1
|
Mi K, Sun L, Zhang L, Tang A, Tian X, Hou Y, Sun L, Huang L. A physiologically based pharmacokinetic/pharmacodynamic model to determine dosage regimens and withdrawal intervals of aditoprim against Streptococcus suis. Front Pharmacol 2024; 15:1378034. [PMID: 38694922 PMCID: PMC11061430 DOI: 10.3389/fphar.2024.1378034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an antibacterial effect against S. suis. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine the dosage regimens of ADP against S. suis and withdrawal intervals. Methods: The PBPK model of ADP injection can predict drug concentrations in plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD) model, including susceptible subpopulation and resistant subpopulation, is successfully developed by a nonlinear mixed-effect model to evaluate antibacterial effects. An integrated PBPK/PD model is conducted to predict the time-course of bacterial count change and resistance development under different ADP dosages. Results: ADP injection, administrated at 20 mg/kg with 12 intervals for 3 consecutive days, can exert an excellent antibacterial effect while avoiding resistance emergence. The withdrawal interval at the recommended dosage regimen is determined as 18 days to ensure food safety. Discussion: This study suggests that the PBPK/PD model can be applied as an effective tool for the antibacterial effect and safety evaluation of novel veterinary drugs.
Collapse
Affiliation(s)
- Kun Mi
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lei Sun
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lan Zhang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoran Tang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyuan Tian
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yixuan Hou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingling Sun
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Joachim T, Cyril F, Ronan C, Gaud D, Agnès F. Design of a generic model based on physiology for persistent organic pollutants in laying hens: Applications on chlordecone and chlorinated paraffins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170447. [PMID: 38290669 DOI: 10.1016/j.scitotenv.2024.170447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
A Physiology Based Pharmacokinetic (PBPK) model has been developed to predict the kinetics of Persistent Organic Pollutants (POPs) in laying hens. Different datasets have enabled the calibration of the model for chlordecone (CLD), an organochlorine pesticide used in the French West Indies between 1972 and 1993, as well as for chlorinated paraffins (CPs), widely used for various industrial applications worldwide. For this purpose, the sensitivity analysis showed that intake parameters, laying rate, partition coefficients of yolk, hepatic clearance, percentage of metabolism and age were key parameters. Applied to CLD and CPs, this model shows a good capacity for prediction, with 88 % of the experimental values ranging within 1.5-fold of the predicted value at steady state for CPs and 100 % for CLD. The fine modelling of the physiology and the laying process contributes to precision of the model and gives genericity, enabling the switch from one bird species to another. The model can be implemented with other POPs if the clearance and partition coefficient are known.
Collapse
Affiliation(s)
| | - Feidt Cyril
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy
| | | | | | | |
Collapse
|
3
|
Chou WC, Tell LA, Baynes RE, Davis JL, Cheng YH, Maunsell FP, Riviere JE, Lin Z. Development and application of an interactive generic physiologically based pharmacokinetic (igPBPK) model for adult beef cattle and lactating dairy cows to estimate tissue distribution and edible tissue and milk withdrawal intervals for per- and polyfluoroalkyl substances (PFAS). Food Chem Toxicol 2023; 181:114062. [PMID: 37769896 DOI: 10.1016/j.fct.2023.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Humans can be exposed to per- and polyfluoroalkyl substances (PFAS) through dietary intake from milk and edible tissues from food animals. This study developed a physiologically based pharmacokinetic (PBPK) model to predict tissue and milk residues and estimate withdrawal intervals (WDIs) for multiple PFAS including PFOA, PFOS and PFHxS in beef cattle and lactating dairy cows. Results showed that model predictions were mostly within a two-fold factor of experimental data for plasma, tissues, and milk with an estimated coefficient of determination (R2) of >0.95. The predicted muscle WDIs for beef cattle were <1 day for PFOA, 449 days for PFOS, and 69 days for PFHxS, while the predicted milk WDIs in dairy cows were <1 day for PFOA, 1345 days for PFOS, and zero day for PFHxS following a high environmental exposure scenario (e.g., 49.3, 193, and 161 ng/kg/day for PFOA, PFOS, and PFHxS, respectively, for beef cattle for 2 years). The model was converted to a web-based interactive generic PBPK (igPBPK) platform to provide a user-friendly dashboard for predictions of tissue and milk WDIs for PFAS in cattle. This model serves as a foundation for extrapolation to other PFAS compounds to improve safety assessment of cattle-derived food products.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA.
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA.
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, 66506, USA; Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA.
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA; 1Data Consortium, Kansas State University, Olathe, KS, 66061, USA.
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA.
| |
Collapse
|
4
|
Mi K, Sun L, Hou Y, Cai X, Zhou K, Ma W, Xu X, Pan Y, Liu Z, Huang L. A physiologically based pharmacokinetic model to optimize the dosage regimen and withdrawal time of cefquinome in pigs. PLoS Comput Biol 2023; 19:e1011331. [PMID: 37585381 PMCID: PMC10431683 DOI: 10.1371/journal.pcbi.1011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Cefquinome is widely used to treat respiratory tract diseases of swine. While extra-label dosages of cefquinome could improve clinical efficacy, they might lead to excessively high residues in animal-derived food. In this study, a physiologically based pharmacokinetic (PBPK) model was calibrated based on the published data and a microdialysis experiment to assess the dosage efficiency and food safety. For the microdialysis experiment, in vitro/in vivo relative recovery and concentration-time curves of cefquinome in the lung interstitium were investigated. This PBPK model is available to predict the drug concentrations in the muscle, kidney, liver, plasma, and lung interstitial fluid. Concentration-time curves of 1000 virtual animals in different tissues were simulated by applying sensitivity and Monte Carlo analyses. By integrating pharmacokinetic/pharmacodynamic target parameters, cefquinome delivered at 3-5 mg/kg twice daily is advised for the effective control of respiratory tract infections of nursery pig, which the bodyweight is around 25 kg. Based on the predicted cefquinome concentrations in edible tissues, the withdrawal interval is 2 and 3 days for label and the extra-label doses, respectively. This study provides a useful tool to optimize the dosage regimen of cefquinome against respiratory tract infections and predicts the concentration of cefquinome residues in edible tissues. This information would be helpful to improve the food safety and guide rational drug usage.
Collapse
Affiliation(s)
- Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Lei Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
| | - Yixuan Hou
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Xin Cai
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Wenjin Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangyue Xu
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Yuanhu Pan
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Kuru Cİ, Ulucan-Karnak F, Akgol S. Metal-Chelated Polymeric Nanomaterials for the Removal of Penicillin G Contamination. Polymers (Basel) 2023; 15:2832. [PMID: 37447478 DOI: 10.3390/polym15132832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
We developed selective and relatively low-cost metal-chelated nanoparticle systems for the removal of the penicillin G (Pen G) antibiotic, presented for the first time in the literature. In the nanosystem, poly(glycidyl methacrylate) nanoparticles were synthesized by a surfactant-free emulsion polymerization method and covalently bound with a tridentate-chelating ligand, iminodiacetic acid, based on the immobilized metal chelate affinity technique. It was modified with Cu2+, a chelating metal, to make Pen G specific. Metal-chelated nanoparticles were characterized by Fourier-transform infrared spectroscopy, energy dispersive spectrometry, zeta dimensional analysis, and scanning electron microscopy technology. Optimization studies of the Pen G removal were conducted. As a result of this study, Pen G removal with the p(GMA)-IDA-Cu2+ nanoparticle reached its maximum adsorption capacity of 633.92 mg/g in the short time of 15 min. The Pen G adsorption of p(GMA)-IDA-Cu2+ was three times more than that of the p(GMA) nanoparticles and two times more than that of the ampicillin adsorption. In addition, there was no significant decrease in the adsorption capacity of Pen G resulting from the repeated adsorption-desorption process of metal-chelated nanoparticles over five cycles. The metal-chelated nanoparticle had an 84.5% ability to regain its ability to regenerate the product with its regeneration capability, making the widespread use of the system very convenient in terms of reducing cost, an important factor in removal processes.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey
| | - Fulden Ulucan-Karnak
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
- Advanced Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey
| | - Sinan Akgol
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
6
|
Viel A, Nouichi A, Le Van Suu M, Rolland JG, Sanders P, Laurentie M, Manceau J, Henri J. PBPK Model To Predict Marbofloxacin Distribution in Edible Tissues and Intestinal Exposure in Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4358-4370. [PMID: 36877630 DOI: 10.1021/acs.jafc.2c06561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Marbofloxacin (MAR) is a fluoroquinolone antibiotic used in food-producing animals in European Union, especially in pigs. In this study, MAR concentrations in plasma, comestible tissues, and intestinal segments were determined in pigs injected with MAR. Based on these data and the literature, a flow-limited PBPK model was developed to predict the tissue distribution of MAR and estimate the withdrawal period after label-use in Europe. A submodel describing the different segments of the intestinal lumen was also developed to assess the intestinal exposure of MAR for the commensal bacteria. During model calibration, only four parameters were estimated. Then, Monte Carlo simulations were performed to generate a virtual population of pigs. The simulation results were compared with the observations from an independent data set during the validation step. A global sensitivity analysis was also carried out to identify the most influential parameters. Overall, the PBPK model was able to adequately predict the MAR kinetics in plasma and edible tissues, as well as in small intestines. However, the simulated concentrations in the large intestine were mostly underestimated, highlighting the need for improvements in the field of PBPK modeling to assess the intestinal exposure of antimicrobials in food animals.
