1
|
Ma SZ, Dong S, Zhou ZY, Ji XY, Zhang YY, Wang XQ, Zhang B. The protective role of Cordyceps cicadae and its active ingredient myriocin against sodium iodate-induced age-related macular degeneration via an anti-necroptotic TNF-RIPK1/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118565. [PMID: 39002821 DOI: 10.1016/j.jep.2024.118565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps cicadae (C.cicadae), named "Chan Hua", an anamorph of Isaria cicadae Miquel, is an entomogenous complex formed by fungi parasitizing on the larvae of cicadas and belongs to the Claviciptaceae family and the genus Codyceps, which traditionally holds a significant place in Chinese ethnopharmacology, specifically for eye clarity and as a remedy for age-related ocular conditions. The underlying mechanisms contributing to its eyesight enhancement and potential effectiveness against Age-related macular degeneration (AMD) remain unexplored. AIM OF THE STUDY This study aims to elucidate the protective role of C.cicadae and its active ingredient, Myriocin (Myr), against AMD. MATERIALS AND METHODS A chemical inducer was employed to make retinal pigment epithelium (RPE) damage in vitro and in vivo. The key ingredients of C.cicadae and their related mechanisms for anti-AMD were studied through bioinformatic analysis and molecular biological approaches. RESULTS Myr was identified through high-performance liquid chromatography (HPLC) as an active ingredient in C.cicadae, and demonstrated a protective effect on RPE cells, reducing the structural damage and cell death induced by sodium iodate (SI). Further, Myr reduced eyelid secretions in AMD mice and restored their retinal structure and function. The differentially expressed genes (DEGs) in Myr treatment are primarily associated with TNF and Necroptosis signaling pathways. Molecular docking indicated a strong affinity between TNF and Myr. Myr inhibited the TNF signaling pathway thereby reducing the expression of inflammatory factors in ARPE-19 cells. Additionally, Myr had consistent action with the necroptosis inhibitor Necrostatin-1 (Nec-1), inhibited the RIPK1/RIPK3/MLKL pathway thereby protecting ARPE-19 cells. CONCLUSION The findings present Myr, as a potent protector against SI-induced AMD, predominantly through modulation of the TNF-RIPK1/RIPK3/MLKL signaling pathway, offering the insights of therapeutic C.cicadae as viable candidates for AMD treatment.
Collapse
Affiliation(s)
- Shao Zhuang Ma
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Shi Dong
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Zong Yuan Zhou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| | - Xin Ye Ji
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Yan Yuan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Xiao Qin Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| |
Collapse
|
2
|
Du S, Wang Y, Tao W, Lu S. Differential effects of enzymatically modified Ougan (Citrus Suavissima Hort. ex Tanaka) peel pectins extracted with different methods on inhibiting the proliferation of Hela cells. Int J Biol Macromol 2024; 278:134463. [PMID: 39102920 DOI: 10.1016/j.ijbiomac.2024.134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Previous studies have shown that modified citrus pectin (MCP) is an anti-tumor material of food grade. In this study, two enzymatically modified Ougan (Citrus Suavissima Hort. ex Tanaka) peel pectins (EMP1 and EMP2, the ones extracted by alkali and enzymatic methods) were used to investigate their differential effects on viability and physiology of Hela cells. The results showed that EMP1 and EMP2 had 88.00 % and 81.01 % galacturonic acid, 21.31 % and 20.25 % esterification degree, 10,417 g/mol and 6416 g/mol molecular weight (Mw), 82.86 % and 50.62 % RG-I, and 8.91 % and 15.70 % HG, respectively. EMP2 had higher intensities of absorption peaks than EMP1. They were irregularly shaped, with more holes on EMP1 but more wrinkles on EMP2. Both could inhibit the growth, proliferation, migration, and invasion of HeLa cells in a concentration-dependent manner, with better efficiency in EMP2. Meanwhile, EMP2 was more efficient than EMP1 in blocking the cell cycle in S phase, resulting in apoptosis. In conclusion, the variations caused by extraction resulted in differences in anti-tumor activity of MCP and EMP2 with lower Mw and higher HG exhibited better anti-tumor effects. This study would provide an experimental basis and reference for the research and development of anti-tumor supplements from citrus pectin.
Collapse
Affiliation(s)
- Shuangning Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yangguang Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wenyang Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
3
|
Liang Z, Xiong L, Zang Y, Tang Z, Shang Z, Zhang J, Jia Z, Huang Y, Ye X, Liu H, Li M. Extraction Optimization and Anti-Tumor Activity of Polysaccharides from Chlamydomonas reinhardtii. Mar Drugs 2024; 22:356. [PMID: 39195472 DOI: 10.3390/md22080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Chlamydomonas reinhardtii polysaccharides (CRPs) are bioactive compounds derived from C. reinhardtii, yet their potential in cancer therapy remains largely unexplored. This study optimized the ultrasound-assisted extraction conditions using response surface methodology and proceeded with the isolation and purification of these polysaccharides. The optimal extraction conditions were identified as a sodium hydroxide concentration of 1.5%, ultrasonic power of 200 W, a solid-to-liquid ratio of 1:25 g/mL, an ultrasonic treatment time of 10 min, and a water bath duration of 2.5 h, yielding an actual extraction rate of 5.71 ± 0.001%, which closely aligns with the predicted value of 5.639%. Infrared analysis revealed that CRP-1 and CRP-2 are α-pyranose structures containing furoic acid, while CRP-3 and CRP-4 are β-pyranose structures containing furoic acid. Experimental results demonstrated that all four purified polysaccharides inhibited the proliferation of cervical (HeLa) hepatoma (HepG-2) and colon (HCT-116) cancer cells, with CRP-4 showing the most significant inhibitory effect on colon cancer and cervical cancer, achieving inhibition rates of 60.58 ± 0.88% and 40.44 ± 1.44%, respectively, and significantly reducing the migration of HeLa cells. DAPI staining confirmed that the four purified polysaccharides inhibit cell proliferation and migration by inducing apoptosis in HeLa cells. CRP-1 has the most significant inhibitory effect on the proliferation of liver cancer cells. This study not only elucidates the potential application of C. reinhardtii polysaccharides in cancer therapy but also provides a scientific basis for their further development and utilization.
