervention protocol with polydatin was mainly acute (66.7%), with postdamage induction treatment being the most commonly used regimen (55.2%). Overall, polydatin ameliorated behavioral dysfunctions and/or promoted neurological function by virtue of its antioxidant and antiinflammatory properties. In summary, this review offers important scientific evidence for the neuroprotective effects and distinct pharmacological mechanisms of polydatin that not only enhances the present understanding but is also useful for the development of future preclinical and clinical investigations.
Collapse
Affiliation(s)
- Lucia E Schimith
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Michele G Dos Santos
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Bruno D Arbo
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.,Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Corinne André-Miral
- Unité en Sciences Biologiques et Biotechnologies (US2B), Nantes Université, CNRS, Nantes, France
| | - Ana L Muccillo-Baisch
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Mariana A Hort
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.,Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Plants with Therapeutic Potential for Ischemic Acute Kidney Injury: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6807700. [PMID: 35656467 PMCID: PMC9152371 DOI: 10.1155/2022/6807700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Acute kidney injury (AKI) is a complex condition which has an intricate pathology mostly involving hemodynamic, inflammatory, and direct toxic effects at the cellular level with high morbidity and mortality ratios. Renal ischemic reperfusion injury (RIRI) is the main factor responsible for AKI, most often observed in different types of shock, kidney transplantation, sepsis, and postoperative procedures. The RIRI-induced AKI is accompanied by increased reactive oxygen species generation together with the activation of various inflammatory pathways. In this context, plant-derived medicines have shown encouraging nephroprotective properties. Evidence provided in this systemic review leads to the conclusion that plant-derived extracts and compounds exhibit nephroprotective action against renal ischemic reperfusion induced-AKI by increasing endogenous antioxidants and decreasing anti-inflammatory cytokines. However, there is no defined biomarker or target which can be used for treating AKI completely. These plant-derived extracts and compounds are only tested in selected transgenic animal models. To develop the results obtained into a therapeutic entity, one should apply them in proper vertebrate multitransgenic animal models prior to further validation in humans.
Collapse
|
20
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9947191. [PMID: 35075382 PMCID: PMC8783728 DOI: 10.1155/2022/9947191] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
Cisplatin is widely used in the treatment of solid tumors, but its application is greatly limited due to its nephrotoxicity; thus, there is still no effective medicine for the treatment of cisplatin-induced acute kidney injury (Cis-AKI). We previously identified that polydatin (PD) exerts nephroprotective effects by antioxidative stress in AKI models. Recent evidence suggests that oxidative stress-induced molecular events overlap with the process of ferroptosis and that there are common molecular targets, such as glutathione (GSH) depletion and lipid peroxidation. Nevertheless, whether the nephroprotective effect of PD is related to anti-ferroptosis remains unclear. In this study, the inhibitory effect of PD on ferroptosis was observed in both cisplatin-treated HK-2 cells (20 μM) in vitro and a Cis-AKI mouse model (20 mg/kg, intraperitoneally) in vivo, characterized by the reversion of excessive intracellular free iron accumulation and reactive oxygen species (ROS) generation, a decrease in malondialdehyde (MDA) content and GSH depletion, and an increase in glutathione peroxidase-4 (GPx4) activity. Remarkably, PD dose-dependently alleviated cell death induced by the system Xc− inhibitor erastin (10 μM), and the effect of the 40 μM dose of PD was more obvious than that of ferrostatin-1 (1 μM) and deferoxamine (DFO, 100 μM), classical ferroptosis inhibitors. Our results provide insight into nephroprotection with PD in Cis-AKI by inhibiting ferroptosis via maintenance of the system Xc−-GSH-GPx4 axis and iron metabolism.
Collapse
|
21
|
Ye P, Wu H, Jiang Y, Xiao X, Song D, Xu N, Ma X, Zeng J, Guo Y. Old dog, new tricks: Polydatin as a multitarget agent for current diseases. Phytother Res 2021; 36:214-230. [PMID: 34936712 DOI: 10.1002/ptr.7306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Polydatin (PD) is a natural single-crystal product that is primarily extracted from the traditional plant Polygonum cuspidatum Sieb. et Zucc. Early research showed that PD exhibited a variety of biological activities. PD has attracted increasing research interest since 2014, but no review comprehensively summarized the new findings. A great gap between its biological activities and drug development remains. It is necessary to summarize new findings on the pharmacological effects of PD on current diseases. We propose that PD will most likely be used in cardiac and cerebral ischaemia/reperfusion-related diseases and atherosclerosis in the future. The present work classified these new findings according to diseases and summarized the main effects of PD via specific mechanisms of action. In summary, we found that PD played a therapeutic role in a variety of diseases, primarily via five mechanisms: antioxidative effects, antiinflammatory effects, regulation of autophagy and apoptosis, maintenance of mitochondrial function, and lipid regulation.
Collapse
Affiliation(s)
- Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Kollaras V, Valsami G, Lambropoulou M, Konstandi O, Kostomistsopoulos N, Pikoulis E, Simopoulos C, Tsaroucha A. Effect of silibinin on the expression of MMP2, MMP3, MMP9 and TIMP2 in kidney and lung after hepatic ischemia/reperfusion injury in an experimental rat model. Acta Cir Bras 2021; 36:e360904. [PMID: 34755764 PMCID: PMC8580512 DOI: 10.1590/acb360904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The protective effect of silibinin on kidney and lung parenchyma during hepatic ischemia/reperfusion injury (IRI) is explored. METHODS Sixty-three Wistar rats were separated into three groups: sham; control (45 min IRI); and silibinin (200 μL silibinin administration after 45 min of ischemia and before reperfusion). Immunohistochemistry and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to evaluate the expression levels of MMP2, MMP3, MMP9, and TIMP2 on kidney and lung. RESULTS Comparing sham vs. control groups, confirmed that hepatic IRI increased both renal and lung MMP2, MMP3, MMP9 and TIMP2 expressions starting at 180 min (p<0.001). Comparison of the control vs. silibinin groups showed a statistically significant decrease in the expression levels of MMP2, MMP3, and MMP9 and increase of TIMP2 in kidney and lung parenchyma. The starting point of this decrease was at 120 min after reperfusion, both for kidney and lung parameters, and it was statistically significant at 240 min (p<0.001) for kidney, while silibinin showed a peak of lung protection at 180 min after hepatic reperfusion (p<0.001). CONCLUSIONS Hepatic IRI causes distant kidney and lung damage, while a statistically significant protective action, both on kidney and lung parenchyma, is conveyed by the intravenous administration of silibinin.
