1
|
Majdalawieh AF, Terro TM, Ahari SH, Abu-Yousef IA. α-Mangostin: A Xanthone Derivative in Mangosteen with Potent Anti-Cancer Properties. Biomolecules 2024; 14:1382. [PMID: 39595559 PMCID: PMC11591772 DOI: 10.3390/biom14111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
α-Mangostin, a xanthone derivative extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.), has garnered significant attention for its potential as a natural anti-cancer agent. This review provides a comprehensive analysis of the current literature on the anti-cancer properties of α-mangostin across various cancer types. Through an extensive analysis of in vitro and in vivo studies, this review elucidates the multifaceted mechanisms underlying α-mangostin's cytotoxicity, apoptosis induction through both intrinsic and extrinsic pathways, and modulation of key cellular processes implicated in cancer progression in a diverse array of cancer cells. It causes mitochondrial dysfunction, activates caspases, and regulates autophagy, endoplasmic reticulum stress, and oxidative stress, enhancing its anti-cancer efficacy. Moreover, α-mangostin exhibits synergistic effects with conventional chemotherapeutic agents, suggesting its utility in combination therapies. The ability of α-mangostin to inhibit cell proliferation, modulate cell cycle progression, and induce apoptosis is linked to its effects on key signaling pathways, including Akt, NF-κB, and p53. Preclinical studies highlight the therapeutic potential and safety profile of α-mangostin, demonstrating significant tumor growth inhibition without adverse effects on normal cells. In summary, understanding the molecular targets and mechanisms of action of α-mangostin is crucial for its development as a novel chemotherapeutic agent, and future clinical investigations are warranted to explore its clinical utility and efficacy in cancer prevention and therapy.
Collapse
Affiliation(s)
- Amin F. Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (T.M.T.); (S.H.A.); (I.A.A.-Y.)
| | | | | | | |
Collapse
|
2
|
Huang PY, Juan YH, Hung TW, Tsai YP, Ting YH, Lee CC, Tsai JP, Hsieh YH. β-Mangostin Alleviates Renal Tubulointerstitial Fibrosis via the TGF-β1/JNK Signaling Pathway. Cells 2024; 13:1701. [PMID: 39451219 PMCID: PMC11505648 DOI: 10.3390/cells13201701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a key role in the pathogenesis of kidney fibrosis, and kidney fibrosis is associated with an adverse renal prognosis. Beta-mangostin (β-Mag) is a xanthone derivative obtained from mangosteens that is involved in the generation of antifibrotic and anti-oxidation effects. The purpose of this study was to examine the effects of β-Mag on renal tubulointerstitial fibrosis both in vivo and in vitro and the corresponding mechanisms involved. As shown through an in vivo study conducted on a unilateral ureteral obstruction mouse model, oral β-Mag administration, in a dose-dependent manner, caused a lesser degree of tubulointerstitial damage, diminished collagen I fiber deposition, and the depressed expression of fibrotic markers (collagen I, α-SMA) and EMT markers (N-cadherin, Vimentin, Snail, and Slug) in the UUO kidney tissues. The in vitro part of this research revealed that β-Mag, when co-treated with transforming growth factor-β1 (TGF-β1), decreased cell motility and downregulated the EMT (in relation to Vimentin, Snail, and N-cadherin) and phosphoryl-JNK1/2/Smad2/Smad3 expression. Furthermore, β-Mag co-treated with SB (Smad2/3 kinase inhibitor) or SP600125 (JNK kinase inhibitor) significantly inhibited the TGF-β1-associated downstream phosphorylation and activation of JNK1/2-mediated Smad2 targeting the Snail/Vimentin axis. To conclude, β-Mag protects against EMT and kidney fibrotic processes by mediating the TGF-β1/JNK/Smad2 targeting Snail-mediated Vimentin expression and may have therapeutic implications for renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Po-Yu Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Ying-Hsu Juan
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yuan-Pei Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chu-Che Lee
- Department of Medicine Research, Buddhist Dalin Tzu Chi Hospital, Chiayi 62247, Taiwan
| | - Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
3
|
El Gaafary M, Abdel-Baki PM, El-Halawany AM, Mohamed HM, Duweb A, Abdallah HM, Mohamed GA, Ibrahim SRM, Simmet T, Syrovets T. Prenylated xanthones from mangosteen (Garcinia mangostana) target oxidative mitochondrial respiration in cancer cells. Biomed Pharmacother 2024; 179:117365. [PMID: 39217837 DOI: 10.1016/j.biopha.2024.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Mangosteen (Garcinia mangostana) is well-known for its nutritional value and health benefits. Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. Here we show that the prenylated xanthones, α-mangostin, γ-mangostin, 9-hydroxycalabaxanthone (9-HCX), and garcinone E from the mangosteen pericarp exhibit cytotoxicity against a panel of human cancer cell lines including lung adenocarcinoma (A549), cervical carcinoma (HeLa), prostatic carcinoma (DU 145), pancreatic carcinoma (MIA PaCa-2), hepatocellular carcinoma (Hep G2), bladder urothelial cancer (5637), as well as the triple-negative breast cancer cells MDA-MB-231. In line with its higher predicted bioactivity score compared to other prenylated xanthones, 9-HCX induced the strongest antiproliferative and proapoptotic effects in MDA-MB-231 breast cancer xenografts in vivo. In different in vitro models, we demonstrate that prenylated xanthones from G. mangostana target mitochondria in cancer cells by inhibition of the mitochondrial respiratory chain complex II (α-mangostin, γ-mangostin, and garcinone E) and complex III (9-HCX) as shown in isolated mitochondria. Accordingly, oxidative mitochondrial respiration (OXPHOS) was inhibited, mitochondrial proton leak increased, and adenosine triphosphate (ATP) synthesis decreased as analyzed by Seahorse assay in MDA-MB-231 cells. Hence, the prenylated xanthones increased mitochondrial superoxide levels, induced mitochondrial membrane permeabilization, and initiated caspase 3/7-mediated apoptosis in MDA-MB-231 triple-negative breast cancer cells. Thus, prenylated xanthones from Garcinia mangostana exhibit anticancer activity based on interference with the mitochondrial respiration.
Collapse
Affiliation(s)
- Menna El Gaafary
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Passent M Abdel-Baki
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Ali M El-Halawany
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Heba M Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Faculty of Health Sciences, Higher Colleges of Technology, Dubai, United Arab Emirates.
| | - Amira Duweb
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Pharmacology, Faculty of Medicine, University of Tripoli, Tripoli, Libya.
| | - Hossam M Abdallah
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany; Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Thomas Simmet
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany.
| | - Tatiana Syrovets
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, Ulm University, D-89081 Ulm, Germany.
| |
Collapse
|
4
|
Zhu J, Liu Q, Wang Y, Zhu K, Guo J, Jin Y, Liu Y. Mangosteen extract reduces the bacterial load of eggshell and improves egg quality. Heliyon 2024; 10:e35857. [PMID: 39170416 PMCID: PMC11337060 DOI: 10.1016/j.heliyon.2024.e35857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
The increasing emergence and spread of antibiotic resistance accelerate the desire for antibiotic alternatives. Plant extracts have emerged as a promising and relatively unexplored area of research as potential substitutes. Herein, we investigated the prevalence and distribution patterns of bacteria on egg surfaces and evaluated the inhibitory effects of mangosteen extract on these surface bacteria. In addition, we examined the antioxidant activity and egg quality in improving the ability of mangosteen extract. The results showed that the predominant bacteria isolated from eggshells were Gram-positive, with Staphylococcus and Micrococcus as the dominant genera. Notably, mangosteen extract exhibited significant bactericidal activity, effectively inhibiting Gram-positive bacteria on the surface of chicken eggshells. Moreover, the supplementation of mangosteen extract in the feed of laying hens yielded a noteworthy improvement in egg quality, accompanied by positively shaped structure and function of microbial communities on the egg surface and in the feces. Collectively, our findings suggested that mangosteen extract was an effective alternative to traditional antibiotics, offering valuable insights for animal husbandry development.
Collapse
Affiliation(s)
- Jianfei Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qing Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiangpeng Guo
- Beijing General Station of Animal Husbandry, Beijing 100101, China
| | - Yinji Jin
- Beijing General Station of Animal Husbandry, Beijing 100101, China
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
5
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
6
|
Sil BK, Jamiruddin MR, Haq MA, Aekwattanaphol N, K PA, Salendra L, Paliwal H, Paul PK, Buatong W, Srichana T. Nanolevel of detection of ascorbic acid using horse-radish peroxidase inhibition assay. Heliyon 2024; 10:e30715. [PMID: 38774337 PMCID: PMC11107213 DOI: 10.1016/j.heliyon.2024.e30715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Ascorbic acid plays a significant role in regulation of various bodily functions with high concentrations in immune cells and being involved in connective tissue maintenance. Commonly it is detected through various colorimetric methods. In this study, we propose a one-step simple method based on the inhibitory activity of ascorbic acid on horseradish peroxidase and hydrogen peroxide. The detection is observed by colorimetric changes to TMB (3,3',5,5' tetramethylbenzidine). The enzyme inhibition unit was optimized with a high level of linearity (r2 = 0.9999) and the level of detection and level of quantification were found to be 1.35 nM and 4.08 nM, respectively with higher sensitive compared to the HPLC method (11 μM). Both intra and inter-assays showed high correlations at different AA concentrations. (r2 > 0.9999). Similar results were also observed for vitamin C tablets, ascorbate salts, fruits, and market products (r2 = 0.999). There was negligible effect of interference by citric acid, lactic acid, tartaric acids, and glucose with high recoveries (>98%) at 1 mg/mL to 0.0078 mg/mL concentration ranges. The recovery error (RE%) was found to be less than 10%. Our detection method is distinguished by its simplicity, nano-level of detection, reproducibility, and potential application and adaptability as a point-of-use test.