Collapse
Affiliation(s)
- Alexis Viel
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Anis Nouichi
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Mélanie Le Van Suu
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jean-Guy Rolland
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Pascal Sanders
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Michel Laurentie
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jacqueline Manceau
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jérôme Henri
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| |
Collapse
|
7
|
Fairman K, Choi MK, Gonnabathula P, Lumen A, Worth A, Paini A, Li M. An Overview of Physiologically-Based Pharmacokinetic Models for Forensic Science. TOXICS 2023; 11:126. [PMID: 36851001 PMCID: PMC9964742 DOI: 10.3390/toxics11020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
A physiologically-based pharmacokinetic (PBPK) model represents the structural components of the body with physiologically relevant compartments connected via blood flow rates described by mathematical equations to determine drug disposition. PBPK models are used in the pharmaceutical sector for drug development, precision medicine, and the chemical industry to predict safe levels of exposure during the registration of chemical substances. However, one area of application where PBPK models have been scarcely used is forensic science. In this review, we give an overview of PBPK models successfully developed for several illicit drugs and environmental chemicals that could be applied for forensic interpretation, highlighting the gaps, uncertainties, and limitations.
Collapse
Affiliation(s)
- Kiara Fairman
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Me-Kyoung Choi
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Pavani Gonnabathula
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | | | - Miao Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
8
|
Sun S, Li Z, Ren Z, Li Y. Multi-Dimensional Elimination of β-Lactams in the Rural Wetland: Molecule Design and Screening for More Antibacterial and Degradable Substitutes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238434. [PMID: 36500527 PMCID: PMC9739631 DOI: 10.3390/molecules27238434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Restricted economic conditions and limited sewage treatment facilities in rural areas lead to the discharge of small-scale breeding wastewater containing higher values of residual beta-lactam antibiotics (β-lactams), which seriously threatens the aquatic environment. In this paper, molecular docking and a comprehensive method were performed to quantify and fit the source modification for the combined biodegradation of β-lactams. Using penicillin (PNC) as the target molecule, combined with contour maps for substitute modification, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed for the high-performance combined biodegradation of β-lactams. The selected candidate with better environmental friendliness, functionality, and high performance was screened. By using the homology modeling algorithms, the mutant penicillin-binding proteins (PBPs) of Escherichia coli were constructed to have antibacterial resistance against β-lactams. The molecular docking was applied to obtain the target substitute by analyzing the degree of antibacterial resistance of β-lactam substitute. The combined biodegradation of β-lactams and substitute in the constructed wetland (CW) by different wetland plant root secretions was studied using molecular dynamics simulations. The result showed a 49.28% higher biodegradation of the substitutes than PNC when the combined wetland plant species of Eichhornia crassipes, Phragmites australis, and Canna indica L. were employed.
Collapse
Affiliation(s)
- Shuhai Sun
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Zhuang Li
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
- Correspondence:
| |
Collapse
|
9
|
Fragki S, Piersma AH, Westerhout J, Kienhuis A, Kramer NI, Zeilmaker MJ. Applicability of generic PBK modelling in chemical hazard assessment: A case study with IndusChemFate. Regul Toxicol Pharmacol 2022; 136:105267. [DOI: 10.1016/j.yrtph.2022.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
|
10
|
Kim MC, Lee YJ. Analysis of Time-Dependent Pharmacokinetics Using In Vitro-In Vivo Extrapolation and Physiologically Based Pharmacokinetic Modeling. Pharmaceutics 2022; 14:pharmaceutics14122562. [PMID: 36559055 PMCID: PMC9780873 DOI: 10.3390/pharmaceutics14122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
SCR430, a sorafenib derivative, is an investigational drug exhibiting anti-tumor action. This study aimed to have a mechanistic understanding of SCR430's time-dependent pharmacokinetics (TDPK) through an ex vivo study combined with an in vitro-in vivo extrapolation (IVIVE) and physiologically based pharmacokinetic (PBPK) modeling. A non-compartmental pharmacokinetic analysis was performed after intravenous SCR430 administration in female Sprague-Dawley rats for a control group (no treatment), a vehicle group (vehicle only, 14 days, PO), and a repeated-dosing group (SCR430, 30 mg/kg/day, 14 days, PO). In addition, hepatic uptake and metabolism modulation were investigated using isolated hepatocytes from each group of rats. The minimal PBPK model based on IVIVE was constructed to explain SCR430's TDPK. Repeated SCR430 administration decreased the systemic exposure by 4.4-fold, which was explained by increased hepatic clearance (4.7-fold). The ex vivo study using isolated hepatocytes from each group suggested that the increased hepatic uptake (9.4-fold), not the metabolic activity, contributes to the increased hepatic clearance. The minimal PBPK modeling based on an ex vivo study could explain the decreased plasma levels after the repeated doses. The current study demonstrates the TDPK after repeated dosing by hepatic uptake induction, not hepatic metabolism, as well as the effectiveness of an ex vivo approach combined with IVIVE and PBPK modeling to investigate the TDPK.
Collapse
Affiliation(s)
- Min-Chang Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemungu, Seoul 02453, Republic of Korea
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young-Joo Lee
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
11
|
A web-based interactive physiologically based pharmacokinetic (iPBPK) model for meloxicam in broiler chickens and laying hens. Food Chem Toxicol 2022; 168:113332. [DOI: 10.1016/j.fct.2022.113332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
|
12
|
Li Y, Yang Y, Ma L, Liu J, An Q, Zhang C, Yin G, Cao Z, Pan H. Comparative Analyses of Antibiotic Resistance Genes in Jejunum Microbiota of Pigs in Different Areas. Front Cell Infect Microbiol 2022; 12:887428. [PMID: 35719330 PMCID: PMC9204423 DOI: 10.3389/fcimb.2022.887428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging environmental contaminants that threaten human and animal health. Intestinal microbiota may be an important ARGs repository, and intensive animal farming is a likely contributor to the environmental burden of ARGs. Using metagenomic sequencing, we investigated the structure, function, and drug resistance of the jejunal microbial community in Landrace (LA, Kunming), Saba (SB, Kunming), Dahe (DH, Qujing), and Diannan small-ear piglets (DS, Xishuangbanna) from different areas in Yunnan Province, China. Remarkable differences in jejunal microbial diversity among the different pig breeds, while the microbial composition of pig breeds in close areas tends to be similar. Functional analysis showed that there were abundant metabolic pathways and carbohydrate enzymes in all samples. In total, 32,487 ARGs were detected in all samples, which showed resistance to 38 categories of drugs. The abundance of ARGs in jejunum was not significantly different between LA and SB from the same area, but significantly different between DS, DH and LA or SB from different areas. Therefore, the abundance of ARGs was little affected by pig breeds and microorganism community structure, but it was closely related to geographical location. In addition, as a probiotic, Lactobacillus amylovorus is also an important ARGs producing bacterium. Our results revealed the antibiotic exposure and intestinal microbial resistance of farms in the study areas, which could provide basic knowledge and potential strategies for rational use of antibiotics and reducing the risk of ARGs transmission in animal husbandry.
