1
|
Liu X, Wang S, Cui L, Zhou H, Liu Y, Meng L, Chen S, Xi X, Zhang Y, Kang W. Flowers: precious food and medicine resources. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Zhu Z, Wang J, Tang L, Tang J, Liu D, Geng F. Quantitative metabolomic analysis reveals the fractionation of active compounds during lemon fruit juicing. Food Res Int 2023; 169:112829. [PMID: 37254405 DOI: 10.1016/j.foodres.2023.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
In this study, metabolomic analysis was employed to investigate the separation (fractionation) of active compounds into lemon juice (LJ) and lemon pomace (LP) during lemon juicing. A total of 968 metabolites were identified, and 438 differentially abundant metabolites (DAMs) were screened out between LJ and LP, suggesting significant metabolite fractionation during juicing. The "flavonoids", "phenolic acids", and "saccharides and alcohols" were mainly retained in the LP, while the fractionation of major "organic acids" was differentiated. Seven of the 12 potential bitter metabolites were more abundant in the LP and two were more abundant in the LJ, suggesting that LP would be more bitter. L-Ascorbic acid, thiamine, and acitretin were significantly lost during juicing, while riboflavin was newly dissolved during juicing. The antioxidant capacity of LP was significantly higher than that of LJ, which was closely related to the higher abundance of phenolic acid metabolites in LP. These findings suggtested that promoting the release of flavonoids and phenolic acids from LP is a potential strategy to improve the quality of LJ. Results also provides important information and reference for developing high-value products by using LP.
Collapse
Affiliation(s)
- Zhu Zhu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Linyi Tang
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Jiang Tang
- Lemon Industry Development Center of Anyue County, Ziyang 642350, China
| | - Dayu Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
Quintal Martínez JP, Segura Campos MR. Flavonoids as a therapeutical option for the treatment of thrombotic complications associated with COVID-19. Phytother Res 2023; 37:1092-1114. [PMID: 36480428 PMCID: PMC9878134 DOI: 10.1002/ptr.7700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak has been one of the largest public health crises globally, while thrombotic complications have emerged as an important factor contributing to mortality. Therefore, compounds that regulate the processes involved in thrombosis could represent a dietary strategy to prevent thrombotic complications involved in COVID-19. In August 2022, various databases were consulted using the keywords "flavonoids", "antiplatelet", "anticoagulant", "fibrinolytic", and "nitric oxide". Studies conducted between 2019 and 2022 were chosen. Flavonoids, at concentrations mainly between 2 and 300 μM, are capable of regulating platelet aggregation, blood coagulation, fibrinolysis, and nitric oxide production due to their action on multiple receptors and enzymes. Most of the studies have been carried out through in vitro and in silico models, and limited studies have reported the in vivo and clinical effect of flavonoids. Currently, quercetin has been the only flavonoid evaluated clinically in patients with COVID-19 for its effect on D-dimer levels. Therefore, clinical studies in COVID-19 patients analyzing the effect on platelet, coagulant, fibrinolytic, and nitric oxide parameters are required. In addition, further high-quality studies that consider cytotoxic safety and bioavailability are required to firmly propose flavonoids as a treatment for the thrombotic complications implicated in COVID-19.
Collapse
|
4
|
Structural characteristics, anticoagulant and antithrombotic mechanism of a novel polysaccharide from Rosa Chinensis Flos. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Ma C, Liu C, Ren M, Cui L, Xi X, Kang W. Inhibitory effect of quercetin-3-O-α-rhamnoside, p-coumaric acid, phloridzin and 4-O-β-glucopyranosyl-cis-coumaric acid on rats liver microsomes cytochrome P450 enzyme activities. Food Chem Toxicol 2023; 172:113583. [PMID: 36577462 DOI: 10.1016/j.fct.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
P-coumaric acid, phloridzin, quercetin-3-O-α-rhamnoside and 4-O-β-glucopyranosyl-cis-coumaric acid isolated in Malus micromalus Makino fruit were investigated the inhibitory activity of cytochrome CYP450 enzyme by the probe test method of rat liver microsomes in vitro, and determined the role in drug metabolism and/or toxicology. Enzymatic kinetics method was used to determine the inhibition type of these components and corresponding inhibition constants. The results demonstrated that all the 4 compounds had no significance to inhibit the activities of CYP2E1 and CYP2C11. P-coumaric acid, phloridzin and quercetin-3-O-α-rhamnoside had a weak inhibitory effect on CYP3A4, which belonged to the competitive inhibitory type with inhibitory constants of 10.56, 30.79 and 40.29 μmol L-1, respectively. 4-O-β-glucopyranosyl-cis-coumaric acid had a moderate inhibitory effect on CYP3A4, which belonged to the anti-competitive inhibition type and the inhibition constant was 5.56 μmol L-1. The CYP1A2 could be weakly inhibited by p-coumaric acid in the competitive type, and the inhibition constant is 25.20 μmol L-1 4-O-β-glucopyranosyl-cis-coumaric acid exhibited anti-competitive inhibition of CYP1A2 with an inhibition constant of 19.91 μmol L-1, and the inhibition effect was weak. The results will be useful to optimize the clinical dosage regimen and avoid drug-drug interactions when it is utilized comminating with other medicines in the clinic.