Collapse
Affiliation(s)
- Zhongwen Liang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Lan Xiong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Ying Zang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Zhijuan Tang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Zhenyu Shang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Jingyu Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Zihan Jia
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Yanting Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Xiaoyu Ye
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Hongquan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| | - Mei Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China
| |
Collapse
|
4
|
Ju H, Liu Y, Gong J, Gong PX, Wang ZX, Wu YC, Li HJ. Revolutionizing cancer treatment: Harnessing the power of terrestrial microbial polysaccharides. Int J Biol Macromol 2024; 274:133171. [PMID: 38880444 DOI: 10.1016/j.ijbiomac.2024.133171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Cancer treatment faces numerous challenges, such as inadequate drug targeting, steep price tags, grave toxic side effects, and limited therapeutic efficacy. Therefore, there is an urgent need for a safe and effective new drug to combat cancer. Microbial polysaccharides, complex and diverse biological macromolecules, exhibit significant microbial variability and uniqueness. Studies have shown that terrestrial microbial polysaccharides possess a wide range of biological activities, including immune enhancement, antioxidant properties, antiviral effects, anti-tumour potential, and hypoglycemic functions. To delve deeper into the structure-activity relationship of these land-based microbial polysaccharides against cancer, we conducted a comprehensive review and analysis of anti-cancer literature published between 2020 and 2024. The anticancer efficacy of terrestrial microbial polysaccharides is influenced by multiple factors, including the microbial species, existing form, chemical structure, and polysaccharide purity. According to the literature, an optimal molecular weight and good water solubility are essential for demonstrating anticancer activity. Furthermore, the addition of mannose and galactose has been found to significantly enhance the anticancer properties of these polysaccharides. These insights will serve as a valuable reference for future research and progress in the field of cancer drug therapy, particularly with regards to terrestrial microbial polysaccharides.
Collapse
Affiliation(s)
- Hao Ju
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Harbin 150006, PR China; Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yang Liu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Jun Gong
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Pi-Xian Gong
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| | - Zi-Xuan Wang
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yan-Chao Wu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Harbin 150006, PR China; Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
5
|
Teng C, Guo S, Li Y, Ren G. Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation. Foods 2024; 13:2311. [PMID: 39123503 PMCID: PMC11311824 DOI: 10.3390/foods13152311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Quinoa is a highly nutritious and biologically active crop. Prior studies have demonstrated that quinoa polysaccharides exhibit anti-obesity activity. This investigation confirmed that quinoa polysaccharides have the ability to inhibit the growth of 3T3-L1 preadipocytes. The objective of transcriptome research was to investigate the mechanism of quinoa water-extracted polysaccharides and quinoa alkaline-extracted polysaccharides that hinder the growth of 3T3-L1 preadipocytes. There were 2194 genes that showed differential expression between untreated cells and those treated with high concentrations of quinoa water-extracted polysaccharides (QWPHs). There were 1774 genes that showed differential expression between untreated cells and those treated with high concentrations of quinoa alkaline-extracted polysaccharides (QAPHs). Through gene ontology and KEGG pathway analysis, 20 characteristic pathways are found significantly enriched between the untreated group and the QAPH and QWPH groups. These pathways include the NOD-like receptor, Hepatitis C, and the PI3K-Akt signaling pathway. Atp13A4 and Gbgt1 have been identified as genes that are upregulated and downregulated in both the untreated group and the QWPH group, as well as in the untreated group and the QAPH group. These findings establish a theoretical foundation for exploring quinoa polysaccharides as an anti-obesity agent.
Collapse
Affiliation(s)
- Cong Teng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Shengyuan Guo
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Guixing Ren
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Song L, Niu Y, Chen R, Ju H, Liu Z, Zhang B, Xie W, Gao Y. A Comparative Analysis of the Anti-Tumor Activity of Sixteen Polysaccharide Fractions from Three Large Brown Seaweed, Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida. Mar Drugs 2024; 22:316. [PMID: 39057425 PMCID: PMC11278018 DOI: 10.3390/md22070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Searching for natural products with anti-tumor activity is an important aspect of cancer research. Seaweed polysaccharides from brown seaweed have shown promising anti-tumor activity; however, their structure, composition, and biological activity vary considerably, depending on many factors. In this study, 16 polysaccharide fractions were extracted and purified from three large brown seaweed species (Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida). The chemical composition analysis revealed that the polysaccharide fractions have varying molecular weights ranging from 8.889 to 729.67 kDa, and sulfate contents ranging from 0.50% to 10.77%. Additionally, they exhibit different monosaccharide compositions and secondary structures. Subsequently, their anti-tumor activity was compared against five tumor cell lines (A549, B16, HeLa, HepG2, and SH-SY5Y). The results showed that different fractions exhibited distinct anti-tumor properties against tumor cells. Flow cytometry and cytoplasmic fluorescence staining (Hoechst/AO staining) further confirmed that these effective fractions significantly induce tumor cell apoptosis without cytotoxicity. qRT-RCR results demonstrated that the polysaccharide fractions up-regulated the expression of Caspase-3, Caspase-8, Caspase-9, and Bax while down-regulating the expression of Bcl-2 and CDK-2. This study comprehensively compared the anti-tumor activity of polysaccharide fractions from large brown seaweed, providing valuable insights into the potent combinations of brown seaweed polysaccharides as anti-tumor agents.
