1
|
Quero J, Paesa M, Morales C, Mendoza G, Osada J, Teixeira JA, Ferreira-Santos P, Rodríguez-Yoldi MJ. Biological Properties of Boletus edulis Extract on Caco-2 Cells: Antioxidant, Anticancer, and Anti-Inflammatory Effects. Antioxidants (Basel) 2024; 13:908. [PMID: 39199154 PMCID: PMC11352050 DOI: 10.3390/antiox13080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Boletus edulis (BE) is a mushroom well known for its taste, nutritional value, and medicinal properties. The objective of this work was to study the biological effects of BE extracts on human colon carcinoma cells (Caco-2), evaluating parameters related to oxidative stress and inflammation. In this study, a hydroethanolic extract of BE was obtained by ohmic heating green technology. The obtained BE extracts are mainly composed of sugars (mainly trehalose), phenolic compounds (taxifolin, rutin, and ellagic acid), and minerals (K, P, Mg, Na, Ca, Zn, Se, etc.). The results showed that BE extracts were able to reduce cancer cell proliferation by the induction of cell cycle arrest at the G0/G1 stage, as well as cell death by autophagy and apoptosis, the alteration of mitochondrial membrane potential, and caspase-3 activation. The extracts modified the redox balance of the cell by increasing the ROS levels associated with a decrease in the thioredoxin reductase activity. Similarly, BE extracts attenuated Caco-2 inflammation by reducing both iNOS and COX-2 mRNA expression and COX-2 protein expression. In addition, BE extracts protected the intestine from the oxidative stress induced by H2O2. Therefore, this study provides information on the potential use of BE bioactive compounds as anticancer therapeutic agents and as functional ingredients to prevent oxidative stress in the intestinal barrier.
Collapse
Affiliation(s)
- Javier Quero
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
| | - Mónica Paesa
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain;
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Carmen Morales
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
| | - Gracia Mendoza
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Jesús Osada
- Department of Biochemistry and Molecular Cell Biology, Veterinary Faculty, University of Zaragoza, 50009 Zaragoza, Spain;
- CIBERobn, ISCIII, IIS Aragón, IA2, 50009 Zaragoza, Spain
| | - José António Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, 32004 Ourense, Spain
- IAA—Instituto de Agroecoloxía e Alimentación, University of Vigo (Campus Auga), As Lagoas, 32004 Ourense, Spain
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
- CIBERobn, ISCIII, IIS Aragón, IA2, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Püsküllüoğlu M, Michalak I. The therapeutic potential of natural metabolites in targeting endocrine-independent HER-2-negative breast cancer. Front Pharmacol 2024; 15:1349242. [PMID: 38500769 PMCID: PMC10944949 DOI: 10.3389/fphar.2024.1349242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Breast cancer (BC) is a heterogenous disease, with prognosis and treatment options depending on Estrogen, Progesterone receptor, and Human Epidermal Growth Factor Receptor-2 (HER-2) status. HER-2 negative, endocrine-independent BC presents a significant clinical challenge with limited treatment options. To date, promising strategies like immune checkpoint inhibitors have not yielded breakthroughs in patient prognosis. Despite being considered archaic, agents derived from natural sources, mainly plants, remain backbone of current treatment. In this context, we critically analyze novel naturally-derived drug candidates, elucidate their intricate mechanisms of action, and evaluate their pre-clinical in vitro and in vivo activity in endocrine-independent HER-2 negative BC. Since pre-clinical research success often does not directly correlate with drug approval, we focus on ongoing clinical trials to uncover current trends. Finally, we demonstrate the potential of combining cutting-edge technologies, such as antibody-drug conjugates or nanomedicine, with naturally-derived agents, offering new opportunities that utilize both traditional cytotoxic agents and new metabolites.
Collapse
Affiliation(s)
- Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Izabela Michalak
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław, Poland
| |
Collapse
|
3
|
Hseu JH, Lin YA, Pandey S, Vadivalagan C, Ali A, Chen SJ, Way TD, Yang HL, Hseu YC. Antrodia salmonea suppresses epithelial-mesenchymal transition/metastasis and Warburg effects by inhibiting Twist and HIF-1α expression in Twist-overexpressing head and neck squamous cell carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117030. [PMID: 37572931 DOI: 10.1016/j.jep.2023.117030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia salmonea (AS), linked to the genus Taiwanofungus, is a medicinal fungus, and exhibits anti-inflammatory, anti-oxidant, and tumor inhibiting properties. AIM OF THE STUDY In this study, we investigated the metabolic reprogramming and anti-metastasis/epithelial-mesenchymal transition (EMT) effects of AS exposure in Twist-overexpressing head and neck squamous cell carcinoma (HNSCC, OECM-1 and FaDu-Twist) cells. MATERIALS AND METHODS MTT assay, Western blot, migration/invasion assay, immunofluorescence, glucose uptake assay, lactate assay, oxygen consumption rate (OCR)/Extracellular acidification rate (ECAR) assay, Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS), and qRT-PCR experimental techniques were used to evaluate the therapeutic potential of AS treatment in HNSCC cells. RESULTS This study showed that AS exhibits anti-EMT and anti-metastatic effects as well as metabolic reprogramming in Twist-overexpressing HNSCC cells. AS exposure inhibited Twist and hypoxia-inducible factor-1α (HIF-1α) protein and/or mRNA expression in Twist-overexpressing OECM-1 and FaDu-Twist cells. AS markedly suppressed EMT by enhancing the expression of E-cadherin; while the N-cadherin was suppressed. Furthermore, glucose uptake and lactate accumulation, together with HIF-1α-regulated glycolysis genes were diminished by AS in OECM-1 cells. AS decreased the ECAR, and enhanced the OCR together with basal respiration, ATP production, maximal respiration, and spare respiratory capacity under normoxia and hypoxia (CoCl2) in OECM-1 cells. There was a marked reduction in the level of glycolytic intermediate's; while TCA cycle metabolites were increased by AS treatment in OECM-1 cells. CONCLUSIONS We concluded that AS treatment suppresses EMT/metastasis and Warburg effects through Twist and HIF-1α inhibition in Twist-overexpressing HNSCC cells.
Collapse
Affiliation(s)
- Jhih-Hsuan Hseu
- Department of Dermatology, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, United States
| | - Asif Ali
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan.
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413305, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 404333, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 404333, Taiwan.
| |
Collapse
|
4
|
Mut-Salud N, Guardia JJ, Fernández A, Blancas I, Zentar H, Garrido JM, Álvarez-Manzaneda E, Chahboun R, Rodríguez-Serrano F. Discovery of a synthetic taiwaniaquinoid with potent in vitro and in vivo antitumor activity against breast cancer cells. Biomed Pharmacother 2023; 168:115791. [PMID: 37924793 DOI: 10.1016/j.biopha.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Taiwaniaquinoids are a unique family of diterpenoids predominantly isolated from Taiwania cryptomerioides Hayata. Previously, we evaluated the antiproliferative effect of several synthetic taiwaniaquinoids against human lung (A-549), colon (T-84), and breast (MCF-7) tumor cell lines. Herein, we report the in vitro and in vivo antitumor activity of the most potent compounds. Their cytotoxic activity against healthy peripheral blood mononuclear cells (PBMCs) has also been examined. We underscore the limited toxicity of compound C36 in PBMCs and demonstrate that it exerts its antitumor effect in MCF-7 cells (IC50 = 1.8 µM) by triggering an increase in reactive oxygen species, increasing the cell population in the sub-G1 phase of the cell cycle (90 %), and ultimately activating apoptotic (49.6 %) rather than autophagic processes. Western blot results suggested that the underlying mechanism of the C36 apoptotic effects was linked to caspase 9 activation and a rise in the Bax/Bcl-2 ratio. In vivo analyses showed normal behavior and hematological parameters in C57BL/6 mice post C36 treatment. Moreover, no significant impact was observed on the biochemical parameters of these animals, indicating that C36 did not induce liver toxicity. Furthermore, C36 demonstrated a significant reduction in tumor growth in immune-competent C57BL/6 mice implanted with E0771 mouse mammary tumor cells, effectively improving survival rates. These findings position taiwaniaquinoids, particularly compound C36, as promising therapeutic candidates for human breast cancer.