Collapse
Affiliation(s)
- Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China
| | - Cunyu Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Mengjie Ren
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China; Henan Province Functional Food Engineering Technology Research Center, Kaifeng, Henan, 475004, China
| | - Xuefeng Xi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; College of Physical Education, Henan University, Henan, Kaifeng, 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China; Henan Province Functional Food Engineering Technology Research Center, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Yuan LL, Shi BB, Feng T, Huang R, Li ZH, Chen HP, Liu JK. α-Glucosidase inhibitory phenylpropanoid-dihydrochalcone hybrids from the leaves of medicinal plant Malus hupehensis (Pamp.) Rehder. PHYTOCHEMISTRY 2022; 204:113421. [PMID: 36055425 DOI: 10.1016/j.phytochem.2022.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/31/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Eight undescribed phenylpropanoid-dihydrochalcone hybrids, namely (+)- and (-)-malahupin A, (+)- and (-)-malahupin B, (±)-malahupin C, malahupinosides A and B, 7‴-epi-malahupinoside B, together with two known compounds, phloretin and phlorizin, were isolated from the leaves of the folk medicinal plant Malus hupehensis. Their structures were elucidated by extensive NMR and MS spectroscopic methods, chiral-phase analysis, and ECD calculations. Compounds (+)-malahupin B and malahupinoside B showed weak inhibition activities against the nitric oxide production in liposaccharide-induced murine RAW264.7 macrophages with IC50 values of 36.7 and 27.0 μM, respectively. Compounds (+)- and (-)-malahupin A, (+)- and (-)-malahupin B exhibited significant α-glucosidase inhibitory activity, with IC50 values of 22.5, 19.1, 19.2, and 17.4 μM, respectively. The postulated biosynthetic pathways to these hybrid compounds were proposed. This work represents the first report of the natural phenylpropanoid-dihydrochalcone hybrid compound, and lays foundation for the study on the bioactive principles of the ethnic hypoglycemic medicinal plant.
Collapse
Affiliation(s)
- Lin-Lin Yuan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Bao-Bao Shi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
7
|
Cui X, Qin X, Liu Y, Zhang Y, Bao H, Hu Y, Shen X. Analysis of Flavonoid Metabolism during the Process of Petal Discoloration in Three Malus Crabapple Cultivars. ACS OMEGA 2022; 7:37304-37314. [PMID: 36312389 PMCID: PMC9608404 DOI: 10.1021/acsomega.2c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Malus crabapple has high ornamental and ecological value. Here, the flavonoids in the petals of three pink Malus crabapple cultivars, Malus 'Strawberry Parfait' (GD), M. 'Pink Spire' (FY), and M. 'Hongyi' (HY), at the bud stage (flower buds are swollen, and the pistils and stamens are about to appear; L), full bloom stage (the flowers are fully open, and the stigma and anthers have recently appeared; S), and end bloom stage (the stigma and anthers are dry; M) were identified, and their abundances were determined. First, Kodak Color Control Patches were used to describe the colors of petals, and a colorimeter was used to determine the phenotypic values of flower colors. Flavonoids were determined using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In all three crabapple cultivars, the red and yellow hues of the petals gradually disappeared, the color of the flowers changed from bright to dull, and the petals gradually faded. The extent of fading of the red hue of the petals was highest in GD, followed by FY and HY. A total of 302 metabolites were detected in the three cultivars. The content of total flavonoids in the three cultivars significantly differed, but there were no significant differences among species. The total flavonoid content of the three crabapple varieties was highest in HY, followed by FY and GD. The content of the anthocyanins delphinidin-3-O-sophoricoside-5-O-glucoside, pelargonidin-3-O-(6″-O-malonyl)glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-glucoside, and cyanidin-3-O-arabinoside decreased significantly, which resulted in the discoloration of GD petals from L to M. The flavonoids and flavonols in FY might interact with anthocyanins in metabolic pathways. The content of these five anthocyanins decreased slowly, which resulted in the weaker discoloration of FY and HY compared with GD. The content of the five anthocyanins in HY did not decrease significantly, but the content of chalcone increased significantly, which might facilitate the production of anthocyanin auxiliary pigments and result in less pronounced fading of the petals. Cyanidin-3-O-arabinoside and pelargonidin-3-O-glucoside were the key flavonoids of the three crabapple cultivars. The total content and changes in anthocyanins were the key factors affecting petal color development and fading. Nonanthocyanin polyphenols, such as flavonoids, flavonols, and chalcone, are auxiliary pigments that affect petal fading. Overall, the results of this study provide new insights into the mechanism underlying the fading of the color of Malus crabapple flowers, and these new insights could aid the breeding of cultivars with different flower colors.
Collapse
Affiliation(s)
- Xueli Cui
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xin Qin
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yangbo Liu
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yawen Zhang
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Huaixin Bao
- Daiyue
District Agriculture and Rural Affairs Bureau, Tai’an, Shandong 271000, China
| | - Yanli Hu
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang Shen
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
8
|
Hu F, Qin Y, Zhou Y, Li L, Wang Y, Deng Z. Characterization of precipitation from citrus vinegar during ageing: chemical constituents, formation mechanism and anti-proliferative effect. Food Funct 2022; 13:4930-4940. [PMID: 35403181 DOI: 10.1039/d2fo00513a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precipitation formation commonly occurs in the ageing step of fermented citrus vinegar. Hitherto, the chemical characteristics and biological properties of precipitates remain unveiled. This study focused on investigating the chemical profile, formation mechanism and biological repurposing of precipitates. Nine principal components, two flavonoid glycosides and their aglycones along with five polymethoxyflavones (PMFs), were identified from a methanol extract of precipitates. Using hydrolysis models, we demonstrated that insoluble aglycones were generated through the breakage of glycosidic bonds in flavonoid glycosides under acidic condition. Moreover, soluble bound-PMFs were destroyed by yeast-acid hybrid catalysis to release insoluble free-PMFs to form precipitates. A methanol extract of precipitates exhibited a potent anti-proliferative effect on MCF-7 cells (IC50 = 0.032 μg μL-1) via inhibiting tubulin polymerization. This study will be helpful for the food industry to aid optimizing citrus vinegar brewing and for reutilizing precipitates for functional foods and health products. Furthermore, it also provides a green strategy of PMFs enrichment from citrus using an enzyme-acid hybrid system.