Collapse
|
23
|
Khattab SA, Hussien WF, Raafat N, Ahmed Alaa El-Din E. Modulatory effects of catechin hydrate on benzo[a]pyrene-induced nephrotoxicity in adult male albino rats. Toxicol Res (Camb) 2021; 10:542-550. [PMID: 34141168 DOI: 10.1093/toxres/tfab029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
Benzo [a] pyrene (B[a]P) is a potent mutagen and carcinogen, considered one of the commonest concomitants in the environment. The study aimed to evaluate the effect of catechin hydrate on benzo pyrene-induced kidney toxicity. Thirty-six adult male albino rats were divided into six groups: group I untreated control, group II received 10 mL/kg of corn oil (solvent of benzo [a] pyrene) twice a week, group III received 1 mL/kg 0.5% dimethyl sulfoxide (DMSO) (solvent of catechin) once per day, group IV received 50 mg/kg body weight of benzo[a]pyrene twice a week, group V received 20 mg/kg body weight of catechin in 1 mL/kg 0.5% DMSO once daily, and group VI received both catechin+benzo [a] pyrene with the same doses. All treatment was given by oral gavage for four weeks. At the end of the experiment, blood samples were collected for biochemical investigations, tissues were obtained for genotoxicity, RT-PCR, and histopathological studies. B[a]P exposure induced an increase in serum urea and creatinine levels along with severe renal histopathological changes. Our results showed a subsequent decrease in the antioxidant enzyme activities (catalase and superoxide dismutase), and conversely, (malondialdehyde) levels markedly elevated. Also, B[a]P induced DNA damage as well as activated an apoptotic pathway confirmed by upregulation of Bax, caspase-3, and downregulation of Bcl-2 expression. However, treatment with catechin-corrected kidney functions and antioxidant enzymes as well as regulated apoptosis. Histological results also supported the protective effects of catechin. These findings suggested that catechin hydrate is an effective natural product that attenuates benzo pyrene-induced kidney toxicity.
Collapse
Affiliation(s)
- Samah A Khattab
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Wafaa F Hussien
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nermin Raafat
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
24
|
Renal-Protective Effects and Potential Mechanisms of Traditional Chinese Medicine after Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5579327. [PMID: 33680054 PMCID: PMC7910071 DOI: 10.1155/2021/5579327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 02/05/2023]
Abstract
Renal ischemia-reperfusion (I/R) injury mainly causes acute kidney injury (AKI) after renal transplantation, trauma, sepsis, and hypovolemic shock. Patients with renal I/R injury are frequently associated with a poor prognosis. Traditional Chinese medicine (TCM) has been used for the prevention and treatment of various diseases in China and other Asian countries for centuries. Many studies have shown the protective effect of TCM on renal I/R injury, due to its diverse bioactive components. The potential mechanisms of TCMs on renal I/R injury include anti-inflammation, antioxidative effect, anti-cell death, downregulation of adhesion molecule expression, regulation of energy metabolism by restoring Na+-K+-ATPase activity, and mitochondrial fission. This review summarizes the major developments in the effects and underlying mechanisms of TCMs on the renal I/R injury.
Collapse
|
25
|
Meng F, Zhang Z, Chen C, Liu Y, Yuan D, Hei Z, Luo G. PI3K/AKT activation attenuates acute kidney injury following liver transplantation by inducing FoxO3a nuclear export and deacetylation. Life Sci 2021; 272:119119. [PMID: 33508296 DOI: 10.1016/j.lfs.2021.119119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
AIMS Acute kidney injury (AKI) is a severe complication of autologous orthotopic liver transplantation (AOLT). Apoptosis has been shown to be involved in renal ischemia/reperfusion, and the PI3K/AKT signaling pathway is involved in numerous cell processes, including promoting cell survival and inhibiting apoptosis. We aimed to verify whether the PI3K/AKT signaling pathway participates in the development of post-AOLT AKI. METHODS Male Sprague-Dawley rats underwent AOLT with or without treatment with insulin-like growth factor-1 (IGF-1, a PI3K/AKT activator) and LY294002 (a PI3K/AKT inhibitor; n = 8/group). NRK-52E cells (rat renal tubular epithelial cell line) were subjected to hypoxia-re-oxygenation to mimic renal cell I/R injury in vitro, and confirm whether silencing information regulator 1 (SIRT1) mediated the protective effects of PI3K/AKT by deacetylating forkhead protein O3a (FoxO3a). KEY FINDINGS During the reperfusion stage, kidney injury peaked at 8 h after reperfusion, then gradually recovered, which was consistent with the dynamic changes in apoptosis and the protein expressions of Bcl-2 interacting mediator of cell death (Bim), Fas ligand (FasL), and nuclear FoxO3a AKT phosphorylation and nuclear SIRT1 protein expression were also upregulated. IGF-1 application decreased Bim, FasL, and nuclear FoxO3a protein expressions, and protected against apoptosis and AKI. In NRK-52E cells, IGF-1 upregulated nuclear SIRT1 expression, reduced FoxO3a acetylation, downregulated Bim and FasL protein expressions, and attenuated apoptosis and AKI; these effects were reversed by SIRT1 blocking. CONCLUSION The activation of the PI3K/AKT signaling pathway not only induced FoxO3a nuclear export but also deacetylation through upregulating nuclear SIRT1 expression to attenuate post-AOLT AKI.