Collapse
Affiliation(s)
- Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (L.S.); (W.X.)
- Wuqiong Food Co., Ltd., Raoping 515726, China
| | - Yunze Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Ran Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Hao Ju
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Zijian Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Bida Zhang
- Changdao Aihua Seaweed Food Co., Ltd., Yantai 265800, China
| | - Wancui Xie
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (L.S.); (W.X.)
| | - Yi Gao
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China
| |
Collapse
|
7
|
Wang D, Zhu J, Lv J, Zhu Y, Li F, Zhang C, Yu X. Structural characterization and potential anti-tumor activity of a polysaccharide from the halophyte Salicornia bigelovii Torr. Int J Biol Macromol 2024; 273:132712. [PMID: 38815939 DOI: 10.1016/j.ijbiomac.2024.132712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Plant polysaccharides are highly potent bioactive molecules. Clarifying the structural composition and bioactivities of plant polysaccharides will provide insights into their structure-activity relationships. Therefore, herein, we identified a polysaccharide produced by Salicornia bigelovii Torr. and analyzed the structure and anti-tumor activity of its component, SabPS-1. SabPS-1 was 3.24 × 104 Da, primarily composed of arabinose (24.96 %), galactose (30.39 %), and galacturonic acid (23.20 %), rhamnose (6.21 %), xylose (4.99 %), glucuronic acid (3.12 %), mannuronic acid (1.75 %), mannose (1.69 %), glucose (1.54 %), fucose (1.12 %), and guluronic acid (1.03 %). The backbone of SabPS-1 was a → 4)-β-D-GalpA-(1→, →5)-α-L-Araf-(1→, and→4)-β-D-Galp-(1 → molecule with a branched chain of α-L-Araf-(1 → connected to sugar residues of →3,6)-β-D-Galp-(1 → in the O-3 position. SabPS-1 induced apoptosis and inhibited the growth of HepG-2 cells, with viability of 47.90 ± 4.14 (400 μg/mL), indicating anti-tumor activity. Apoptosis induced by SabPS-1 may be associated with the differential regulation of caspase 3, caspase 8, Bax, and Bcl-2. To the best of our knowledge, this is the first study to investigate the principal structures and anti-tumor biological activities of SabPS-1. Our findings demonstrated the excellent anti-tumor properties of SabPS-1, which will aid in the development of anti-tumor drugs utilizing Salicornia bigelovii Torr.
Collapse
Affiliation(s)
- Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiayi Zhu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jing Lv
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuping Zhu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chunyin Zhang
- Yancheng Green Garden Saline Soil Agriculture Technology Co., Ltd, Yancheng 224001, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
8
|
Jen CI, Ng LT. Physicochemical Properties of Different Sulfated Polysaccharide Components from Laetiporus sulphureus and Their Anti-Proliferative Effects on MDA-MB-231 Breast Cancer Cells. J Fungi (Basel) 2024; 10:457. [PMID: 39057342 PMCID: PMC11278346 DOI: 10.3390/jof10070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Laetiporus sulphureus is an edible and medicinal mushroom widely used in folk medicine for treating cancer and gastric diseases. This study aimed to investigate the physicochemical properties of different sulfated polysaccharide (SPS) components (F1, F2, and F3) isolated from L. sulphureus and evaluate their activity against MDA-MB-231 breast cancer cell proliferation. Compared with F1 and F3, the results showed that F2 exhibited the most potent anti-proliferative activity on MDA-MB-231 cells, which could be attributed to the sulfate and protein contents, molecular weight, and monosaccharide composition. F2 inhibited breast cancer cell proliferation by blocking the cell cycle at the G0/G1 phase but not triggering cell apoptosis. In addition, F2 also showed selective cytotoxicity on breast cancer cells. It modulated the expression of proteins involved in G0/G1 phase progression, cell cycle checkpoints, DNA replication, and the TGFβ signaling pathway in MDA-MB-231 cells. This study demonstrated that F2, the medium-molecular-weight SPS component of L. sulphureus, possessed the most potent inhibitory effect on MDA-MB-231 cell proliferation by arresting the cell cycle at the G0/G1 phase. The main factors contributing to the differences in the potency of anti-breast cancer activity between F1, F2, and F3 could be the sulfate and protein contents, molecular weight, and monosaccharide composition of SPS.