Collapse
Affiliation(s)
- Feifei Hu
- Key Laboratory of Functional Yeast, China National Light Industry & Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Ye Qin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Lingyue Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, China Three Gorges University, Yichang 443002, China
| | - Yingxi Wang
- Hubei Hanway Ecological Agriculture Group, Yidu 443302, China
| | - Zhangshuang Deng
- Key Laboratory of Functional Yeast, China National Light Industry & Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
9
|
Shi P, Zheng W, Zhou J, Han N, Yin J. Effects of MaiLiuPian on carotid thrombosis in rats and acute pulmonary embolism in mice and its antithrombotic mechanism. J Food Biochem 2022; 46:e14143. [PMID: 35388507 DOI: 10.1111/jfbc.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Mailiupian (MLP) is a new patent functional food that consists of Crataegi Fructus, Notoginseng Radix, and Ginkgo Folium, which was reported to be active in improving the microcirculation based on formulation screening. However, whether it is effective in inhibiting thrombus and its mechanism has not been evaluated. Therefore, in the present study, the models of arterial thrombosis induced by FeCl3 and the models of APE by ADP were established to evaluate the antithrombosis effect of MLP. Results showed that MLP markedly reduced the weight and size of wet thrombosis in FeCl3 -induced rats and decreased the recovery time from symptoms of APE mice. MLP was proved to prolong APTT, PT, TT and improve the levels of t-PA and 6-keto-PGF1α significantly, meanwhile, PAI-1 and TXB2 were reduced apparently. By comparing tail bleeding time, MLP showed antithrombotic effects, but without the risk of bleeding, taking aspirin as a control. PRACTICAL APPLICATIONS: Our experiments proved that MLP, a new patent health food, acted on both coagulation and fibrinolytic systems and the platelet aggregation to play antithrombosis roles, providing a theoretical basis for applications of MLP in preventing or curing thrombosis diseases.
Collapse
Affiliation(s)
- Peixin Shi
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenling Zheng
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingjing Zhou
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Serum Pharmacochemistry Combining Network Pharmacology to Discover the Active Constituents and Effect of Xijiao Dihuang Tang Prescription for Treatment of Blood-Heat and Blood-Stasis Syndrome-Related Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6934812. [PMID: 35178159 PMCID: PMC8845118 DOI: 10.1155/2022/6934812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023]
Abstract
Xijiao Dihuang Tang (XDT), a classic TCM prescription, has been used to clinically treat blood-heat and blood-stasis syndrome- (BHSS-) related diseases, including hemorrhagic stroke and sepsis. However, the active constituents and mechanism of XDT in the treatment of BHSS-related diseases have not been elucidated due to the lack of appropriate methodologies. In this study, serum pharmacochemistry and network pharmacology were used to explore the active constituents and the mechanism of XDT in the treatment of BHSS-related diseases. The effects of XDT were evaluated using dry yeast-induced rats as rat models with BHSS, which demonstrated the antipyretic and anticoagulant properties of XDT. The HPLC-QTOF/MS/MS assay was used to identify 60 serum constituents of XDT (SCXDT). Then, 338 targets of 60 SCXDT were predicted by integrating multiple databases and the MACCS fingerprint similarity prediction method. The degree of topological properties with targets of 19 key active constituents in SCXDT was identified and evaluated in glutamate-induced PC12 cells. Subsequently, 338 targets of 60 SCXDT were mainly involved in biological processes such as inflammation, coagulation, cell proliferation, and apoptosis, as well as oxidative contingencies via compound-target-disease network analysis. The core targets including IL-1β, IL-6, TNF, NOS3, and MAPK1 were identified using protein-protein interaction network analysis, whereas dozens of signaling pathways such as the p38MAPK signaling pathway were identified using functional pathway enrichment analysis. The results indicated that XDT has broad therapeutic and neuroprotective effects on inflammation, coagulation, oxidative stress, cell proliferation, and apoptosis in dry yeast-induced rats with BHSS and glutamate-induced PC12 cells by regulating the p38MAPK signaling pathway. This study not only discovered the active constituents of XDT but also elaborated its mechanisms in the treatment of BHSS-related diseases by intervening in a series of targets, signaling pathways, and biological processes such as inflammation, coagulation, oxidative stress, neuroprotection. The findings in this study provide a novel strategy for exploring the therapeutic efficacy of TCM prescriptions.