Collapse
Affiliation(s)
- Fanbing Meng
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; Department of Anesthesiology, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Zheng Zhang
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Chaojin Chen
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Yue Liu
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Dongdong Yuan
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| | - Ziqing Hei
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| | - Gangjian Luo
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
26
|
Lee C, Hong WJ, Jung KH, Hong HC, Kim DY, Ok HC, Choi MS, Park SK, Kim J, Koh HJ. Arachis hypogaea resveratrol synthase 3 alters the expression pattern of UDP-glycosyltransferase genes in developing rice seeds. PLoS One 2021; 16:e0245446. [PMID: 33444365 PMCID: PMC7808588 DOI: 10.1371/journal.pone.0245446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
The resveratrol-producing rice (Oryza sativa L.) inbred lines, Iksan 515 (I.515) and Iksan 526 (I.526), developed by the expression of the groundnut (Arachis hypogaea) resveratrol synthase 3 (AhRS3) gene in the japonica rice cultivar Dongjin, accumulated both resveratrol and its glucoside, piceid, in seeds. Here, we investigated the effect of the AhRS3 transgene on the expression of endogenous piceid biosynthesis genes (UGTs) in the developing seeds of the resveratrol-producing rice inbred lines. Ultra-performance liquid chromatography (UPLC) analysis revealed that I.526 accumulates significantly higher resveratrol and piceid in seeds than those in I.515 seeds and, in I.526 seeds, the biosynthesis of resveratrol and piceid reached peak levels at 41 days after heading (DAH) and 20 DAH, respectively. Furthermore, RNA-seq analysis showed that the expression patterns of UGT genes differed significantly between the 20 DAH seeds of I.526 and those of Dongjin. Quantitative real-time PCR (RT-qPCR) analyses confirmed the data from RNA-seq analysis in seeds of Dongjin, I.515 and I.526, respectively, at 9 DAH, and in seeds of Dongjin and I.526, respectively, at 20 DAH. A total of 245 UGTs, classified into 31 UGT families, showed differential expression between Dongjin and I.526 seeds at 20 DAH. Of these, 43 UGTs showed more than 2-fold higher expression in I.526 seeds than in Dongjin seeds. In addition, the expression of resveratrol biosynthesis genes (PAL, C4H and 4CL) was also differentially expressed between Dongjin and I.526 developing seeds. Collectively, these data suggest that AhRS3 altered the expression pattern of UGT genes, and PAL, C4H and 4CL in developing rice seeds.
Collapse
Affiliation(s)
- Choonseok Lee
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Ha-Cheol Hong
- National Institute of Agricultural Sciences, Wanju, Jeollabuk-do, Republic of Korea
| | - Dool-Yi Kim
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
| | - Hyun-Choong Ok
- Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Man-Soo Choi
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
| | - Soo-Kwon Park
- Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jaehyun Kim
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
- * E-mail: (JK); (HJK)
| | - Hee-Jong Koh
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- * E-mail: (JK); (HJK)
| |
Collapse
|
27
|
Tan YY, Chen LX, Fang L, Zhang Q. Cardioprotective effects of polydatin against myocardial injury in diabetic rats via inhibition of NADPH oxidase and NF-κB activities. BMC Complement Med Ther 2020; 20:378. [PMID: 33308195 PMCID: PMC7733248 DOI: 10.1186/s12906-020-03177-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Diabetic cardiomyopathy is a main cause of the increased morbidity in diabetic patients, no effective treatment is available so far. Polydatin, a resveratrol glucoside isolated from the Polygonum cuspidatum, was found by our and others have antioxidant and cardioprotective activities. Therapeutic effects of polydatin on diabetic cardiomyopathy and the possible mechanisms remains unclear. This study aimed to investigate the cardioprotective effects and underlying mechanisms of polydatin on myocardial injury induced by hyperglycemia. Methods Diabetes in rats was made by high-fat diet combined with multiple low doses of streptozotocin, and then treated with polydatin (100 mg·kg-1·day-1, by gavage) for 8 weeks. Cardiac function was examined by echocardiography. Myocardial tissue and blood samples were collected for histology, protein and metabolic characteristics analysis. In cultured H9c2 cells with 30 mM of glucose, the direct effects of polydatin on myocyte injury were also observed. Results In diabetic rats, polydatin administration significantly improved myocardial dysfunction and attenuated histological abnormalities, as evidenced by elevating left ventricular shortening fraction and ejection fraction, as well as reducing cardiac hypertrophy and interstitial fibrosis. In cultured H9c2 cells, pretreatment of polydatin dose-dependently inhibited high glucose-induced cardiomyocyte injury. Further observation evidenced that polydatin suppressed the increase in the reactive oxygen species levels, NADPH oxidase activity and inflammatory cytokines production induced by hyperglycemia in vivo and in vitro. Polydatin also prevented the increase expression of NOX4, NOX2 and NF-κB in the high glucose -stimulated H9c2 cells and diabetic hearts. Conclusions Our results demonstrate that the cardioprotective effect of polydatin against hyperglycemia-induced myocardial injury is mediated by inhibition of NADPH oxidase and NF-κB activity. The findings may provide a novel understanding the mechanisms of the polydatin to be a potential treatment of diabetic cardiomyopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-020-03177-y.