Collapse
Affiliation(s)
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| |
Collapse
|
9
|
Li Z, Zhu C, Yin C, Li H, Liu Y, Li J. Multi-omics reveals the testosterone promotion effect mechanism of Cordyceps Sobolifera on Leydig cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117817. [PMID: 38316217 DOI: 10.1016/j.jep.2024.117817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps sobolifera (CS) has been traditionally utilized as an ethnic remedy for various health conditions, including chronic kidney diseases, anti-fatigue interventions, and management of chronic inflammation. Notably, CS is recognized for its substantial content of bioactive compounds, among which nucleosides prominently feature as constituents with diverse therapeutic advantages. AIM OF THE STUDY This study aims to investigate the effects of CS on testosterone secretion in Leydig cells and explore the underlying mechanism. MATERIALS AND METHODS Leydig cells were isolated from rat testes to establish a primary rat Leydig cells model. Cell proliferation and testosterone secretion were assessed via the methyl-piperidino-pyrazole (MTT) assay and enzyme-linked immunosorbent assay (ELISA), respectively. Samples earmarked for RNA sequencing (RNA-Seq) analysis facilitated the identification of significantly differentially expressed genes (DEGs), and we conducted Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and enrichment analyses. The veracity of our findings was validated through quantitative real time polymerase chain reaction (qRT-PCR) and western blotting. RESULTS The results showed that CS and guanosine could promote Leydig cell proliferation and bolster testosterone secretion. Our integrative analysis of metabolomics and transcriptomics has unveiled the potential mechanisms governing testosterone synthesis. Specifically, metabolomics has illuminated striking correlations within cholesterol metabolism, and bile secretion. Concurrently, transcriptomics has underscored the pivotal roles played by the cyclic adenosine monophosphate (cAMP) signaling pathway and steroid hormone biosynthesis. Furthermore, our investigation has demonstrated CS's aptitude in elevating the expression of proteins and genes. Notably, our findings have elucidated that these effects can be mitigated by protein kinase A (PKA) and adenylate cyclase (AC) specific inhibitors. CONCLUSION This study delineates the cAMP-PKA pathways as plausible mechanisms underpinning the testosterone-enhancing properties of CS, with guanosine emerging as a fundamental bioactive constituent.
Collapse
Affiliation(s)
- Zihan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei 430065, China; Hubei Shizhen Laboratory, Wuhan 430061 China
| | - Chengshan Zhu
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei 430065, China; Hubei Shizhen Laboratory, Wuhan 430061 China
| | - Cong Yin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei 430065, China; Hubei Shizhen Laboratory, Wuhan 430061 China
| | - Heyu Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei 430065, China; Tianjin Ubasio Technology Group Co., Ltd., Tianjin 300457, China
| | - Yimei Liu
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei 430065, China; Hubei Shizhen Laboratory, Wuhan 430061 China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei 430065, China; Hubei Shizhen Laboratory, Wuhan 430061 China.
| |
Collapse
|
10
|
Kong H, Yang J, Wang X, Mamat N, Xie G, Zhang J, Zhao H, Li J. The combination of Brassica rapa L. polysaccharides and cisplatin enhances the anti liver cancer effect and improves intestinal microbiota and metabolic disorders. Int J Biol Macromol 2024; 265:130706. [PMID: 38458274 DOI: 10.1016/j.ijbiomac.2024.130706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Polysaccharides are commonly used as low-toxicity anticancer active substances to enhance the chemotherapeutic effect of cisplatin and reduce toxicity. Brassica rapa L. polysaccharides have been shown to have hepatoprotective effects; however, their anticancer effects in combination with cisplatin and their mechanisms have not been reported. An acidic polysaccharide from Brassica rapa L. (BRCPe) using hydroalcohol precipitation-assisted sonication was Characterized. The effects of BRCPe combined with cisplatin treatment on tumor growth in hepatocellular carcinoma mouse model were investigated. The impact of the combined treatment on the composition of intestinal flora, levels of short-chain fatty acids and endogenous metabolites in tumor mice were analyzed based on macrogenomic and metabolomic data Our results showed that the BRCPe combined with low-dose Cisplatin group showed better inhibitory activity against hepatocellular carcinoma cell growth in terms of tumor volume, tumor weight, and tumor suppression rate compared with the BRCPe and Cisplation alone group, and reduced the side effects of cisplatin-induced body weight loss, immune deficiency, and liver injury. Furthermore, BRCPe combined with cisplatin was found to induce apoptosis in hepatocellular carcinoma cell through the activation of the caspase cascade reaction. In addition, the intervention of BRCPe were observed to modulate the composition, structure and functional structure of intestinal flora affected by cisplatin. Notably, Lachnospiraceae bacteria, Lactobacillus murinus, Muribaculaceae, and Clostridiales bacteria were identified as significant contributors to microbial species involved in metabolic pathways. Moreover, BRCPe effectively regulate the metabolic disorders in cisplatin-induced hepatocellular carcinoma mice. In conclusion, BRCPe could potentially function as an adjuvant or dietary supplement to augment the effectiveness of cisplatin chemotherapy through the preservation of a more efficient intestinal microenvironmental homeostasis.