Collapse
|
11
|
Meng JX, Wei J, Chi RF, Qiao YH, Zhou J, Wang YL, Wang H, Li HH. MrMYB44-Like Negatively Regulates Anthocyanin Biosynthesis and Causes Spring Leaf Color of Malus 'Radiant' to Fade From Red to Green. FRONTIERS IN PLANT SCIENCE 2022; 13:822340. [PMID: 35178062 PMCID: PMC8843855 DOI: 10.3389/fpls.2022.822340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/05/2022] [Indexed: 05/29/2023]
Abstract
The "Spring-red-leaf" crabapple cultivar has young red leaves and mature green leaves. However, the mechanism of anthocyanin biosynthesis in crabapple leaves in spring remains unknown. In this study, Illumina RNA sequencing (RNA-Seq) was performed on Malus 'Radiant' leaf tissues in different stages of development. Twenty-two genes in the anthocyanin biosynthesis pathway and 44 MYB transcription factors (TFs) were significantly enriched among differentially expressed genes (DEGs). Three R2R3-MYB TFs in subgroup 22 of the MYB TF family, MrMYB44-like1, MrMYB44-like2, and MrMYB44-like3, were highly expressed in green leaves according to RNA-Seq and quantitative real-time quantitative PCR results. Their expression levels were negatively correlated with anthocyanin content. In transient assays, overexpression of MrMYB44-like1, MrMYB44-like2, or MrMYB44-like3 inhibited anthocyanin accumulation and reduced pigment in leaf disks of M. 'Radiant' and fruit peels of M. domestica 'Fuji.' When the conserved region of the three MrMYB44-likes was silenced, the anthocyanin biosynthesis pathway was activated and pigments increased in both tissues. Moreover, bimolecular fluorescence complementation assays showed MrMYB44-likes interacted with MrWRKY6 to form protein complexes that regulated anthocyanin biosynthesis.
Collapse
|
12
|
Liu H, Chen X, Liu Y, Fang C, Chen S. Antithrombotic effects of Huanglian Jiedu decoction in a rat model of ischaemia-reperfusion-induced cerebral stroke. PHARMACEUTICAL BIOLOGY 2021; 59:823-827. [PMID: 34196572 PMCID: PMC8253176 DOI: 10.1080/13880209.2021.1942505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Huanglian Jiedu Decoction (HLJJD) has a variety of pharmacological activities, such as anti-inflammatory and neuroprotection against ischaemic brain injury. OBJECTIVES This ex vivo study explores its antithrombosis activity and inhibition of platelet aggregation. MATERIAL AND METHODS To study the antithrombosis activity of HLJJD ex vivo, saline, or HLJDD (100, 200, and 500 mg/kg) was treated prophylactically by gavage for 3 days in Wistar rats (n = 4). Based on the rat model of transient middle cerebral artery infarction (MCAO) or normal rats (n = 4), the antithrombotic activity in the normal group and HLJDD subgroups on prothrombin time, thrombus weight, platelet aggregation, and others was evaluated, followed by the antiplatelet aggregation of its main components (n = 4). RESULTS The weight of the thrombus increased significantly at 24 h after MCAO onset. HLJJD did not influence the change of PT, but significantly inhibited thrombosis by 12.5, 20.0, and 20.5% in reducing the dry weight of thrombus, and blocked collagen-induced platelet aggregation by 25.5, 39.0, and 42.7% and adhesion of blood platelet by 17.3, 26.2, and 27.3%. The IC50 value of HLJJD on collagen-induced platelet aggregation was 670 mg/kg. Geniposide only facilitated antiplatelet aggregation induced by collagen, but not AA or ADP. Both baicalin and berberine showed markedly antiplatelet aggregation induced by all activators. The antithrombotic activity of baicalin was relatively higher than that of berberine (35.0-47.8% vs. 20.6-33.5%). CONCLUSION Our results indicated that HLJDD regulated blood circulation by inhibiting platelet aggregation and thrombosis, which might also extensively contribute to the clinical prevention and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Huan Liu
- Jiangxi University of Technology, Nanchang, Jiangxi, China
| | - Xiaoyan Chen
- Jiangxi University of Technology, Nanchang, Jiangxi, China
- CONTACT Xiaoyan Chen Jiangxi University of Technology, Nanchang330098, Jiangxi, China
| | - Yanling Liu
- Jiangxi University of Technology, Nanchang, Jiangxi, China
| | - Chunjuan Fang
- Jiangxi University of Technology, Nanchang, Jiangxi, China
| | - Shaofen Chen
- Jiangxi University of Technology, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Abstract
Amygdalus persica L., belongs to Rosaceae family, and its flowers are used as medicine and food. n-Butanol extract of A. persica flowers were isolated and purified with various column chromatographies, and the fourteen compounds, chlorogenic acid butyl ester (1), rutin (2), protocatechuic acid (3), caffeic acid (4), 5-O-coumarroylquinic acid methyl ester (5), kaempferol-3-O-neohesperidoside (6), quercetin-3-O-β-D-glucoside (7), 3,5-dicaffeoylquinic acid (8), quercetin-3-O-α-L-rhamnoside (9), 5-O-coumaroylquinic acid (10), kaempferol-3-O-α-L-rhamnoside (11), kaempferol-3-O-β-D-galactoside (12), D-glucitol (13), and multiflorin A (14), were identified by spectroscopic data and physical data. All the compounds except compound 2 were identified from A. persica flowers for the first time. The compounds were investigated for their coagulation activity by activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and bibrinogen (FIB) in vitro. The results of coagulation activity showed that rutin (2), caffeic acid (4), kaempferol-3-O-neohesperidoside (6), kaempferol-3-O-α-L-rhamnoside (11), and kaempferol-3-O-β-D-galactoside (12) exhibited significant procoagulant activity, while chlorogenic acid butyl ester (1) possessed anticoagulant activity in vitro.