Collapse
Affiliation(s)
- Nuria Mut-Salud
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain
| | - Juan J Guardia
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Antonio Fernández
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Isabel Blancas
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Department of Medicine, School of Medicine, University of Granada, Granada 18016, Spain; Department of Medical Oncology, San Cecilio University Hospital, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain
| | - Houda Zentar
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - José M Garrido
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain; Department of Surgery and Surgical Specialties, University of Granada, Granada 18016, Spain
| | | | - Rachid Chahboun
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | - Fernando Rodríguez-Serrano
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain.
| |
Collapse
|
5
|
Maher S, Kalil H, Liu G, Sossey-Alaoui K, Bayachou M. Alginate-based hydrogel platform embedding silver nanoparticles and cisplatin: characterization of the synergistic effect on a breast cancer cell line. Front Mol Biosci 2023; 10:1242838. [PMID: 37936720 PMCID: PMC10626534 DOI: 10.3389/fmolb.2023.1242838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: Breast cancer is a significant cause of mortality in women globally, and current treatment approaches face challenges due to side effects and drug resistance. Nanotechnology offers promising solutions by enabling targeted drug delivery and minimizing toxicity to normal tissues. Methods: In this study, we developed a composite platform called (Alg-AgNPs-CisPt), consisting of silver nanoparticles coated with an alginate hydrogel embedding cisplatin. We examined the effectiveness of this nanocomplex in induce synergistic cytotoxic effects on breast cancer cells. Results and Discussion: Characterization using various analytical techniques confirmed the composition of the nanocomplex and the distribution of its components. Cytotoxicity assays and apoptosis analysis demonstrated that the nanocomplex exhibited greater efficacy against breast cancer cells compared to AgNPs or cisplatin as standalone treatments. Moreover, the nanocomplex was found to enhance intracellular reactive oxygen species levels, further validating its efficacy. The synergistic action of the nanocomplex constituents offers potential advantages in reducing side effects associated with higher doses of cisplatin as a standalone treatment. Overall, this study highlights the potential of the (Alg-AgNPs-CisPt) nanocomplex as a promising platform embedding components with synergistic action against breast cancer cells.
Collapse
Affiliation(s)
- Shaimaa Maher
- Chemistry Department, Cleveland State University, Cleveland, OH, United States
| | - Haitham Kalil
- Chemistry Department, Cleveland State University, Cleveland, OH, United States
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Metro Health Medical Center, Cleveland, OH, United States
| | - Mekki Bayachou
- Chemistry Department, Cleveland State University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
6
|
Lin YP, Hseu YC, Thiyagarajan V, Vadivalagan C, Pandey S, Lin KY, Hsu YT, Liao JW, Lee CC, Yang HL. The in vitro and in vivo anticancer activities of Antrodia salmonea through inhibition of metastasis and induction of ROS-mediated apoptotic and autophagic cell death in human glioblastoma cells. Biomed Pharmacother 2023; 158:114178. [PMID: 36916401 DOI: 10.1016/j.biopha.2022.114178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Antrodia salmonea (AS) exhibits anticancer activities against various cancers. OBJECTIVE This study investigated the anticancer activities of AS on human glioblastoma (GBM8401 and U87MG) cells both in vitro and in vivo and explained the underlying molecular mechanism. METHODS MTT, colony formation, migration/invasion assay, immunoblotting, immunofluorescence, TUNEL, Annexin V/PI staining, AO staining, GFP-LC3 transfection, TEM, qPCR, siLC3, DCFH2-DA assay, and xenografted-nude mice were used to assess the potential of AS therapy. RESULTS AS treatment retarded growth and suppressed colony formation in glioblastoma cells. AS attenuates EMT by suppressing invasion and migration, increasing E-cadherin expression, decreasing Twist, Snail, and N-cadherin expression, and inhibiting Wnt/β-catenin pathways in GBM8401 and U87MG cells. Furthermore, AS induced apoptosis by activating caspase-3, cleaving PARP, and dysregulating Bax and Bcl-2 in both cell lines. TUNEL assay and Annexin V/PI staining indicated AS-mediated late apoptosis. Interestingly, AS induced autophagic cell death by LC3-II accumulation, AVO formation, autophagosome GFP-LC3 puncta, p62/SQSTM1 expression, and ATG4B inhibition in GBM8401 and U87MG cells. TEM data revealed that AS favored autophagosome and autolysosome formation. The autophagy inhibitors 3-MA/CQ and LC3 knockdown suppressed AS-induced apoptosis in glioblastoma cells, indicating that the inhibition of autophagy decreased AS-induced apoptosis. Notably, the antioxidant N-acetylcysteine (NAC) inhibited AS-mediated ROS production and AS-induced apoptotic and autophagic cell death. Furthermore, AS induced ROS-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. AS reduced the tumor burden in GBM8401-xenografted nude mice and significantly modulated tumor xenografts by inducing anti-EMT, apoptosis, and autophagy. AS could be a potential antitumor agent in human glioblastoma treatment.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, ROC; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan, ROC; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan, ROC.
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan, ROC; Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Yuan-Tai Hsu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, ROC
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC.
| |
Collapse
|
7
|
Yang HL, Lin YA, Pandey S, Liao JW, Way TD, Yeh YL, Chen SJ, Hseu YC. In vitro and in vivo anti-tumor activity of Antrodia salmonea against twist-overexpressing HNSCC cells: Induction of ROS-mediated autophagic and apoptotic cell death. Food Chem Toxicol 2023; 172:113564. [PMID: 36563924 DOI: 10.1016/j.fct.2022.113564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a relatively common malignancy, characterized by lethal morbidity. Herein, we attempted to investigate the autophagy/apoptosis activities of the submerged fermented broths of Antrodia salmonea (AS) in HNSCC Twist-overexpressing (OECM-1 and FaDu-Twist) cells. AS (0-150 μg/mL) effectively reduced cell viability, colony formation, and downregulated Twist expression in OECM-1 and FaDu-Twist cells compared to FaDu cells. AS- induced apoptosis was mainly associated with activation of caspase-3, PARP cleavage, increased expression of VDAC-1 and disproportionation of Bax/Bcl-2. Annexin V/PI staining suggested late apoptosis induction by AS treatment. AS exhibits enhanced autophagy process mediated via LC3-I/II accumulation, increased acidic vesicular organelles (AVOs) formation and p62/SQSTM1 expression feeding into the apoptotic program. However, pre-treatment with autophagy blockers 3-MA and CQ significantly diminished AS-induced cell death. Additionally, suppression of AS-induced ROS release by treatment with antioxidant N-acetylcysteine (NAC) resulted in reduction of apoptotic and autophagic cell death. In vivo studies strengthened the above observations and showed that AS effectively reduced the tumor volume and tumor weight in OECM-1-xenografted nude mice. This study discovered that Antrodia salmonea exhibits a novel anti-cancer mechanism which could be harnessed as a new potent drug for HNSCC treatment.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Yu-Lyu Yeh
- Department of Healthcare Administration, Asia University, Taichung, 41354, Taiwan
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
8
|
Thilagavathi R, Priyankha S, Kannan M, Prakash M, Selvam C. Compounds from diverse natural origin against triple-negative breast cancer: A comprehensive review. Chem Biol Drug Des 2023; 101:218-243. [PMID: 36323650 DOI: 10.1111/cbdd.14172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Triple-negative breast cancer (TNBC) is caused due to the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor 2 (HER2) expression. Triple-negative breast cancer is the most aggressive heterogeneous disease that is capable of producing different clones and mutations. Tumorigenesis in TNBC is caused due to the mutation or overexpression of tumor suppressor genes. It is also associated with mutations in the BRCA gene which is linked to hereditary breast cancer. In addition, PARP proteins and checkpoint proteins also play a crucial function in causing TNBC. Many cell signaling pathways are dysregulated in TNBC. Even though chemotherapy and immunotherapy are good options for TNBC treatment, the response rates are still low in general. Many phytochemicals that are derived from natural compounds have shown very good inhibitions for TNBC. Natural compounds have the great advantage of being less toxic, having lesser side effects, and being easily available. The secondary metabolites such as alkaloids, terpenoids, steroids, and flavonoids in natural products make them promising inhibitors of TNBC. Their compositions also offer vital insights into inhibitory action, which could lead to new cancer-fighting strategies. This review can help in understanding how naturally occurring substances and medicinal herbs decrease specific tumors and pave the way for the development of novel and extremely efficient antitumor therapies.