Collapse
Affiliation(s)
- Hanrui Kong
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jun Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Xiaojing Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Nuramina Mamat
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Guoxuan Xie
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jing Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China.
| | - Jinyu Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
11
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang N, Liu Y, Tang FY, Yang LY, Wang JH. Structural characterization and in vitro anti-colon cancer activity of a homogeneous polysaccharide from Agaricus bisporus. Int J Biol Macromol 2023; 251:126410. [PMID: 37598827 DOI: 10.1016/j.ijbiomac.2023.126410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Colon cancer is the third most prevalent cancer and the second most deadly cancer in the world. Anti-colon cancer activity of Agaricus bisporus polysaccharides has not been studied. In this paper, Agaricus bisporus polysaccharides were sequentially extracted by room temperature water, hot water, high pressure hot water, dilute alkaline solution and concentrated alkaline solution. A homogeneous polysaccharide (WAAP-1) was obtained using DEAE Cellulose-52 column. Physicochemical properties, structural characterization and anti-colon cancer activity of WAAP-1 were investigated. The results showed that WAAP-1 was a neutral polysaccharide with molecular weight of 10.1 kDa. The monosaccharide composition was glucose, mannose and galactose with a molar ratio of 84.95:8.97:4.50. The main chain was mainly composed of (1,4)-α-D-Glcp and (1,6)-β-D-Manp. In vitro anti-colon cancer results showed that WAAP-1 could significantly inhibit proliferation of colon cancer cell HT-29. It promoted apoptosis and inhibited epithelial mesenchymal transition of HT-29 by up-regulating the expression of Caspase-3, Bax and E-cadherin proteins and down-regulating the expression of Bcl-2 and Vimentin proteins. The results provided new potential possibilities for the development of novel functional foods or antitumor drugs.
Collapse
Affiliation(s)
- Ning Zhang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yong Liu
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Fang-Yuan Tang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Lin-Yuan Yang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jun-Hui Wang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
13
|
Bai C, Su F, Zhang W, Kuang H. A Systematic Review on the Research Progress on Polysaccharides from Fungal Traditional Chinese Medicine. Molecules 2023; 28:6816. [PMID: 37836659 PMCID: PMC10574063 DOI: 10.3390/molecules28196816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Traditional Chinese medicine (TCM) is a class of natural drugs with multiple components and significant therapeutic effects through multiple targets. It also originates from a wide range of sources containing plants, animals and minerals, and among them, plant-based Chinese medicine also includes fungi. Fungal traditional Chinese medicine is a medicinal resource with a long history and widespread application in China. Accumulating evidence confirms that polysaccharide is the main pharmacodynamic material on which fungal TCM is based. The purpose of the current systematic review is to summarize the extraction, isolation, structural identification, biological functions, quality control and medicinal and edible applications of polysaccharides from fungal TCM in the past three years. This paper will supplement and deepen the understanding and application of polysaccharides from fungal TCM, and propose some valuable insights for further research and development of drugs and functional foods.
Collapse
Affiliation(s)
| | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.B.); (F.S.); (W.Z.)
| |
Collapse
|
14
|
Wang Y, Ni Z, Li J, Shao Y, Yong Y, Lv W, Zhang S, Fu T, Chen A. Cordyceps cicadae polysaccharides alleviate hyperglycemia by regulating gut microbiota and its mmetabolites in high-fat diet/streptozocin-induced diabetic mice. Front Nutr 2023; 10:1203430. [PMID: 37599693 PMCID: PMC10434777 DOI: 10.3389/fnut.2023.1203430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The polysaccharides found in Cordyceps cicadae (C. cicadae) have received increasing academic attention owing to their wide variety of therapeutic activities. Methods This study evaluated the hypoglycemic, antioxidant, and anti-inflammatory effects of polysaccharides from C. cicadae (CH-P). In addition, 16s rDNA sequencing and untargeted metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) were used to estimate the changes and regulatory relationships between gut microbiota and its metabolites. The fecal microbiota transplantation (FMT) was used to verify the therapeutic effects of microbial remodeling. Results The results showed that CH-P treatment displayed hypoglycemic, antioxidant, and anti-inflammatory effects and alleviated tissue damage induced by diabetes. The CH-P treatment significantly reduced the Firmicutes/Bacteroidetes ratio and increased the abundance of Bacteroides, Odoribacter, Alloprevotella, Parabacteroides, Mucispirillum, and significantly decreased the abundance of Helicobacter and Lactobacillus compared to the diabetic group. The alterations in the metabolic pathways were mostly related to amino acid biosynthesis and metabolic pathways (particularly those involving tryptophan) according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Correlation analysis showed that Bacteroides, Odoribacter, Alloprevotella, Parabacteroides, and Mucispirillum were positively correlated with indole and its derivatives, such as 5-hydroxyindole-3-acetic acid. Indole intervention significantly improved hyperglycemic symptoms and insulin sensitivity, and increased the secretion of glucagon-like peptide-1 (GLP-1) in diabetic mice. FMT reduced blood glucose levels, improved glucose tolerance, and increased insulin sensitivity in diabetic mice. However, FMT did not significantly improve GLP-1 levels. Discussion This indicates that C. cicadae polysaccharides alleviate hyperglycemia by regulating the production of metabolites other than indole and its derivatives by gut microbiota. This study provides an important reference for the development of novel natural products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anhui Chen
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy is a promising antitumor approach, whereas nontherapeutic side effects, tumor microenvironment (TME) intricacy, and low tumor immunogenicity limit its therapeutic efficacy. In recent years, combination immunotherapy with other therapies has been proven to considerably increase antitumor efficacy. However, achieving codelivery of the drugs to the tumor site remains a major challenge. Stimulus-responsive nanodelivery systems show controlled drug delivery and precise drug release. Polysaccharides, a family of potential biomaterials, are widely used in the development of stimulus-responsive nanomedicines due to their unique physicochemical properties, biocompatibility, and modifiability. Here, the antitumor activity of polysaccharides and several combined immunotherapy strategies (e.g., immunotherapy combined with chemotherapy, photodynamic therapy, or photothermal therapy) are summarized. More importantly, the recent progress of polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy is discussed, with the focus on construction of nanomedicine, targeted delivery, drug release, and enhanced antitumor effects. Finally, the limitations and application prospects of this new field are discussed.