Collapse
|
14
|
Structural Identification and Coagulation Effect of Flammulina velutipes Polysaccharides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041736] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two polysaccharides were isolated successfully from Flammulina velutipes and identified as CHFVP-1 (24.44 kDa) and CHFVP-2 (1497 kDa). Based on the results of Fourier transform-infrared spectroscopy (FT-IR), gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR) spectroscopy regarding the structure of CHFVP-1 and CHFVP-2, CHFVP-1 was constructed with the backbone of→6)-α-D-Galp-(1→ and the branch of Galp by an →3,6)-α-D-Manp-(1→attached with T-β-D-Glcp or t-α-L-Fucp side chains. Meanwhile, the CHFVP-2 was a glucan with the construction of →6)-β-D-Glcp-(1→ and T-β-D-Glcp. Moreover, the coagulant activity in vitro of CHFVP-1 and CHFVP-2 was evaluated, and the results showed that CHFVP-1 exerts procoagulant activity by shortening the activated partial thromboplastin time (APTT) and thrombin time (TT), while CHFVP-2 did not reveal a definite coagulant activity. The finding would benefit the further application of F. velutipes in the field of medicine.
Collapse
|
15
|
Ding S, Wang W, Yin X, Wang L, Gong L, Liao F, Liang R. The Joint Effect of a Combination of Components From the Fruit of Crataegus pinnatifida Bge. Var. major N.E. Br. and the Root of Salvia miltiorrhiza Bge. With Exercises on Swimming in Focal Cerebral Infraction in Rat. Front Physiol 2020; 11:574535. [PMID: 33329023 PMCID: PMC7719700 DOI: 10.3389/fphys.2020.574535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: In our previous study, we found that the combination of a traditional Chinese medicine (TCM) and swimming could prevent atherosclerosis through a synergistic interaction. However, whether the combined application of active components from the fruit of Crataegus pinnatifida Bge. Var. major N.E. Br. and the root of Salvia miltiorrhiza Bge. (CPSM) and swimming has been effective in the prevention and treatment of focal cerebral infraction remained unclear. This work aimed to conduct detailed investigation on the joint effects of CPSM extract with swimming on focal cerebral infraction in rats and its underlying mechanisms. Method: A photochemical method of the combination of Rose Bengal (RB) injection and cold-light source irradiation was performed to establish the rat focal cerebral thrombosis model. The pathological changes of the brain were observed by a DCP-7030 laser multifunction machine, and the protein levels of von Willebrand factor (vWF), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) were detected by Western blotting. Blood samples were collected to assay tissue plasminogen activator (t-PA), plasminogen activator inhibitor type-1 (PAI-1), endothelin-1 (ET-1), 6-keto-prostaglandin F1α (6-keto-PGF1α), and thromboxane B2 (TXB2). Finally, the gene expression of t-PA, PAI-1, and ICAM-1 in human umbilical vein endothelial cells (HUVECs) stimulated by tumor necrosis factor-α (TNF-α) was assayed via real-time (RT) quantitative PCR (qPCR). Results: The joint effects of CPSM extract and swimming demonstrated significant interactions, which including increased blood perfusion, increased serum t-PA and 6-keto-PGF1α, decreased serum PAI-1 and TXB2, decreased protein levels of vWF, VCAM-1 and ICAM-1, and decreased ICAM-1 gene expression. Conclusion: This research demonstrated that the combined therapy of CP and SM extracts with swimming could prevent focal cerebral infraction through interactions on the regulation of vascular endothelial functions and inflammatory factors. It stresses the promising effects of the drugs and shear stress of blood flow in prevention and treatment of thrombosis. The mechanism may be related to regulating the protein expression of vWF, VCAM-1, and ICAM-1, and downregulating the gene expression of ICAM-1.
Collapse
Affiliation(s)
| | | | | | | | | | - Fulong Liao
- Institute of Chinese Material Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rixin Liang
- Institute of Chinese Material Medical, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Xu R, Bu YG, Zhao ML, Tao R, Luo J, Li Y. Studies on antioxidant and α-glucosidase inhibitory constituents of Chinese toon bud (Toona sinensis). J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Chemical composition and glucose uptake effect on 3T3-L1 adipocytes of Ligustrum lucidum Ait. flowers. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Wang ML, Yang QQ, Ying XH, Li YY, Wu YS, Shou QY, Ma QX, Zhu ZW, Chen ML. Network Pharmacology-Based Approach Uncovers the Mechanism of GuanXinNing Tablet for Treating Thrombus by MAPKs Signal Pathway. Front Pharmacol 2020; 11:652. [PMID: 32477130 PMCID: PMC7237702 DOI: 10.3389/fphar.2020.00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
Background GuanXinNing tablet (GXNT), a traditional Chinese patent medicine, has been found to have remarkable antithrombotic effects and can effectively inhibit pro-thrombotic factors in previous studies. However, the mechanism of its antithrombotic effects remains little known. Methods In this study, we first determined and identified the sources of each main compound in GXNT using liquid chromatography-mass spectrometry (LC-MS). Through the approach of network pharmacology, we predicted the action targets of the active components, mapped the target genes related to thrombus, and obtained potential antithrombotic targets for active ingredients. We then performed gene ontology (GO) enrichment analyses and KEGG signaling pathway analyses for the action targets, and constructed networks of active component–target and active component–target–pathway for GXNT. Additionally, we evaluated the pharmacodynamic effects of GXNT on thrombus using the rat thrombus model induced by FeCl3, observed the effects of antiplatelet aggregation via platelet assay, and further verified the results predicted by network pharmacology via Western blot. Results In total, 14 active ingredients were identified in GXNT, and 83 action targets were predicted, 17 of which are antithrombotic targets that potentially participate in processes including response to oxidative stress and positive regulation of blood vessel endothelial cell migration. KEGG pathway analyses revealed that the predicted action targets were involved in multiple signal pathways, such as MAPK, IL-17, and platelet activation. Pharmacodynamics study found that GXNT could significantly reduce the thrombus length and weight, lower platelet aggregation function, and decrease the levels of Fbg and PAI-1. In addition, GXNT could significantly increase 6-keto-PGF1α content and regulate the ratio of TXB2/6-keto-PGF1α, while not having dramatic effects on TXB2. GXNT was also observed to visibly inhibit maximum platelet aggregation. Herein, we further studied the thrombus-related MAPKs signaling pathway and found that GXNT could significantly reduce the phosphorylation levels of p38MAPK, ERK, and JNK proteins in platelet. Conclusions This study revealed the pharmacodynamic material basis of GXNT and its potential multicomponent–multitarget–multipath pharmacological effects, confirmed the antithrombotic effects of GXNT, and showed that its mechanism may be related to inhibiting phosphorylation of p38, ERK, and JNK proteins in MAPKs signaling pathway, partially verifying the results from network pharmacology. The results from this study could provide a theoretical basis for the development and clinical application of GXNT.