Collapse
Affiliation(s)
- Bijon Kumar Sil
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Mohd Raeed Jamiruddin
- School of Pharmacy, BRAC University, KHA 224 Bir Uttam Rafiqul Islam Avenue, Progati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Md Ahsanul Haq
- Immunobiology, Nutrition and Toxicology Lab, Nutrition Research Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Prem Ananth K
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Limbadri Salendra
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Himanshu Paliwal
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Pijush Kumar Paul
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Wilaiporn Buatong
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
7
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
8
|
Muchtaridi M, Triwahyuningtyas D, Muhammad Fakih T, Megantara S, Choi SB. Mechanistic insight of α-mangostin encapsulation in 2-hydroxypropyl-β-cyclodextrin for solubility enhancement. J Biomol Struct Dyn 2024; 42:3223-3232. [PMID: 37286382 DOI: 10.1080/07391102.2023.2214237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
α-Mangostin is the most abundant compound contained in the mangostin (Garcinia mangostana L.) plant which have been developed and proven to have many promising pharmacological effects. However, the low water solubility of α-mangostin causes limitations in its development in clinical purpose. To increase the solubility of a compound, a method currently being developed is to make drug inclusion complexes using cyclodextrins. This research aimed to use in silico techniques namely molecular docking study and molecular dynamics simulation to explore the molecular mechanism and stability of the encapsulation of α-mangostin using cyclodextrins. Two types of cyclodextrins were used including β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin docked against α-mangostin. From the molecular docking results, it shows that the α-mangostin complex with 2-hydroxypropyl-β-cyclodextrin provides the lowest binding energy value of -7.99 Kcal/mol compared to β-cyclodextrin value of -6.14 Kcal/mol. The α-mangostin complex with 2-hydroxypropyl-β-cyclodextrin also showed good stability based on molecular dynamics simulation during 100 ns. From molecular motion, RDF, Rg, SASA, density, total energy analyzes, this complex shows increased solubility in water and provided good stability. This indicates that the encapsulation of α-mangostin with 2-hydroxypropyl-β-cyclodextrin can increase the solubility of the α-mangostin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, BRIN, Jatinangor, West Java, Indonesia
| | - Dian Triwahyuningtyas
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Taufik Muhammad Fakih
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, West Java, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Sy Bing Choi
- Faculty of Applied Sciences, UCSI University, Cheras, Federal Territory of Kuala Lumpur
| |
Collapse
|
9
|
Praengam K, Tuntipopipat S, Muangnoi C, Jangwangkorn C, Piamkulvanich O. Efficacy of a dietary supplement derived from five edible plants on telomere length in Thai adults: A randomized, double-blind, placebo-controlled trial. Food Sci Nutr 2024; 12:1592-1604. [PMID: 38455184 PMCID: PMC10916585 DOI: 10.1002/fsn3.3851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 03/09/2024] Open
Abstract
Mylife/Mylife100® is a dietary supplement consisting of black sesame seed, guava fruit, mangosteen aril, pennywort leaves, and soy protein. These edible plants contain multiple high-potential bioactive compounds exerting various vital biological functions including antioxidants which contribute to delaying the rate of telomere shortening. Telomere length is associated with cellular aging and age-related diseases. This study aimed to assess the efficacy of Mylife/Mylife100® on telomere length through a randomized, double-blind placebo-controlled trial. The trial assessed the alteration of leukocyte telomere length after 32 adults aged 50-65 years received either Mylife/Mylife100® or placebo (five capsules/day) for 8-week supplementation. The results demonstrated a significant increase in mean telomere length from baseline (6313 bp) to the 8-week supplementation period (6655 bp; p < 0.05) in the group receiving the product, whereas no significant change was observed in the placebo group. Additionally, the product group exhibited a significant improvement in plasma total antioxidant capacity levels compared to the placebo group (mean change, +35 vs -38; p = 0.006). This study also showed a significant correlation between telomere length and % CD4 + T cells (r = +0.325; p = 0.00003), % CD8 + T cells (r = +0.156; p = 0.048), and visceral fat (r = - 0.349; p = 0.000006). The findings suggest that consuming this dietary supplement (Mylife/Mylife100®) for 8 weeks has a positive effect on cellular aging by lengthening telomeres possible through their antioxidant capacities. Oxidative stress and cellular aging are underlying predisease mechanisms that might be alleviated by supplementing with this product.
Collapse
Affiliation(s)
- Kemika Praengam
- Institute of NutritionMahidol UniversityNakhon PathomThailand
| | | | | | | | | |
Collapse
|
10
|
Sangkana S, Eawsakul K, Ongtanasup T, Boonhok R, Mitsuwan W, Chimplee S, Paul AK, Saravanabhavan SS, Mahboob T, Nawaz M, Pereira ML, Wilairatana P, Wiart C, Nissapatorn V. Preparation and evaluation of a niosomal delivery system containing G. mangostana extract and study of its anti- Acanthamoeba activity. NANOSCALE ADVANCES 2024; 6:1467-1479. [PMID: 38419876 PMCID: PMC10898434 DOI: 10.1039/d3na01016c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/12/2023] [Indexed: 03/02/2024]
Abstract
Garcinia mangostana extract (GME) has severe pharmacokinetic deficiencies and is made up of a variety of bioactive components. GME has proven its anti-Acanthamoeba effectiveness. In this investigation, a GME-loaded niosome was developed to increase its potential therapeutic efficacy. A GME-loaded niosome was prepared by encapsulation in a mixture of span60, cholesterol, and chloroform by the thin film hydration method. The vesicle size, zeta potential, percentage of entrapment efficiency, and stability of GME-loaded niosomes were investigated. The values for GME-loaded niosome size and zeta potential were 404.23 ± 4.59 and -32.03 ± 0.95, respectively. The delivery system enhanced the anti-Acanthamoeba activity, which possessed MIC values of 0.25-4 mg mL-1. In addition, the niosomal formulation decreased the toxicity of GME by 16 times. GME-loaded niosome must be stored at 4 °C, as the quantity of remaining GME encapsulated is greater at this temperature than at room temperature. SEM revealed the damage to the cell membrane caused by trophozoites and cysts, which led to dead cells. In light of the above, it was found that GME-loaded niosomes had better anti-Acanthamoeba activity. The study suggested that GME-loaded niosomes could be used as an alternative to Acanthamoeba's therapeutic effects.
Collapse
Affiliation(s)
- Suthinee Sangkana
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Komgrit Eawsakul
- School of Medicine, Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Tassanee Ongtanasup
- Department of Medical Technology, School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University Thai Buri Nakhon Si Thammarat 80160 Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University Thai Buri Nakhon Si Thammarat 80160 Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Siriphorn Chimplee
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Alok K Paul
- School of Pharmacy and Pharmacology, University of Tasmania Hobart TAS 7005 Australia
| | - Shanmuga Sundar Saravanabhavan
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation Paiyanoor Chennai Tamil Nadu 603104 India
| | - Tooba Mahboob
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University Dammam 34212 Saudi Arabia
| | - Maria L Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
- Department of Medical Sciences, University of Aveiro 3810-193 Aveiro Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah Kota Kinabalu 88400 Sabah Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University Nakhon Si Thammarat 80160 Thailand
| |
Collapse
|
11
|
Ji H, Pan Q, Cao R, Li Y, Yang Y, Chen S, Gu Y, Qian D, Guo Y, Wang L, Wang Z, Xiao L. Garcinone C attenuates RANKL-induced osteoclast differentiation and oxidative stress by activating Nrf2/HO-1 and inhibiting the NF-kB signaling pathway. Heliyon 2024; 10:e25601. [PMID: 38333852 PMCID: PMC10850749 DOI: 10.1016/j.heliyon.2024.e25601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis is the result of osteoclast formation exceeding osteoblast production, and current osteoporosis treatments targeting excessive osteoclast bone resorption have serious adverse effects. There is a need to fully understand the mechanisms of osteoclast-mediated bone resorption, identify new drug targets, and find better drugs to treat osteoporosis. Gar C (Gar C) is a major naturally occurring phytochemical isolated from mangosteen, and is a derivative of the naturally occurring phenolic antioxidant lutein. We used an OP mouse model established by ovariectomy (OVX). We found that treatment with Gar C significantly increased bone mineral density and significantly decreased the expression of TRAP, NFATC1 and CTSK relative to untreated OP mice. We found that Garcinone C could disrupt osteoclast activation and resorption functions by inhibiting RANKL-induced osteoclast differentiation as well as inhibiting the formation of multinucleated osteoclasts. Immunoblotting showed that Gar C downregulated the expression of osteoclast-related proteins. In addition, Gar C significantly inhibited RANKL-induced ROS production and affected NF-κB activity by inhibiting phosphorylation Formylation of P65 and phosphorylation and degradation of ikba. These data suggest that Gar C significantly reduced OVX-induced osteoporosis by inhibiting osteoclastogenesis and oxidative stress in bone tissue. Mechanistically, this effect was associated with inhibition of the ROS-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Hongyun Ji
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Qian Pan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Ruihong Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yajun Li
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Shuangshuang Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yong Gu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Daoyi Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| |
Collapse
|
12
|
Petit R, Izambart J, Guillou M, da Silva Almeida JRG, de Oliveira Junior RG, Sol V, Ouk TS, Grougnet R, Quintans-Júnior LJ, Sitarek P, Thiéry V, Picot L. A Review of Phototoxic Plants, Their Phototoxic Metabolites, and Possible Developments as Photosensitizers. Chem Biodivers 2024; 21:e202300494. [PMID: 37983920 DOI: 10.1002/cbdv.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
This study provides a comprehensive overview of the current knowledge regarding phototoxic terrestrial plants and their phototoxic and photosensitizing metabolites. Within the 435,000 land plant species, only around 250 vascular plants have been documented as phototoxic or implicated in phototoxic occurrences in humans and animals. This work compiles a comprehensive catalog of these phototoxic plant species, organized alphabetically based on their taxonomic family. The dataset encompasses meticulous details including taxonomy, geographical distribution, vernacular names, and information on the nature and structure of their phototoxic and photosensitizing molecule(s). Subsequently, this study undertook an in-depth investigation into phototoxic molecules, resulting in the compilation of a comprehensive and up-to-date list of phytochemicals exhibiting phototoxic or photosensitizing activity synthesized by terrestrial plants. For each identified molecule, an extensive review was conducted, encompassing discussions on its phototoxic activity, chemical family, occurrence in plant families or species, distribution within different plant tissues and organs, as well as the biogeographical locations of the producer species worldwide. The analysis also includes a thorough discussion on the potential use of these molecules for the development of new photosensitizers that could be used in topical or injectable formulations for antimicrobial and anticancer phototherapy as well as manufacturing of photoactive devices.