Collapse
Affiliation(s)
- Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
16
|
Gao F, Luo L, Zhang L. A New Galactoglucomannan from the Mycelium of the Medicinal Parasitic Fungus Cordyceps cicadae and Its Immunomodulatory Activity In Vitro and In Vivo. Molecules 2023; 28:3867. [PMID: 37175281 PMCID: PMC10179787 DOI: 10.3390/molecules28093867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
A new galactoglucomannan (C-0-1) was purified from the medicinal parasitic fungus of Cordyceps cicadae using an anion-exchange column and gel permeation column. The results of high-performance liquid chromatography and high-performance gel permeation chromatography indicated that C-0-1 consists of galactose, glucose, and mannose in a ratio of 5:1:4 and has a molecular weight of 23.3 kDa. The combined structural elucidation analysis methods including partial acid hydrolysis, methylation analysis, and NMR experiments revealed that C-0-1 was a comb-like polysaccharide with a core structure including (1→2)-α-D-Manp residues in the backbone and branches at O-6 of the main chain. (1→4)-α-D-Glcp, (1→2)-β-D-Galf, (1→2,6)-β-D-Galf, and terminal β-Galf were located at the side chains. An in vitro experiment using RAW 264.7 cells indicated that C-0-1 exhibits good immunomodulatory activity by enhancing inducible nitric oxide synthase secretion and the production of some major inflammatory cytokines. On inhibiting the cytokine production using anti-pattern recognition receptors antibodies, it was revealed that the activation of macrophages is mainly carried out by C-0-1 through the mannose receptor. Toll-like receptor 4 and Toll-like receptor 2 were also involved in this identification process. An in vivo experiment on immunosuppressive mice treated with cyclophosphamide indicated that C-0-1 improves the secretion of serum-related cytokines (IFN-γ, TNF-α, IL-2, IL-4, and IL-10) and affects the balance of T helper cells Th1/Th2. Given the structural and bioactivity similarity between Cordyceps cicadae and Cordyceps sinensis, we can conclude that Cordyceps cicadae could be used as an important medicinal fungus like Cordyceps sinensis.
Collapse
Affiliation(s)
| | | | - Leifang Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316022, China
| |
Collapse
|
17
|
Lin G, Li Y, Chen X, Zhang F, Linhardt RJ, Zhang A. Extraction, structure and bioactivities of polysaccharides from Sanghuangporus spp.: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
18
|
Song L, Shrivastava N, Gai Y, Li D, Cai W, Shen Y, Lin FC, Liu J, Wang H. Role of the blue light receptor gene Icwc-1 in mycelium growth and fruiting body formation of Isaria cicadae. Front Microbiol 2023; 13:1038034. [PMID: 36704565 PMCID: PMC9871644 DOI: 10.3389/fmicb.2022.1038034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
The Isaria cicadae, is well known highly prized medicinal mushroom with great demand in food and pharmaceutical industry. Due to its economic value and therapeutic uses, natural sources of wild I. cicadae are over-exploited and reducing continuously. Therefore, commercial cultivation in controlled environment is an utmost requirement to fulfill the consumer's demand. Due to the lack of knowledge on fruiting body (synnemata) development and regulation, commercial cultivation is currently in a difficult situation. In the growth cycle of macrofungi, such as mushrooms, light is the main factor affecting growth and development, but so far, specific effects of light on the growth and development of I. cicadae is unknown. In this study, we identified a blue light receptor white-collar-1 (Icwc-1) gene homologue with well-defined functions in morphological development in I. cicadae based on gene knockout technology and transcriptomic analysis. It was found that the Icwc-1 gene significantly affected hyphal growth and fruiting body development. This study confirms that Icwc-1 acts as an upstream regulatory gene that regulates genes associated with fruiting body formation, pigment-forming genes, and related genes for enzyme synthesis. Transcriptome data analysis also found that Icwc-1 affects many important metabolic pathways of I. cicadae, i.e., amino acid metabolism and fatty acid metabolism. The above findings will not only provide a comprehensive understanding about the molecular mechanism of light regulation in I. cicadae, but also provide new insights for future breeding program and improving this functional food production.