Collapse
Affiliation(s)
- Ying-Ying Tan
- Shaanxi Key Laboratory of Chinese Medicine Encephalopathy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang, Shaanxi, 712046, P. R. China.,Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P. R. China
| | - Lei-Xin Chen
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P. R. China
| | - Ling Fang
- Shaanxi Key Laboratory of Chinese Medicine Encephalopathy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang, Shaanxi, 712046, P. R. China
| | - Qi Zhang
- Shaanxi Key Laboratory of Chinese Medicine Encephalopathy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang, Shaanxi, 712046, P. R. China.
| |
Collapse
|
28
|
Chen F, Hu Y, Xie Y, Zhao Z, Ma L, Li Z, Tan W. Total Glucosides of Paeony Alleviate Cell Apoptosis and Inflammation by Targeting the Long Noncoding RNA XIST/MicroRNA-124-3p/ITGB1 Axis in Renal Ischemia/Reperfusion Injury. Mediators Inflamm 2020; 2020:8869511. [PMID: 33299380 PMCID: PMC7710434 DOI: 10.1155/2020/8869511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Renal ischemia/reperfusion injury (RI/RI) is the main cause of acute kidney injury. Total glucosides of paeony (TGP) are a traditional Chinese medicine. This study was aimed at exploring the role of TGP in RI/RI and its underlying mechanism of action. METHODS Rat RI/RI models were constructed by surgical operation. Serum creatinine (Scr) and blood urea nitrogen (BUN) were used to evaluate renal function. The levels of proinflammatory cytokines were detected by ELISA. RI/RI was simulated by hypoxia/reoxygenation (H/R) treatment in renal cells in vitro. The lncRNA XIST (XIST) expression was analyzed by qRT-PCR. Then, the viability and apoptosis of renal cells were detected by MTT and flow cytometry assay. Additionally, dual-luciferase reporter assay was used to determine the interactions among XIST, microRNA-124-3p (miR-124-3p), and ITGB1. RESULTS TGP improved renal function and inhibited inflammatory responses after RI/RI. XIST expression was highly expressed in rat RI/RI models and H/R-treated renal cells, whereas treatment with TGP downregulated the XIST expression. Additionally, TGP increased viability and attenuated apoptosis and inflammation of H/R-treated renal cells via inhibiting XIST. Moreover, XIST was competitively bound to miR-124-3p, and ITGB1 was a target of miR-124-3p. miR-124-3p overexpression or ITGB1 inhibition rescued the reduction effect on viability and mitigated the promoting effects on cell apoptosis and inflammation caused by XIST overexpression in H/R-treated renal cells. CONCLUSIONS In vivo, TGP attenuated renal dysfunction and inflammation in RI/RI rats. In vitro, TGP inhibited XIST expression to modulate the miR-124-3p/ITGB1 axis, alleviating the apoptosis and inflammation of H/R-treated renal cells.
Collapse
Affiliation(s)
- Fang Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yi Hu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yuetao Xie
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Zonghui Zhao
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Lin Ma
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Zhili Li
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
29
|
Félix LM, Luzio A, Santos A, Antunes LM, Coimbra AM, Valentim AM. MS-222 induces biochemical and transcriptional changes related to oxidative stress, cell proliferation and apoptosis in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108834. [PMID: 32585370 DOI: 10.1016/j.cbpc.2020.108834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
MS-222, the most widely used anaesthetic in fish, has been shown to induce embryotoxic effects in zebrafish. However, the underlying molecular effects are still elusive. This study aimed to investigate the effects of MS-222 exposure during early developmental stages by evaluating biochemical and molecular changes. Embryos were exposed to 50, 100 or 150 mg L-1 MS-222 for 20 min at one of three developmental stages (256-cell, 50% epiboly, or 1-4 somite stage) and oxidative-stress, cell proliferation and apoptosis-related parameters were determined at two time-points (8 and 26 hpf). Following exposure during the 256-cell stage, the biochemical redox balance was not affected. The genes associated with glutathione homeostasis (gstpi and gclc) were affected at 8 hpf, while genes associated with apoptosis (casp3a and casp6) and cellular proliferation (pcna) were found affected at 26 hpf. An inverted U-shaped response was observed at 8 hpf for catalase activity. After exposure at the 50% epiboly stage, the gclc gene associated with oxidative stress was found upregulated at 8 hpf, while gstpi was downregulated and casp6 was upregulated later on, coinciding with a decrease in glutathione peroxidase (GPx) activity and a non-monotonic elevation of protein carbonyls and casp3a. Additionally, MS-222 treated embryos showed a decrease in DCF-staining at 26 hpf. When exposure was performed at the 1-4 somite stage, a similar DCF-staining pattern was observed. The activity of GPx was also affected whereas RT-qPCR showed that caspase transcripts were dose-dependently increased (casp3a, casp6 and casp9). The pcna mRNA levels were also found to be upregulated while gclc was changed by MS-222. These results highlight the impact of MS-222 on zebrafish embryo development and its interference with the antioxidant, cell proliferation and cellular death systems by mechanisms still to be explained; however, the outcomes point to the Erk/Nrf2 signalling pathway as a target candidate.
Collapse
Affiliation(s)
- Luís M Félix
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), Universidade of Porto (UP), Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana Santos
- School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), Universidade of Porto (UP), Porto, Portugal
| |
Collapse
|
30
|
Zhang S, Wang S, Shi X, Feng X. Polydatin alleviates parkinsonism in MPTP-model mice by enhancing glycolysis in dopaminergic neurons. Neurochem Int 2020; 139:104815. [PMID: 32758587 DOI: 10.1016/j.neuint.2020.104815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. Damage to energy metabolism and reduced adenosine triphosphate (ATP) levels in dopaminergic neurons are common features of PD. Previous studies suggested that the occurrence of PD often affects glucose metabolism and ATP production in the brain, and increased glycolysis or ATP production protects dopaminergic neuronal degeneration in the brain of PD patients. These systems may provide new potential therapeutic targets for the prevention of PD. The present study investigated the inhibitory action of polydatin (PLD) on early dopaminergic neuronal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results showed that PLD protected against MPTP-induced early dopaminergic neuronal degeneration. PLD reduced the MPTP-induced loss of dopaminergic neurons in substantia nigra and striatum, inhibited the occurrence of neural apoptosis, and restored motor function in mice. PLD also increased the continuous activity duration and rhythm amplitude in mice during the circadian activity test. PLD improved glucose metabolism in the brain and restored ATP production levels. These observations suggest that PLD attenuates MPTP-induced early PD-like symptoms, and its mechanism of action may be associated with the promotion of glucose metabolism in neurons.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Sijie Wang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xingzhu Shi
- College of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
31
|
Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis. Life Sci 2020; 254:117756. [DOI: 10.1016/j.lfs.2020.117756] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
|
32
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
33
|
Sun Z, Wang X. Protective effects of polydatin on multiple organ ischemia-reperfusion injury. Bioorg Chem 2020; 94:103485. [DOI: 10.1016/j.bioorg.2019.103485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/09/2023]
|
34
|
Giarretta I, Gaetani E, Bigossi M, Tondi P, Asahara T, Pola R. The Hedgehog Signaling Pathway in Ischemic Tissues. Int J Mol Sci 2019; 20:ijms20215270. [PMID: 31652910 PMCID: PMC6862352 DOI: 10.3390/ijms20215270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) proteins are prototypical morphogens known to regulate epithelial/mesenchymal interactions during embryonic development. In addition to its pivotal role in embryogenesis, the Hh signaling pathway may be recapitulated in post-natal life in a number of physiological and pathological conditions, including ischemia. This review highlights the involvement of Hh signaling in ischemic tissue regeneration and angiogenesis, with particular attention to the heart, the brain, and the skeletal muscle. Updated information on the potential role of the Hh pathway as a therapeutic target in the ischemic condition is also presented.