Collapse
Affiliation(s)
- Raphaëlle Petit
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Jonathan Izambart
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Mathieu Guillou
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | | | - Raimundo Gonçalves de Oliveira Junior
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Vincent Sol
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Tan-Sothea Ouk
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Raphaël Grougnet
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Lucindo José Quintans-Júnior
- Franco-Brazilian Network on Natural Products, FB2NP
- LANEF, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil
| | | | - Valérie Thiéry
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| |
Collapse
|
13
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
14
|
Vargas-Castro R, García-Becerra R, Díaz L, Avila E, Ordaz-Rosado D, Bernadez-Vallejo SV, Cano-Colín S, Camacho J, Larrea F, García-Quiroz J. Enhancing Tamoxifen Therapy with α-Mangostin: Synergistic Antiproliferative Effects on Breast Cancer Cells and Potential Reduced Endometrial Impact. Pharmaceuticals (Basel) 2023; 16:1576. [PMID: 38004441 PMCID: PMC10675669 DOI: 10.3390/ph16111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the most prevalent neoplasia among women worldwide. For the estrogen receptor-positive (ER+) phenotype, tamoxifen is the standard hormonal therapy; however, it carries the risk of promoting endometrial carcinoma. Hence, we aimed to evaluate the antiproliferative effect of the phytochemical α-mangostin (AM) as a co-adjuvant alongside tamoxifen on breast cancer cells to improve its efficacy while reducing its adverse effects on endometrium. For this, ER+ breast cancer cells (MCF-7 and T-47D) and endometrial cells (N30) were treated with AM, 4-hydroxytamoxifen (4-OH-TMX), and their combination. Cell proliferation was evaluated using sulforhodamine B assay, and the pharmacological interaction was determined through the combination index and the dose reduction index calculation. The genes KCNH1, CCDN1, MKI67, and BIRC5 were amplified by real-time PCR as indicators of oncogenesis, cell cycle progression, cell proliferation, and apoptosis, respectively. Additionally, genes involved in ER signaling were analyzed. In breast cancer cells, the combination of AM with 4-OH-TMX showed a synergistic antiproliferative effect and favorable dose reduction. AM and 4-OH-TMX decreased KCNH1, CCND1, and BIRC5 gene expression. In endometrial cells, AM decreased MKI-67 gene expression, while it reverted the 4-OH-TMX-dependent CCND1 upregulation. This study establishes the benefits of incorporating AM as a co-adjuvant for first-line ER+ breast cancer therapy.
Collapse
Affiliation(s)
- Rafael Vargas-Castro
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (R.V.-C.); (L.D.); (E.A.); (D.O.-R.); (S.V.B.-V.); (F.L.)
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (R.G.-B.); (S.C.-C.)
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (R.V.-C.); (L.D.); (E.A.); (D.O.-R.); (S.V.B.-V.); (F.L.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (R.V.-C.); (L.D.); (E.A.); (D.O.-R.); (S.V.B.-V.); (F.L.)
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (R.V.-C.); (L.D.); (E.A.); (D.O.-R.); (S.V.B.-V.); (F.L.)
| | - Samantha V. Bernadez-Vallejo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (R.V.-C.); (L.D.); (E.A.); (D.O.-R.); (S.V.B.-V.); (F.L.)
| | - Saúl Cano-Colín
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (R.G.-B.); (S.C.-C.)
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de Mexico 07360, Mexico;
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (R.V.-C.); (L.D.); (E.A.); (D.O.-R.); (S.V.B.-V.); (F.L.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico; (R.V.-C.); (L.D.); (E.A.); (D.O.-R.); (S.V.B.-V.); (F.L.)
| |
Collapse
|
15
|
De Vita S, Masullo M, Grambone S, Bescós PB, Piacente S, Bifulco G. Demethylcalabaxanthone from Garcinia mangostana Exerts Antioxidant Effects through the Activation of the Nrf2 Pathway as Assessed via Molecular Docking and Biological Evaluation. Antioxidants (Basel) 2023; 12:1980. [PMID: 38001833 PMCID: PMC10669650 DOI: 10.3390/antiox12111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation promotes the expression of antioxidant enzymes in response to rising oxidative stress, resulting in reactive oxygen species (ROS) detoxification and playing a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Moreover, the biological effects of Nrf2 pathway activation contribute to reducing apoptosis and enhancing cell survival. The activity of Nrf2 is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1). Prompted by the recent results reporting the impact of xanthone metabolites on oxidative stress, cancer, and inflammation, the antioxidant properties of xanthones isolated from Garcinia mangostana (γ-mangostin, α-mangostin, 8-deoxygartanin, demethylcalabaxanthone, garcinone D) were assessed. In particular, the capability of these natural products to disrupt the interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), triggering the activation of the Nrf2-mediated pathway, was evaluated using molecular docking experiments and in vitro tests. The modulation of some key Nrf2-related mediators like glutathione (GSH) and lactate dehydrogenase (LDH) to highlight a possible direct antioxidant effect was investigated. Among the tested compounds, demethylcalabaxanthone showed an indirect antioxidant effect, as corroborated by a Western blot assay, displaying a significant increase in the translocated protein upon its administration.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Milena Masullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Sabrina Grambone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Paloma Bermejo Bescós
- Departamento de Farmacología, Farmacognosia y Botánica, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| |
Collapse
|
16
|
Sinha S, Alluri KV, Somepalli V, Golakoti T, Sengupta K. A synergistic blend of Garcinia mangostana fruit rind and Cinnamomum tamala leaf extracts enhances myogenic differentiation and mitochondrial biogenesis in vitro and muscle growth and strength in mice. Food Nutr Res 2023; 67:9750. [PMID: 37920678 PMCID: PMC10619412 DOI: 10.29219/fnr.v67.9750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 11/04/2023] Open
Abstract
Background A proprietary combination of Garcinia mangostana fruit rind and Cinnamomum tamala leaf extracts (LI80020F4, CinDura®) improved the physical performance and muscle strength of resistance-trained adult males. Objective This study assessed the underlying mechanisms of the ergogenic potential of LI80020F4 in in vitro and in vivo models. Methods The individual extracts and their combination (LI80020F4) were assessed for nitrite production in EAhy926 human endothelial cells. Subsequent experiments evaluated the effect of LI80020F4 in myotube formation in C2C12 mouse myoblasts, expression of mammalian target of rapamycin (mTOR) signaling proteins, myogenic factors, and mitochondrial functions in L6 rat myoblasts.Moreover, adult male ICR mice were randomly assigned (n = 15) into vehicle control (G1), exercise alone (G2), oxymetholone-16 mg/kg body weight (bw) (G3), and 75 (G4)-, 150 (G5)-, or 300 (G6) mg/kg bw of LI80020F4, orally gavaged for 28 days. G1 and G2 mice received 0.5% carboxymethylcellulose sodium. Following completion, muscle strength and physical performance were assessed on forelimb grip strength and forced swimming test (FST), respectively. Gastrocnemius (GA), tibialis anterior (TA) muscle weights, muscle fiber cross-sectional area (CSA), levels of muscle, and serum protein markers were also determined. Results LI80020F4 increased nitrite production in EAhy926 cells in a dose-dependent manner. LI80020F4 induced C2C12 myotube formation, increased mitochondrial biogenesis, upregulated the expressions of activated mTOR and other mitochondria and myogenic proteins, and mitigated H2O2-induced mitochondrial membrane depolarization in the myoblast cells. In the animal study, 75, 150, and 300 mg/kg bw LI80020F4 doses significantly (P < 0.05) increased the animals' forelimb grip strength. Mid- and high-dose groups showed increased swimming time, increased muscle weight, CSA, muscle growth-related, and mitochondrial protein expressions in the GA muscles. Conclusion LI80020F4 increases nitric oxide production in the endothelial cells, mitochondrial biogenesis and function, upregulates skeletal muscle growth-related protein expressions and reduces oxidative stress; together, it explains the basis of the ergogenic potential of LI80020F4.
Collapse
Affiliation(s)
- Swaraj Sinha
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Krishnaraju Venkata Alluri
- Department of Pharmacology and Clinical Research, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Venkateswarlu Somepalli
- Department of Phytochemistry, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Trimurtulu Golakoti
- Department of Phytochemistry, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Krishanu Sengupta
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
17
|
Tan SSY, Shanmugham M, Chin YL, An J, Chua CK, Ong ES, Leo CH. Pressurized Hot Water Extraction of Mangosteen Pericarp and Its Associated Molecular Signatures in Endothelial Cells. Antioxidants (Basel) 2023; 12:1932. [PMID: 38001785 PMCID: PMC10669822 DOI: 10.3390/antiox12111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The mangosteen (Garcinia mangostana L.) pericarp is known to be rich in potent bioactive phytochemical compounds such as xanthones, which possess pharmacologically important antioxidant activity and beneficial cardiometabolic properties. Mangosteen pericarp is typically classified as unavoidable food waste and discarded, despite being rich in bioactive phytochemical compounds that therefore present an exciting opportunity for valorization. Thus, this study aims to extract phytochemical compounds from mangosteen pericarp using pressurized hot water extraction (PHWE) and determine its biological effects in endothelial cells using RNA sequencing. Liquid chromatography with MS/MS (LC/MSMS) and UV detection (LC/UV) was subsequently used to identify three key phytochemical compounds extracted from the mangosteen pericarp: α-Mangostin, γ-Mangostin, and Gartanin. Within the tested range of extraction temperatures by PHWE, our results demonstrated that an extraction temperature of 120 °C yielded the highest concentrations of α-Mangostin, γ-Mangostin, and Gartanin with a concomitant improvement in antioxidant capacity compared to other extraction temperatures. Using global transcriptomic profiling and bioinformatic analysis, the treatment of endothelial cells with mangosteen pericarp extracts (120 °C PHWE) for 48 h caused 408 genes to be differentially expressed. Furthermore, our results demonstrated that key biological processes related to "steroid biosynthesis and metabolism", likely involving the activation of the AMPK signaling pathway, were upregulated by mangosteen pericarp extract treatment. In conclusion, our study suggests a green extraction method to valorize phytochemical compounds from mangosteen pericarp as a natural product with potential beneficial effects on cardiometabolic health.
Collapse
Affiliation(s)
- Sakeena Si Yu Tan
- Pillar of Engineering Product Development, Singapore University of Technology & Design, Singapore 487372, Singapore; (S.S.Y.T.); (C.K.C.)
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Yu Ling Chin
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Jia An
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Chee Kai Chua
- Pillar of Engineering Product Development, Singapore University of Technology & Design, Singapore 487372, Singapore; (S.S.Y.T.); (C.K.C.)