Collapse
Affiliation(s)
- Linhao Song
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China,Shanxi Key Laboratory of Edible Fungi for Loess Plateau, College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Neeraj Shrivastava
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China,Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Dong Li
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jingyu Liu
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China,*Correspondence: Jingyu Liu, ; Hongkai Wang,
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China,*Correspondence: Jingyu Liu, ; Hongkai Wang,
| |
Collapse
|
19
|
Liang Y, Zhang D, Gong J, He W, Jin J, He Q. Mechanism study of Cordyceps sinensis alleviates renal ischemia–reperfusion injury. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Cordyceps sinensis (C. sinensis) is a kind of traditional Chinese medicine commonly used to protect renal function and relieve kidney injury. This study aimed to reveal the renal protective mechanism of C. sinensis in renal ischemia–reperfusion injury (RIRI). First, we obtained 8 active components and 99 common targets of C. sinensis against RIRI from public databases. Second, we have retrieved 38 core targets through STRING database analysis. Third, Gene Ontology analysis of 38 core targets is indicated that C. sinensis treatment RIRI may related hormone regulation, oxidative stress, cell proliferation, and immune regulation. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of 38 core targets is indicated that C. sinensis treatment RIRI may involve in PI3K–Akt, HIF-1, and MAPK signaling pathways, as well as advanced glycation end product (AGE)–receptor for AGE (RAGE) signaling pathway in diabetic complications. Lastly, molecular docking was used to detect the binding activity and properties of active components and core target using molecular docking. And the results showed that eight active components of C. sinensis had low affinity with core targets. In conclusion, C. sinensis may improve RIRI by regulating oxidative stress and immunity through PI3K–Akt, HIF-1, and MAPK pathways.
Collapse
Affiliation(s)
- Yan Liang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Di Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Jianguang Gong
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Wenfang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| | - Qiang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College , Hangzhou , Zhejiang, 310014 , China
| |
Collapse
|
20
|
Liu Y, Guo ZJ, Zhou XW. Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196576. [PMID: 36235111 PMCID: PMC9572669 DOI: 10.3390/molecules27196576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Chinese Cordyceps is a valuable source of natural products with various therapeutic effects. It is rich in various active components, of which adenosine, cordycepin and polysaccharides have been confirmed with significant immunomodulatory and antitumor functions. However, the underlying antitumor mechanism remains poorly understood. In this review, we summarized and analyzed the chemical characteristics of the main components and their pharmacological effects and mechanism on immunomodulatory and antitumor functions. The analysis revealed that Chinese Cordyceps promotes immune cells' antitumor function by via upregulating immune responses and downregulating immunosuppression in the tumor microenvironment and resetting the immune cells' phenotype. Moreover, Chinese Cordyceps can inhibit the growth and metastasis of tumor cells by death (including apoptosis and autophagy) induction, cell-cycle arrest, and angiogenesis inhibition. Recent evidence has revealed that the signal pathways of mitogen-activated protein kinases (MAPKs), nuclear factor kappaB (NF-κB), cysteine-aspartic proteases (caspases) and serine/threonine kinase Akt were involved in the antitumor mechanisms. In conclusion, Chinese Cordyceps, one type of magic mushroom, can be potentially developed as immunomodulator and anticancer therapeutic agents.
Collapse
|
21
|
Chen Y, Chen P, Liu H, Zhang Y, Zhang X. Penthorum chinense Pursh polysaccharide induces a mitochondrial-dependent apoptosis of H22 cells and activation of immunoregulation in H22 tumor-bearing mice. Int J Biol Macromol 2022; 224:510-522. [DOI: 10.1016/j.ijbiomac.2022.10.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
22
|
Xue H, Wang W, Bian J, Gao Y, Hao Z, Tan J. Recent advances in medicinal and edible homologous polysaccharides: Extraction, purification, structure, modification, and biological activities. Int J Biol Macromol 2022; 222:1110-1126. [PMID: 36181889 DOI: 10.1016/j.ijbiomac.2022.09.227] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
110 kinds of traditional Chinese medicines can be used for medicine and food from Chinese pharmacopoeia in 2021. With the deepening of research in recent years, medicinal and edible homologous (MEH) traditional Chinese medicines have great development and application prospects in many fields. Polysaccharides are one of the major and representative pharmacologically active macromolecules in traditional Chinese medicines with MEH. Moreover, traditional Chinese medicines with MEH have become the main source of natural polysaccharides with safety, high efficiency, and low side effects. Increasing researches have confirmed that MEH polysaccharides (MEHPs) have multiple biological activities both in vitro and in vivo methods, such as antioxidant, immunomodulatory, anti-tumor, anti-aging, anti-inflammatory, hypoglycemic, hypolipidemic activities, and regulating intestinal flora. Additionally, different raw materials, extraction, purification, and chemical modification methods result in differences in the structure and biological activities of MEHPs. The purpose of the present review is to provide comprehensively and systematically reorganized information in the extraction, purification, structure, modification, biological activities, and potential mechanism of MEHPs to support their therapeutic effects and health functions. New valuable insights and theoretical basis for the future researches and developments regarding MEHPs were proposed in the fields of medicine and food.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Wenli Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiayue Bian
- School of Basic Medical Sciences, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
23
|