Collapse
Affiliation(s)
- Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li Ma
- Institiute of Animal husbandry, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingcong An
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Gefen Yin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhenhui Cao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Chou WC, Tell LA, Baynes RE, Davis JL, Maunsell FP, Riviere JE, Lin Z. An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol and Penicillin G. Toxicol Sci 2022; 188:180-197. [PMID: 35642931 PMCID: PMC9333411 DOI: 10.1093/toxsci/kfac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Violative chemical residues in edible tissues from food-producing animals are of global public health concern. Great efforts have been made to develop physiologically based pharmacokinetic (PBPK) models for estimating withdrawal intervals (WDIs) for extralabel prescribed drugs in food animals. Existing models are insufficient to address the food safety concern as these models are either limited to 1 specific drug or difficult to be used by non-modelers. This study aimed to develop a user-friendly generic PBPK platform that can predict tissue residues and estimate WDIs for multiple drugs including flunixin, florfenicol, and penicillin G in cattle and swine. Mechanism-based in silico methods were used to predict tissue/plasma partition coefficients and the models were calibrated and evaluated with pharmacokinetic data from Food Animal Residue Avoidance Databank (FARAD). Results showed that model predictions were, in general, within a 2-fold factor of experimental data for all 3 drugs in both species. Following extralabel administration and respective U.S. FDA-approved tolerances, predicted WDIs for both cattle and swine were close to or slightly longer than FDA-approved label withdrawal times (eg, predicted 8, 28, and 7 days vs labeled 4, 28, and 4 days for flunixin, florfenicol, and penicillin G in cattle, respectively). The final model was converted to a web-based interactive generic PBPK platform. This PBPK platform serves as a user-friendly quantitative tool for real-time predictions of WDIs for flunixin, florfenicol, and penicillin G following FDA-approved label or extralabel use in both cattle and swine, and provides a basis for extrapolating to other drugs and species.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,1Data Consortium,Kansas State University, Olathe, KS, 66061, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| |
Collapse
|
14
|
Zhao S, Wesseling S, Rietjens IMCM, Strikwold M. Inter-individual variation in chlorpyrifos toxicokinetics characterized by physiologically based kinetic (PBK) and Monte Carlo simulation comparing human liver microsome and Supersome ™ cytochromes P450 (CYP)-specific kinetic data as model input. Arch Toxicol 2022; 96:1387-1409. [PMID: 35294598 PMCID: PMC9013686 DOI: 10.1007/s00204-022-03251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
The present study compares two approaches to evaluate the effects of inter-individual differences in the biotransformation of chlorpyrifos (CPF) on the sensitivity towards in vivo red blood cell (RBC) acetylcholinesterase (AChE) inhibition and to calculate a chemical-specific adjustment factor (CSAF) to account for inter-individual differences in kinetics (HKAF). These approaches included use of a Supersome™ cytochromes P450 (CYP)-based and a human liver microsome (HLM)-based physiologically based kinetic (PBK) model, both combined with Monte Carlo simulations. The results revealed that bioactivation of CPF exhibits biphasic kinetics caused by distinct differences in the Km of CYPs involved, which was elucidated by Supersome™ CYP rather than by HLM. Use of Supersome™ CYP-derived kinetic data was influenced by the accuracy of the intersystem extrapolation factors (ISEFs) required to scale CYP isoform activity of Supersome™ to HLMs. The predicted dose–response curves for average, 99th percentile and 1st percentile sensitive individuals were found to be similar in the two approaches when biphasic kinetics was included in the HLM-based approach, resulting in similar benchmark dose lower confidence limits for 10% inhibition (BMDL10) and HKAF values. The variation in metabolism-related kinetic parameters resulted in HKAF values at the 99th percentile that were slightly higher than the default uncertainty factor of 3.16. While HKAF values up to 6.9 were obtained when including also the variability in other influential PBK model parameters. It is concluded that the Supersome™ CYP-based approach appeared most adequate for identifying inter-individual variation in biotransformation of CPF and its resulting RBC AChE inhibition.
Collapse
Affiliation(s)
- Shensheng Zhao
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marije Strikwold
- Van Hall Larenstein University of Applied Sciences, 8901 BV, Leeuwarden, The Netherlands
| |
Collapse
|
15
|
A physiologically based pharmacokinetic (PBPK) model exploring the blood-milk barrier in lactating species - A case study with oxytetracycline administered to dairy cows and goats. Food Chem Toxicol 2022; 161:112848. [DOI: 10.1016/j.fct.2022.112848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
|
16
|
Hekman P, Schefferlie J, Gehring R. Modelling Shows the Negative Impact of Age Dependent Pharmacokinetics on the Efficacy of Oxytetracycline in Young Steers. Front Vet Sci 2022; 8:821005. [PMID: 35155653 PMCID: PMC8831370 DOI: 10.3389/fvets.2021.821005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
The effect of age dependent pharmacokinetics (PK) on the clinical efficacy of oxytetracycline (OTC) against Bovine Respiratory Disease (BRD) in beef cattle was studied, using a Physiologically Based Pharmacokinetic (PBPK) model. The model includes a bodyweight dependent renal clearance. To mimic/reproduce the long terminal half-live a bone forming tissue compartment was considered. Data for the development, calibration and validation of the model were obtained from public literature. To integrate the PK with the pharmacodynamics (PD) of OTC, Monte Carlo simulations were performed using this PBPK model to predict time-concentration curves for two commonly used dosing regimens of short-acting and long-acting injectable OTC formulations in virtual populations of 5,000 steer calves of 100 kg and 400 kg. These curves were then used to calculate the value of the PKPD index for OTC, which is the ratio of the area under the concentration-time curve for 24 h (AUC24h) over the minimum inhibitory concentration (MIC) of the target pathogen (AUC24h/MIC). The MIC values were for Mannheimia haemolytica, the dose-limiting pathogen for BRD. This integration of PBPK and PD for OTC used for the treatment of BRD in calves indicated that the Probability of Target Attainment (PTA) was sufficient for efficacy in calves of 400 kg, but insufficient for calves of 100 kg, when using a long acting dosing regimen of 20 mg/kg BW, twice, with a 48-h interval. The use of a dosing regimen of 10 mg/kg BW/day for 4 days predicted sufficient PTAs in both age groups.
Collapse
Affiliation(s)
- Peter Hekman
- Medicines Evaluation Board, Veterinary Medicines Unit, The Hague, Netherlands
| | - Johan Schefferlie
- Medicines Evaluation Board, Veterinary Medicines Unit, The Hague, Netherlands
| | - Ronette Gehring
- Veterinary Pharmacotherapy and Pharmacy, Department of Population Health Sciences, Utrecht University, Utrecht, Netherlands
- *Correspondence: Ronette Gehring
| |
Collapse
|
17
|
Halleran JL, Papich MG, Li M, Lin Z, Davis JL, Maunsell FP, Riviere JE, Baynes RE, Foster DM. Update on withdrawal intervals following extralabel use of procaine penicillin G in cattle and swine. J Am Vet Med Assoc 2022; 260:50-55. [PMID: 34793323 DOI: 10.2460/javma.21.05.0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jennifer L Halleran
- Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Mark G Papich
- FARAD, Department of Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Miao Li
- FARAD, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Zhoumeng Lin
- FARAD, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Jennifer L Davis
- FARAD, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
| | - Fiona P Maunsell
- FARAD, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Jim E Riviere
- Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Ronald E Baynes
- Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Derek M Foster
- Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
18
|
Dogruer G, Kramer NI, Schaap IL, Hollert H, Gaus C, van de Merwe JP. An integrative approach to define chemical exposure threshold limits for endangered sea turtles. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126512. [PMID: 34284283 DOI: 10.1016/j.jhazmat.2021.126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Environmental contaminants pose serious health threats to marine megafauna species, yet methods defining exposure threshold limits are lacking. Here, a three-pillar chemical risk assessment framework is presented based on (1) species- and chemical-specific lifetime bioaccumulation modelling, (2) non-destructive in vitro and in vivo toxicity threshold assessment, and (3) chemical risk quantification. We used the effects of cadmium (Cd) in green sea turtles (Chelonia mydas) as a proof of concept to evaluate the quantitative mechanistic modelling approach. A physiologically-based kinetic (PBK) model simulated Cd tissue concentrations (liver, kidney, muscle, fat, brain, scute, and 'rest of the body') in C.mydas. The validated PBK model then translated species-specific in vitro results to in vivo effects. The results showed that the resilience of C.mydas towards Cd kidney toxicity is age-dependent and differs with changing physiology and feeding ecology. Using the model in reverse mode, a steady-state exposure threshold of 0.1 µg/g dry weight Cd in forage was derived and compared to real-world exposure scenarios. Three out of the four globally distinct C.mydas populations assessed are exposed to Cd levels above this threshold limit. This approach can be adapted to other marine species and chemicals to prioritize measures for managing potentially harmful chemical exposures.