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Eng Shi Ong
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Chen Huei Leo
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| |
Collapse
|
18
|
Nie X, Fu L, Cheng Y, Wu X, Lv K, Li R, Wu Y, Leung GPH, Fu C, Lee SMY, Seto SW, Zhang J, Li J. Garcinone E suppresses breast cancer growth and metastasis by modulating tumor-associated macrophages polarization via STAT6 signaling. Phytother Res 2023; 37:4442-4456. [PMID: 37259475 DOI: 10.1002/ptr.7909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Cancer metastasis remains the most common cause of death in breast cancer patients. Tumor-associated macrophages (TAMs) are a novel therapeutic target for the treatment of metastatic breast cancer. Despite the good anti-cancer activity of garcinone E (GE), there are no reports on its therapeutic effects on breast cancer metastasis. The objective of this study was to examine the anti-cancer effects of GE on metastatic breast cancer. RAW 264.7 and THP-1 cells were polarized to M2 macrophages by IL-4/IL-13 in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were used to explore the effect of GE on breast cancer growth and metastasis in vivo. In vitro studies showed that GE dose-dependently suppressed IL-4 + IL-13-induced expression of CD206 in both RAW 264.7 cells and differentiated THP-1 macrophages. However, GE did not affect the LPS + IFN-γ-induced polarization to the M1-like macrophages in vitro. GE inhibited the expression of the M2 macrophage specific genes in RAW 264.7 cells, and simultaneously impaired M2 macrophage-induced breast cancer cell proliferation and migration, and angiogenesis. In animal studies, GE significantly suppressed tumor growth, angiogenesis, and lung metastasis in 4T1 tumor-bearing mice, without causing toxicity. In both tumor and lung tissues, the proportion of M2-like TAMs was significantly decreased while the proportion of M1-like TAMs was markedly increased by GE treatment. Mechanistically, GE inhibited phosphorylation of STAT6 in vitro and in vivo. Our results demonstrate for the first time that GE suppresses breast cancer growth and pulmonary metastasis by modulating M2-like macrophage polarization through the STAT6 signaling pathway.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China
| | - Li Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Kongpeng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong, China
- The Research Center for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- The Research Center for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong, SAR, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
19
|
Tang Z, Huang G, Huang H. Ultrasonic/cellulase-assisted extraction of polysaccharide from Garcinia mangostana rinds and its carboxymethylated derivative. ULTRASONICS SONOCHEMISTRY 2023; 99:106571. [PMID: 37690259 PMCID: PMC10498308 DOI: 10.1016/j.ultsonch.2023.106571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Response surface methodology was selected to explore the ultrasonic-assisted cellulase extraction conditions of Garcinia mangostana rind polysaccharides (GMRPs), and the optimum values of each condition were as follows: ratio of raw material to liquid of 1:50 g/mL, ultrasonic time of 40 min, enzyme concentration of 4 %, and ultrasonic power of 179 W. Based on the above conditions, the average extraction rate of GMRPs was 15.56 %. GMRPs were modified by carboxymethylation, and the relationship between the amount of chloroacetic acid and the substitution degree of carboxymethylated derivative was compared. Based on the results of single factor experiment, it was shown that the amount of chloroacetic acid significantly affected the degree of substitution of derivative products. The above research provides some valuable theoretical references for the preparation of GMRPs and its carboxymethylation products.
Collapse
Affiliation(s)
- Zhenjie Tang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
20
|
Charpentier T, Viault G, Le Ray AM, Bataillé-Simoneau N, Helesbeux JJ, Blon N, Bastide F, Marchi M, Aligon S, Bruguière A, Dinh CP, Benbelkacem Z, Dallery JF, Simoneau P, Richomme P, Guillemette T. Natural Products Targeting the Fungal Unfolded Protein Response as an Alternative Crop Protection Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13706-13716. [PMID: 37697453 DOI: 10.1021/acs.jafc.3c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Discovering new solutions for crop protection is a major challenge for the next decades as a result of the ecotoxicological impact of classical fungicides, the emergence of fungicide resistances, and the consequence of climate change on pathogen distribution. Previous work on fungal mutants deficient in the unfolded protein response (UPR) supported that targeting this pathway is a promising plant disease control strategy. In particular, we showed that the UPR is involved in fungal virulence by altering cell protection against host defense compounds, such as phytoalexins and phytoanticipins. In this study, we evaluated natural products targeting fungal IRE1 protein (UPR effector) and consequently increasing fungal susceptibility to plant defenses. Developing an in vitro cell-based screening assay allowed for the identification of seven potential IRE1 inhibitors with a focus on polyhydroxylated prenylated xanthones. Inhibition of hac1 mRNA splicing, which is mediated by IRE1, was then validated for the most active compound, namely, γ-mangostin 3. To study the mode of interaction between the binding site of IRE1 and active xanthones, molecular docking was also undertaken, revealing similar and novel interactions between the known inhibitor and the binding site. Eventually, active xanthones applied at subtoxic doses induced a significant reduction in necrosis size for leaves of Brassica oleracea inoculated with Alternaria brassicicola and Botrytis cinerea.
Collapse
Affiliation(s)
- Thomas Charpentier
- Université Angers, SONAS, SFR QUASAV, F-49000 Angers, France
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49070 Beaucouzé, France
| | | | | | | | | | - Nadège Blon
- Université Angers, SONAS, SFR QUASAV, F-49000 Angers, France
| | - Franck Bastide
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49070 Beaucouzé, France
| | - Muriel Marchi
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49070 Beaucouzé, France
| | - Sophie Aligon
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49070 Beaucouzé, France
| | | | - Chau Phi Dinh
- Université Angers, SONAS, SFR QUASAV, F-49000 Angers, France
| | | | - Jean-Felix Dallery
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49070 Beaucouzé, France
| | - Philippe Simoneau
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49070 Beaucouzé, France
| | - Pascal Richomme
- Université Angers, SONAS, SFR QUASAV, F-49000 Angers, France
| | - Thomas Guillemette
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49070 Beaucouzé, France
| |
Collapse
|
21
|
Saputro AH, Amelia T, Mahardhika AB, Widyawaruyanti A, Wahyuni TS, Permanasari AA, Artarini AA, Tjahjono DH, Damayanti S. Alpha-mangostin, piperine and beta-sitosterol as hepatitis C antivirus (HCV): In silico and in vitro studies. Heliyon 2023; 9:e20141. [PMID: 37809693 PMCID: PMC10559922 DOI: 10.1016/j.heliyon.2023.e20141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatitis C is still a serious liver case of health. Up to now the development of anti-Hepatitis C Virus (HCV) drugs is challenging, especially the development of natural material compounds as anti-HCV. In the present study, we evaluated the probability of α-mangostin, piperine, and β-sitosterol as anti-HCV with the in silico and in vitro approaches. Molecular docking was performed between nonstructural protein 5B (NS5B, PDB ID 3FQL) with α-mangostin, piperine, and β-sitosterol by Autodock Tools® and BIOVIA Discovery Studio®. Subsequently, molecular dynamics simulations were conducted for 200 ns, evaluating the dynamic interaction between the ligands and the viral protein NS5B. Furthermore, compound characterization at the hepatocarcinoma cell line was employed. α-Mangostin with NS5B complex demonstrated the most negative binding free energy value based on MM-PBSA calculation with a value of -9.13 kcal/mol. In vitro test showed that IC50 of α -mangostin was 2.70 ± 0.92 μM, IC50 of piperine was 52.18 ± 3.21 μM, IC50 of β-sitosterol was >100 μM. α-Mangostin can serve as a valuable lead compound for further development of the anti-HCV.
Collapse
Affiliation(s)
- Anjar Hermadi Saputro
- Department of Pharmacochemistry, School of Pharmacy, Institut Teknologi Bandung, 40132, Indonesia
- Department of Pharmacy, Institut Teknologi Sumatera, 35365, Indonesia
| | - Tasia Amelia
- Department of Pharmacochemistry, School of Pharmacy, Institut Teknologi Bandung, 40132, Indonesia
| | | | - Aty Widyawaruyanti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, 60115, Indonesia
- Center for Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, 60115, Indonesia
| | - Tutik Sri Wahyuni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, 60115, Indonesia
- Center for Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, 60115, Indonesia
| | - Adita Ayu Permanasari
- Center for Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, 60115, Indonesia
| | - Aluicia Anita Artarini
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, 40132, Indonesia
| | - Daryono Hadi Tjahjono
- Department of Pharmacochemistry, School of Pharmacy, Institut Teknologi Bandung, 40132, Indonesia
| | - Sophi Damayanti
- Department of Pharmacochemistry, School of Pharmacy, Institut Teknologi Bandung, 40132, Indonesia
- University Center of Excellence on Artificial Intelligence for Vision, Natural Language Processing & Big Data Analysis (U-CoE AI-VLB), Institut Teknologi Bandung, Indonesia
| |
Collapse
|
22
|
Kuo HW, Li CY, Chieng ZX, Cheng W. Dietary administration of mangosteen, Garcinia mangostana, peel extract enhances the growth, and physiological and immunoendocrinological regulation of prawn, Macrobrachiumrosenbergii. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108982. [PMID: 37536467 DOI: 10.1016/j.fsi.2023.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
In this study, we investigated the potential immunostimulatory effects of mangosteen (Garcinia mangostana) peel extract on Macrobrachium rosenbergii, specifically in enhancing immunity and resistance against Lactococcus garvieae. We employed a dietary administration approach to assess the impact of different extract preparations from mangosteen peel, namely mangosteen peel powder (MPP), boiled mangosteen peel powder (MPB), and mangosteen peel extract (MPE). Following the administration of mangosteen peel extract, we evaluated growth performance, innate immune parameters, and disease resistance in the prawns. The results revealed a significant increase in total haemocyte count (THC), differential haemocyte count (DHC), phenoloxidase (PO) activity, respiratory bursts (RBs), as well as phagocytic activity and clearance efficiency against L. garvieae. Based on these findings, we suggest that mangosteen peel extract can be utilized as an immunostimulant for prawns through dietary administration, regulating immune responses and enhancing resistance against pathogens by modulating carbohydrate metabolism.
Collapse
Affiliation(s)
- Hsin-Wei Kuo
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC; Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Cheng-Ying Li
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Zheng-Xiang Chieng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
23
|
Saelee N, Cheong LZ, Chaijan M. Optimized Acetic Acid Production by Mixed Culture of Saccharomyces cerevisiae TISTR 5279 and Gluconobacter oxydans TBRC 4013 for Mangosteen Vinegar Fermentation Using Taguchi Design and Its Physicochemical Properties. Foods 2023; 12:3256. [PMID: 37685189 PMCID: PMC10487089 DOI: 10.3390/foods12173256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
This research investigates the enhancement of acetic acid production in the mangosteen vinegar fermentation process through mixed-culture fermentation involving S. cerevisiae TISTR 5279 and G. oxydans TBRC 4013, alongside an analysis of the resulting mangosteen vinegar's qualities and properties using Taguchi Experimental Design (TED). It focuses on key parameters, such as the juice concentration, inoculum ratio, and pasteurization conditions, to optimize acetic acid production. The findings highlight that the unpasteurized condition exerts the most significant influence on acetic acid production yield (p < 0.01), followed by the 3:1 inoculum ratio of S. cerevisiae TISTR 5279 to G. oxydans TBRC 4013 and a 10% mangosteen concentration. The achieved theoretical maximum yield of acetic acid on day 21 was 85.23 ± 0.30%, close to the predicted 85.33% (p > 0.05). Furthermore, the highest recorded acetic acid concentration reached 5.34 ± 0.92%. On day 14 of fermentation, the maximum productivity and yield were 3.81 ± 0.10 g/L/h and 0.54 ± 0.22 g/g, respectively. The resulting mangosteen vinegar exhibited elevated levels of total phenolic content (359.67 ± 47.26 mg GAE/100 mL), total flavonoid content (12.96 ± 0.65 mg CAE/100 mL), and anti-DPPH radical activity (17.67 ± 0.22%), suggesting potential health benefits. Beyond these chemical aspects, the mangosteen vinegar displayed distinct physical and chemical characteristics from the original mangosteen juice, possibly conferring additional health advantages. These findings are promising for industrial vinegar fermentation models and propose the potential use of the product as a valuable dietary supplement.
