1
|
Pethe A, Joshi S, Ali Dar T, Poddar NK. Revisiting the role of phospholipases in alzheimer's: crosstalk with processed food. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39002140 DOI: 10.1080/10408398.2024.2377290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Phospholipases such as phospholipase-A, phospholipase-B, phospholipase-C and phospholipase-D are important functional enzymes of the cell membrane responsible for a variety of functions such as signal transduction, production of lipid mediators, metabolite digestion and playing a pathological role in central nervous system diseases. Phospholipases have shown an association with Alzheimer's disease and these enzymes have found a correlation with several metabolic pathways that can lead to the activation of inflammatory signals via astrocytes and microglial cells. We also highlighted unhealthy practices like smoking and consuming processed foods, rich in nitroso compounds and phosphatidic acid, which contribute to neuronal damage in AD through phospholipases. A few therapeutic approaches such as the use of inhibitors of phospholipase-D,phospholipase A2 as well as autophagy-mediated inhibition have been discussed to control the onset of AD. This paper serves as a crosstalk between phospholipases and their role in neurodegenerative pathways as well as their influence on other biomolecules of lipid membranes, which are acquired through unhealthy diets and possible methods to treat these anomalies occurring due to their metabolic disorder involving phospholipases acting as major signaling molecules.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Siddhi Joshi
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
3
|
Zeng T, Liu Y, Jiang Y, Zhang L, Zhang Y, Zhao L, Jiang X, Zhang Q. Advanced Materials Design for Adsorption of Toxic Substances in Cigarette Smoke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301834. [PMID: 37211707 PMCID: PMC10401148 DOI: 10.1002/advs.202301834] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Cigarettes, despite being economically important legal consumer products, are highly addictive and harmful, particularly to the respiratory system. Tobacco smoke is a complex mixture containing over 7000 chemical compounds, 86 of which are identified to have "sufficient evidence of carcinogenicity" in either animal or human tests. Thus, tobacco smoke poses a significant health risk to humans. This article focuses on materials that help reduce the levels of major carcinogens in cigarette smoke; these include nicotine, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, hydrogen cyanide, carbon monoxide, and formaldehyde. Specifically, the research progress on adsorption effects and mechanisms of advanced materials such as cellulose, zeolite, activated carbon, graphene, and molecularly imprinted polymers are highlighted. The future trends and prospects in this field are also discussed. Notably, with advancements in supramolecular chemistry and materials engineering, the design of functionally oriented materials has become increasingly multidisciplinary. Certainly, several advanced materials can play a critical role in reducing the harmful effects of cigarette smoke. This review aims to serve as an insightful reference for the design of hybrid and functionally oriented advanced materials.
Collapse
Affiliation(s)
- Ting Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yingfang Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lan Zhang
- Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, F-69621, France
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
4
|
Moradpour Z, Abdolmaleki P, Hajipour-Verdom B, Khavanin A, Panjali Z, Maghsudi N, Hamidi M, Zendehdel R. DNA breaks evaluation of two water-based metalworking fluids by an occupational exposure design. TOXIN REV 2023. [DOI: 10.1080/15569543.2022.2163663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zahra Moradpour
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Panjali
- Department of Occupational Health Engineering, Faculty of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nader Maghsudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mansoureh Hamidi
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gupta AK, Kanaan M, Siddiqi K, Sinha DN, Mehrotra R. Oral Cancer Risk Assessment for Different Types of Smokeless Tobacco Products Sold Worldwide: A Review of Reviews and Meta-analyses. Cancer Prev Res (Phila) 2022; 15:733-746. [PMID: 36095092 DOI: 10.1158/1940-6207.capr-21-0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/28/2022] [Accepted: 09/07/2022] [Indexed: 01/31/2023]
Abstract
Smokeless tobacco (SLT) use is a significant cause of lip and oral cavity cancers. Globally, oral cancer prevalence is strongly linked to the types of tobacco products used, their chemical composition, and their pattern of use. Except snus, all SLT products sold in different World Health Organization regions are strongly associated with oral cancer incidence. Shammah showed the highest association OR with 95% confidence intervals (CI; OR, 38.74; 95% CI, 19.50-76.96), followed by oral snuff (OR, 11.80; 95% CI, 8.45-16.49), gutkha (OR, 8.67; 95% CI, 3.59-20.93), tobacco with betel quid (OR, 7.74; 95% CI, 5.38-11.13), toombak (OR, 4.72; 95% CI, 2.88-7.73), and unspecified chewing tobacco (OR, 4.72; 95% CI, 3.13-7.11). Most SLT products containing high levels of carcinogenic tobacco-specific nitrosamines (TSNA) exhibit a high risk of oral cancer. There is an urgent need to frame and implement international policies for oral cancer prevention through legal control of the TSNA levels in all SLT product types. PREVENTION RELEVANCE Most smokeless tobacco products sold worldwide, mainly shammah, toombak, gutkha, betel quid with tobacco, and dry snuff, are associated with a high risk of oral cancer. A high concentration of tobacco-specific nitrosamines in smokeless tobacco products is the major causative factor for oral cancer development.