Collapse
Affiliation(s)
- Mu-Lan Wang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Qin-Qin Yang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xu-Hui Ying
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Yuan-Yuan Li
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang-Sheng Wu
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Yang Shou
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quan-Xin Ma
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi-Wei Zhu
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Min-Li Chen
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Xu Z, Zuo ZQ, Gaowa B, Gu YY, Hui C, Shen YL, Xu HP. The Antithrombotic Effects of Low Molecular Weight Fragment from Enzymatically Modified of Laminaria Japonica Polysaccharide. Med Sci Monit 2020; 26:e920221. [PMID: 32338252 PMCID: PMC7199431 DOI: 10.12659/msm.920221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Laminaria japonica polysaccharide (LJP), a fucose enriched sulfated polysaccharide has been demonstrated to have excellent anticoagulant and antithrombotic activities. However, the antithrombotic effect of low molecular weight polysaccharide from enzymatically modified of LJP (LMWEP) remains unknown. MATERIAL AND METHODS LMWEP was prepared by fucoidanase enzymatic hydrolysis, and the antithrombotic and anticoagulant activities, and the underlying mechanism were investigated thoroughly. Rats were randomly divided into 6 groups (8 rats in each group): the blank control group, the blank control group treated with LMWEP (20 mg/kg), the model group, the model group treated with heparin (2 mg/kg), the model group treated with LJP (20 mg/kg), and the model group treated with LMWEP (20 mg/kg). After 7 days of intravenous administration, blood was collected for biochemical parameters examinations. RESULTS LMWEP increased the activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), 6-keto prostaglandin F1alpha (6-Keto-PGF1alpha), and endothelial nitric oxide synthase (eNOS). In addition, LMWEP decreased fibrinogen (FIB), endothelin-1 (ET-1), thromboxane B2 (TXB2), erythrocyte sedimentation rate (ESR), and hematocrit (HCT). CONCLUSIONS LMWEP, an enzymatically modified fragment with a molecular weight of 25.8 kDa, is a potential antithrombotic candidate for treatment of thrombosis related diseases.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Geriatrics, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zheng-Qin Zuo
- Department of Ultrasound Imaging, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Baibujiafu Gaowa
- Department of Geriatric Cognitive Disorder Ward, Fourth People’s Hospital of Urumqi, Urumqi, Xinjiang, P.R. China
| | - Yuan-Yun Gu
- Department of Geriatrics, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Chen Hui
- Department of Geriatrics, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yong-Le Shen
- Department of Geriatrics, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Hou-Ping Xu
- Department of Preventive Treatment Centre, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
20
|
Effects of Polysaccharide from Malus halliana Koehne Flowers in Cyclophosphamide-Induced Immunosuppression and Oxidative Stress on Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1603735. [PMID: 32256944 PMCID: PMC7091559 DOI: 10.1155/2020/1603735] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
The immunomodulatory effects of Malus halliana flower polysaccharide (MHFP) were investigated in this paper. The model of immunosuppressive mice was established by cyclophosphamide, which was treated with different dosages of MHFP (600, 400, and 200 mg/kg·d−1). The results showed that MHFP significantly increased the index of the spleen and thymus and improved the atrophy of immune organs. MHFP enhanced the ability of carbon clearance and phagocytosis of mononuclear phagocytes in mice. Meanwhile, MHFP promoted the proliferation of splenic lymphocytes. MHFP could enhance the content of serum hemolysin and improve the decrease of hemolysin induced by cyclophosphamide. The contents of ACP and LDH in the serum and spleen were determined, indicating that MHFP could enhance the activity of macrophages. MHFP promoted the content of cytokines (IL-2, IL-6, TNF-α, and IFN-γ) and mRNA expression. At the same time, the pathological changes of the spleen tissue also showed that MHFP could improve the immunosuppression induced by cyclophosphamide. In addition, MHFP increased the content of SOD, T-AOC, and CAT in the serum and spleen tissue, decreased the level of MDA, and improved the oxidative stress caused by cyclophosphamide. In conclusion, MHFP could effectively improve the immunosuppression and oxidative stress induced by cyclophosphamide and enhance the immune capacity of mice.