Collapse
Affiliation(s)
- Nisa Saelee
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Manat Chaijan
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Food Technology and Innovation Research Center of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
24
|
Kwon EB, Moon DO, Oh ES, Song YN, Park JY, Ryu HW, Kim DY, Chin YW, Lee HS, Lee SU, Kim MO. Garcinia mangostana Suppresses Triacylglycerol Synthesis in Hepatocytes and Enterocytes. J Med Food 2023. [PMID: 37566462 DOI: 10.1089/jmf.2023.k.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Regulation of diacylglycerol acyltransferase (DGAT) and pancreatic lipase (PL) activities is important in the treatment of triacylglycerol (TG)-related metabolic diseases. Garcinia mangostana, also known as mangosteen, is a traditional medicine ingredient used in the treatment of inflammation in Southeast Asia. In this study, The ethanolic extract of G. mangostana peel inhibited human recombinant DGAT1 and DGAT2, and PL enzyme activities in vitro. The inhibitory activity of DGAT1 and DGAT2 enzymes of four representative bioactive substances in mangosteen was confirmed. In addition, G. mangostana was confirmed to suppress the serum TG levels in C57 mice by inhibiting the absorption and synthesis of TG in the gastrointestinal tract. Through this study, it was revealed that G. mangostana extract could be useful for the prevention and amelioration of TG-related metabolic diseases such as obesity and fatty liver.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Gyeongsan, Korea
| | - Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | - Hyun-Sun Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| |
Collapse
|
25
|
Cruz-Gregorio A, Aranda-Rivera AK, Aparicio-Trejo OE, Medina-Campos ON, Sciutto E, Fragoso G, Pedraza-Chaverri J. α-Mangostin induces oxidative damage, mitochondrial dysfunction, and apoptosis in a triple-negative breast cancer model. Phytother Res 2023; 37:3394-3407. [PMID: 37012651 DOI: 10.1002/ptr.7812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor; therefore, TNBC lacks targeted therapy, and chemotherapy is the only available treatment for this illness but causes side effects. A putative strategy for the treatment of TNBC could be the use of the polyphenols such as α-Mangostin (α-M), which has shown anticancerogenic effects in different cancer models and can modulate the inflammatory and prooxidant state in several pathological models. The redox state, oxidative stress (OS), and oxidative damage are highly related to cancer development and its treatment. Thus, this study aimed to evaluate the effects of α-M on redox state, mitochondrial metabolism, and apoptosis in 4T1 mammary carcinoma cells. We found that α-M decreases both protein levels and enzymatic activity of catalase, and increases reactive oxygen species, oxidized proteins and glutathione disulfide, which demonstrates that α-M induces oxidative damage. We also found that α-M promotes mitochondrial dysfunction by abating basal respiration, the respiration ligated to oxidative phosphorylation (OXPHOS), and the rate control of whole 4T1 cells. Additionally, α-M also decreases the levels of OXPHOS subunits of mitochondrial complexes I, II, III, and adenosine triphosphate synthase, the activity of mitochondrial complex I as well as the levels of peroxisome proliferator-activated receptor-gamma co-activator 1α, showing a mitochondrial mass reduction. Then, oxidative damage and mitochondrial dysfunction induced by α-M induce apoptosis of 4T1 cells, which is evidenced by B cell lymphoma 2 decrease and caspase 3 cleavage. Taken together, our results suggest that α-M induces OS and mitochondrial dysfunction, resulting in 4T1 cell death through apoptotic mechanisms.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", CDMX, Mexico
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | | | - Omar Noel Medina-Campos
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
26
|
Ciont C, Difonzo G, Pasqualone A, Chis MS, Ranga F, Szabo K, Simon E, Naghiu A, Barbu-Tudoran L, Caponio F, Lelia Pop O, Cristian Vodnar D. Phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during in vitro gastrointestinal digestion. Food Chem 2023; 428:136778. [PMID: 37421669 DOI: 10.1016/j.foodchem.2023.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Olive leaf was characterized by a high content of phenols and flavonoids (oleuropein, luteolin, and their derivatives), presenting functional and health-related properties. The chemical instability of phenolics through technological processes and their degradation in the digestive system may negatively impact them, leading to lower absorption. This study evaluates the phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during the INFOGEST static in vitro digestion, aiming to enhance stability and sensorial properties. Ultrasound-assisted extraction and chromatography characterized the extract, while spray drying (maltodextrin-glucose) and nano-encapsulation (maltodextrin, whey protein isolate, and arabic gum) techniques were used with specific solutions. Encapsulated formulations underwent microscopy (TEM, SEM) and encapsulation efficiency analysis. Micro- and nano-encapsulation improved biscuit functionality by enhancing phenolic stability during digestion. However, the highest concentration adversely affected sensory and textural parameters. These findings contribute to developing functional food products enriched with bioactive compounds, providing improved health benefits while maintaining sensory attributes.
Collapse
Affiliation(s)
- Călina Ciont
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy.
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Maria Simona Chis
- Department Food Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Florica Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Katalin Szabo
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Elemer Simon
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Anca Naghiu
- Research Institute for Analytical Instrumentation, National Institute of Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Tang Z, Wang Y, Huang G, Huang H. Ultrasound-assisted extraction, analysis and antioxidant activity of polysaccharide from the rinds of Garcinia mangostana L. ULTRASONICS SONOCHEMISTRY 2023; 97:106474. [PMID: 37321072 DOI: 10.1016/j.ultsonch.2023.106474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
According to response surface methodology (RSM), the extraction conditions of ultrasound-assisted extraction of polysaccharide from the rinds of Garcinia mangostana L. (GMRP) were optimized and determined. The optimal conditions obtained through optimization were: the liquid to material ratio was 40 mL/g, ultrasonic power was 288 W and extraction time was 65 min. The average extraction rate of GMRP was 14.73%. Ac - GMRP was obtained by acetylation of GMRP, and the antioxidant activities of the two polysaccharides were compared in vitro. The results indicated that the antioxidant capacity of polysaccharide obtained after acetylation was significantly improved compared with that of GMRP. In conclusion, chemical modification of polysaccharide is an effective measure to improve its properties to a certain extent. Meanwhile, it implies that GMRP has great research value and potential.
Collapse
Affiliation(s)
- Zhenjie Tang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yanrong Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
28
|
Yuan D, Wang Z, Li B, Li X, Wang Y, Wang X, Cao J, Guo Y, Du H, Lu S. Complexation of Apigenin and Oxymatrine Leading to Enhanced Anti-inflammatory Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:1179-1188. [PMID: 37115657 DOI: 10.1021/acs.jnatprod.2c00947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Apigenin (APG) is a well-known dietary flavonoid with multiple bioactivities, but its poor aqueous solubility may result in low oral bioavailability and thus compromised therapeutic effects. In the present study, APG was complexed with oxymatrine (OMT), a natural quinolizidine alkaloid, for enhanced anti-inflammatory activity, and the related mechanisms in the interaction of APG with OMT were investigated. Fourier transform-infrared spectroscopy, fluorescence spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy characterizations demonstrated the occurrence of an APG-OMT complex formed at a molar ratio of 1:2. Then, molecular dynamics simulations and quantum chemical calculations were utilized to elucidate that hydrogen bonding, van der Waals forces, and hydrophobic effects were the main forces acting in the formation of the APG-OMT complex. Pharmacokinetic studies in rats demonstrated that the oral bioavailability of APG in the APG-OMT complex was significantly higher than that of APG alone. Finally, bioactivity evaluation in the lipopolysaccharide-induced acute inflammatory injury mouse models showed that the APG-OMT complex exhibited more potent anti-inflammatory effects than APG alone. This study confirmed that APG and OMT exerted enhanced anti-inflammatory effects through self-complexation, which may provide a novel strategy for improving the bioavailability and bioactivity of natural product mixtures.
Collapse
Affiliation(s)
- Dan Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Ziling Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Bin Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Xiaoxuan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yingyun Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Xinyu Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Jin Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| |
Collapse
|
29
|
Lin F, Kennelly EJ, Linington RG, Long C. Comprehensive Metabolite Profiling of Two Edible Garcinia Species Based on UPLC-ESI-QTOF-MS E Coupled with Bioactivity Assays. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7604-7617. [PMID: 37154236 DOI: 10.1021/acs.jafc.2c08372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In China, the endemic species Garcinia yunnanensis and native Garcinia xanthochymus are known as edible and medicinal plants. However, a systematic metabolomic and bioactivity evaluation of different plant parts from both species is lacking. In this study, comprehensive investigations of 11 plant parts of G. yunnanensis and 10 of G. xanthochymus employing UPLC-ESI-QTOF-MSE-based metabolomic analysis in conjunction with three bioactivity assays were undertaken. A customized chemotaxonomic-based in-house library containing 6456 compounds was constructed and coupled to the Progenesis QI informatic platform for metabolite annotations. From these two species, a total of 235 constituents were characterized using multiple criteria. Differences in metabolite profiles between the plant parts within each species were uncovered using multivariate analysis. Based on orthogonal partial least-squares discriminant analysis (OPLS-DA), 23 markers were identified as highly differential metabolites from G. xanthochymus and 20 from G. yunnanensis. Comparative assessment of the biological assays revealed the activity variations among different plant parts. The seeds of both species and G. yunnanensis latex exhibited excellent cytotoxic and antibacterial activities, while G. xanthochymus roots and G. yunnanensis arils showed strong anti-inflammatory effects. S-plot analysis identified 26 potential biomarkers for the observed activities, including the known cytotoxic agent cycloxanthochymol and the anti-inflammatory compound garcimultiflorone B, which likely explains some of the potent observed bioactivity.