Collapse
Affiliation(s)
- Igor Giarretta
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Eleonora Gaetani
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Margherita Bigossi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Paolo Tondi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
35
|
Li J, Zong D, Chen Y, Chen P. Anti-apoptotic effect of the Shh signaling pathway in cigarette smoke extract induced MLE 12 apoptosis. Tob Induc Dis 2019; 17:49. [PMID: 31516492 PMCID: PMC6662799 DOI: 10.18332/tid/109753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Many studies have shown that COPD is associated with apoptosis of bronchial or alveolar epithelial cells. Alveolar type II epithelial cells (AECII) play an important role in the pathogenetic process. Cigarette smoke extract (CSE) can induce apoptosis of AECII. The Sonic hedgehog (Shh) pathway is involved in many adult lung diseases. We aimed to verify the anti-apoptotic effect of Shh in the AECII apoptosis induced by CSE. METHODS Mouse lung epithelial type II cells, MLE 12, were treated by 5% CSE for 24 hours. Apoptosis was measured using flow cytometry and expression of the anti-apoptotic factor BCL-2. The role of the hedgehog pathway in cell apoptosis was assessed by real-time RT-PCT and western blotting to measure the expression of Sonic hedgehog, Patched 1, and Gli1. Recombinant mouse Sonic hedgehog was used to overexpress the Shh pathway. RESULTS CSE could induce MLE 12 apoptosis. Sonic hedgehog, Patched 1 and the Gli1 were decreased in the CSE induced MLE 12 apoptosis. Overexpression Shh could partially reverse the CSE induced apoptosis. CONCLUSIONS Activation of the Shh pathway may relieve the CSE induced MLE 12 apoptosis.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Dandan Zong
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
36
|
Wang X, Fan G, Wei F, Bu Y, Huang W. Hyperoside protects rat ovarian granulosa cells against hydrogen peroxide-induced injury by sonic hedgehog signaling pathway. Chem Biol Interact 2019; 310:108759. [DOI: 10.1016/j.cbi.2019.108759] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/30/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
|
37
|
Polydatin prevents LPS-induced acute kidney injury through inhibiting inflammatory and oxidative responses. Microb Pathog 2019; 137:103688. [PMID: 31445125 DOI: 10.1016/j.micpath.2019.103688] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022]
Abstract
The anti-inflammatory property of polydatin, a natural active ingredient found in the rhizome of Polygonum cuspidatum, has been verified. Although a variety of physiological functions have been uncovered, the protective effects and mechanism of polydatin on LPS-induced acute kidney injury remain unclear. Kidney histological change, MDA content, MPO activity, TNF-α, IL-1β, and IL-6 production were measured in this study. Furthermore, NF-κB and Nrf2 were tested by western blotting. In this study, polydatin not only significantly attenuated serum creatinine and BUN levels, but also remarkably inhibited TNF-α, IL-1β, and IL-6 production, MPO activity, and MDA content. Polydatin significantly inhibited LPS-induced NF-κB activation. Also, polydatin significantly increased Nrf2 and HO-1 expression. Taken together, all the above results indicate that polydatin had protective effects against LPS-induced AKI by blocking inflammatory and oxidative responses.
Collapse
|
38
|
Ding C, Han F, Xiang H, Wang Y, Dou M, Xia X, Li Y, Zheng J, Ding X, Xue W, Tian P. Role of prostaglandin E2 receptor 4 in the modulation of apoptosis and mitophagy during ischemia/reperfusion injury in the kidney. Mol Med Rep 2019; 20:3337-3346. [PMID: 31432142 DOI: 10.3892/mmr.2019.10576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
The mechanisms by which prostaglandin E2 receptor 4 (EP4) protects against renal ischemia‑reperfusion (I/R) injury (IRI) remain to be fully elucidated. In the present study, the protective effects of EP4 signaling on renal mitochondria and against renal IRI, as well as the underlying mechanisms, were investigated. A rat model of renal IRI was established. The right kidney was separated without damaging the artery clip, and the renal blood perfusion was then restored after 60 min. One group of animals was treated with EP4 agonists prior to I/R. The mitochondrial mass, the copy number of mitochondrial (mt)DNA, adenosine triphosphate (ATP) production and mitochondrial autophagy were analyzed. It was identified that renal IRI reduced the mitochondrial mass, decreased the mtDNA copy number and inhibited ATP production. The loss of renal mitochondria was attributed to the excessive mitochondrial autophagy induced by renal IRI. Pre‑treatment with EP4 agonist inhibited excessive mitochondrial autophagy, the loss of mitochondria and maintained and the energy imbalance within the cells. It was indicated that renal IRI causes excessive mitochondrial autophagy, which is one of the important causes of renal dysfunction.