Collapse
Affiliation(s)
- Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sridhar Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Manivel Kannan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
9
|
Wiggs A, Molina S, Sumner SJ, Rushing BR. A Review of Metabolic Targets of Anticancer Nutrients and Nutraceuticals in Pre-Clinical Models of Triple-Negative Breast Cancer. Nutrients 2022; 14:1990. [PMID: 35631131 PMCID: PMC9146055 DOI: 10.3390/nu14101990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is notoriously aggressive and has poorer outcomes as compared with other breast cancer subtypes. Due to a lack of targeted therapies, TNBC is often treated with chemotherapeutics as opposed to hormone therapy or other targeted therapies available to individuals with estrogen receptor positive (ER+) breast cancers. Because of the lack of treatment options for TNBC, other therapeutic avenues are being explored. Metabolic reprogramming, a hallmark of cancer, provides potential opportunities to target cancer cells more specifically, increasing efficacy and reducing side effects. Nutrients serve a significant role in metabolic processes involved in DNA transcription, protein folding, and function as co-factors in enzyme activity, and may provide novel strategies to target cancer cell metabolism in TNBC. This article reviews studies that have investigated how nutrients/nutraceuticals target metabolic processes in TNBC cells alone or in combination with existing drugs to exert anticancer effects. These agents have been shown to cause perturbations in many metabolic processes related to glucose metabolism, fatty acid metabolism, as well as autophagy and oxidative stress-related metabolism. With this information, we present the potential of nutrients as metabolism-directed anticancer agents and the potential for using these agents alone or in cocktails as a new direction for TNBC therapy.
Collapse
Affiliation(s)
- Alleigh Wiggs
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
| | - Sabrina Molina
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| | - Susan J. Sumner
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| | - Blake R. Rushing
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| |
Collapse
|
10
|
Application of a fluorescent H 2S probe based on excited-state intramolecular proton transfer for detecting latent mechanism of H 2S-induced MCF-7 apoptosis. Future Med Chem 2022; 14:647-663. [PMID: 35383482 DOI: 10.4155/fmc-2021-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: H2S is the third gas transmitter affecting the growth, reproduction and survival of cancer cells. However, the H2S anticancer and antitumor mechanism still needs to be further studied. Methods: Here, FHS-1 was synthesized utilizing excited-state intramolecular proton transfer to detect H2S in MCF-7 cells, and investigated the effects of varying concentrations NaHS on apoptosis. Results: The study found that FHS-1 detects H2S levels with high selectivity and pH stability and that H2S may regulate apoptosis in MCF-7 cells through the p53/mTOR/STAT3 pathway. Conclusion: Researching the influence of H2S on apoptosis can serve as a theoretical foundation for future research into H2S-related anticancer medicines, and the H2S probe can be used as an effective cancer screening tool.
Collapse
|
11
|
Synthesis of diaryl urea derivatives and evaluation of their antiproliferative activities in colon adenocarcinoma. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
The Efficacy of Psychological Care and Chinese Herbal Decoction in Postoperative Chemotherapy Patients with Endometrial Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5700637. [PMID: 35222888 PMCID: PMC8881117 DOI: 10.1155/2022/5700637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Background. In recent years, the incidence of endometrial cancer (EC) has been on the rise worldwide. The purpose of this study was to investigate the efficacy of psychological care and Chinese herbal decoction in EC patients with postoperative chemotherapy. Methods. 80 EC patients with postoperative chemotherapy were randomly divided into the observation group and control group. The control group was given psychotherapy. The observation group was given psychological care plus Chinese herbal decoction treatment. HE4, CA125, traditional Chinese medicine (TCM) syndrome scores, toxic and side effects, and quality of life scores before and after treatment were observed. Results. After treatment, the total effective rate of the observation group was higher than that of the control group. After treatment, serum HE4 and CA125 levels in the observation group were lower than those in the control group. In addition, CD3+ and CD4+ levels in the observation group were higher than those in the control group. Meanwhile, the CD8+ level in the observation group was lower than that in the control group. Compared with the control group, the quality of life in the observation group was significantly improved, and the incidence of adverse reactions was reduced. Conclusion. Chinese herbal decoction combined with psychological care can improve the clinical symptoms, alleviate the toxic and side effects, and improve the life quality of EC patients with postoperative chemotherapy.
Collapse
|
13
|
Wu J, Lin C, Chen X, Pan N, Liu Z. Polysaccharides isolated from Bangia fuscopurpurea induce apoptosis and autophagy in human ovarian cancer A2780 cells. Food Sci Nutr 2021; 9:6707-6719. [PMID: 34925800 PMCID: PMC8645740 DOI: 10.1002/fsn3.2621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 01/13/2023] Open
Abstract
Although ovarian cancer is common, its prognosis remains poor because of drug resistance and early metastasis. Polysaccharides extracted from Bangia fuscopurpurea (BFP) are potential anti-cancer agents, but the mechanisms underlying their effects in human ovarian cancer remain unclear. Here, we investigated the mechanisms of action of BFP polysaccharides in A2780 ovarian cancer cells using cell migration, invasion, apoptosis, and autophagy assays. Transwell assays indicated that BFP inhibited cell migration and invasion. Flow cytometry analysis showed that BFP treatment induced apoptosis and reactive oxygen species production, while significantly reducing mitochondrial membrane potential. Reverse transcription-polymerase chain reaction and Western blot analyses revealed changes in the expression of apoptosis- and autophagy-related cellular mRNAs and proteins, respectively, following BFP treatment for 24 h. Transmission electron microscopy revealed that BFP induced autophagy in A2780 cells. These findings demonstrate that BFP may be useful for developing functional foods for cancer therapy.