Collapse
Affiliation(s)
- Fengke Lin
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission of China, Beijing 100081, People's Republic of China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
- Department of Chemistry, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, New York, New York 10468, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York 10016, United States
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission of China, Beijing 100081, People's Republic of China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, People's Republic of China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission of China, Beijing 100081, China
| |
Collapse
|
30
|
Nauman MC, Won JH, Petiwala SM, Vemu B, Lee H, Sverdlov M, Johnson JJ. α-Mangostin Promotes In Vitro and In Vivo Degradation of Androgen Receptor and AR-V7 Splice Variant in Prostate Cancer Cells. Cancers (Basel) 2023; 15:cancers15072118. [PMID: 37046780 PMCID: PMC10093438 DOI: 10.3390/cancers15072118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A major limitation of current prostate cancer pharmacotherapy approaches is the inability of these compounds to target androgen receptor variants or mutants that develop during prostate cancer progression. The demand for novel therapeutics to prevent, slow, and treat prostate cancer is significant because FDA approved anti-androgens are associated with adverse events and can eventually drive drug-resistant prostate cancer. This study evaluated α-mangostin for its novel ability to degrade the androgen receptor and androgen receptor variants. α-Mangostin is one of more than 70 isoprenylated xanthones isolated from Garcinia mangostana that we have been evaluating for their anticancer potential. Prostate cancer cells treated with α-mangostin exhibited decreased levels of wild-type and mutated androgen receptors. Immunoblot, immunoprecipitation, and transfection experiments demonstrated that the androgen receptor was ubiquitinated and subsequently degraded via the proteasome, which we hypothesize occurs with the assistance of BiP, an ER chaperone protein that we have shown to associate with the androgen receptor. We also evaluated α-mangostin for its antitumor activity and promotion of androgen receptor degradation in vivo. In summary, our study demonstrates that androgen receptor degradation occurs through the novel activation of BiP and suggests a new therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Mirielle C. Nauman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jong Hoon Won
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sakina M. Petiwala
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bhaskar Vemu
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria Sverdlov
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeremy J. Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Li J, Zeng C, Huang Q, Zheng MM, Chen J, Ma D. Control release of α-mangostin by a novel dual-polysaccharides delivery system for colitis treatment under simulated gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
32
|
Albuquerque BR, Dias MI, Pinela J, Calhelha RC, Pires TCSP, Alves MJ, Corrêa RCG, Ferreira ICFR, Oliveira MBPP, Barros L. Insights into the Chemical Composition and In Vitro Bioactive Properties of Mangosteen ( Garcinia mangostana L.) Pericarp. Foods 2023; 12:994. [PMID: 36900511 PMCID: PMC10000740 DOI: 10.3390/foods12050994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The industrial processing of mangosteen (Garcinia mangostana L.) generates high amounts of waste, as ~60% of the fruit is formed by an inedible pericarp. However, its pericarp has been explored as a source of xanthones; nevertheless, studies addressing the recovery of other chemical compounds from such biomass are still scarce. Hence, this study intended to elucidate the chemical composition of the mangosteen pericarp, including fat-soluble (tocopherols and fatty acids) and water-soluble (organic acids and phenolic compound non-xanthones) compounds present in the following extracts: hydroethanolic (MT80), ethanolic (MTE), and aqueous (MTW). In addition, the antioxidant, anti-inflammatory, antiproliferative and antibacterial potentials of the extracts were assessed. The mangosteen pericarp showed a composition with seven organic acids, three tocopherol isomers, four fatty acids and fifteen phenolic compounds. Regarding the extraction of phenolics, the MT80 was the most efficient (54 mg/g extract), followed by MTE (19.79 mg/g extract) and MTW (4.011 mg/g extract). All extracts showed antioxidant and antibacterial activities; however, MT80 and MTE extracts were more efficient than MTW. Only MTW did not show anti-inflammatory properties, whereas MTE and MT80 showed inhibitory activities towards tumor cell lines. Notwithstanding, MTE showed cytotoxicity towards normal cells. Our findings support the idea that the ripe mangosteen pericarp is a source of bioactive compounds, although their recovery is dependent on the extraction solvent.
Collapse
Affiliation(s)
- Bianca R. Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-390, PR, Brazil
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
33
|
Li R, Inbaraj BS, Chen BH. Quantification of Xanthone and Anthocyanin in Mangosteen Peel by UPLC-MS/MS and Preparation of Nanoemulsions for Studying Their Inhibition Effects on Liver Cancer Cells. Int J Mol Sci 2023; 24:ijms24043934. [PMID: 36835343 PMCID: PMC9965517 DOI: 10.3390/ijms24043934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Mangosteen peel, a waste produced during mangosteen processing, has been reported to be rich in xanthone and anthocyanin, both of which possess vital biological activities such as anti-cancer properties. The objectives of this study were to analyze various xanthones and anthocyanins in mangosteen peel by UPLC-MS/MS for the subsequent preparation of both xanthone and anthocyanin nanoemulsions to study their inhibition effects on liver cancer cells HepG2. Results showed that methanol was the optimal solvent for the extraction of xanthones and anthocyanins, with a total amount of 68,543.39 and 2909.57 μg/g, respectively. A total of seven xanthones, including garcinone C (513.06 μg/g), garcinone D (469.82 μg/g), γ-mangostin (11,100.72 μg/g), 8-desoxygartanin (1490.61 μg/g), gartanin (2398.96 μg/g), α-mangostin (51,062.21 μg/g) and β-mangostin (1508.01 μg/g), as well as two anthocyanins including cyanidin-3-sophoroside (2889.95 μg/g) and cyanidin-3-glucoside (19.72 μg/g), were present in mangosteen peel. The xanthone nanoemulsion was prepared by mixing an appropriate portion of soybean oil, CITREM, Tween 80 and deionized water, while the anthocyanin nanoemulsion composed of soybean oil, ethanol, PEG400, lecithin, Tween 80, glycerol and deionized water was prepared as well. The mean particle size of the xanthone extract and nanoemulsion were, respectively, 22.1 and 14.0 nm as determined by DLS, while the zeta potential was -87.7 and -61.5 mV. Comparatively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells, with the IC50 being 5.78 μg/mL for the former and 6.23 μg/mL for the latter. However, the anthocyanin nanoemulsion failed to inhibit growth of HepG2 cells. Cell cycle analysis revealed that the proportion of the sub-G1 phase followed a dose-dependent increase, while that of the G0/G1 phase showed a dose-dependent decline for both xanthone extracts and nanoemulsions, with the cell cycle being possibly arrested at the S phase. The proportion of late apoptosis cells also followed a dose-dependent rise for both xanthone extracts and nanoemulsions, with the latter resulting in a much higher proportion at the same dose. Similarly, the activities of caspase-3, caspase-8 and caspase-9 followed a dose-dependent increase for both xanthone extracts and nanoemulsions, with the latter exhibiting a higher activity at the same dose. Collectively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells. Further research is needed to study the anti-tumor effect in vivo.
Collapse
|
34
|
Gheshlaghi SZ, Ebrahimi A, Faghih Z. A detailed theoretical exploration on the THR-β binding affinities and antioxidant activity of some halogenated bisphenols. J Biomol Struct Dyn 2022; 40:10835-10851. [PMID: 34278964 DOI: 10.1080/07391102.2021.1950568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Natural halogenated phenolic compounds are unique bioactive structures which share features and physicochemical properties with thyroid hormones, who are essential regulators of neurological development and metabolism processes. Also, these structures can be used as natural antioxidants to minimize the diseases related to oxidative stress. In this work, the binding affinity of 32 natural and synthetic halogenated bisphenols were investigated on thyroid hormone receptor-β (THR-β) using the molecular docking, MM/GBSA, molecular dynamics, and a rigorous three-layer ONIOM ((M06-2X/6-31G*:PM6:AMBER) calculation. The desirable potency is observed for binding of selected compounds to THR-β. The Met313, Asn331, and His435 are the main interacting residues in the binding cavity which involved in the hydrogen and halogen bond interactions with the ligands. The most potent candidate on binding to the active site of THR-β is presented with respect to the results of mentioned calculations. Moreover, the antioxidant activity of compounds has been investigated using the quantum mechanical calculations. The electrostatic potential surfaces illustrate well the antioxidant capacity of compounds. The halogen substituents increase the antioxidant activity of the most stable conformers. The position and number of OH groups are crucial factors which affect the activity, whereas two adjacent hydroxyl groups enhance the antioxidant activity of selected compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Zeinab Faghih
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Mangosteen Pericarp Extract Supplementation Boosts Antioxidant Status via Rebuilding Gut Microbiota to Attenuate Motor Deficit in 6-OHDA-Induced Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11122396. [PMID: 36552604 PMCID: PMC9774421 DOI: 10.3390/antiox11122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and gut dysbiosis have been known to precede Parkinson's disease (PD). An antioxidant-rich product, mangosteen pericarp (MP), has the ability to counterbalance excessive free radicals and the imbalanced gut microbiota composition, suggesting the MP's capacity to delay PD progression. In this study, we explored the effects of two doses of MP extract in a unilateral 6-hydroxydopamine (6-OHDA)-induced PD rat model. We revealed that the 8-week supplementation of a low dose (LMP) and a high dose of the MP extract (HMP) improved motor function, as observed in decreased contralateral rotation, improved time spent on rod, and higher dopamine binding transporter (DAT) in the substantia nigra pars compacta (SNc). The MP extract, especially the HMP, also increased antioxidant-related gene expressions, restored muscle mitochondrial function, and remodeled fecal microbiota composition, which were followed by reduced reactive oxygen species levels in brain and inflammation in plasma. Importantly, bacterial genera Sutterella, Rothia, and Aggregatibacter, which were negatively correlated with antioxidant gene expressions, decreased in the HMP group. It is imperative to note that in addition to directly acting as an antioxidant to reduce excessive free radicals, MP extract might also increase antioxidant state by rebuilding gut microbiota, thereby enhanced anti-inflammatory capacity and restored mitochondrial function to attenuate motor deficit in 6-OHDA-induced PD-like condition. All in all, MP extract is a potential candidate for auxiliary therapy for PD.
Collapse
|
36
|
Soetikno V, Murwantara A, Jusuf AA, Louisa M. Alpha-mangostin counteracts hyperuricemia and renal dysfunction by inhibiting URAT1 renal transporter in insulin resistance rat model. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alpha-mangostin (AM) has been shown to have hypoglycemic activity. This study aimed to analyze the effects of AM at a dose of 100 mg/kg and 200 mg/kg to alleviate hyperuricemia and renal dysfunction on high-fat/high-glucose diet and low dose streptozotocin (HF/HG/STZ) injection-induced IR rat model. IR was induced in male Wistar rats by giving a HF/HG diet for 11 weeks and single injection of STZ (35 mg/kg, i.p.), then divided randomly into IR rats, IR rats treated with AM 100 and 200 mg/kgBW given by gavage for 8 weeks. At the end of the 11th week, all rats were killed, and the kidneys were taken to be analyzed for urate transporters 1 (URAT1) and glucose transporters 9 (GLUT9). We also assessed serum uric acid, proteinuria, BUN, creatinine clearance, HOMA-IR, and fasting blood glucose (FBG).
Results
We have found the significant increase in HOMA-IR and FBG levels of the IR rats, in comparison with its control groups, which were decreased significantly after AM administration at both doses. URAT1 and GLUT9 mRNA and protein expressions in kidney in the IR + AM at both doses groups also decreased compared those in the IR without treatment group, though the decrease in GLUT9 did not appear to be statistically significant. Consequently, hyperuricemia and renal dysfunction were attenuated by AM treatment at both doses.
Conclusion
After considering all findings, AM might be a potential candidate to ameliorate IR-induced hyperuricemia and renal dysfunction at least in part by modulating the renal URAT1.