Collapse
Affiliation(s)
- Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Feng Han
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Heli Xiang
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxiang Wang
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Meng Dou
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinxin Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Li
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
39
|
Baltaci AK, Gokbudak H, Baltaci SB, Mogulkoc R, Avunduk MC. The effects of resveratrol administration on lipid oxidation in experimental renal ischemia-reperfusion injury in rats. Biotech Histochem 2019; 94:592-599. [DOI: 10.1080/10520295.2019.1612091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- A. K. Baltaci
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - H. Gokbudak
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - S. B. Baltaci
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - R. Mogulkoc
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - M. C. Avunduk
- Meram Faculty of Medicine, Department of Pathology, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
40
|
Zhao W, Chen Z, Guan M. Polydatin enhances the chemosensitivity of osteosarcoma cells to paclitaxel. J Cell Biochem 2019; 120:17481-17490. [PMID: 31106479 DOI: 10.1002/jcb.29012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Weijia Zhao
- Department of Dermatology First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Zonghan Chen
- Office of Educational Administration Yunnan University of Traditional Chinese Medicine Kunming Yunnan China
| | - Meng Guan
- Department of Ophthalmology First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| |
Collapse
|
41
|
Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int Immunopharmacol 2019; 70:28-36. [DOI: 10.1016/j.intimp.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 01/30/2023]
|
42
|
Su M, Dong C, Wan J, Zhou M. Pharmacokinetics, tissue distribution and excretion study of trans-resveratrol-3-O-glucoside and its two metabolites in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152882. [PMID: 30901659 DOI: 10.1016/j.phymed.2019.152882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Trans-resveratrol-3-O-glucoside (TRG), isolated from the Chinese traditional herbal medicine Huzhang, has been shown to have a wide range of pharmacological benefits. PURPOSE The aim of this study is to investigate the pharmacokinetics, tissue distribution and excretion of TRG and its metabolites, (TRN (trans-resveratrol-3-O-glucuronide) and TR (trans-resveratrol)), following a single intragastric (i.g.) administration of TRG in rats. STUDY DESIGN To evaluate the pharmacokinetic properties of TRG, TRN and TR, groups of rats were administrated a single i.g. dose of either 75, 150 or 300 mg/kg TRG. The absolute bioavailability of TRG was estimated from the ratios of AUC0-∞ values for oral and intravenous administration. Tissue distributions of TRG, TRN and TR in rats were investigated following a single i.g. administration to four groups at 150 mg/kg dosage of TRG. For urinary, fecal and biliary excretion study, TRG, TRN and TR excretions were recovered from a group of rats administered a single i.g. dose of 150 mg/kg TRG. METHODS The levels of TRG, TRN and TR in plasma, tissues, bile, urine and feces were measured by a rapid and sensitive LC-UV method. The precision was below 10.0%, and the accuracy was within ±9.9% for TRG, TRN and TR. RESULTS The concentrations of TRN were markedly higher than those of TRG and TR in plasma, urine and bile. TRG, TRN and TR showed linear dynamics in dose range of 75-300 mg/kg TRG. TRG had poor absolute bioavailability in rats. The major distribution tissues of TRG, TRN, and TR in rats were in the digestive tract. TRG, TRN and TR were all eliminated from tissues quickly. TRG was mostly excreted via the renal route in the form of TRN, which accounted for 52.8% of the administered dose up to 72 h. CONCLUSION Following a single i.g. administration to rats TRG was easily absorbed and rapidly converted to the metabolites TR and TRN. These metabolites were found to be mainly excreted by the kidneys.
Collapse
Affiliation(s)
- Meiying Su
- Taian Central Hospital of Shandong Province, 29 Longtan Road, Taian 271000, PR China
| | - Chao Dong
- Taian Central Hospital of Shandong Province, 29 Longtan Road, Taian 271000, PR China
| | - Jiyun Wan
- Taian Central Hospital of Shandong Province, 29 Longtan Road, Taian 271000, PR China
| | - Maojin Zhou
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; HQ Bioscience Co. Ltd., 11/F, Building D, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou 2151123, PR China.
| |
Collapse
|
43
|
Peng L, Yin J, Ge M, Wang S, Xie L, Li Y, Si JQ, Ma K. Isoflurane Post-conditioning Ameliorates Cerebral Ischemia/Reperfusion Injury by Enhancing Angiogenesis Through Activating the Shh/Gli Signaling Pathway in Rats. Front Neurosci 2019; 13:321. [PMID: 31024240 PMCID: PMC6465767 DOI: 10.3389/fnins.2019.00321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Stroke is the second leading cause of death worldwide. Angiogenesis facilitates the formation of microvascular networks and promotes recovery after stroke. The Shh/Gli signaling pathway is implicated in angiogenesis and cerebral ischemia-reperfusion (I/R) injury. This study aimed at investigating the influence of isoflurane (ISO) post-conditioning on brain lesions and angiogenesis after I/R injury. Methods: Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), 1.5 h occlusion and 24 h reperfusion (MCAO/R). The ISO post-conditioning group (ISO group) received 1 h ISO post-conditioning when reperfusion was initiated. Neurobehavioral tests, TTC staining, HE staining, Nissl staining, TUNEL staining, immunofluorescence (IF), immunohistochemistry (IH) and Western blot were performed to assess the effect of ISO after I/R injury. Results: ISO post-conditioning resulted in lower infarct volumes and neurologic deficit scores, higher rate of neurons survival, and less damaged and apoptotic cells after cerebral I/R injury in rats. Meanwhile, ISO post-conditioning significantly increased the expression levels of vascular endothelial growth factor (VEGF) and CD34 in the ischemic penumbra, relative to that in the Sham and I/R groups. However, cyclopamine, the specific inhibitor of the Sonic hedgehog (Shh) signaling pathway, decreased the expression levels of VEGF and CD34, and counteracted the protective effects of ISO post-conditioning against I/R injury in rats. Conclusions: ISO post-conditioning enhances angiogenesis in vivo partly via the Shh/Gli signaling pathway. Thus, Shh/Gli may represent new therapeutic targets for aiding recovery from stroke.