Collapse
Affiliation(s)
- Jingna Wu
- Xiamen Key Laboratory of Marine Medicinal Natural Products ResourcesXiamen Medical CollegeXiamenChina
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical ResourcesXiamen Medical CollegeXiamenChina
| | - Changhong Lin
- The First Affiliated Hospital of Xiamen UniversityXiamenChina
| | | | - Nan Pan
- Fisheries Research Institute of FujianXiamenChina
| | - Zhiyu Liu
- Fisheries Research Institute of FujianXiamenChina
| |
Collapse
|
14
|
Wen A, Zhu Y, Mazhar M, Qin L, Zeng H, Zhu Y. Enhancement of Anti-Proliferative Activity of the Extracts from Dehulled Adlay by Fermentation with Bacillus subtilis. Foods 2021; 10:foods10122959. [PMID: 34945511 PMCID: PMC8701002 DOI: 10.3390/foods10122959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
Dehulled adlay was fermented with Bacillus subtilis BJ3-2, the anti-proliferative activities of the extracts from fermented dehulled adlay were investigated with six types of tumor cells, and then the bioactive components and the anti-proliferative mechanism were primarily explored. Results showed that all the extracts of B.subtilis-fermented dehulled adlay (BDA) and dehulled adlay (DA) had no inhibition effect on human embryonic kidney 239T cells. The anti-proliferative activities of the extracts from BDA against six types of tumor cells were almost always significantly higher than DA. Compared with others, the n-butanol extract of BDA (BDA-Nb) exhibited stronger anti-proliferative activities against human leukemia K562 cells and human non-small cell lung cancer A549 cells. Importantly, the anti-proliferative activity of fermented dehulled adlay against K562 cells was firstly discovered. Meanwhile, BDA-Nb was rich in tetramethylpyrazine, γ-aminobutyric acid, protocatechuic, 2,3,4-trihydroxybenzoic, chlorogenic, p-hydroxybenzoic, caffeic, trans-cinnamic, ferulic acids, and rutin. BDA-Nb induced the proliferative inhibition of K562 and A549 cells due to abnormal cell morphology, the increased cell population in G1 phase and apoptosis rate, the downregulation of Bcl-2, and the upregulation of Bax and caspase-3/8/9. These results indicate that dehulled adlay fermented with B.subtilis could be a potential therapeutic agent for leukemia and lung cancer.
Collapse
Affiliation(s)
- Anyan Wen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (A.W.); (Y.Z.); (H.Z.)
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (A.W.); (Y.Z.); (H.Z.)
| | - Muhammad Mazhar
- College of Life Sciences, Guizhou University, Guiyang 550025, China;
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (A.W.); (Y.Z.); (H.Z.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou Province, Guiyang 550025, China
- National & Local Joint Engineering Center for the Development and Utilization Technology of Drug and Food Resources in Southwest China, Guiyang 550025, China
- Correspondence:
| | - Haiying Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (A.W.); (Y.Z.); (H.Z.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou Province, Guiyang 550025, China
| | - Yi Zhu
- Plant Protection and Plant Quarantine Station of Guizhou Province, Guiyang 550001, China;
| |
Collapse
|
15
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
16
|
Kaleem M, Perwaiz M, Nur SM, Abdulrahman AO, Ahmad W, Al-Abbasi FA, Kumar V, Kamal MA, Anwar F. Epigenetics of Triple-negative breast cancer via natural compounds. Curr Med Chem 2021; 29:1436-1458. [PMID: 34238140 DOI: 10.2174/0929867328666210707165530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial-to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF-2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s and KLK12 mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in treatment of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maryam Perwaiz
- Department of Sciences, University of Toronto. Mississauga. Canada
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
17
|
Yang HL, Liu HW, Shrestha S, Thiyagarajan V, Huang HC, Hseu YC. Antrodia salmonea induces apoptosis and enhances cytoprotective autophagy in colon cancer cells. Aging (Albany NY) 2021; 13:15964-15989. [PMID: 34031264 PMCID: PMC8266357 DOI: 10.18632/aging.203019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2021] [Indexed: 04/07/2023]
Abstract
A traditional Chinese medicinal fungus, Antrodia salmonea (AS), with antioxidant properties is familiar in Taiwan but anti-cancer activity of AS in human colon cancer is ambiguous. Hence, we explored the anti-cancer activity of AS in colon cancer cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that AS showed a remarkable effect on cell viability in colon cancer cells; SW620, HCT116, and HT29. Annexin V/propidium iodide (PI) stained cells indicated that AS induced both early/late apoptosis in SW620 cells. Additionally, cells treated with AS induced caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage, mitochondrial dysfunction, and Bcl-2 associated X (Bax)/B-cell lymphoma (Bcl-2) dysregulation. Microtubule- associated protein 1A/1B-light chain 3B (LC3-II) accumulation, sequestosome 1 (p62/SQSTM1) activation, autophagy related 4B cysteine peptidase (ATG4B) inactivation, acidic vesicular organelles (AVOs) formation, and Beclin-1/Bcl-2 dysregulation revealed that AS-induced autophagy. Interestingly, cells pretreated with 3-methyladenine (3-MA) strengthened AS-induced caspase-3/apoptosis. Suppression of apoptosis by z-Val-Ala-Asp fluoromethyl ketone (Z-VAD-FMK) did not however block AS-induced autophagy, suggesting that autophagy was not attenuated by the AS-induced apoptosis. Application of N-acetylcysteine (NAC) prevented AS-induced cell death, caspase-3 activation, LC3-II accumulation, and AVOs formation, indicating that AS-induced apoptosis and autophagy was mediated by reactive oxygen species (ROS). Furthermore, AS-induced cytoprotective autophagy and apoptosis through extracellular signal-regulated kinase (ERK) signaling cascades. Moreover, in vivo data disclosed that AS inhibited colitis-associated tumorigenesis in azoxymethane (AOM)-dextran sodium sulphate (DSS)-treated mice. For the first time, we report the anti-cancer properties of this potentially advantageous mushroom for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Hui-Wen Liu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Sirjana Shrestha
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | | | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
18
|
Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Sahebkar A. New Insight into Triple-Negative Breast Cancer Therapy: The Potential Roles of Endoplasmic Reticulum Stress and Autophagy Mechanisms. Anticancer Agents Med Chem 2021; 21:679-691. [PMID: 32560613 DOI: 10.2174/1871520620666200619180716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is accounted as the fifth leading cause of mortality among the other cancers. Notwithstanding, Triple Negative Breast Cancer (TNBC) is responsible for 15-20% of breast cancer mortality. Despite many investigations, it remains incurable in part due to insufficient understanding of its exact mechanisms. METHODS A literature search was performed in PubMed, SCOPUS and Web of Science databases using the keywords autophagy, Endoplasmic Reticulum (ER) stress, apoptosis, TNBC and the combinations of these keywords. RESULTS It was found that autophagy plays a dual role in cancer, so that it may decrease the viability of tumor cells or act as a cytoprotective mechanism. It then appears that using compounds having modulatory effects on autophagy is of importance in terms of induction of autophagic cell death and diminishing the proliferation and metastasis of tumor cells. Also, ER stress can be modulated in order to stimulate apoptotic and autophagic cell death in tumor cells. CONCLUSION Perturbation in the signaling pathways related to cell survival leads to the initiation and progression of cancer. Regarding the advancement in the cancer pathology, it seems that modulation of autophagy and ER stress are promising.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | |
Collapse
|
19
|
Hepatoprotection of Lycii Fructus Polysaccharide against Oxidative Stress in Hepatocytes and Larval Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3923625. [PMID: 33680282 PMCID: PMC7906805 DOI: 10.1155/2021/3923625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022]
Abstract
Scavenging of oxidative stress by antioxidants may provide a therapeutic strategy for nonalcoholic fatty liver disease (NAFLD). Increasing evidence is supporting the potential application of natural resourced polysaccharides as promising prevention or treatment strategies against NAFLD. In the current study, an acidic heteropolysaccharide, LFP-a1, was isolated and purified from Lycii fructus with successively hot water refluxing extraction, alcohol precipitation, protein removal, and DEAE-52 cellulose chromatographic separation. LFP-a1 was a complicated structured polysaccharide with an average MW of 4.74 × 104 Da and composed of 6 monosaccharides and 1 uronic acid. Preexposure of LFP-a1 could increase the cell viability and reverse the abnormal oxidative stress though inhibition of mitochondrial-mediated apoptotic pathway and correction of cell cycle progression against H2O2 hepatoxicity in NAFLD model L02 cells. Consistently, in vivo study in thioacetamide- (TAA-) induced NAFLD model zebrafish larvae showed LFP-a1 preserved the liver integrity and alleviated TAA-induced oxidative stress through downregulation of abnormal apoptosis. These observations indicated the hepatoprotective activity of LFP-a1, which may be applied for the prevention or treatment of NAFLD or other oxidative stress-related diseases.