Collapse
|
37
|
Protective Effect of Natural Antioxidants on Reducing Cisplatin-Induced Nephrotoxicity. DISEASE MARKERS 2022; 2022:1612348. [PMID: 36419843 PMCID: PMC9678481 DOI: 10.1155/2022/1612348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The clinical application of cisplatin is limited by its adverse events, of which nephrotoxicity is the most commonly observed. In a cisplatin-induced pathological response, oxidative stress is one of the upstream reactions which inflicts different degrees of damages to the intracellular material components. Reactive oxygen species (ROS) are also one of the early signaling molecules that subsequently undergo a series of pathological reactions, such as apoptosis and necrosis. This review summarizes the mechanism of intracellular ROS generation induced by cisplatin, mainly from the consumption of endogenous antioxidants, destruction of antioxidant enzymes, induction of mitochondrial crosstalk between the endoplasmic reticulum by ROS and Ca2+, and destruction of the cytochrome P450 (CYP) system in the endoplasmic reticulum, all of which result in excessive accumulation of intracellular ROS and oxidative stress. In addition, studies demonstrated that natural antioxidants can protect against the cisplatin-induced nephrotoxicity, by reducing or even eliminating excess free radicals and also affecting other nonredox pathways. Therefore, this review on the one hand provides theoretical support for the research and clinical application of natural antioxidants and on the other hand provides a new entry point for the detailed mechanism of cisplatin nephrotoxicity, which may lay a solid foundation for the future clinical use of cisplatin.
Collapse
|
38
|
Garcixanthone E and Garcimangophenone C: New Metabolites from Garcinia mangostana and Their Cytotoxic and Alpha Amylase Inhibitory Potential. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111875. [PMID: 36431010 PMCID: PMC9696494 DOI: 10.3390/life12111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Garcinia mangostana (Clusiaceae) is a rich pool of metabolites with diversified bioactivities. A new xanthone, garcixanthone E (1), and a new benzophenone, rhamnoside, as well as garcimangophenone C (9) together with garcinone E (2), α-mangostin (3), γ-mangostin (4), garcinone C (5), garcixanthone C (6), gartanin (7), and 2,4,6,3',5'-pentahydroxybenzophenone (8) were purified from G. mangostana EtOAc extract. Their structural verification was accomplished utilizing assorted spectral tools and relating to the literature. The in vitro cytotoxic potential versus MCF-7, A549, and HCT-116 cell lines demonstrated the moderate potential of 1 (IC50s 8.5, 5.4, and 5.7 µM, respectively) in comparison to doxorubicin (IC50s 0.18, 0.6 and 0.2 µM, respectively) using a sulforhodamine B (SRB) assay. Additionally, 1 and 9 had AAI (α-amylase inhibition) with IC50s 17.8 and 12.9 µM, respectively, compared to acarbose (IC50 6.7 µM). Further, their AAI mechanisms were inspected utilizing molecular-docking evaluation by employing the crystal structure of the human α-amylase (PDB-ID: 5EOF). Compound 9 possessed a reasonable docking score of -7.746 kcal/mol compared with the native ligand 7JR which had a docking score of -9.932 kcal/mol. These results could further provide new insight into the potential usage of G. mangostana as a functional food for regulating postprandial hyperglycemia via suppressing AA.
Collapse
|
39
|
Labban RSM, Alfawaz HA, Amina M, Bhat RS, Hassan WM, El-Ansary A. Synergism between Extracts of Garcinia mangostana Pericarp and Curcuma in Ameliorating Altered Brain Neurotransmitters, Systemic Inflammation, and Leptin Levels in High-Fat Diet-Induced Obesity in Male Wistar Albino Rats. Nutrients 2022; 14:nu14214630. [PMID: 36364892 PMCID: PMC9657435 DOI: 10.3390/nu14214630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to explore the effects of Garcinia mangostana (mangosteen) and Curcuma longa independently and synergistically in modulating induced inflammation and impaired brain neurotransmitters commonly observed in high-fat diet-induced obesity in rodent models. Male albino Wistar rats were divided into four experimental groups. Group I, control, obese, fed on a high-fat diet (HFD), and Group II-IV, fed on HFD then given mangosteen extract (400 mg/kg/day) and/or Curcuma (80 mg/kg/day), or a mixture of both for 6 weeks. Plasma pro-inflammatory cytokines, leptin, and brain serotonin, dopamine, and glutamate were measured in the five studied groups. G. mangostana and Curcuma longa extracts demonstrate antioxidant and DPPH radical scavenging activities. Both induced a significant reduction in the weight gained, concomitant with a non-significant decrease in the BMI (from 0.86 to 0.81 g/cm2). Curcuma either alone or in combination with MPE was more effective. Both extracts demonstrated anti-inflammatory effects and induced a significant reduction in levels of both IL-6 and IL-12. The lowest leptin level was achieved in the synergistically treated group, compared to independent treatments. Brain dopamine was the most affected variable, with significantly lower levels recorded in the Curcuma and synergistically treated groups than in the control group. Glutamate and serotonin levels were not affected significantly. The present study demonstrated that mangosteen pericarp extract (MPE) and Curcuma were independently and in combination effective in treating obesity-induced inflammation and demonstrating neuroprotective properties.
Collapse
Affiliation(s)
- Ranyah Shaker M. Labban
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
- Deputyship for Therapeutic Services, General, Administration of Nutrition, Ministry of Health, Riyadh 11595, Saudi Arabia
| | - Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence:
| |
Collapse
|
40
|
Ibrahim KA, Eleyan M, Khwanes SA, Mohamed RA, Ayesh BM. Alpha-mangostin attenuates the apoptotic pathway of abamectin in the fetal rats' brain by targeting pro-oxidant stimulus, catecholaminergic neurotransmitters, and transcriptional regulation of reelin and nestin. Drug Chem Toxicol 2022; 45:2496-2508. [PMID: 34338122 DOI: 10.1080/01480545.2021.1960856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abamectin, an avermectin member, can induce significant neurodegeneration symptoms in non-target organisms. However, its neurodevelopmental influences in mammals are unclear. Here, we focus on the antiapoptotic action of alpha-mangostin against the developmental neurotoxicity of abamectin with the possible involvement of reelin and nestin mRNA gene expression. Thirty-two pregnant rats were allocated to four groups (8 rats/group); control, alpha-mangostin (20 mg/kg/d), abamectin (0.5 mg/kg), and co-treated group (alpha-mangostin + abamectin). The animals have gavaged their doses during the gestation period. The fetotoxicity and many signs of growth retardation were observed in the abamectin-intoxicated rats. In comparison with the control group, abamectin prompted a significant elevation (p < 0.05) in the levels of malondialdehyde and nitric oxide, along with many symptoms of histopathological changes in the fetal cerebral cortex. However, the glutathione, dopamine, and serotonin concentrations together with the activities of glutathione-S-transferase, catalase, and superoxide dismutase were markedly decreased (p < 0.05) in the abamectin group. Moreover, abamectin remarkably upregulated (p < 0.05) the brain mRNA gene expression of reelin, nestin, and caspase-9 as well as the immunoreactivity of Bax and caspase-3 proteins in the cerebral cortex. It should be noted that alpha-mangostin mitigated the developmental neurotoxicity of abamectin to the normal range by recovering the levels of oxidant/antioxidant biomarkers, catecholamines; and apoptosis-related proteins with the involvement of reelin and nestin genes regulation. Those records revealed that the transcription regulation of reelin and nestin could be involved in the neuroprotective efficacy of alpha-mangostin, especially avermectin's developmental neurotoxicity.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| |
Collapse
|
41
|
Buravlev EV, Shevchenko OG. Novel Mannich Bases of α‐MangostinBearing Methoxyphenyl Moietieswith Antioxidant and Membrane‐protective activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202202474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Evgeny V. Buravlev
- Laboratory of Organic Synthesis and Chemistry of Natural Compounds Institute of Chemistry Komi Scientific Center Ural Branch of the Russian Academy of Sciences Pervomayskaya St. 48 Syktyvkar 167000 Komi Republic Russian Federation
| | - Oksana G. Shevchenko
- Center of Collective Usage ‘Molecular Biology' Institute of Biology Komi Scientific Center Ural Branch of the Russian Academy of Sciences 28, Kommunisticheskaya St. 167982 Syktyvkar Komi Republic Russian Federation
| |
Collapse
|
42
|
Borzdziłowska P, Bednarek I. Alpha Mangostin and Cisplatin as Modulators of Exosomal Interaction of Ovarian Cancer Cell with Fibroblasts. Int J Mol Sci 2022; 23:8913. [PMID: 36012171 PMCID: PMC9408324 DOI: 10.3390/ijms23168913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
The diversity of exosomes and their role in the microenvironment make them an important point of interest in the development of cancer. In our study, we evaluated the effect of exosomes derived from ovarian cancer cells on gene expression in fibroblasts, including genes involved in metastasis. We also attempted to evaluate the indirect effect of cisplatin and/or α-mangostin on metastasis. In this aspect, we verified the changes induced by the drugs we tested on vesicular transfer associated with the release of exosomes by cells. We isolated exosomes from ovarian cancer cells treated and untreated with drugs, and then normal human fibroblasts were treated with the isolated exosomes. Changes in the expression of genes involved in the metastasis process were then examined. In our study, we observed altered expression of genes involved in various steps of the metastasis process (including genes related to cell adhesion, genes related to the interaction with the extracellular matrix, the cell cycle, cell growth and proliferation, and apoptosis). We have shown that α-mangostin and/or cisplatin, as chemotherapeutic agents, not only directly affect tumor cells but may also indirectly (via exosomes) contribute to delaying metastasis development.
Collapse
Affiliation(s)
- Paulina Borzdziłowska
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | | |
Collapse
|
43
|
Wang Q, Li R, Li N, Jia Y, Wang Y, Chen Y, Panichayupakaranant P, Chen H. The antioxidant activities, inhibitory effects, kinetics, and mechanisms of artocarpin and α-mangostin on α-glucosidase and α-amylase. Int J Biol Macromol 2022; 213:880-891. [PMID: 35688278 DOI: 10.1016/j.ijbiomac.2022.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022]
Abstract
This study investigated the antioxidant activities, enzyme inhibitory activities and the interaction mechanisms of artocarpin and α-mangostin on α-amylase and α-glucosidase. Results showed that artocarpin and α-mangostin had obvious antioxidant activities and inhibitory activities on α-glucosidase and α-amylase. The inhibitions of the two compounds on α-glucosidase were reversible and non-competitive according to the kinetics studies. Fluorescence intensity measurements indicated that the interaction mechanisms between the inhibitors and the two enzymes were static processes. Isothermal titration calorimetry (ITC) analysis showed that the bindings between the inhibitors and the enzymes complex were all spontaneous. The main driving forces between α-mangostin and artocarpin with α-glucosidase might be hydrogen bonds and electrostatic interactions, respectively. While the forces between the two inhibitors and α-amylase might be hydrophobic interactions. Furthermore, molecular docking results showed that artocarpin and α-mangostin could bind to the allosteric site of the two enzymes, except for artocarpin in the active site pocket of α-amylase. All the results indicated that artocarpin and α-mangostin might be promising candidates for hypoglycemic functional products.