Collapse
Affiliation(s)
- Li Peng
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Mingyue Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Sheng Wang
- Division of Life Sciences and Medicine, Department of Anesthesiology, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Liping Xie
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jun-Qiang Si
- Department of Physiology, School of Medicine, Shihezi University and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Shihezi University and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, China
| |
Collapse
|
44
|
Fang J, Luo L, Ke Z, Liu C, Yin L, Yao Y, Feng Q, Huang C, Zheng P, Fan S. Polydatin protects against acute cholestatic liver injury in mice via the inhibition of oxidative stress and endoplasmic reticulum stress. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Wang X, Wang W, Wang JZ, Yang C, Liang CZ. Effect of apigenin on apoptosis induced by renal ischemia/reperfusion injury in vivo and in vitro. Ren Fail 2018; 40:498-505. [PMID: 30278824 PMCID: PMC6171452 DOI: 10.1080/0886022x.2018.1497517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives: This study aims to investigate the effects and molecular mechanisms of apigenin (ApI) on renal ischemia/reperfusion (I/R) injury in vivo and in vitro. Methods:In vivo, the left renal artery was clamped for 45 min and the right kidney was removed to study renal I/R injury on Sprague-Dawley (SD) rats. ApI was injected at 60 min before renal ischemia. In vitro, renal tubular epithelial cells (HK-2) were pretreated with or without ApI (20 uM) for 60 min and then treated with hypoxia/reoxygenation (H/R). Renal function, histology, cells apoptosis, and cell viability were tested. Furthermore, the potential molecular mechanisms were assessed. Results: ApI pretreatment could significantly alleviated the renal function and the pathological damage as well as cells apoptosis after I/R injury. Meanwhile, ApI treatment protects H/R induced HK-2 cell apoptosis in vitro. The results of Western blot showed that ApI significantly increased the expressions of B-cell lymphoma 2 (Bcl-2) and phosphor-AKt (p-AKt), Phosphoinositide 3-kinase (PI3K), while down-regulated the expressions of Caspase3 and Bax induced by H/R injury. Conclusions: ApI pretreatment can protect renal function against I/R injury and prevent renal tubular cells from apoptosis in vivo and in vitro which might through PI3K/Akt mediated mitochondria-dependent apoptosis signaling pathway.
Collapse
Affiliation(s)
- Xiao Wang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China.,b Institute of Urology , Anhui Medical University , Hefei , PR China.,c Department of Urology, Fuyang People's Hospital , Fuyang , PR China
| | - Wei Wang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China.,b Institute of Urology , Anhui Medical University , Hefei , PR China
| | - Jian-Zhong Wang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China
| | - Cheng Yang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China
| | - Chao-Zhao Liang
- a Department of Urology , The First Affiliated Hospital of Anhui Medical University , Hefei , PR China.,b Institute of Urology , Anhui Medical University , Hefei , PR China
| |
Collapse
|
46
|
Polydatin ameliorates dextran sulfate sodium-induced colitis by decreasing oxidative stress and apoptosis partially via Sonic hedgehog signaling pathway. Int Immunopharmacol 2018; 64:256-263. [PMID: 30218952 DOI: 10.1016/j.intimp.2018.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/11/2018] [Accepted: 09/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammation, oxidative stress and epithelial barrier dysfunction have been implicated in inflammatory bowel disease (IBD) pathology. The targeted inhibition of these features may represent a promising therapeutic strategy for IBD. Polydatin is an effective natural antioxidant that possesses strong antioxidant and anti-apoptotic properties. Thus, we studied the protective effects of polydatin treatments on a mouse model of experimental colitis. METHODS Acute colitis was experimentally induced by adding 3% dextran sulfate sodium (DSS) to the drinking water provided to mice for 7 days and by administering different doses of polydatin (15, 30, or 45 mg/kg) during the same period. Mice were also treated with the Sonic hedgehog (Shh) pathway inhibitor cyclopamine to estimate the efficacy of polydatin and Shh inhibitors on colitis. The disease activity index (DAI), colon length, histology, levels of oxidative and apoptotic mediators and levels of Shh pathway components were evaluated. RESULTS The polydatin treatment significantly attenuated the DAI, colon shortening and histological damage. In addition, polydatin administration effectively decreased malondialdehyde (MDA) levels and increased the activities of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Polydatin also inhibited apoptosis in mice with colitis by downregulating the expression of the pro-apoptotic proteins Bax, caspase 3 and cleaved caspase 3 and increasing the expression of the anti-apoptotic protein Bcl-2. Furthermore, polydatin modulated Shh signaling pathway activation. After polydatin treatment, the main components of the Shh pathway, including Shh, Patched (Ptc), Smoothened (Smo), and glioblastoma-1 (Gli1), were upregulated at the mRNA and protein levels. Blockade of the Shh pathway using cyclopamine abolished the effects of polydatin on mice with colitis. CONCLUSION Based on these observations, polydatin may suppress experimental colitis at least partially by regulating the Shh signaling pathway.
Collapse
|
47
|
Pan B, Ren Y, Liu L. Uncovering the action mechanism of polydatin via network pharmacological target prediction. RSC Adv 2018; 8:18851-18858. [PMID: 35539671 PMCID: PMC9080635 DOI: 10.1039/c8ra03124j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Polydatin (PD), a small natural compound originally extracted from Polygonum cuspidatum, exerts distinct biological functions in a variety of diseases. However, the action mechanism of PD has yet to be systematically explored. In this study, we firstly corroborated the druggability of PD by evaluating the medicinal properties of PD using a TCMSP server. We then conducted in silico target-prediction for PD using PharmMapper and ChemMapper, which led to the identification of 15 potential targets overlapping in both approaches. These 15 targets were subsequently evaluated by GeneMANIA, GO biological process and KEGG pathway analysis, which finally contribute to the construction of a drug-target-pathway network for PD. The network analysis revealed that these targets were mainly associated with cancer, cell growth and apoptosis, hormones and other physiological processes, outlining the pharmacological influences of PD on multiple integrated pathways involved in a particular network.