Collapse
|
20
|
Sulphamoylated Estradiol Analogue Induces Reactive Oxygen Species Generation to Exert Its Antiproliferative Activity in Breast Cancer Cell Lines. Molecules 2020; 25:molecules25184337. [PMID: 32971805 PMCID: PMC7570675 DOI: 10.3390/molecules25184337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/06/2023] Open
Abstract
2-Methoxyestradiol (2ME), a 17β-estradiol metabolite, exerts anticancer properties in vitro and in vivo. To address 2ME’s low bioavailability, research led to the in silico design of sulphamoylated 2ME analogues. However, the role of oxidative stress induced in the activity exerted by sulphamoylated compounds remains elusive. In the current study, the influence of 2-Ethyl-17-oxoestra-1,3,5(10)-trien-3-yl sulphamate (ESE-one) on reactive oxygen species (ROS) induction and its effect on cell proliferation, as well as morphology, were assessed in breast tumorigenic cells (MCF-7 and MDA-MB-231). Fluorescent microscopy showed that sulphamoylated estradiol analogues induced hydrogen peroxide and superoxide anion, correlating with decreased cell growth demonstrated by spectrophotometry data. ESE-one exposure resulted in antiproliferation which was repressed by tiron (superoxide inhibitor), trolox (peroxyl inhibitor) and N,N′-dimethylthiourea (DMTU) (hydrogen peroxide inhibitor). Morphological studies demonstrated that tiron, trolox and DMTU significantly decreased the number of rounded cells and shrunken cells in MCF-7 and MDA-MB-231 cells induced by ESE-one. This in vitro study suggests that ESE-one induces growth inhibition and cell rounding by production of superoxide anion, peroxyl radical and hydrogen peroxide. Identification of these biological changes in cancer cells caused by sulphamoylated compounds hugely contributes towards improvement of anticancer strategies and the ROS-dependent cell death pathways in tumorigenic breast cells.
Collapse
|
21
|
Hseu YC, Lin RW, Shen YC, Lin KY, Liao JW, Thiyagarajan V, Yang HL. Flavokawain B and Doxorubicin Work Synergistically to Impede the Propagation of Gastric Cancer Cells via ROS-Mediated Apoptosis and Autophagy Pathways. Cancers (Basel) 2020; 12:cancers12092475. [PMID: 32882870 PMCID: PMC7564097 DOI: 10.3390/cancers12092475] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Among various kinds of treatment strategies for cancers, combination therapy has attracted significant attention due to its beneficial effects than the individual effects of the same compounds. Based on this idea, this study has investigated the synergistic effects of combination treatment of a natural anti-cancer agent flavokawain B (FKB) and a chemotherapeutic agent Doxorubicin on human gastric cancer cells and the underlying molecular mechanisms were deciphered through in vitro and in vivo approaches. Experimental data obtained in this study provided promising application prospects of FKB + Doxrubicin combination treatment in human gastric cancer cells. Abstract Chalcone flavokawain B (FKB) possesses a chemopreventive and anti-cancer activity. Doxorubicin is a chemotherapeutic DNA intercalating agent widely used in malignancy treatment. The present study investigated whether synergistic effects exist between the combination of FKB (1.25–5 µg/mL) and doxorubicin (0.5 µg/mL) on the apoptosis and autophagy in human gastric cancer (AGS) cells, and the possible in vitro and in vivo mechanisms. The MTT assay measured cell viability. Various apoptotic-, autophagy-associated protein expression was determined by the Western blot technique. FKB+doxorubicin synergy was estimated by the Chou-Talalay combination index (CI) method. In vivo studies were performed on BALB/c mice. Results showed that compared to FKB/doxorubicin treatments, low doses of FKB+doxorubicin suppressed AGS cell growth. FKB potentiated doxorubicin-induced DNA fragmentation, apoptotic cell death, and enhanced doxorubicin-mediated mitochondrial, death receptor pathways. FKB+doxorubicin activated increased LC3-II accumulation, p62/SQSTM1 expression, and AVO formation as compared to the FKB/doxorubicin alone treatments indicating autophagy in these cells. The death mechanism in FKB+doxorubicin-treated AGS cells is due to the activation of autophagy. FKB+doxorubicin-mediated dysregulated Bax/Bcl-2, Beclin-1/Bcl-2 ratios suggested apoptosis, autophagy induction in AGS cells. FKB+doxorubicin-induced LC3-II/AVOs downregulation was suppressed due to an apoptotic inhibitor Z-VAD-FMK. Whereas, 3-methyladenine/chloroquine weakened FKB+doxorubicin-induced apoptosis (decreased DNA fragmentation/caspase-3). Activation of ERK/JNK may be involved in FKB+doxorubicin-induced apoptosis and autophagy. FKB+doxorubicin-triggered ROS generation, but NAC attenuated FKB+doxorubicin-induced autophagic (LC3 accumulation) and apoptotic (caspase-3 activation and PARP cleavage) cell death. FKB+doxorubicin blocked gastric cancer cell xenografts in nude mice in vivo as compared to FKB/doxorubicin alone treatments. FKB and doxorubicin wielded synergistic anti-tumor effects in gastric cancer cells and is a promising therapeutic approach.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ruei-Wan Lin
- Institute of Nutrition, China Medical University, Taichung 40402, Taiwan; (R.-W.L.); (Y.-C.S.)
| | - Yi-Chun Shen
- Institute of Nutrition, China Medical University, Taichung 40402, Taiwan; (R.-W.L.); (Y.-C.S.)
| | - Kai-Yuan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 71004, Taiwan;
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71004, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Correspondence: (V.T.); (H.-L.Y.); Tel.: +886-4-2205-3366 (ext. 7503) (H.-L.Y.); Fax: +886-4-2206-2891 (H.-L.Y.)
| | - Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung 40402, Taiwan; (R.-W.L.); (Y.-C.S.)
- Correspondence: (V.T.); (H.-L.Y.); Tel.: +886-4-2205-3366 (ext. 7503) (H.-L.Y.); Fax: +886-4-2206-2891 (H.-L.Y.)