Collapse
Affiliation(s)
- Alpana K Gupta
- Independent Research Consultant, Noida, Gautam Budh Nagar, Uttar Pradesh, India
| | - Mona Kanaan
- Department of Health Sciences, University of York, Heslington, York, United Kingdom
| | - Kamran Siddiqi
- Department of Health Sciences, University of York, Heslington, York, United Kingdom
| | | | - Ravi Mehrotra
- Centre for Health, Innovation and Policy, Noida, Gautam Budh Nagar, Uttar Pradesh, India.,School of Health Sciences, University of York, Heslington, York, United Kingdom
| |
Collapse
|
6
|
Hecht SS, Hatsukami DK. Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nat Rev Cancer 2022; 22:143-155. [PMID: 34980891 PMCID: PMC9308447 DOI: 10.1038/s41568-021-00423-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Tobacco products present a deadly combination of nicotine addiction and carcinogen exposure resulting in millions of cancer deaths per year worldwide. A plethora of smokeless tobacco products lead to unacceptable exposure to multiple carcinogens, including the tobacco-specific nitrosamine N'-nitrosonornicotine, a likely cause of the commonly occurring oral cavity cancers observed particularly in South-East Asian countries. Cigarettes continue to deliver a large number of carcinogens, including tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons and volatile organic compounds. The multiple carcinogens in cigarette smoke are responsible for the complex mutations observed in critical cancer genes. The exposure of smokeless tobacco users and smokers to carcinogens and toxicants can now be monitored by urinary and DNA adduct biomarkers that may be able to identify those individuals at highest risk of cancer so that effective cancer prevention interventions can be initiated. Regulation of the levels of carcinogens, toxicants and nicotine in tobacco products and evidence-based tobacco control efforts are now recognized as established pathways to preventing tobacco related cancer.
Collapse
Affiliation(s)
- Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
7
|
Bordoloi D, Harsha C, Padmavathi G, Banik K, Sailo BL, Roy NK, Girisa S, Thakur KK, Devi AK, Chinnathambi A, Alahmadi TA, Alharbi SA, Shakibaei M, Kunnumakkara AB. Loss of TIPE3 reduced the proliferation, survival and migration of lung cancer cells through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling cascade. Life Sci 2022; 293:120332. [PMID: 35041835 DOI: 10.1016/j.lfs.2022.120332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Lung cancer is the foremost cause of cancer related mortality among men and one of the most fatal cancers among women. Notably, the 5-year survival rate of lung cancer is very less; 5% in developing countries. This low survival rate can be attributed to factors like late stage diagnosis, rapid postoperative recurrences in the patients undergoing treatment and development of chemoresistance against different agents used for treating lung cancer. Therefore, in this study we evaluated the potential of a recently identified protein namely TIPE3 which is known as a transfer protein of lipid second messengers as a lung cancer biomarker. TIPE3 was found to be significantly upregulated in lung cancer tissues indicating its role in the positive regulation of lung cancer. Supporting this finding, knockout of TIPE3 was also found to reduce the proliferation, survival and migration of lung cancer cells and arrested the G2 phase of cell cycle through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling. It is well evinced that tobacco is the major risk factor of lung cancer which affects both males and females. Therefore, this study also evaluated the involvement of TIPE3 in tobacco mediated lung carcinogenesis. Notably, this study shows for the first time that TIPE3 positively regulates tobacco induced proliferation, survival and migration of lung cancer through modulation of Akt/mTOR signaling. Thus, TIPE3 plays critical role in the pathogenesis of lung cancer and hence it can be specifically targeted to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
8