Collapse
|
21
|
Han ML, Yin J, Zhao YH, Sun XW, Meng JX, Zhou J, Shen T, Li HH, Zhang F. How the Color Fades From Malus halliana Flowers: Transcriptome Sequencing and DNA Methylation Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:576054. [PMID: 33072152 PMCID: PMC7539061 DOI: 10.3389/fpls.2020.576054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 05/05/2023]
Abstract
The flower color of many horticultural plants fades from red to white during the development stages, affecting ornamental value. We selected Malus halliana, a popular ornamental species, and analyzed the mechanisms of flower color fading using RNA sequencing. Forty-seven genes related to anthocyanin biosynthesis and two genes related to anthocyanin transport were identified; the expression of most of these genes declined dramatically with flower color fading, consistent with the change in the anthocyanin content. A number of transcription factors that might participate in anthocyanin biosynthesis were selected and analyzed. A phylogenetic tree was used to identify the key transcription factor. Using this approach, we identified MhMYB10 as directly regulating anthocyanin biosynthesis. MhMYB10 expression was strongly downregulated during flower development and was significantly positively related to the expression of anthocyanin biosynthetic genes and anthocyanin content in diverse varieties of Malus. To analyze the methylation level during flower development, the MhMYB10 promoter sequence was divided into 12 regions. The methylation levels of the R2 and R8 increased significantly as flower color faded and were inversely related to MhMYB10 expression and anthocyanin content. Therefore, we deduce that the increasing methylation activities of these two regions repressed MhMYB10 expression.
Collapse
Affiliation(s)
- Mei-Ling Han
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Jiao Yin
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Yu-Heng Zhao
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Xue-Wei Sun
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Jia-Xin Meng
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Jing Zhou
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Ting Shen
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
| | - Hou-Hua Li
- College of Landscape Architecture and Art, Institute of Ornamental Plants, Northwest A&F University, Yangling, China
- *Correspondence: Hou-Hua Li,
| | - Fan Zhang
- Sanqin Institute of Botany, Shaanxi Qincao Ecological Environment Technology Co., Ltd., Xi’an, China
| |
Collapse
|
22
|
Jimenez-Lopez C, Fraga-Corral M, Carpena M, García-Oliveira P, Echave J, Pereira AG, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct 2020; 11:4853-4877. [DOI: 10.1039/d0fo00937g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agro-food industrial waste is currently being accumulated, pushing scientists to find recovery strategies to obtain bioactive compounds within a circular bioeconomy. Target phenolic compounds have shown market potential by means of optimization extraction techniques.
Collapse
Affiliation(s)
- C. Jimenez-Lopez
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Fraga-Corral
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Carpena
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - P. García-Oliveira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Echave
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - A. G. Pereira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. A. Prieto
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Simal-Gandara
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| |
Collapse
|
23
|
Liu X, Dong J, Liang Q, Wang HMD, Liu Z, Xu R, Kang W. Coagulant Effects and Mechanism of Schefflera heptaphylla (L.) Frodin. Molecules 2019; 24:E4547. [PMID: 31842361 PMCID: PMC6943494 DOI: 10.3390/molecules24244547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/01/2022] Open
Abstract
Schefflera heptaphylla (L.) Frodin, are commonly used in anti-inflammatory, analgesic, traumatic bleeding and hemostasisas. In this paper, the coagulation effect of the ethanol extract (Set), ethyl acetate phase (Sea) and n-butanol phase (Sbu) was evaluated by prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen content (FIB) assays in vitro. Then, Three main lupanine triterpenes (compounds A-C) were isolated and identified from Sea and Sbu by a bioassay-guided method and their structure were identified as 3α-Hydroxy-lup-20(29)-ene-23, 28-dioic acid, betulinic acid 3-O-sulfate and 3α-Hydroxy-lup-20(29)-ene-23, 28-dioic acid 28-O-(α-l-rhamnopyranosyl(1→4)-O-β-d-glucopyranosyl(1→6))-β-d-glucopyranoside) by spectroscopic data analysis. Among of them, compound B was confirmed to have significant coagulant effect in vitro. Furthermore, the pro-coagulation mechanism of S. heptaphylla extracts and compound B were investigated by measuring whole blood viscosity (WBV), plasma viscosity (PV), erythrocyte sedimentetion rate (ESR), pack cell volume (PCV), APTT, PT, TT, and FIB in vivo. Meanwhile, the levels of thromboxane B2 (TXB2), 6-keto prostaglandin F1α (6-keto-PGF1α), endothelial nitric oxide synthase (eNOS) and (endothelin-1) ET-1 were detected. The bleeding time (BT) was tested by tail bleeding method, which proved the traumatic bleeding and hemostasis activities of S. heptaphylla. The pharmacology experiments showed that the Set, Sea, Sbu and compound B has significant pro-coagulation effect. In addition, compound B might be the main constituent of pro-coagulation in S. heptaphylla These results could support the fact that S. heptaphylla could be used traditionally to cure traumatic bleeding, and the pro-coagulation effects were associated with the regulation of vascular endothelium active substance and hemorheology parameters.
Collapse
Affiliation(s)
- Xuqiang Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; (X.L.); (J.D.); (Q.L.)
- Engineering Research center of Molecular Medicine, Ministry of Education, Huaqiao University, Xiamen 361021, China
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; (X.L.); (J.D.); (Q.L.)