Collapse
Affiliation(s)
- Gulsah Dogruer
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia; Institute for Risk Assessment Sciences, The School of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, The School of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Iris L Schaap
- Institute for Risk Assessment Sciences, The School of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Caroline Gaus
- Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
19
|
Zhou K, Liu A, Ma W, Sun L, Mi K, Xu X, Algharib SA, Xie S, Huang L. Apply a Physiologically Based Pharmacokinetic Model to Promote the Development of Enrofloxacin Granules: Predict Withdrawal Interval and Toxicity Dose. Antibiotics (Basel) 2021; 10:antibiotics10080955. [PMID: 34439005 PMCID: PMC8388861 DOI: 10.3390/antibiotics10080955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Enrofloxacin (ENR) granules were developed to prevent and control the infections caused by foodborne zoonotic intestinal pathogens in our previous studies. To promote the further development of ENR granules and standardize their usage in pigs, a physiologically based pharmacokinetic (PBPK) model of the ENR granule in pigs was built to determine the withdrawal time (WT) and evaluate the toxicity to pigs. Meanwhile, the population WT was determined by a Monte Carlo analysis to guarantee pork safety. The fitting results of the model showed that the tissue residual concentrations of ENR, ciprofloxacin, and ENR plus ciprofloxacin were all well predicted by the built PBPK model (R2 > 0.82). When comparing with the EMA's WT1.4 software method, the final WT (6 d) of the ENR granules in the population of pigs was well predicted. Moreover, by combining the cytotoxicity concentration (225.9 µg/mL) of ENR against pig hepatocytes, the orally safe dosage range (≤130 mg/kg b.w.) of the ENR granules to pigs was calculated based on the validated PBPK model. The well-predicted WTs and a few uses in animals proved that the PBPK model is a potential tool for promoting the judicious use of antimicrobial agents and evaluating the toxicity of the veterinary antimicrobial products.
Collapse
Affiliation(s)
- Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Lei Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-8728-7186
| |
Collapse
|
20
|
Riad MH, Baynes RE, Tell LA, Davis JL, Maunsell FP, Riviere JE, Lin Z. Development and Application of an interactive Physiologically Based Pharmacokinetic (iPBPK) Model to Predict Oxytetracycline Tissue Distribution and Withdrawal Intervals in Market-Age Sheep and Goats. Toxicol Sci 2021; 183:253-268. [PMID: 34329480 DOI: 10.1093/toxsci/kfab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxytetracycline (OTC) is a widely used antibiotic in food-producing animals. Extralabel use of OTC is common and may lead to violative residues in edible tissues. It is important to have a quantitative tool to predict scientifically-based withdrawal intervals (WDIs) after extralabel use in food animals to ensure human food safety. This study focuses on developing a physiologically based pharmacokinetic (PBPK) model for OTC in sheep and goats. The model included seven compartments: plasma, lung, liver, kidneys, muscle, fat, and rest of the body. The model was calibrated with serum and tissue (liver, muscle, kidney, and fat) concentration data following a single intramuscular (IM, 20 mg/kg) and/or intravenous (IV, 10 mg/kg) administration of a long-acting formulation in sheep and goats. The model was evaluated with independent datasets from Food Animal Residue Avoidance Databank (FARAD). Results showed that the model adequately simulated the calibration datasets with an overall estimated coefficient of determination (R2) of 0.95 and 0.92, respectively, for sheep and goat models and had acceptable accuracy for the validation datasets. Monte Carlo sampling technique was applied to predict the time needed for drug concentrations in edible tissues to fall below tolerances for the 99th percentiles of the population. The model was converted to a web-based interactive PBPK (iPBPK) interface to facilitate model applications. This iPBPK model provides a useful tool to estimate WDIs for OTC after extralabel use in small ruminants to ensure food safety and serves as a basis for extrapolation to other tetracycline drugs and other food animals.
Collapse
Affiliation(s)
- Mahbubul H Riad
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL 32608, USA
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL 32608, USA
| |
Collapse
|
21
|
Zhou K, Mi K, Ma W, Xu X, Huo M, Algharib SA, Pan Y, Xie S, Huang L. Application of physiologically based pharmacokinetic models to promote the development of veterinary drugs with high efficacy and safety. J Vet Pharmacol Ther 2021; 44:663-678. [PMID: 34009661 DOI: 10.1111/jvp.12976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/27/2020] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models have become important tools for the development of novel human drugs. Food-producing animals and pets comprise an important part of human life, and the development of veterinary drugs (VDs) has greatly impacted human health. Owing to increased affordability of and demand for drug development, VD manufacturing companies should have more PBPK models required to reduce drug production costs. So far, little attention has been paid on applying PBPK models for the development of VDs. This review begins with the development processes of VDs; then summarizes case studies of PBPK models in human or VD development; and analyzes the application, potential, and advantages of PBPK in VD development, including candidate screening, formulation optimization, food effects, target-species safety, and dosing optimization. Then, the challenges of applying the PBPK model to VD development are discussed. Finally, future opportunities of PBPK models in designing dosing regimens for intracellular pathogenic infections and for efficient oral absorption of VDs are further forecasted. This review will be relevant to readers who are interested in using a PBPK model to develop new VDs.