|
Sharma M, Shetty SS, Radhakrishnan R. Novel Pathways and Mechanism of Nicotine-Induced Oral Carcinogenesis. Recent Pat Anticancer Drug Discov 2021; 17:66-79. [PMID: 34365933 DOI: 10.2174/1574892816666210806161312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Smokeless Tobacco (SLT) contains 9 times more nicotine than Smoked Tobacco (SMT). The carcinogenic effect of nicotine is intensified by converting nicotine-to-nicotine-derived Nitrosamines (NDNs). METHODS A review of the literature was conducted with a tailored search strategy to unravel the novel pathways and mechanisms of nicotine-induced oral carcinogenesis. RESULTS Nicotine and NDNs act on nicotinic Acetylcholine Receptors (nAChRs) as agonists. Nicotine facilitates cravings through α4β2nAChR and α7nAChR, via enhanced brain dopamine release. Nicotine binding to nAChR promotes proliferation, migration, invasion, chemoresistance, radioresistance, and metastasis of oral cancer cells. Nicotine binding to α7nAChR on keratinocytes triggers Ras/Raf-1/MEK1/ERK cascade promoting anti-apoptosis and pro-proliferative effects. Furthermore, the nicotine-enhanced metastasis is subdued on nAChR blockade through reduced nuclear localization of p-EGFR. CONCLUSION Protracted exposure to nicotine/NDN augments cancer-stimulatory α7nAChR and desensitizes cancer inhibitory α4β2nAChR. Since nAChRs dictate both addictive and carcinogenic effects of nicotine, it seems counterintuitive to designate nicotine just as an addictive agent devoid of any carcinogenicity.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad - 121004. India
| | - Smitha S Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal, (Karnataka). India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal - 576104. India
| |
Collapse
|
9
|
Sajid M, Srivastava S, Joshi L, Bharadwaj M. Impact of smokeless tobacco-associated bacteriome in oral carcinogenesis. Anaerobe 2021; 70:102400. [PMID: 34090995 DOI: 10.1016/j.anaerobe.2021.102400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023]
Abstract
Smokeless tobacco products possess a complex community of microorganisms. The microbial community ferment compounds present in the smokeless tobacco products and convert them into carcinogens like tobacco-associated nitrosamines. However, the potential of smokeless tobacco products associated bacteriome to manipulate systemic inflammation and other signaling pathways involved in the etiology of oral cancer will be a risk factor for oral cancer. Further, damage to oral epithelial cells causes a leaky oral layer that leads to increased infiltration of bacterial components like lipopolysaccharide, flagellin, and toxins, etc. The consumption of smokeless tobacco products can cause damage to the oral layer and dysbiosis of oral microbiota. Hence, the enrichment of harmful microbes due to dysbiosis in the oral cavity can produce high levels of bacterial metabolites and provoke inflammation as well as carcinogenesis. Understanding the complex and dynamic interrelation between the smokeless tobacco-linked bacteriome and host oral microbiome may help to unravel the mechanism of oral carcinogenesis stimulated by smokeless tobacco products. This review provides an insight into smokeless tobacco product-associated bacteriome and their potential in the progression of oral cancer. In the future, this will guide in the evolution of prevention and treatment strategies against smokeless tobacco products-induced oral cancer. Besides, it will assist the government organizations for better management and cessation policy building for the worldwide problem of smokeless tobacco addiction.
Collapse
Affiliation(s)
- Mohammad Sajid
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Sector-39, Noida, 201301, India
| | - Sonal Srivastava
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Sector-39, Noida, 201301, India
| | - Lata Joshi
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Sector-39, Noida, 201301, India
| | - Mausumi Bharadwaj
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Sector-39, Noida, 201301, India.