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; (X.L.); (J.D.); (Q.L.)
| | - Hui-min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; (X.L.); (J.D.); (Q.L.)
| | - Ruian Xu
- Engineering Research center of Molecular Medicine, Ministry of Education, Huaqiao University, Xiamen 361021, China
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; (X.L.); (J.D.); (Q.L.)
| |
Collapse
|
24
|
Zhang X, Yu Q, Jiang H, Ma C, David Wang HM, Wang J, Kang WY. A novel polysaccharide from Malus halliana Koehne with coagulant activity. Carbohydr Res 2019; 485:107813. [PMID: 31541938 DOI: 10.1016/j.carres.2019.107813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 12/26/2022]
Abstract
A novel polysaccharide in Malus halliana Koehne, named MHP-W, was isolated and purified by DEAE-52 cellulose and Sephadex G-100 columns. Structural features were identified by high performance size-exclusion chromatography (HPSEC), fourier transform infrared (FT-IR) spectrometer, gas chromatography (GC) and (1D & 2D) NMR Spectroscopy. Structural characterization showed that the molecular weight of MHP-W was 353 kDa composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 2.59: 0.15: 0.23: 0.25: 9.70. The existence of β-glycosidic bond between the sugar units was confirmed by FT-IR and NMR spectroscopy. The effects of MHP-W on active part thrombin time (APTT), protothrombin time (PT), thrombin time (TT), and fibrinogen (FIB) were screened by a cell-based coagulation activity model. MHP-W could significantly shorten TT (p < 0.001) and increase FIB (p < 0.05) as compared with the control group. The results showed that MHP-W promoted bloodclotting through endogenous and exogenous coagulation pathways as well as increasing fibrinogen content, which indicated that MHP-W had procoagulant activities in vitro.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China.
| | - Qi Yu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China.
| | - Huimin Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng, 475004, China
| | - Hui Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng, 475004, China.
| | - Wen-Yi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng, 475004, China.
| |
Collapse
|
25
|
Zhang X, Rong C, Qin L, Mo C, Fan L, Yan J, Zhang M. Complete Chloroplast Genome Sequence of Malus hupehensis: Genome Structure, Comparative Analysis, and Phylogenetic Relationships. Molecules 2018; 23:E2917. [PMID: 30413097 PMCID: PMC6278565 DOI: 10.3390/molecules23112917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Malus hupehensis belongs to the Malus genus (Rosaceae) and is an indigenous wild crabapple of China. This species has received more and more attention, due to its important medicinal, and excellent ornamental and economical, values. In this study, the whole chloroplast (cp) genome of Malus hupehensis, using a Hiseq X Ten sequencing platform, is reported. The M. hupehensis cp genome is 160,065 bp in size, containing a large single copy region (LSC) of 88,166 bp and a small single copy region (SSC) of 19,193 bp, separated by a pair of inverted repeats (IRs) of 26,353 bp. It contains 112 genes, including 78 protein-coding genes (PCGs), 30 transfer RNA genes (tRNAs), and four ribosomal RNA genes (rRNAs). The overall nucleotide composition is 36.6% CG. A total of 96 simple sequence repeats (SSRs) were identified, most of them were found to be mononucleotide repeats composed of A/T. In addition, a total of 49 long repeats were identified, including 24 forward repeats, 21 palindromic repeats, and four reverse repeats. Comparisons of the IR boundaries of nine Malus complete chloroplast genomes presented slight variations at IR/SC boundaries regions. A phylogenetic analysis, based on 26 chloroplast genomes using the maximum likelihood (ML) method, indicates that M. hupehensis clustered closer ties with M. baccata, M. micromalus, and M. prunifolia than with M. tschonoskii. The availability of the complete chloroplast genome using genomics methods is reported here and provides reliable genetic information for future exploration on the taxonomy and phylogenetic evolution of the Malus and related species.
Collapse
Affiliation(s)
- Xin Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chunxiao Rong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ling Qin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chuanyuan Mo
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lu Fan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jie Yan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Manrang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
26
|
Niu Y, Wang J, Wang P, Guo X, Wang J, Kang W. Effect of Malus halliana Koehne Polysaccharides on Functional Constipation. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe effects of Malus halliana Koehne polysaccharides on functional constipation was investigated in this study. The rats were divided into six groups: normal group, model group, positive control group, M. halliana polysaccharides high dose groups 1200 mg/ kg, medium dose groups 1000 mg/ kg and low dose groups 800 mg/kg. The model of constipation was established by loperamide hydrochloride. Feces weight at 6 and 24 hours after treatment, Colon moisture content, in addition the levels of motilin (MTL), gastrin (Gas), somatostatin (SS), substance P (SP) in serum were used to evaluate the preventive effects of M. halliana polysaccharides on constipation. Compared with the model group, the positive control group, M. halliana polysaccharide high, medium and low dose group 6 h weight of feces, colon moisture content, the levels of motilin (MTL), gastrin (GAS) and substance P(SP) significantly (p <0.01) increased, the levels of somatostatin (SS) significantly decreased. The results indicated that the high, middle and low dosage of M. halliana polysaccharide could effectively improve functional constipation. Amongst these doses, the low dose group was better than others.
Collapse
Affiliation(s)
- Yingying Niu
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Junya Wang
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Pengyu Wang
- Institute of Chinese Materia Medica, Henan University, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Xiuchun Guo
- Institute of Chinese Materia Medica, Henan University, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Jinmei Wang
- Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| | - Wenyi Kang
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng475004, China; Institute of Chinese Materia Medica, Henan University, Kaifeng475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng475004, China
| |
Collapse
|