Collapse
Affiliation(s)
- Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Egypt
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Chou WC, Lin Z. Development of a Gestational and Lactational Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctane Sulfonate (PFOS) in Rats and Humans and Its Implications in the Derivation of Health-Based Toxicity Values. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37004. [PMID: 33730865 PMCID: PMC7969127 DOI: 10.1289/ehp7671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is a great concern on potential adverse effects of exposure to perfluorooctane sulfonate (PFOS) in sensitive subpopulations, such as pregnant women, fetuses, and neonates, due to its reported transplacental and lactational transfer and reproductive and developmental toxicities in animals and humans. OBJECTIVES This study aimed to develop a gestational and lactational physiologically based pharmacokinetic (PBPK) model in rats and humans for PFOS to aid risk assessment in sensitive human subpopulations. METHODS Based upon existing PBPK models for PFOS, the present model addressed a data gap of including a physiologically based description of basolateral and apical membrane transporter-mediated renal reabsorption and excretion in kidneys during gestation and lactation. The model was calibrated with published rat toxicokinetic and human biomonitoring data and was independently evaluated with separate data. Monte Carlo simulation was used to address the interindividual variability. RESULTS Model simulations were generally within 2-fold of observed PFOS concentrations in maternal/fetal/neonatal plasma and liver in rats and humans. Estimated fifth percentile human equivalent doses (HEDs) based on selected critical toxicity studies in rats following U.S. Environmental Protection Agency (EPA) guidelines ranged from 0.08 to 0.91 μ g / kg per day . These values are lower than the HEDs estimated in U.S. EPA guidance (0.51 - 1.6 μ g / kg per day ) using an empirical toxicokinetic model in adults. CONCLUSIONS The results support the importance of renal reabsorption/excretion during pregnancy and lactation in PFOS dosimetry and suggest that the derivation of health-based toxicity values based on developmental toxicity studies should consider gestational/lactational dosimetry estimated from a life stage-appropriate PBPK model. This study provides a quantitative tool to aid risk reevaluation of PFOS, especially in sensitive human subpopulations, and it provides a basis for extrapolating to other per- and polyfluoroalkyl substances (PFAS). All model codes and detailed tutorials are provided in the Supplemental Materials to allow readers to reproduce our results and to use this model. https://doi.org/10.1289/EHP7671.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
23
|
Physiologically based pharmacokinetic (PBPK) modeling of RNAi therapeutics: Opportunities and challenges. Biochem Pharmacol 2021; 189:114468. [PMID: 33577889 DOI: 10.1016/j.bcp.2021.114468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is a powerful tool with many demonstrated applications in various phases of drug development and regulatory review. RNA interference (RNAi)-based therapeutics are a class of drugs that have unique pharmacokinetic properties and mechanisms of action. With an increasing number of RNAi therapeutics in the pipeline and reaching the market, there is a considerable amount of active research in this area requiring a multidisciplinary approach. The application of PBPK models for RNAi therapeutics is in its infancy and its utility to facilitate the development of this new class of drugs is yet to be fully evaluated. From this perspective, we briefly discuss some of the current computational modeling approaches used in support of efficient development and approval of RNAi therapeutics. Considerations for PBPK model development are highlighted both in a relative context between small molecules and large molecules such as monoclonal antibodies and as it applies to RNAi therapeutics. In addition, the prospects for drawing upon other recognized avenues of PBPK modeling and some of the foreseeable challenges in PBPK model development for these chemical modalities are briefly discussed. Finally, an exploration of the potential application of PBPK model development for RNAi therapeutics is provided. We hope these preliminary thoughts will help initiate a dialogue between scientists in the relevant sectors to examine the value of PBPK modeling for RNAi therapeutics. Such evaluations could help standardize the practice in the future and support appropriate guidance development for strengthening the RNAi therapeutics development program.
Collapse
|
24
|
Yang F, Yang F, Wang D, Zhang CS, Wang H, Song ZW, Shao HT, Zhang M, Yu ML, Zheng Y. Development and Application of a Water Temperature Related Physiologically Based Pharmacokinetic Model for Enrofloxacin and Its Metabolite Ciprofloxacin in Rainbow Trout. Front Vet Sci 2021; 7:608348. [PMID: 33585600 PMCID: PMC7874017 DOI: 10.3389/fvets.2020.608348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
Enrofloxacin (ENR) has been approved for the treatment of infections in aquaculture, but it may cause tissue residue. This research aimed to develop and validate a water temperature related PBPK model, including both ENR and ciprofloxacin (CIP), in rainbow trout, and to predict further their residue concentrations and the withdrawal periods for ENR at different water temperatures. With the published concentrations data, a flow-limited PBPK model including both ENR and CIP sub-models was developed to predict ENR and CIP concentrations in tissues and plasma/serum after intravenous, oral, or immersion administration. A Monte Carlo simulation including 500 iterations was further incorporated into this model. Based on the model and Monte Carlo analysis, the withdrawal intervals were estimated for different dosage regimens and at different water temperatures, ranging from 80 to 272 degree-days. All of these values were shorter than the labeled withdrawal period (500 degree-days) in fish. This model provided a useful tool for predicting the tissue residues of ENR and CIP in rainbow trout under different dosage regimens and at different water temperatures.
Collapse
Affiliation(s)
- Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, Henan University of Science and Technology, Luoyang, China
| | - Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dan Wang
- Jiaozuo Livestock Product Quality and Safety Monitoring Center, Jiaozuo, China
| | - Chao-Shuo Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Han Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhe-Wen Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hao-Tian Shao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Meng-Li Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yang Zheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
25
|
Ya K, Methaneethorn J, Tran QB, Trakulsrichai S, Wananukul W, Lohitnavy M. Development of a Physiologically Based Pharmacokinetic Model of Mitragynine, Psychoactive Alkaloid in Kratom ( Mitragyna Speciosa Korth.), In Rats and Humans. J Psychoactive Drugs 2020; 53:127-139. [PMID: 34003732 DOI: 10.1080/02791072.2020.1849877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitragynine is a major psychoactive alkaloid in leaves of kratom (Mitragyna speciosa Korth.). To understand its disposition in organs, this study aimed to develop a physiologically based pharmacokinetic (PBPK) model that predicts mitragynine concentrations in plasma and organ of interests in rats and humans. The PBPK model consisted of six organ compartments (i.e. lung, brain, liver, fat, slowly perfused tissues, and rapidly perfused tissue). From systematic searching, three pharmacokinetic studies of mitragynine (two studies in rats and 1 study in humans) were retrieved from the literature. Berkeley Madonna Software (version 8.3.18) was used for model development and model simulation. The developed PBPK model consisted of biologically relevant features following involvement of (i) breast cancer-resistant protein (BCRP) in brain, (ii) a hepatic cytochrome P450 3A4 (CYP3A4)-mediated metabolism in the liver, and (iii) a diffusion-limited transport in fat. The simulations adequately describe simulated and observed data in the two species with different dosing regimens. PBPK models of mitragynine in rats and humans were successfully developed. The models may be used to guide optimal mitragynine dosing regimens.
Collapse
Affiliation(s)
- Kimheang Ya
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Janthima Methaneethorn
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Quoc Ba Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Satariya Trakulsrichai
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand.,Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Winai Wananukul
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand.,Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Manupat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
26
|
Wang Y, Li M, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE, Lin Z. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey. J Vet Pharmacol Ther 2020; 44:423-455. [PMID: 33289178 PMCID: PMC8359335 DOI: 10.1111/jvp.12931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are growing in popularity due to human food safety concerns and for estimating drug residue distribution and estimating withdrawal intervals for veterinary products originating from livestock species. This paper focuses on the physiological and anatomical data, including cardiac output, organ weight, and blood flow values, needed for PBPK modeling applications for avian species commonly consumed in the poultry market. Experimental and field studies from 1940 to 2019 for broiler chickens (1-70 days old, 40 g - 3.2 kg), laying hens (4-15 months old, 1.1-2.0 kg), and turkeys (1 day-14 months old, 60 g -12.7 kg) were searched systematically using PubMed, Google Scholar, ProQuest, and ScienceDirect for data collection in 2019 and 2020. Relevant data were extracted from the literature with mean and standard deviation (SD) being calculated and compiled in tables of relative organ weights (% of body weight) and relative blood flows (% of cardiac output). Trends of organ or tissue weight growth during different life stages were calculated when sufficient data were available. These compiled data sets facilitate future PBPK model development and applications, especially in estimating chemical residue concentrations in edible tissues to calculate food safety withdrawal intervals for poultry.