| |
Collapse
|
10
|
Gupta AK, Mehrotra R. Safety Concerns For Tobacco-Free Products Containing Synthetic Nicotine. Nicotine Tob Res 2021; 23:1980-1981. [PMID: 33836086 DOI: 10.1093/ntr/ntab071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Affiliation(s)
| | - Ravi Mehrotra
- India Cancer Research Consortium-ICMR, Department of Health Research, New Delhi, India.,Addressing smokeless tobacco and building research capacity in South Asia (ASTRA) Project & Visiting Professor, School of Health Sciences, University of York, UK
| |
Collapse
|
11
|
Ishizaki A, Kataoka H. Online In-Tube Solid-Phase Microextraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Tobacco-Specific Nitrosamines in Hair Samples. Molecules 2021; 26:2056. [PMID: 33916743 PMCID: PMC8038370 DOI: 10.3390/molecules26072056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Active and passive smoking are serious public health concerns Assessment of tobacco smoke exposure using effective biomarkers is needed. In this study, we developed a simultaneous determination method of five tobacco-specific nitrosamines (TSNAs) in hair by online in-tube solid-phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). TSNAs were extracted and concentrated on Supel-Q PLOT capillary by in-tube SPME and separated and detected within 5 min by LC-MS/MS using Capcell Pak C18 MGIII column and positive ion mode multiple reaction monitoring systems. These operations were fully automated by an online program. The calibration curves of TSNAs showed good linearity in the range of 0.5-1000 pg mL-1 using their stable isotope-labeled internal standards. Moreover, the limits of detection (S/N = 3) of TSNAs were in the range of 0.02-1.14 pg mL-1, and intra-day and inter-day precisions were below 7.3% and 9.2% (n = 5), respectively. The developed method is highly sensitive and specific and can easily measure TSNA levels using 5 mg hair samples. This method was used to assess long-term exposure levels to tobacco smoke in smokers and non-smokers.
Collapse
Affiliation(s)
| | - Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan;
| |
Collapse
|
12
|
Gupta AK, Nethan ST, Mehrotra R. Tobacco use as a well-recognized cause of severe COVID-19 manifestations. Respir Med 2021; 176:106233. [PMID: 33253975 PMCID: PMC7674071 DOI: 10.1016/j.rmed.2020.106233] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The Coronavirus disease (COVID-19) infection is caused by the novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) primarily affecting the lungs. All tobacco-related illnesses including asthma, chronic obstructive pulmonary disease (COPD), and coronary artery disease are known to reduce the lung capacity and impair the immune system of the body and can greatly influence the ability to fight the novel coronavirus. The purpose of this state-of-the-art literature review is to summarize the evidence of the association of tobacco use with the severity of the COVID-19 manifestations. METHOD Articles describing the association of tobacco use with the severity of COVID-19 manifestations were searched on PubMed, MEDLINE, and Google. This review covers the relevant studies on the subject published from January 1, 2020 to September 10, 2020. RESULTS Tobacco use in all forms, whether smoking or chewing, is significantly associated with severe COVID-19 outcomes. Pre-existing comorbidities in tobacco users such as cardiovascular diseases, diabetes, respiratory diseases and hypertension were found to further aggravate the disease manifestations making the treatment of such COVID-19 patients more challenging due to their rapid clinical deterioration. CONCLUSIONS Current review indicates that nicotine exposure is linked to cardiopulmonary vulnerability to COVID-19 and tobacco use can be a potential risk factor for not only getting the viral infection but also its severe manifestations. The current pandemic provides a teachable moment to break the cycle of nicotine addiction and accelerate national tobacco control programs to achieve a tobacco-free world.
Collapse
Affiliation(s)
- Alpana Kumar Gupta
- Formerly Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research, Department of Health Research, Govt. of India, Noida, 201301, India.
| | - Suzanne Tanya Nethan
- Division of Clinical Oncology, ICMR-National Institute of Cancer Prevention and Research, Department of Health Research, Govt. of India, Noida, 201301, India.
| | - Ravi Mehrotra
- ICMR-India Cancer Research Consortium, Department of Health Research, New Delhi, 11000, India; ASTRA, Adjunct Professor of Global Health, University of York, York, Great Britain, UK.