Collapse
Affiliation(s)
- Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital Tianjin 300060 China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer Tianjin 300060 China
| | - Yuanyuan Ren
- Department of Pharmacy, Tianjin Medical University Cancer Institute & Hospital Tianjin 300060 China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer Tianjin 300060 China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital Tianjin 300060 China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer Tianjin 300060 China
| |
Collapse
|
48
|
Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Ahn C, Lee BC. Sonic hedgehog signaling mediates resveratrol to improve maturation of pig oocytes in vitro and subsequent preimplantation embryo development. J Cell Physiol 2018; 233:5023-5033. [PMID: 29215733 DOI: 10.1002/jcp.26367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022]
Abstract
The beneficial effects of resveratrol on in vitro maturation (IVM) have been explained mainly by indirect antioxidant effects and limited information is available on the underlying mechanism by which resveratrol acts directly on porcine cumulus oocyte complexes (COCs). Recently, several studies reported that sonic hedgehog (SHH) signaling mediates resveratrol to exert its biological activities. Furthermore, SHH is an important signaling molecule for follicle development, oocyte maturation, and embryo development. Therefore, to elucidate the relationship between resveratrol and SHH signaling, we designed three groups: (i) control; (ii) resveratrol; and (iii) resveratrol with cyclopamine (SHH signaling inhibitor). We evaluated the effects of these agents on cumulus expansion, oocyte maturation, embryo development after parthenogenetic activation, expression levels of mRNAs in cumulus cells, oocytes and blastocysts, and protein expression in COCs. Resveratrol significantly increased the proportion of COCs exhibiting complete cumulus expansion (degree 4), oocyte nuclear maturation, cleavage and blastocyst formation rates and total cell numbers, which were blocked in the presence of cyclopamine. At the same time, a significant increase in the expression levels of mRNAs related to cumulus expansion, oocyte maturation and SHH signaling-related mRNAs and proteins from the resveratrol treatment group was also inhibited by simultaneous addition of cyclopamine. In conclusion, our results indicate that SHH signaling mediates resveratrol to improve porcine cumulus expansion, oocyte maturation, and subsequent embryo development.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
49
|
Zhang B, Dai XH, Yu XP, Zou W, Teng W, Sun XW, Yu WW, Liu H, Wang H, Sun MJ, Li M. Baihui (DU20)-penetrating- Qubin (GB7) acupuncture inhibits apoptosis in the perihemorrhagic penumbra. Neural Regen Res 2018; 13:1602-1608. [PMID: 30127121 PMCID: PMC6126129 DOI: 10.4103/1673-5374.237123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Baihui (DU20)-penetrating-Qubin (GB7) acupuncture can inhibit inflammatory reactions and activate signaling pathways related to proliferation after intracerebral hemorrhage. However, there is no research showing the relationship between this treatment and cell apoptosis. Rat models of intracerebral hemorrhage were established by injecting 60 μL of autologous blood into the right side of the caudate-putamen. Six hours later, the needle traveled subcutaneously from the Baihui acupoint to Qubin acupoint. The needle was alternately rotated (180 ± 10 turns/min) manually along clockwise and counter-clockwise directions. Stimulation lasted for 7 days, and was performed three times each for 6 minutes with 6-minute intervals between stimulations. Rats intraperitoneally receiving Sonic hedgehog pathway activator, purmorphamine (1 mg/kg per day), served as positive controls. Motor and sensory function were assessed using the Ludmila Belayev test. Extent of pathological changes were measured in the perihemorrhagic penumbra using hematoxylin-eosin staining. Apoptosis was examined by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay. Expression of smoothened (Smo) and glioma-associated homolog 1 (Gli1) was determined by western blot assay. Our results showed that Baihui-penetrating-Qubin acupuncture promoted recovery of motor and sensory function, reduced the apoptotic cell percentage in the perihemorrhagic penumbra, and up-regulated Smo and Gli1 expression. We conclude that Baihui-penetrating-Qubin acupuncture can mitigate hemorrhage and promote functional recovery of the brain in a rat model of intracerebral hemorrhage, possibly by activating the Sonic hedgehog pathway.
Collapse
Affiliation(s)
- Beng Zhang
- Heilongjiang University of Chinese Medicine; First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Hong Dai
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xue-Ping Yu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Zou
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine; Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Teng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Wei Sun
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei-Wei Yu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Hui Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Meng-Juan Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Meng Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
50
|
Polydatin Prevents Methylglyoxal-Induced Apoptosis through Reducing Oxidative Stress and Improving Mitochondrial Function in Human Umbilical Vein Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7180943. [PMID: 29057033 PMCID: PMC5615983 DOI: 10.1155/2017/7180943] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/10/2017] [Accepted: 08/06/2017] [Indexed: 11/20/2022]
Abstract
Methylglyoxal (MGO), an active metabolite of glucose, has been reported to induce vascular cell apoptosis in diabetic complication. Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions, such as antioxidative, anti-inflammatory, and nephroprotective properties. However, the protective effects of PD on MGO-induced apoptosis in endothelial cells remain to be elucidated. In this study, human umbilical vein endothelial cells (HUVECs) were used to explore the effects of PD on MGO-induced cell apoptosis and the possible mechanism involved. HUVECs were pretreated with PD for 2 h, followed by stimulation with MGO. Then cell apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) impairment, mitochondrial morphology alterations, and Akt phosphorylation were assessed. The results demonstrated that PD significantly prevented MGO-induced HUVEC apoptosis. PD pretreatment also significantly inhibited MGO-induced ROS production, MMP impairment, mitochondrial morphology changes, and Akt dephosphorylation. These results and the experiments involving N-acetyl cysteine (antioxidant), Cyclosporin A (mitochondrial protector), and LY294002 (Akt inhibitor) suggest that PD prevents MGO-induced HUVEC apoptosis, at least in part, through inhibiting oxidative stress, maintaining mitochondrial function, and activating Akt pathway. All of these data indicate the potential application of PD for the treatment of diabetic vascular complication.
Collapse
|