Collapse
Affiliation(s)
- Yu‐Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Lisa A. Tell
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCAUSA
| | - Ronald E. Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Jennifer L. Davis
- Department of Biomedical Sciences and PathobiologyVirginia‐Maryland College of Veterinary MedicineBlacksburgVAUSA
| | - Thomas W. Vickroy
- Department of Physiological Sciences, College of Veterinary MedicineUniversity of FloridaGainesvilleFLUSA
| | - Jim E. Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| |
Collapse
|
27
|
Lin Z, Li M, Wang YS, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J Vet Pharmacol Ther 2020; 43:385-420. [PMID: 32270548 PMCID: PMC7540321 DOI: 10.1111/jvp.12861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models for chemicals in food animals are a useful tool in estimating chemical tissue residues and withdrawal intervals. Physiological parameters such as organ weights and blood flows are an important component of a PBPK model. The objective of this study was to compile PBPK‐related physiological parameter data in food animals, including cattle and swine. Comprehensive literature searches were performed in PubMed, Google Scholar, ScienceDirect, and ProQuest. Relevant literature was reviewed and tables of relevant parameters such as relative organ weights (% of body weight) and relative blood flows (% of cardiac output) were compiled for different production classes of cattle and swine. The mean and standard deviation of each parameter were calculated to characterize their variability and uncertainty and to allow investigators to conduct population PBPK analysis via Monte Carlo simulations. Regression equations using weight or age were created for parameters having sufficient data. These compiled data provide a comprehensive physiological parameter database for developing PBPK models of chemicals in cattle and swine to support animal‐derived food safety assessment. This work also provides a basis to compile data in other food animal species, including goats, sheep, chickens, and turkeys.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yu-Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
| | - Thomas W Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
28
|
Lin YJ, Cheng CJ, Chen JW, Lin Z. Incorporating Exogenous and Endogenous Exposures into Dietary Risk Assessment of Nitrates and Nitrites in Vegetables: A Probabilistic Integrated Toxicokinetic Modeling Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1079-1090. [PMID: 31885263 DOI: 10.1021/acs.jafc.9b06720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to estimate the dietary risk of nitrates and nitrites in vegetables based on internal dose in a probabilistic manner by integrating exogenous exposure based on measured concentrations in vegetables with endogenous exposure using a toxicokinetic (TK) model. We optimized and validated a previous TK model and incorporated Monte Carlo simulations to account for variability across different age populations for predicting internal dose. High levels of nitrates were detected in leafy vegetables (from 545 ± 274 to 1641 ± 873 mg/kg). Nitrite contents of vegetables were generally low (from 1.26 ± 1.40 to 8.20 ± 14.1 mg/kg). The dietary risk was found to be different based on internal versus external dose, suggesting that it is critical to include endogenous nitrite formation into risk assessment. Nitrate and nitrite exposure from vegetables is unlikely to result in appreciable risks for most populations but may be a potential risk for preschoolers.
Collapse
Affiliation(s)
- Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment , National Yang-Ming University , Taipei 11221 , Taiwan
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , 1800 Denison Avenue, P200 Mosier Hall , Manhattan , Kansas 66506 , United States
| | - Cheng-Jih Cheng
- Institute of Food Safety and Health Risk Assessment , National Yang-Ming University , Taipei 11221 , Taiwan
| | - Jein-Wen Chen
- Super Micro Mass Research & Technology Center , Cheng Shiu University , Kaohsiung 83347 , Taiwan
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , 1800 Denison Avenue, P200 Mosier Hall , Manhattan , Kansas 66506 , United States
| |
Collapse
|
29
|
A physiologically based pharmacokinetic model of doxycycline for predicting tissue residues and withdrawal intervals in grass carp (Ctenopharyngodon idella). Food Chem Toxicol 2020; 137:111127. [PMID: 31945393 DOI: 10.1016/j.fct.2020.111127] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 01/09/2020] [Indexed: 01/18/2023]
Abstract
The extensive use of doxycycline in aquaculture results in drug residue violations that negatively impact human food safety. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model for doxycycline to predict drug residues and withdrawal times (WTs) in grass carp (Ctenopharyngodon idella) after daily oral administration for 3 days. Physiological parameters including cardiac output and organ weights were measured experimentally. Chemical-specific parameters were obtained from the literature or estimated by fitting to the observed data. The model properly captured the observed kinetic profiles of doxycycline in tissues (i.e., liver, kidney, muscle + skin and gill). The predicted WT in muscle + skin by Monte Carlo analysis based on sensitive parameters identified at 24 h after drug administration was 41 d, which was similar to 43 d calculated using the tolerance limit method. Sensitivity analysis identified two additional sensitive parameters at 6 weeks: intestinal transit rate constant and urinary elimination rate constant. The predicted WT in muscle + skin based on sensitive parameters identified at 6 weeks was 54 d. This model provides a useful tool to estimate tissue residues and withdrawal times for doxycycline in grass carp and also serves a foundation for extrapolation to other fish species and other tetracyclines.
Collapse
|
30
|
Kong Y, Cai H, Xing H, Ren C, Kong D, Ning C, Li N, Zhao D, Chen X, Lu Y. Pulmonary delivery alters the disposition of raloxifene in rats. ACTA ACUST UNITED AC 2019; 72:185-196. [PMID: 31730290 DOI: 10.1111/jphp.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/26/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Pulmonary delivery is an effective way to improve the bioavailability of drugs with extensive metabolism. This research was designed to study the different pharmacokinetic behaviours of small molecule drug after pulmonary delivery and intragastric (i.g) administration. METHODS Raloxifene, a selective estrogen receptor modulator with low oral bioavailability (~2%), was chosen as the model drug. Studies were conducted systematically in rats, including plasma pharmacokinetics, excretion, tissue distribution and metabolism. KEY FINDINGS Results showed that raloxifene solution dosed by intratracheal (i.t) administration exhibited relatively quick plasma elimination (t1/2 = 1.78 ± 0.14 h) and undetected absorption process, which was similar with intravenous injection. Compared with i.g administration, the bioavailability increased by 58 times, but the major route of excretion remained faecal excretion. Drug concentration on the bone and the target efficiency were improved by 49.6 times and five times, respectively. Benefited from quick elimination in the lung, chronic toxicity might be ignored. CONCLUSIONS Pulmonary administration improved the bioavailability of raloxifene and further increased the distribution on the target organ (bone), with no obvious impact on its excretory pattern.
Collapse
Affiliation(s)
- Ying Kong
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China.,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China
| | - Hui Cai
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Han Xing
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Chang Ren
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Dexuan Kong
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Chen Ning
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Lautz L, Oldenkamp R, Dorne J, Ragas A. Physiologically based kinetic models for farm animals: Critical review of published models and future perspectives for their use in chemical risk assessment. Toxicol In Vitro 2019; 60:61-70. [DOI: 10.1016/j.tiv.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
|
32
|
Chou WC, Lin Z. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. ENVIRONMENT INTERNATIONAL 2019; 129:408-422. [PMID: 31152982 DOI: 10.1016/j.envint.2019.03.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
A challenge in the risk assessment of perfluorooctane sulfonate (PFOS) is the large interspecies differences in its toxicokinetics that results in substantial uncertainty in the dosimetry and toxicity extrapolation from animals to humans. To address this challenge, the objective of this study was to develop an open-source physiologically based pharmacokinetic (PBPK) model accounting for species-specific toxicokinetic parameters of PFOS. Considering available knowledge about the toxicokinetic properties of PFOS, a PBPK model for PFOS in mice, rats, monkeys, and humans after intravenous and oral administrations was created. Available species-specific toxicokinetic data were used for model calibration and optimization, and independent datasets were used for model evaluation. Bayesian statistical analysis using Markov chain Monte Carlo (MCMC) simulation was performed to optimize the model and to characterize the uncertainty and interspecies variability of chemical-specific parameters. The model predictions well correlated with the majority of datasets for all four species, and the model was validated with independent data in rats, monkeys, and humans. The model was applied to predict human equivalent doses (HEDs) based on reported points of departure in selected critical toxicity studies in rats and monkeys following U.S. EPA's guidelines. The lower bounds of the model-derived HEDs were overall lower than the HEDs estimated by U.S. EPA (e.g., 0.2 vs. 1.3 μg/kg/day based on the rat plasma data). This integrated and comparative analysis provides an important step towards improving interspecies extrapolation and quantitative risk assessment of PFOS, and this open-source model provides a foundation for developing models for other perfluoroalkyl substances.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
33
|
Xu N, Li M, Fu Y, Zhang X, Ai X, Lin Z. Tissue residue depletion kinetics and withdrawal time estimation of doxycycline in grass carp, Ctenopharyngodon idella, following multiple oral administrations. Food Chem Toxicol 2019; 131:110592. [PMID: 31220539 DOI: 10.1016/j.fct.2019.110592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
This study aimed to determine the plasma and tissue residue depletion kinetics of doxycycline (DC) in grass carp (Ctenopharyngodon idella) after daily oral administrations at 20 mg/kg for 3 days, and to calculate the corresponding withdrawal times. Following drug administrations, samples of plasma, liver, kidney, gill and muscle + skin were collected at predetermined time points (0.25, 0.5, 1, 3, 5, 7, 14, 21, 28, 35, 42, 49 and 56 days) and analyzed for concentrations of DC using a LC-MS/MS method. The results showed that liver had the highest concentrations and the slowest depletion compared to other tissues, with detectable DC up to 49 days (58.9 ± 12.8 μg/kg). The WT 1.4 software and "reschem" package were used to calculate withdrawal times, and the results were similar. The results suggest a withdrawal time of 41 days for Europe and China and 50 days for Japan is needed for DC in grass carp after 3 daily oral administrations at 20 mg/kg. Overall, this study improves our understanding of the tissue residue depletion kinetics of DC in fish, and the results may help regulatory agencies to determine proper withdrawal periods based on different regulatory standards in different countries to ensure safety of aquatic food products.