| |
Collapse
|
13
|
Bordoloi D, Banik K, Vikkurthi R, Thakur KK, Padmavathi G, Sailo BL, Girisa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Buhrmann C, Shakibaei M, Kunnumakkara AB. Inflection of Akt/mTOR/STAT-3 cascade in TNF-α induced protein 8 mediated human lung carcinogenesis. Life Sci 2020; 262:118475. [PMID: 32976884 DOI: 10.1016/j.lfs.2020.118475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related death across the globe. Despite the marked advances in detection and therapeutic approaches, management of lung cancer patients remains a major challenge to oncologists which can be mainly attributed to late stage diagnosis, tumor recurrence and chemoresistance. Therefore, to overthrow these limitations, there arises a vital need to develop effective biomarkers for the successful management of this aggressive cancer type. Notably, TNF-alpha induced protein 8 (TIPE), a nuclear factor-kappa B (NF-κB)-inducible, oncogenic molecule and cytoplasmic protein which is involved in the regulation of T lymphocyte-mediated immunity and different processes in tumor cells such as proliferation, cell death and evasion of growth suppressors, might serve as one such biomarker which would facilitate effective management of lung cancer. Expression studies revealed this protein to be significantly upregulated in different lung cancer types, pathological conditions, stages and grades of lung tumor compared to normal human lung tissues. In addition, knockout of TIPE led to the reduced proliferation, survival, invasion and migration of lung cancer cells. Furthermore, TIPE was found to function through modulation of Akt/mTOR/STAT-3 signaling cascade. This is the first report which shows the involvement of TIPE in tobacco induced lung carcinogenesis. It positively regulated nicotine, NNK, NNN, and BaP induced proliferation, survival and migration of lung cancer cells possibly via Akt/STAT-3 signaling. Thus, this protein possesses important role in the pathogenesis of lung tumor and hence it can be targeted for developing newer therapeutic interventions for the clinico-management of lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Constanze Buhrmann
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
14
|
Gupta AK, Mehrotra R. Alarmingly High Levels of Nicotine and Carcinogenic Nitrosamines in Smokeless Tobacco Products Sold Worldwide. Nicotine Tob Res 2020; 23:621-622. [PMID: 32951041 DOI: 10.1093/ntr/ntaa184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Alpana K Gupta
- Formerly Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Ravi Mehrotra
- Department of Health Research, India Cancer Research Consortium-ICMR, New Delhi, India.,Global Health, Brunel University, London, UK
| |
Collapse
|
15
|
Kwak S, Choi YS, Na HG, Bae CH, Song SY, Kim YD. Effect of Tobacco-specific Nitrosamines on MUC5AC Expression in Human Airway Epithelial Cells. JOURNAL OF RHINOLOGY 2020. [DOI: 10.18787/jr.2019.00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background and Objectives: Nicotine is oxidized into tobacco-specific nitrosamines (TSNAs; NAB, NAT, NNN, NNAL, NNK) at high temperature and high pressure. TSNAs are associated with airway diseases characterized by mucus hypersecretion as a major pathophysiologic phenomenon. The aim of study is to investigate the effect of TSNAs on mucin overexpression and its molecular mechanism in human airway epithelial cells.Materials and Method: The cytotoxicity of TSNAs was evaluated using EX-Cytox and inverted microscopy. The mRNA and protein levels of MUC5AC and MUC5B were measured using real-time PCR and ELISA.Results: NAB, NNN, NNAL, and NNK did not affect cell viability. NAT did not affect cell viability up to a concentration of 100 μM in human airway epithelial cells. NAT, NNN, NNAL, and NNK significantly induced MUC5AC expression, but not MUC5B expression. NAB did not affect the expression of MUC5AC and MUC5B. Propranolol (a β-adrenergic receptor antagonist) inhibited NAT, NNN, NNAL, and NNK-induced MUC5AC expression, whereas α-bungarotoxin (an α7-nicotinic acetylcholine receptor antagonist) only inhibited NNN- and NNK-induced MUC5AC expression.Conclusion: These results suggested that NAT, NNN, NNAL, and NNK induce MUC5AC expression through β-adrenergic receptor and/or α7-nicotinic acetylcholine receptor in human airway epithelial cells, which may be involved in mucus hypersecretion in inflammatory airway diseases.