| |
Collapse
|
22
|
Hseu YC, Cho HJ, Gowrisankar YV, Thiyagarajan V, Chen XZ, Lin KY, Huang HC, Yang HL. Kalantuboside B induced apoptosis and cytoprotective autophagy in human melanoma A2058 cells: An in vitro and in vivo study. Free Radic Biol Med 2019; 143:397-411. [PMID: 31442557 DOI: 10.1016/j.freeradbiomed.2019.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 12/28/2022]
Abstract
Kalantuboside B (KB), a natural bufadienolide derivative extracted from the succulent plant Kalanchoe tubiflora, is well-known for its cardiotonic, immunomodulatory, and anti-inflammatory properties. In this study, we tested in vitro and in vivo anti-cancer efficacy with low concentrations of KB (5-30 ng/mL; 8.7-52.2 nM) on A2058 melanoma cells; and for the molecular mechanisms that underlie them. KB significantly inhibited the cell viability and colony formation via arresting the cell cycle at G2/M phase. There was an association with a decrease in Cyclin A/B1, Cdc25C, and Cdc2 expressions. Further, this treatment indicated the induction of apoptosis, DNA fragmentation, cytochrome c release, and caspase-3, -8, -9, and -12 activation, and PARP cleavage, which shows that mitochondrial, death-receptor, and ER-stress signaling pathways are involved. KB-induced autophagy was apparent from enhanced LC3-II accumulation, GFP-LC3 puncta, and AVO formation. Surprisingly, KB-mediated cell death was potentiated by 3-MA and CQ to suggest the role of autophagy as a cytoprotective mechanism. Moreover, KB-treated A2058 cells enhanced intracellular ROS generation and antioxidant NAC prevented apoptosis and reversed cytoprotective autophagy. Interestingly, KB-induced apoptosis (PARP cleavage) and cytoprotective autophagy (LC3-II accumulation) were mediated by the up-regulation of the ERK signaling pathway. It was also shown that KB promoted cytoprotective autophagy by a calcium dependent-p53 downregulation pathway. In vivo data showed that KB suppressed tumor growth significantly in A2058-xenografted nude mice. A Western blot indicated cell-cycle inhibition (cyclin A reduction), apoptosis induction (PARP cleavage and Bcl-2 inhibition), and cytoprotective autophagy (LC3-II upregulation and p53 downregulation) in KB-treated A2058-xenografted mice. Our findings suggested that KB-induced ROS pathway plays a role in mediating the apoptosis and cytoprotective autophagy in human melanoma cells. Thus, KB is considered to be a putative anti-tumor agent.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Hsin-Ju Cho
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | - Yugandhar Vudhya Gowrisankar
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Xuan-Zao Chen
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
23
|
Zhang Y, Li Y, Wang Y, Wang G, Mao L, Zhang D, Wang J. Effects of resveratrol on learning and memory in rats with vascular dementia. Mol Med Rep 2019; 20:4587-4593. [PMID: 31702039 PMCID: PMC6797959 DOI: 10.3892/mmr.2019.10723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023] Open
Abstract
The purpose of the present study was to study the effects of resveratrol on cognitive function in rats with vascular dementia and to investigate the molecular mechanisms of its neuroprotective effects. Forty-five SD rats were randomly divided into 3 groups: The control group (Con group, n=15), the model group (VD group, n=15) and the resveratrol-treated VD group (Res group, n=15). The VD rats (the VD group and the Res group) were generated by bilateral common carotid artery occlusion. The rats in the Res group received daily resveratrol treatment intraperitoneally for 4 weeks. Cognitive function was tested using the Morris water maze test. The levels of SOD and MDA (oxidative stress indicators) were detected by ELISA kits. The protein expression of Bax, Bcl-2 and caspase-3 was detected by western blotting. Compared with the rats in the Con group, the rats in the VD group exhibited decreased cognitive function, significantly increased hippocampal content of MDA, Bax and caspase-3 (P<0.05), and significantly reduced hippocampal expression of SOD and Bcl-2 (P<0.05). Compared with the rats in the VD group, the rats in the Res group exhibited increased cognitive ability, reduced hippocampal content of MDA, Bax and caspase-3 (P<0.05), and increased hippocampal expression of SOD and Bcl-2 (P<0.05). Resveratrol treatment significantly improved the spatial learning and memory of the VD rats. The mechanism associated with the neuroprotective effects of resveratrol may be closely related to the inhibition of the apoptosis pathway and oxidative stress injury.
Collapse
Affiliation(s)
- Yeqing Zhang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Yuwang Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Yinxiao Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Gengyin Wang
- School of Basic Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Danhong Zhang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Jinhua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
24
|
Hong Y, Fan D. Ginsenoside Rk1 induces cell cycle arrest and apoptosis in MDA-MB-231 triple negative breast cancer cells. Toxicology 2019; 418:22-31. [DOI: 10.1016/j.tox.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
25
|
Zhang L, Lu P, Yan L, Yang L, Wang Y, Chen J, Dai J, Li Y, Kang Z, Bai T, Xi Y, Xu J, Sun G, Yang T. MRPL35 Is Up-Regulated in Colorectal Cancer and Regulates Colorectal Cancer Cell Growth and Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1105-1120. [PMID: 30862482 DOI: 10.1016/j.ajpath.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Mitochondrial ribosome proteins (MRPs), which are encoded by the nuclear genomic DNA, are important for mitochondrial-encoded protein synthesis and mitochondrial function. Emerging evidence suggests that several MRPs also exhibit important extra-mitochondrial functions, such as involvement in apoptosis, protein biosynthesis, and signal transduction. In this study, we demonstrate a significant role of MRP L35 (MRPL35) in colorectal cancer (CRC). The expression of MRPL35 was higher in CRC tissues than in matched cancer-adjacent tissues and higher in CRC cells than in normal mucosal epithelial cells. Higher MRPL35 expression in CRC tissue correlated with shorter overall survival for CRC patients. In vitro, down-regulation of MRPL35 led to increased production of reactive oxygen species (ROS) together with DNA damage, loss of cell proliferation, G2/M arrest, a decrease in mitochondrial membrane potential, apoptosis, and autophagy induction. MRPL35 knockdown inhibited tumor proliferation in a CRC xenograft nude mouse model. Furthermore, overexpression of MRPL35 or treatment of cells with the ROS scavenger, N-acetyl cysteine, abrogated ROS production, cell cycle arrest, and apoptosis in vitro. These findings suggest that MRPL35 plays an essential role in the development of CRC and may be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Litao Zhang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Peifen Lu
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lihong Yan
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yutao Wang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Junjun Chen
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jie Dai
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yahui Li
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Zhiming Kang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Tao Bai
- Department of Pathology, First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Jun Xu
- Department of General Surgery, Shanxi Grand Hospital, Taiyuan, China
| | - Gongqin Sun
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island.
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
26
|
Antrodia cinnamomea, a Treasured Medicinal Mushroom, Induces Growth Arrest in Breast Cancer Cells, T47D Cells: New Mechanisms Emerge. Int J Mol Sci 2019; 20:ijms20040833. [PMID: 30769922 PMCID: PMC6412332 DOI: 10.3390/ijms20040833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Reported cases of breast cancer have skyrocketed in the last decades with recent advances in examination techniques. Brest cancer has become the second leading cause of mortality among women worldwide, urging the scientific community to develop or find new drugs from natural sources with potent activity and a reasonable safety profile to tackle this ailment. Antrodia cinnamomea (AC) is a treasured medicinal fungus which has attracted attention due to its potent hepatoprotective and cytotoxic activities. We evaluated the antiproliferative activity of the ethanol extract of artificially cultured AC (EEAC) on breast cancer cells (T47D cells) in vivo and in vitro. Ethanol extract of artificially cultured AC inhibited T47D cells' proliferation mediated by cell cycle arrest at G1 phase as well induced autophagy. Immunoblotting assay confirmed that EEAC not only decreased the expression of the cell-cycle-related proteins but also increased the expression of transcription factor FOXO1, autophagic marker LC3 II, and p62. Ethanol extract of artificially cultured AC mediated endoplasmic reticulum stress by promoting the expression of IRE1 (inositol-requiring enzyme 1α), GRP78/Bip (glucose regulating protein 78), and CHOP (C/EBP homologous protein). Apart from previous studies, HDACs (histone deacetylases) activity was inhibited as demonstrated by a cell-free system, immunoblotting, and immunofluorescence assays following EEAC treatment. The in vivo studies demonstrated that EEAC decreased tumor volume and inhibited tumor growth without any significant side effects. High performance liquid chromatography profile demonstrated similar triterpenoids compared to the profile of wild AC ethanol extract. The multiple targets of EEAC on breast cancer cells suggested that this extract may be developed as a potential dietary supplement targeting this debilitating disease.