Collapse
Affiliation(s)
- Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China.
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Yu Fu
- Hunan University of Arts and Science, Changde, 415000, China.
| | - Xiaomei Zhang
- Hunan Applied Technology University, Changde, 415000, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China.
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
34
|
Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration. Arch Toxicol 2019; 93:1865-1880. [PMID: 31025081 DOI: 10.1007/s00204-019-02464-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
Abstract
Violative chemical residues in animal-derived food products affect food safety globally and have impact on the trade of international agricultural products. The Food Animal Residue Avoidance Databank program has been developing scientific tools to provide appropriate withdrawal interval (WDI) estimations after extralabel drug use in food animals for the past three decades. One of the tools is physiologically based pharmacokinetic (PBPK) modeling, which is a mechanistic-based approach that can be used to predict tissue residues and WDIs. However, PBPK models are complicated and difficult to use by non-modelers. Therefore, a user-friendly PBPK modeling framework is needed to move this field forward. Flunixin was one of the top five violative drug residues identified in the United States from 2010 to 2016. The objective of this study was to establish a web-based user-friendly framework for the development of new PBPK models for drugs administered to food animals. Specifically, a new PBPK model for both cattle and swine after administration of flunixin meglumine was developed. Population analysis using Monte Carlo simulations was incorporated into the model to predict WDIs following extralabel administration of flunixin meglumine. The population PBPK model was converted to a web-based interactive PBPK (iPBPK) framework to facilitate its application. This iPBPK framework serves as a proof-of-concept for further improvements in the future and it can be applied to develop new models for other drugs in other food animal species, thereby facilitating the application of PBPK modeling in WDI estimation and food safety assessment.
Collapse
|
35
|
Li M, Mainquist-Whigham C, Karriker LA, Wulf LW, Zeng D, Gehring R, Riviere JE, Coetzee JF, Lin Z. An integrated experimental and physiologically based pharmacokinetic modeling study of penicillin G in heavy sows. J Vet Pharmacol Ther 2019; 42:461-475. [PMID: 31012501 DOI: 10.1111/jvp.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/12/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
Penicillin G is widely used in food-producing animals at extralabel doses and is one of the most frequently identified violative drug residues in animal-derived food products. In this study, the plasma pharmacokinetics and tissue residue depletion of penicillin G in heavy sows after repeated intramuscular administrations at label (6.5 mg/kg) and 5 × label (32.5 mg/kg) doses were determined. Plasma, urine, and environmental samples were tested as potential antemortem markers for penicillin G residues. The collected new data and other available data from the literature were used to develop a population physiologically based pharmacokinetic (PBPK) model for penicillin G in heavy sows. The results showed that antemortem testing of urine provided potential correlation with tissue residue levels. Based on the United States Department of Agriculture Food Safety and Inspection Service action limit of 25 ng/g, the model estimated a withdrawal interval of 38 days for penicillin G in heavy sows after 3 repeated intramuscular injections at 5 × label dose. This study improves our understanding of penicillin G pharmacokinetics and tissue residue depletion in heavy sows and provides a tool to predict proper withdrawal intervals after extralabel use of penicillin G in heavy sows, thereby helping safety assessment of sow-derived meat products.
Collapse
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Christine Mainquist-Whigham
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Larry W Wulf
- Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Dongping Zeng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Johann F Coetzee
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
36
|
Zeng D, Lin Z, Zeng Z, Fang B, Li M, Cheng YH, Sun Y. Assessing Global Human Exposure to T-2 Toxin via Poultry Meat Consumption Using a Lifetime Physiologically Based Pharmacokinetic Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1563-1571. [PMID: 30633497 DOI: 10.1021/acs.jafc.8b07133] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Residue depletion of T-2 toxin in chickens after oral gavage at 2.0 mg/kg twice daily for 2 days was determined in this study. A flow-limited physiologically based pharmacokinetic (PBPK) model was developed for lifetime exposure assessment in chickens. The model was calibrated with data from the residue depletion study and then validated with independent data. A local sensitivity analysis was performed, and 16 sensitive parameters were subjected to Monte Carlo analysis. The population PBPK model was applied to estimate daily intake values of T-2 toxin in different countries based on reported consumption factors and the guidance value of 0.25 mg/kg in feed for chickens by the European Food Safety Authority (EFSA). The predicted daily intakes in different countries were all lower than the EFSA's total daily intake, suggesting that the EFSA's guidance value has minimal risk. This model provides a foundation for scaling to other mycotoxins and other food animal species.
Collapse
Affiliation(s)
- Dongping Zeng
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Zhenling Zeng
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| | - Binghu Fang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Yongxue Sun
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| |
Collapse
|
37
|
Mason SE, Mullen KAE, Washburn SP, Anderson KL, Baynes RE. Comparison of the pharmacokinetics of plant-based treatments in milk and plasma of USDA organic dairy cattle with and without mastitis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1716-1727. [PMID: 30036161 DOI: 10.1080/19440049.2018.1502475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Organic dairy products are the second largest sector of the organic food market. Organic dairy products come from United States Department of Agriculture (USDA) certified organic dairy cattle that meet USDA organic standards. Organic dairy cattle in the US cannot be treated with antibiotics for mastitis, one of the costliest diseases of dairy cattle, and thus effective alternatives are needed. When any compound (medication or other non-food product) is used in a food producing animal, a withhold time for that compound that meets US Food and Drug Administration (FDA) standards for food safety must be applied to the animal and its products (like milk). However, there are no US FDA products approved for mastitis that maintain USDA certified organic dairy cattle's organic status. Thus, we studied the pharmacokinetics of 3 compounds (garlic, thymol and carvacrol) used on organic both healthy and mastitic organic dairy cattle. We also used this information to estimate a milk withhold time using methods consistent with US FDA requirements. For thymol intra-mammary and carvacrol intra-mammary or topical administration, all compounds were partially absorbed into the body from the milk or skin. Thymol and carvacrol are measurable in plasma (at 0.0183 and 0.0202 µg/mL, respectively) after intramammary administration with similar elimination half lives of 1.7 h. Milk concentrations of thymol and carvacrol are much higher at 2.958 and 4.487 µg/mL in healthy cattle, respectively. Concentrations are not significantly different in cows with mastitis as compared to those in healthy cows. Despite these compounds being natural products, they should have a withhold time for milk of at least 24 h after administration. For garlic, levels remained below the limit of detection in milk and plasma and thus no withdrawal time appears to be needed for milk.