Collapse
Affiliation(s)
- Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
44
|
Recent Update on Active Biological Molecules in Generating the Anticancerous Therapeutic Potential of Garcinia mangostana. Appl Biochem Biotechnol 2022; 194:4724-4744. [DOI: 10.1007/s12010-022-04031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
|
45
|
Zhou Y, Qiu S, Kim JT, Lee SB, Park HJ, Son MJ, Lee HJ, Chen J. Garcinone C Suppresses Tumorsphere Formation and Invasiveness by Hedgehog/Gli1 Signaling in Colorectal Cancer Stem-like Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7941-7952. [PMID: 35749593 DOI: 10.1021/acs.jafc.2c01891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hyperactivation of hedgehog signaling occurs in colorectal cancer stem-like cells (CSCs), a rare subpopulation, potentially involved in metastasis, chemotherapy resistance, and cancer relapse. Garcinone C, a xanthone isolated from mangosteen (Garcinia mangostana), suppresses colorectal cancer in vivo and in vitro by inhibiting Gli1-dependent noncanonical hedgehog signaling. Herein, we investigated the effect of garcinone C on cancer stemness and invasiveness in colorectal cancer; Gli1 was noted as pivotal in maintaining stemness and invasiveness in HCT116 and HT29 CSCs. Garcinone C inhibited the proliferation and self-renewal of HCT116 and HT29 CSCs. Colon cancer stemness markers such as CD44, CD133, ALDH1, and Nanog were significantly decreased by garcinone C. Computational studies showed that garcinone C showed a high affinity with the Gli1 protein ZF domain by forming hydrogen bonds with amino acid residues of ASP244, ARG223, and ASP216. Besides, MG132 blocked the effects of garcinone C on Gli1. Thus, garcinone C suppressed colorectal CSCs by binding to Gli1 and enhancing its degradation. MMP2 and MMP9 levels, invasive-related markers, were increased in HCT116 CSCs but decreased by garcinone C. E-cadherin level was reduced in HCT116 CSCs, while the presence of garcinone C was restored. Garcinone C inhibited the proliferation and invasiveness of colorectal CSCs by targeting Gli1-dependent Hh signaling. Garcinone C may be a potent natural agent against colorectal cancer relapse.
Collapse
Affiliation(s)
- Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Seung Beom Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Moon Jeong Son
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| |
Collapse
|
46
|
PATRICK MELONNEY, WAN MOHD ZOHDI WANNAJWA, ABD MUID SUHAILA, OMAR EFFAT. ALPHA-MANGOSTIN (Garcinia mangostana Linn.) AND ITS POTENTIAL APPLICATION IN MITIGATING CHRONIC WOUND HEALING. MALAYSIAN APPLIED BIOLOGY 2022; 51:1-8. [DOI: 10.55230/mabjournal.v51i2.2227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Wound healing is a complex and dynamic cellular process to restore tissue function. Current treatments for chronic wounds especially diabetic ulcers are expensive, with adverse effects. Recently, numerous researchers have focused on the potential effect of natural products on wound healing. One of them is mangosteen (Garcinia mangostana Linn). It is a well-known tropical fruit that is native to Southeast Asia. The active ingredient of mangosteen pericarp contains xanthones that exhibit a wide range of pharmacological activities, including anti-inflammatory and anti-bacterial properties which are the core elements needed in wound healing. Firstly, this review discusses the concepts of abnormal and normal wound healing mechanisms. Then an in depth observation of the pharmacological activities of mangosteen and its derivatives was presented to study their potentially beneficial applications in the treatment of chronic wound healing which is a contemporary medical issue.
Collapse
|
47
|
The Role of Herbal Medicine in the Treatment of Acne Vulgaris: A Systematic Review of Clinical Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2011945. [PMID: 35754694 PMCID: PMC9217581 DOI: 10.1155/2022/2011945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
Over the past few decades, interest in medicinal plants and phytochemicals for the treatment of skin disorders, including acne vulgaris, has progressively increased. Acne vulgaris is a chronic inflammatory disease of the pilosebaceous unit, which mainly occurs in adolescents and young adults. The treatment focuses on the four main factors involved in its pathogenesis: increased sebum production, hyperkeratinization, overgrowth of Cutibacterium acnes, and inflammation. The treatment includes topical retinoids, benzoyl peroxide, antibiotics, and oral isotretinoin. In this regard, the use of herbal medicine as a complementary and alternative medicine is a promising strategy. The main objective of this study was to systematically evaluate the efficacy and safety of medicinal plants and phytochemicals in the treatment of acne vulgaris. Three scientific databases (PubMed, Web of Science, and Scopus) were searched from inception to January 2021. Clinical trials comparing herbal therapies with placebo or other medicines for the treatment of acne vulgaris were included and analyzed. Outcome measures of interest comprised acne lesions (inflammatory and noninflammatory), sebum production, acne severity, and quality of life. The risk of bias in the included randomized controlled trials (RCTs) was assessed using the Cochrane risk-of-bias tool. A total of 34 clinical trials involving 1753 participants met the inclusion criteria for this systematic review. Most trials showed that herbal medicine significantly reduces inflammatory and noninflammatory acne lesions and has a relevant effect on acne severity. Some medicinal plants revealed equal or higher efficacy to standard treatments. No significant difference between groups in sebum production and quality of life was observed and no severe adverse events were reported. This systematic review provides evidence that medicinal plants and phytochemicals are promising treatments for mild to moderate acne vulgaris. However, more quality of evidence and standardized methodologies are needed to support their effectiveness and safety claims.
Collapse
|
48
|
A Randomized Controlled Trial of Thai Medicinal Plant-4 Cream versus Diclofenac Gel in the Management of Symptomatic Osteoarthritis of the Knee. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8657000. [PMID: 35733624 PMCID: PMC9208949 DOI: 10.1155/2022/8657000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Background Osteoarthritis of the knee is a common degenerative musculoskeletal condition. Thai Medicinal Plant-4 (TMP-4) cream is made up of Garcinia mangostana peel, Sesamum indicum seeds, Glycine max (L.) Merr. seeds, and Centella asiatica leaves, all of which have anti-inflammatory and analgesic properties. The present study aimed at determining the efficacy and safety of TMP-4 cream versus diclofenac gel in the treatment of symptomatic osteoarthritis of the knee. Methods A randomized-controlled trial was conducted to assess knee pain on a scale of 100 mm Visual Analog Scale (VAS) and other key metrics, including VAS knee stiffness, a modified 10-step stair climb test, a timed up and go test, the Knee Injury and Osteoarthritis Outcome Score, and safety outcomes, following administration of either TMP-4 cream or diclofenac gel for 4 weeks. Results A total of 199 patients with moderate knee pain intensity were randomly assigned to either TMP-4 cream or diclofenac gel (allocation ratio 1 : 1). The mean changes of VAS knee pain in the TMP-4 cream and diclofenac gel groups were −31.68 ± 14.18 mm and −31.09 ± 12.41 mm, respectively, (mean difference = −0.58, 95% confidence interval = −4.37–3.20, P=0.761). The upper limit of 95% confidence interval for the comparison between TMP-4 cream and diclofenac gel was within the predefined margin of 7 mm for noninferiority. The safety was comparable between the two interventions. Conclusions TMP-4 cream was noninferior to diclofenac gel in relieving osteoarthritic knee pain and may be considered as an alternative therapeutic option in the treatment of symptomatic osteoarthritis of the knee.
Collapse
|
49
|
Choodej S, Koopklang K, Raksat A, Chuaypen N, Pudhom K. Bioactive xanthones, benzophenones and biphenyls from mangosteen root with potential anti-migration against hepatocellular carcinoma cells. Sci Rep 2022; 12:8605. [PMID: 35597781 PMCID: PMC9124209 DOI: 10.1038/s41598-022-12507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Liver cancer refers primarily to hepatocellular carcinoma (HCC) accounting for over 90% of cases and is the highest incidence in men in Thailand. Over the past decades, the incidence of HCC dramatically increased with a strong rise of mortality rates. Garcinia mangostana, “Queen of Fruit” of Thailand, is known as a rich source of xanthones with potent cytotoxic properties against various cancer cells. Study on xanthones is provoking not only due to the structural diversity but also a wide variety of pharmacological activities. Hence the aim of the current study is to determine the effects of metabolites from G. mangostana root on cell proliferation and migration of hepatocellular carcinoma cells. Twenty-two metabolites, including two new benzophenones and one new biphenyl, were isolated and characterized. Five xanthones with a prenyl moiety showed significant cytotoxicity against both HCC cells tested; however, only dulxanthone D displayed the most promising activity on the migration of Huh7 HCC cells, comparable to sorafenib, a standard drug. Moreover, the compound dose-dependently induced apoptosis in Huh7 cells via mitochondrial pathway. Accordingly, dulxanthone D held a great potential for development as a novel migration inhibitor for effective HCC treatment.
Collapse
Affiliation(s)
- Siwattra Choodej
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kedkarn Koopklang
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Achara Raksat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khanitha Pudhom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
50
|
Multitarget Action of Xanthones from Garcinia mangostana against α-Amylase, α-Glucosidase and Pancreatic Lipase. Molecules 2022; 27:molecules27103283. [PMID: 35630761 PMCID: PMC9144329 DOI: 10.3390/molecules27103283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Digestive enzymes such α-amylase (AA), α-glucosidase (AG) and pancreatic lipase (PL), play an important role in the metabolism of carbohydrates and lipids, being attractive therapeutic targets for the treatment of type 2 diabetes and obesity. Garcinia mangostana is an interesting species because there have been identified xanthones with the potential to inhibit these enzymes. In this study, the multitarget inhibitory potential of xanthones from G. mangostana against AA, AG and PL was assessed. The methodology included the isolation and identification of bioactive xanthones, the synthesis of some derivatives and a molecular docking study. The chemical study allowed the isolation of five xanthones (1–5). Six derivatives (6–11) were synthesized from the major compound, highlighting the proposal of a new solvent-free methodology with microwave irradiation for obtaining aromatic compounds with tetrahydropyran cycle. Compounds with multitarget activity correspond to 2, 4, 5, 6 and 9, highlighting 6 with IC50 values of 33.3 µM on AA, 69.2 µM on AG and 164.4 µM on PL. Enzymatic kinetics and molecular docking studies showed that the bioactive xanthones are mainly competitive inhibitors on AA, mixed inhibitors on AG and non-competitive inhibitors on PL. The molecular coupling study established that the presence of methoxy, hydroxyl and carbonyl groups are important in the activity and interaction of polyfunctional xanthones, highlighting their importance depending on the mode of inhibition.
Collapse
|