Collapse
|
27
|
Wang L, Li X, Wang B. The cytotoxicity activity of Hohenbuehelia serotina polyphenols on HeLa cells via induction of cell apoptosis and cell cycle arrest. Food Chem Toxicol 2019; 124:239-248. [DOI: 10.1016/j.fct.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
|
28
|
Li S, Hu L, Li J, Zhu J, Zeng F, Huang Q, Qiu L, Du R, Cao R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur J Med Chem 2019; 162:666-678. [DOI: 10.1016/j.ejmech.2018.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
|
29
|
Yang HL, Lin RW, Karuppaiya P, Mathew DC, Way TD, Lin HC, Lee CC, Hseu YC. Induction of autophagic cell death in human ovarian carcinoma cells by Antrodia salmonea through increased reactive oxygen species generation. J Cell Physiol 2018; 234:10747-10760. [PMID: 30584666 DOI: 10.1002/jcp.27749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
Abstract
We reported in our previously executed studies that the fermented culture broth of Antrodia salmonea (AS), a mushroom used in Taiwanese folk medicine induced reactive oxygen species (ROS)-mediated apoptosis in human ovarian carcinoma cells. In this study, we studied the anticancer efficacies of AS (0-240 μg/ml) by examining the key molecular events implicated in cell death associated with autophagy in SKOV-3 and A2780 human ovarian carcinoma cells and clarified the fundamental molecular mechanisms. Treatment of ovarian carcinoma cells with AS-induced autophagic cell death mediated by increased microtubule-associated protein LC3-II, GFP-LC3 puncta, and acidic vesicular organelle (AVO) formation. These events are linked with the activation of p62/SQSTM1, the inhibition of ATG4B, the expression of ATG7, and the dysregulation of Beclin-1/Bcl-2 (i.e., B-cell lymphoma 2). N-acetylcysteine inhibited AS-induced ROS generation, which in turn constricted AS-induced LC3 conversion, AVO formation, and ATG4B inhibition, indicating ROS-mediated autophagy cell death. In addition, the 3-methyladenine (3-MA) or chloroquine (CQ)-induced autophagy inhibition decreased AS-induced apoptosis. Additionally, apoptosis inhibition by Z-VAD-FMK, a pan-caspase inhibitor, substantially suppressed AS-induced autophagy. Furthermore, AS-inhibited HER-2/ neu and PI3K/AKT signaling pathways which were reversed by autophagy inhibitors 3-MA and CQ. Thus, A. salmonea is a potential chemopreventive agent that is capable of activating ROS-mediated autophagic cell death in ovarian carcinoma cells.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ruei-Wan Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Palaniyandi Karuppaiya
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, China Medical University, Taichung, Taiwan
| | - Hui-Chang Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Hseu YC, Lin YC, Rajendran P, Thigarajan V, Mathew DC, Lin KY, Way TD, Liao JW, Yang HL. Antrodia salmonea suppresses invasion and metastasis in triple-negative breast cancer cells by reversing EMT through the NF-κB and Wnt/β-catenin signaling pathway. Food Chem Toxicol 2018; 124:219-230. [PMID: 30529123 DOI: 10.1016/j.fct.2018.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023]
Abstract
Antrodia salonea (AS), a fungus that is indigenous to Taiwan has been well known for its anti-cancer properties. We investigated the anti-metastatic and anti-epithelial-mesenchymal transition (EMT) properties of AS in TNBC cells. To determine their EMT and metastasis levels, in vitro wound healing, wound invasion, Western blotting, RT-PCR, luciferase activity and immunofluorescence assays were performed, while the in vivo anti-metastatic efficacy of AS was evaluated in BALB/c-nu mice through bioluminescence imaging, HE staining, and immunohistochemical staining. MDA-MB-231 cells, when treated with AS concentrations (25-100 μg/mL) resulted in significant reduction of invasion and migration as well as the downregulation of VEGF, uPAR, uPA and MMP-9 (inhibition of PI3K/AKT/NFκB pathways). AS treatment prevented morphological changes and reversed EMT through the upregulation of E-cadherin and the downregulation of N-cadherin, Slug, Twist, and Vimentin. Inhibition of Smad3 signaling pathway, downregulation of β-catenin pathway and upregulation of GSK3β expression were also observed while, suppression of metastasis and EMT in TGF-β1-stimulated non-tumorigenic MCF-10A cells was observed when treated with AS. Histological analysis confirmed that AS reduced tumor metastasis and upregulated E-cadherin expression in biopsied lung tissues. Our results indicated that AS exhibits anti-EMT and anti-metastatic activity, that could contribute to develop anticancer drugs against TNBC.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
| | - Yi-Chun Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Peramaiyan Rajendran
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Varadharajan Thigarajan
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
31
|
Amjadi M, Mohammadi Khoshraj J, Majidi MR, Baradaran B, de la Guardia M. Evaluation of Flavonoid Derivative and Doxorubicin Effects in Lung Cancer Cells (A549) Using Differential Pulse Voltammetry Method. Adv Pharm Bull 2018; 8:637-642. [PMID: 30607336 PMCID: PMC6311643 DOI: 10.15171/apb.2018.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/21/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose: Electrochemical measurements have prompted the progress as a consequence of their affectability, cost-affectivity and comparatively short examination time. The aim of this study was the fast evaluation of the effect of chemotherapy compounds on the viability of lung cancer cells (A549) via electrochemical methods. Methods: Cyclic voltammetry (CV) was used as a primary method to distinguish between electrochemical behavior of normal and lung cancer cells. Differential pulse voltammetry (DPV) was employed as a complementary analyses method for the impact of doxorubicin (DOX) and Flavonoid modified drug (FMD) (US patent Application number: 62548886) on Lung cancer cells. Results: Only one oxidative peak, at approximately -0.15 V was detected through DPV method in cancer cell line. While a significant distinguish was not seen in CV. The current intensity (I) was decreased in cancer cells with increasing the DOX and FMD levels (t=99.027, α=0.05, P=0.0000), (t=135.513, α=0.05, P=0.0000), respectively. Conclusion: The movement of cancerous cells towards death through chemotherapy drugs such as DOX and FMD can make distinct and significant changes in the electrochemical behaviors of those cells.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry, Chemistry Faculty, Tabriz University, Tabriz, Iran
| | | | - Mir Reza Majidi
- Department of Analytical Chemistry, Chemistry Faculty, Tabriz University, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
32
|
Yang HL, Lin RW, Rajendran P, Mathew DC, Thigarajan V, Lee CC, Hsu CJ, Hseu YC. Antrodia salmonea-induced oxidative stress abrogates HER-2 signaling cascade and enhanced apoptosis in ovarian carcinoma cells. J Cell Physiol 2018; 234:3029-3042. [PMID: 30146791 DOI: 10.1002/jcp.27123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Abstract
Antrodia salmonea is well known in Taiwan as a traditional Chinese medicinal fungus and has demonstrated antioxidant, anti-inflammatory, and anticancer effects. However, the anticancer activity of A. salmonea against human ovarian cancer is still elusive. Therefore, we investigated the antiovarian tumor activity of a fermented culture broth of A. salmonea and exhibits its underlying molecular mechanism. A. salmonea shows a significant effect on cell viability in human ovarian carcinoma (SKOV-3 or A2780) cell lines with an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Increased terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells and annexin V-propidium iodide stained cells indicate that A. salmonea induces late apoptosis in SKOV-3 cells. Notably, treatment with A. salmonea induced the following events: Apoptosis; caspase-3, -8, -9 and poly(ADP-ribose) polymerase activation; first apoptosis signal (Fas) and Fas ligand activation; Bid cleavage; and Bax2-B-cell lymphoma 2 dysregulation. The results show that A. salmonea-induced apoptosis was mediated by both mitochondrial and death receptor pathways. An increase in intracellular reactive oxygen species (ROS) was also observed in A. salmonea-treated cells, whereas the antioxidant N-acetylcysteine (NAC) prevented A. salmonea-induced cell death and DNA fragmentation, indicating that A. salmonea-induced apoptosis was mediated by ROS generation. Interestingly, A. salmonea-induced apoptosis is associated with the suppression of human epidermal growth factor receptor-2 (HER-2/neu) and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) expression in HER-2/neu overexpressing SKOV-3 cells. NAC significantly prevented A. salmonea-induced HER-2/neu depletion and PI3K/AKT inactivation, indicating that A. salmonea-triggered apoptosis is mediated by ROS-inhibited HER-2/neu signaling cascades. To our knowledge, this is the first report describing the anticancer activity of this potentially beneficial mushroom against human ovarian carcinoma.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Department of Nutrition, Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ruei-Wan Lin
- Department of Nutrition, Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Peramaiyan Rajendran
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Varadharajan Thigarajan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chih-Jung Hsu
- Department of Dermatology, China Medical University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Aras A, Khalid S, Jabeen S, Farooqi AA, Xu B. Regulation of cancer cell signaling pathways by mushrooms and their bioactive molecules: Overview of the journey from benchtop to clinical trials. Food Chem Toxicol 2018; 119:206-214. [PMID: 29680270 DOI: 10.1016/j.fct.2018.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Abstract
Mushrooms represent a tremendous source of biologically useful and pharmacologically active molecules. Recent breakthroughs in cancer genetics, genomics, proteomics and translational research have helped us to develop a better understanding of the underlying mechanisms which are contributory in cancer development and progression. Different signaling pathways particularly, Wnt, SHH, TGF/SMAD and JAK/STAT have been shown to modulate cancer progression and development. Increasingly it is being realized that genetic/epigenetic mutations and loss of apoptosis also mandate a 'multi-molecular' perspective for the development of therapies to treat cancer. In this review we attempted to provide an overview of the regulation of different signaling pathways by mushrooms and their bioactive compounds. Regulation of Wnt and JAK-STAT pathways by mushrooms is deeply studied but we do not have comprehensive information about regulation of TGF/SMAD, Notch and TRAIL induced signaling pathways because of superficially available data. There are outstanding questions related to modulation of oncogenic and tumor suppressor microRNAs by mushrooms in different cancers. Therefore, detailed mechanistic insights related to targeting of multiple pathways by extracts or bioactive compounds from mushrooms will be helpful in bridging our current knowledge gaps and translation of medicinally precious bioactive molecules to clinically effective therapeutics.