Collapse
|
16
|
Ruszkiewicz JA, Zhang Z, Gonçalves FM, Tizabi Y, Zelikoff JT, Aschner M. Neurotoxicity of e-cigarettes. Food Chem Toxicol 2020; 138:111245. [PMID: 32145355 PMCID: PMC7089837 DOI: 10.1016/j.fct.2020.111245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
It appears that electronic cigarettes (EC) are a less harmful alternative to conventional cigarette (CC) smoking, as they generate substantially lower levels of harmful carcinogens and other toxic compounds. Thus, switching from CC to EC may be beneficial for smokers. However, recent accounts of EC- or vaping-associated lung injury (EVALI) has raised concerns regarding their adverse health effects. Additionally, the increasing popularity of EC among vulnerable populations, such as adolescents and pregnant women, calls for further EC safety evaluation. In this state-of-the-art review, we provide an update on recent findings regarding the neurological effects induced by EC exposure. Moreover, we discuss possible neurotoxic effects of nicotine and numerous other chemicals which are inherent both to e-liquids and EC aerosols. We conclude that in recognizing pertinent issues associated with EC usage, both government and scientific researchers must address this public health issue with utmost urgency.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Filipe Marques Gonçalves
- Biochemistry Graduate Program, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, United States
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Manhattan, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
17
|
Cespedes-Acuña CL. Recent advances in natural products research and their toxicological extrapolations (Ranprte). Food Chem Toxicol 2020; 140:111308. [PMID: 32222550 DOI: 10.1016/j.fct.2020.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos L Cespedes-Acuña
- Laboratory of Phytochemistry and Eco-toxicology, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Department of Basic Sciences, Faculty of Sciences, University of Bio-Bío, Andrés Bello Avenue # 720, Chillan, Chile.
| |
Collapse
|
18
|
Mehrotra R, Yadav A, Sinha DN, Parascandola M, John RM, Ayo-Yusuf O, Nargis N, Hatsukami DK, Warnakulasuriya S, Straif K, Siddiqi K, Gupta PC. Smokeless tobacco control in 180 countries across the globe: call to action for full implementation of WHO FCTC measures. Lancet Oncol 2019; 20:e208-e217. [PMID: 30942182 DOI: 10.1016/s1470-2045(19)30084-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Smokeless tobacco is consumed by 356 million people globally and is a leading cause of head and neck cancers. However, global efforts to control smokeless tobacco use trail behind the progress made in curbing cigarette consumption. In this Policy Review, we describe the extent of the policy implementation gap in smokeless tobacco control, discuss key reasons on why it exists, and make recommendations on how to bridge this gap. Although 180 countries have agreed that the WHO Framework Convention on Tobacco Control is the best approach to control the demand and supply of smokeless tobacco, only 138 (77%) Parties define smokeless tobacco in their statutes. Only 34 (19%) Parties tax or report taxing smokeless tobacco products, six (3%) measure content and emissions of smokeless tobacco products, and 41 (23%) mandate pictorial health warnings on these products. Although awareness of the harms related to smokeless tobacco is growing in many parts of the world, few Parties collect or present data on smokeless tobacco use under global or national surveillance mechanisms (eg, Global Tobacco Surveillance System and WHO STEPwise). Only 16 (9%) Parties have implemented a comprehensive ban on smokeless tobacco advertisement, promotion, and sponsorships. Globally, a smaller proportion of smokeless tobacco users are advised to quit the use of smokeless tobacco products compared to tobacco users. Use of smokeless tobacco is becoming a global cause of concern, requiring a greater commitment on the full implementation of the WHO Framework Convention on Tobacco Control measures.
Collapse
Affiliation(s)
- Ravi Mehrotra
- Division of Preventive Oncology and WHO-FCTC Global Knowledge Hub on Smokeless Tobacco, Indian Council of Medical Research National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India.
| | - Amit Yadav
- Division of Preventive Oncology and WHO-FCTC Global Knowledge Hub on Smokeless Tobacco, Indian Council of Medical Research National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | | | | | - Rijo M John
- Centre for Public Policy Research, Kochi, Kerala, India
| | - Olalekan Ayo-Yusuf
- Sefako Makgatho Health Sciences University, Pretoria North, South Africa
| | | | | | - Saman Warnakulasuriya
- Department of Oral Medicine and Pathology and WHO Collaborating Centre for Oral Cancer, King's College London, London, UK
| | - Kurt Straif
- International Agency for Research on Cancer, Lyon, France
| | - Kamran Siddiqi
- Department of Health Sciences, University of York, York, UK
| | - Prakash C Gupta
- Healis-Sekhsaria Institute for Public Health, Navi Mumbai, Maharashtra, India
| |
Collapse
|