Collapse
Affiliation(s)
- Sharon E Mason
- a Department of Population Health and Pathobiology , College of Veterinary Medicine, North Carolina State University , Raleigh , NC , USA
| | - Keena A E Mullen
- b Department of Animal Science , North Carolina State University , Raleigh , NC , USA
| | - Steven P Washburn
- b Department of Animal Science , North Carolina State University , Raleigh , NC , USA
| | - Kevin L Anderson
- a Department of Population Health and Pathobiology , College of Veterinary Medicine, North Carolina State University , Raleigh , NC , USA
| | - Ronald E Baynes
- a Department of Population Health and Pathobiology , College of Veterinary Medicine, North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
38
|
Cui C, Zhang X, Wang Y, Lu S, Lu H, Hui Q, Ahmad W, Cai Y, Liu X, Liu L, Shi F, Liu Y, Zhao K, Zhai F, Xiang Y, Hu P, Li Y, Ren H, Jin N, Liu Z. Acute and chronic toxicity assessment of benzylpenicillin G residue in heat-treated animal food products. CHEMOSPHERE 2018; 202:757-767. [PMID: 29605795 DOI: 10.1016/j.chemosphere.2018.03.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
The current level of penicillin use and its persisting residue in livestock is potentially concerning; the toxicity of penicillin residue in heat-treated animal food products (HAFP) is yet to be elucidated. In this study, the acute and chronic toxicity of benzylpenicillin G (BPG) residue in HAFP was investigated in a mouse model. The calculated LD50 of BPG heated to cooking temperature (BPHCT) was 933.04 mg kg-1 [b.w.] intraperitoneally corresponding to 3.75 times lower than its prototype. Mice fed on the experimental diet containing heat-treated beef with high BPG levels for 6 months displayed a reduction in body weight and altered serum values indicating for liver and renal function. Further, the organ ratios of intestinal and spleen were increased. Histopathological changes were observed in the liver, lung and parenchyma testis tissue. BPHCT residue induced sperm aberration and micronucleated polychromatic erythrocytes formation. Present results indicate that prolonged exposure of BPHCT at higher residue levels might have an impact on public health. Importantly the toxic concentrations of BPHCT are relatively high compared with levels that would result from the degradation of antibiotic residues in meat from animals that have received a therapeutic dose of BPG.
Collapse
Affiliation(s)
- Cheng Cui
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Xiang Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Yang Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Shiying Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun, Jilin, 130122, PR China
| | - Qi Hui
- Changchun Institute of Biological Products, 1616 Chuangxin Road, Changchun, Jilin, 130012, PR China; School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou, Zhejiang, 325035, PR China
| | - Waqas Ahmad
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China; Section of Epidemiology and Public Health, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan
| | - Yan Cai
- Changchun Institute of Biological Products, 1616 Chuangxin Road, Changchun, Jilin, 130012, PR China
| | - Xilin Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China; China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China
| | - Lingjiu Liu
- Changchun Institute of Biological Products, 1616 Chuangxin Road, Changchun, Jilin, 130012, PR China
| | - Fengfeng Shi
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Yanyan Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Ke Zhao
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - FeiFei Zhai
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Yangzhen Xiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Pan Hu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Yansong Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Honglin Ren
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China
| | - Ningyi Jin
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun, Jilin, 130122, PR China.
| | - Zengshan Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, PR China.
| |
Collapse
|
39
|
Cheng YH, Riviere JE, Monteiro-Riviere NA, Lin Z. Probabilistic risk assessment of gold nanoparticles after intravenous administration by integrating in vitro and in vivo toxicity with physiologically based pharmacokinetic modeling. Nanotoxicology 2018; 12:453-469. [PMID: 29658401 DOI: 10.1080/17435390.2018.1459922] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study aimed to conduct an integrated and probabilistic risk assessment of gold nanoparticles (AuNPs) based on recently published in vitro and in vivo toxicity studies coupled to a physiologically based pharmacokinetic (PBPK) model. Dose-response relationships were characterized based on cell viability assays in various human cell types. A previously well-validated human PBPK model for AuNPs was applied to quantify internal concentrations in liver, kidney, skin, and venous plasma. By applying a Bayesian-based probabilistic risk assessment approach incorporating Monte Carlo simulation, probable human cell death fractions were characterized. Additionally, we implemented in vitro to in vivo and animal-to-human extrapolation approaches to independently estimate external exposure levels of AuNPs that cause minimal toxicity. Our results suggest that under the highest dosing level employed in existing animal studies (worst-case scenario), AuNPs coated with branched polyethylenimine (BPEI) would likely induce ∼90-100% cellular death, implying high cytotoxicity compared to <10% cell death induced by low-to-medium animal dosing levels, which are commonly used in animal studies. The estimated human equivalent doses associated with 5% cell death in liver and kidney were around 1 and 3 mg/kg, respectively. Based on points of departure reported in animal studies, the human equivalent dose estimates associated with gene expression changes and tissue cell apoptosis in liver were 0.005 and 0.5 mg/kg, respectively. Our analyzes provide insights into safety evaluation, risk prediction, and point of departure estimation of AuNP exposure for humans and illustrate an approach that could be applied to other NPs when sufficient data are available.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- a Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , KS , USA
| | - Jim E Riviere
- a Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , KS , USA
| | - Nancy A Monteiro-Riviere
- b Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , KS , USA
| | - Zhoumeng Lin
- a Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , KS , USA
| |
Collapse
|
40
|
Li M, Gehring R, Riviere JE, Lin Z. Probabilistic Physiologically Based Pharmacokinetic Model for Penicillin G in Milk From Dairy Cows Following Intramammary or Intramuscular Administrations. Toxicol Sci 2018; 164:85-100. [DOI: 10.1093/toxsci/kfy067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
41
|
Viel A, Henri J, Bouchène S, Laroche J, Rolland JG, Manceau J, Laurentie M, Couet W, Grégoire N. A Population WB-PBPK Model of Colistin and its Prodrug CMS in Pigs: Focus on the Renal Distribution and Excretion. Pharm Res 2018. [PMID: 29532176 DOI: 10.1007/s11095-018-2379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The objective was the development of a whole-body physiologically-based pharmacokinetic (WB-PBPK) model for colistin, and its prodrug colistimethate sodium (CMS), in pigs to explore their tissue distribution, especially in kidneys. METHODS Plasma and tissue concentrations of CMS and colistin were measured after systemic administrations of different dosing regimens of CMS in pigs. The WB-PBPK model was developed based on these data according to a non-linear mixed effect approach and using NONMEM software. A detailed sub-model was implemented for kidneys to handle the complex disposition of CMS and colistin within this organ. RESULTS The WB-PBPK model well captured the kinetic profiles of CMS and colistin in plasma. In kidneys, an accumulation and slow elimination of colistin were observed and well described by the model. Kidneys seemed to have a major role in the elimination processes, through tubular secretion of CMS and intracellular degradation of colistin. Lastly, to illustrate the usefulness of the PBPK model, an estimation of the withdrawal periods after veterinary use of CMS in pigs was made. CONCLUSIONS The WB-PBPK model gives an insight into the renal distribution and elimination of CMS and colistin in pigs; it may be further developed to explore the colistin induced-nephrotoxicity in humans.
Collapse
Affiliation(s)
- Alexis Viel
- Inserm U1070, Pôle Biologie Santé, Poitiers, France
- Anses, Laboratoire de Fougères, Fougères, France
- Université de Poitiers, UFR Médecine-Pharmacie, Poitiers, France
| | - Jérôme Henri
- Anses, Laboratoire de Fougères, Fougères, France
| | | | - Julian Laroche
- Inserm U1070, Pôle Biologie Santé, Poitiers, France
- CHU Poitiers, Laboratoire de Toxicologie-Pharmacocinétique, Poitiers, France
| | | | | | | | - William Couet
- Inserm U1070, Pôle Biologie Santé, Poitiers, France
- Université de Poitiers, UFR Médecine-Pharmacie, Poitiers, France
- CHU Poitiers, Laboratoire de Toxicologie-Pharmacocinétique, Poitiers, France
| | - Nicolas Grégoire
- Inserm U1070, Pôle Biologie Santé, Poitiers, France.
- Université de Poitiers, UFR Médecine-Pharmacie, Poitiers, France.
| |
Collapse
|
42
|
Yang F, Yang F, Shi W, Si H, Kong T, Wang G, Zhang J. Development of a multiroute physiologically based pharmacokinetic model for orbifloxacin in rabbits. J Vet Pharmacol Ther 2018; 41:622-631. [DOI: 10.1111/jvp.12496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Affiliation(s)
- F. Yang
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - F. Yang
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - W. Shi
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - H. Si
- College of Animal Science and Technology; Guangxi University; Nanning China
| | - T. Kong
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - G. Wang
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| | - J. Zhang
- College of Animal Science and Technology; Henan University of Science and Technology; Luoyang China
| |
Collapse
|