Collapse
Affiliation(s)
- Aliye Aras
- Department of Botany, Faculty of Science, Istanbul University, Istanbul 34460, Turkey
| | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Saima Jabeen
- Department of Zoology, University of Gujrat, Sub-Campus, Rawalpindi, Pakistan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
34
|
Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y, Mao J, Li L. Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol 2018; 52:1057-1070. [PMID: 29436618 DOI: 10.3892/ijo.2018.4270] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
Autophagy is a key catabolic process, in which cytosolic cargo is engulfed by the formation of a double membrane and then degraded through the fusing of autophagosomes with lysosomes. Autophagy is a constitutively active, evolutionarily conserved, catabolic process important for the maintenance of homeostasis in cellular stress responses and cell survival. Although the mechanisms of autophagy have not yet been fully elucidated, emerging evidence suggests that it plays a dual role in breast cancer and in maintaining the activity of breast cancer stem cells (CSCs). However, it may play a complex role in breast CSC therapy. Breast CSCs, a population of cells with the ability to self-renew, differentiate, and initiate and sustain tumor growth, play an essential role in cancer recurrence, anticancer resistance and metastasis. In addition, the elucidation of the association between autophagy and apoptosis in the tumor context is crucial in order to better address appropriate therapy strategies. In the present review, a summary of the mechanisms and roles of autophagy in breast cancer and CSCs is presented. The potential value of such autophagy modulators in the development of novel breast cancer therapies is discussed.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Tao Qin
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jinfeng Yang
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Yan Sun
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| |
Collapse
|
35
|
Guo W, Liu X, Li J, Shen Y, Zhou Z, Wang M, Xie Y, Feng X, Wang L, Wu X. Prdx1 alleviates cardiomyocyte apoptosis through ROS-activated MAPK pathway during myocardial ischemia/reperfusion injury. Int J Biol Macromol 2018; 112:608-615. [PMID: 29410271 DOI: 10.1016/j.ijbiomac.2018.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/06/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
Abstract
Apoptosis induced by oxidative stress blocks the recovery of heart function in myocardial ischemia reperfusion injury (MIRI). Peroxiredoxin 1 (Prdx1) inhibits oxidative stress. However, the expression and function of Prdx1 in MIRI are unclear. In present study, Prdx1 protein level increased in rat MIRI model, associated with cardiomyocyte apoptosis. Cultured rat embryonic ventricular myocardial H9c2 cells with hypoxia/reoxygenation (H/R) treatment was utilized to mimic MIRI in vitro, showing that H/R treatment increased the ratio of p-p38/p38, p-JNK/JNK and apoptosis index. But Prdx1 ameliorate the up-regulation of p-p38/p38 ratio and p-JNK/JNK ratio, as well as decreased H9c2 cell apoptosis. SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) inhibited H9c2 cell apoptosis, and at the same time Prdx1 down-regulated the activation of p38 MAPK and JNK during H/R treatment. In addition, a ROS scavenger N-acetyl-l-cysteine (NAC) down-regulated the protein level of p-p38, p-JNK and Prdx1, and H9c2 cell apoptosis. In summary, these findings indicated that Prdx1 inhibited MAPK pathway induced cells apoptosis, and ROS is the upstream regulator of H/R induced apoptosis.
Collapse
Affiliation(s)
- Wanwan Guo
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Jingjing Li
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yimin Shen
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zijian Zhou
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Mingming Wang
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Yuyi Xie
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Xuemei Feng
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Liyang Wang
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Xiang Wu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
36
|
Finimundy TC, Abreu RM, Bonetto N, Scariot FJ, Dillon AJ, Echeverrigaray S, Barros L, Ferreira IC, Henriques JA, Roesch-Ely M. Apoptosis induction by Pleurotus sajor-caju (Fr.) Singer extracts on colorectal cancer cell lines. Food Chem Toxicol 2018; 112:383-392. [DOI: 10.1016/j.fct.2018.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
|
37
|
Milczarek M, Wiktorska K, Mielczarek L, Koronkiewicz M, Dąbrowska A, Lubelska K, Matosiuk D, Chilmonczyk Z. Autophagic cell death and premature senescence: New mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line. Food Chem Toxicol 2017; 111:1-8. [PMID: 29104175 DOI: 10.1016/j.fct.2017.10.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
In view of the need for new, more effective therapies for the triple negative breast cancer treatment, the aim of the study was to evaluate the anticancer activity and mechanism of action of the sulforaphane and 5-fluorouracil combination in the triple negative breast cancer cell line MDA-MB-231. Changes in the number of live cells after alone and sequential treatment were determined by the MTT test. The Chou and Talaly method was used to identify the type of interaction. Confocal microscopy, flow cytometry, western blot and spectrophotometry were used to examine apoptosis, autophagy and premature senescence. The western blot method was applied to measure the level of enzymes that are crucial for the 5-fluorouracil activity. Sulforaphane and 5-fluorouracil have been shown to interact synergistically in the breast cancerMDA-MB-231 cell line, resulting in a significant reduction of the number of live cells compared to alone treatments. Sulforaphane has decreased the level of thymidylate synthetase, which was also observed in the case of the sequential sulforaphane and 5-fluorouracil treatment. Studies of the interaction mechanism have revealed that sulforaphane and 5-fluorouracil act synergistically in the MDA-MB-231 cells by inducing autophagic cell death and premature senescence.
Collapse
Affiliation(s)
- Małgorzata Milczarek
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warszawa, Poland.
| | - Katarzyna Wiktorska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warszawa, Poland.
| | - Lidia Mielczarek
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warszawa, Poland; Chair of Physical Pharmacy and Bioanalysis, Medical University of Warsaw, 1 Banacha St, 02-097 Warszawa, Poland
| | - Mirosława Koronkiewicz
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warszawa, Poland
| | - Aleksandra Dąbrowska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warszawa, Poland
| | - Katarzyna Lubelska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warszawa, Poland
| | - Dariusz Matosiuk
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 1 Aleje Racławickie St, 20-059 Lublin, Poland
| | - Zdzisław Chilmonczyk
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warszawa, Poland
| |
Collapse
|