Xue H, Li P, Bian J, Gao Y, Sang Y, Tan J. Extraction, purification, structure, modification, and biological activity of traditional Chinese medicine polysaccharides: A review. Front Nutr 2022; 9:1005181. [PMID: 36159471 PMCID: PMC9505017 DOI: 10.3389/fnut.2022.1005181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medicines (TCM), as the unique natural resource, are rich in polysaccharides, polyphenols, proteins, amino acid, fats, vitamins, and other components. Hence, TCM have high medical and nutritional values. Polysaccharides are one of the most important active components in TCM. Growing reports have indicated that TCM polysaccharides (TCMPs) have various biological activities, such as antioxidant, anti-aging, immunomodulatory, hypoglycemic, hypolipidemic, anti-tumor, anti-inflammatory, and other activities. Hence, the research progresses and future prospects of TCMPs must be systematically reviewed to promote their better understanding. The aim of this review is to provide comprehensive and systematic recombinant information on the extraction, purification, structure, chemical modification, biological activities, and potential mechanism of TCMPs to support their therapeutic effects and health functions. The findings provide new valuable insights and theoretical basis for future research and development of TCMPs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Pengcheng Li
- College of Food Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiayue Bian
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| |
Collapse
|
24
|
Wang W, Xu C, Liu Z, Gu L, Ma J, Hou J, Jiang Z. Physicochemical properties and bioactivity of polysaccharides from Isaria cicadae Miquel with different extraction processes: effects on gut microbiota and immune response in mice. Food Funct 2022; 13:9268-9284. [PMID: 35993148 DOI: 10.1039/d2fo01646j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effect of different extraction processes on the physicochemical characterization, digestibility, antioxidant activity and prebiotic activity of Isaria cicadae Miquel (ICM) fruiting body polysaccharides was studied. Furthermore, the effect of ultrasound-assisted extraction of ICM (U-ICM) on gut microbiota, the intestinal barrier and immune response was deeply explored. This study found that ICMs showed high indigestibility in both α-amylase and artificial gastric juice, indicating that ICMs have the potential as dietary fiber. In contrast, U-ICM had the best antioxidant activity and prebiotic potential. Meanwhile, there was a structure-activity relationship between the antioxidant activity of ICMs and the content of uronic acid, arabinose and galactose. When healthy mice were fed U-ICM for 42 days, the relative abundances of Lactobacillus, Akkermansia, and Bacteroides were found to increase significantly, while that of Clostridium decreased significantly. Meanwhile, U-ICM significantly promotes the expression of tight junction protein and the production of cytokines, indicating that U-ICM had the function of enhancing the intestinal barrier and regulating the host immune response. In conclusion, U-ICM as dietary fiber has the potential to be developed as a gut health-promoting prebiotic component or functional food. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of ICMs.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhijing Liu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Liya Gu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
25
|
Chang M, Shi S, Liu H, Tu J, Yan Z, Ding S. Extraction, characterization, and in vivo antitumor activity of a novel polysaccharide from Coriandrum sativum L. J Food Biochem 2022; 46:e14323. [PMID: 35867013 DOI: 10.1111/jfbc.14323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
A novel polysaccharide was extracted from Coriandrum sativum L. at a yield of 4.56 ± 0.17% (n = 3). The extraction was optimized using response surface methodology: powder-to-liquid ratio 1:21 g/ml, extraction time 188 min, temperature 81°C, and three replicate extractions. The purified polysaccharide had an average molecular weight of 1.30 × 106 Da and was composed of rhamnose, arabinose, galactose, glucose, and galacturonic acid in molar ratios of 1.52: 8.14: 20.85: 1: 2.42 with α-L-Araf-(1→, →6)-β-D-Galp-(1→, →4)-α-GalpA-(1→ and →2, 4)-α-Rhap-(1→). In vivo tests demonstrated that the polysaccharide suppressed H22 tumor growth in mice and protected the immune organs. Annexin V-FITC/PI, PI, and JC-1 staining showed that the primary mechanism of tumor inhibition was the induction of apoptosis and S-phase arrest with apoptosis achieved via a mitochondrial pathway. PRACTICAL APPLICATIONS: Coriandrum sativum L. is used as a culinary spice but its medicinal value has also been widely recognized. A novel polysaccharide was extracted from this herbaceous plant and its structure and bioactivity were investigated. This high-molecular-weight polysaccharide exhibited antitumor effects against H22 cells in mice and had potential to be developed as an anti-liver cancer medicine and functional food supplement.
Collapse
Affiliation(s)
- Mengli Chang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuyuan Shi
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Huiping Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jianqiu Tu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhiqian Yan
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Suyun Ding
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
26
|
Yu C, Li Y, Chen G, Wu C, Wang X, Zhang Y. Bioactive constituents of animal-derived traditional Chinese medicinal materials for breast cancer: opportunities and challenges. J Zhejiang Univ Sci B 2022; 23:547-563. [PMID: 35794685 PMCID: PMC9264107 DOI: 10.1631/jzus.b2101019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer is globally the most common invasive cancer in women and remains one of the leading causes of cancer-related deaths. Surgery, radiotherapy, chemotherapy, immunotherapy, and endocrine therapy are currently the main treatments for this cancer type. However, some breast cancer patients are prone to drug resistance related to chemotherapy or immunotherapy, resulting in limited treatment efficacy. Consequently, traditional Chinese medicinal materials (TCMMs) as natural products have become an attractive source of novel drugs. In this review, we summarized the current knowledge on the active components of animal-derived TCMMs, including Ophiocordycepssinensis-derived cordycepin, the aqueous and ethanolic extracts of O.sinensis, norcantharidin (NCTD), Chansu, bee venom, deer antlers, Ostreagigas, and scorpion venom, with reference to marked anti-breast cancer effects due to regulating cell cycle arrest, proliferation, apoptosis, metastasis, and drug resistance. In future studies, the underlying mechanisms for the antitumor effects of these components need to be further investigated by utilizing multi-omics technologies. Furthermore, large-scale clinical trials are necessary to validate the efficacy of bioactive constituents alone or in combination with chemotherapeutic drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiuping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yingwen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
27
|
Zhou J, Gong J, Chai Y, Li D, Zhou C, Sun C, Regenstein JM. Structural analysis and in vitro antitumor effect of polysaccharides from Pholiota adiposa. Glycoconj J 2022; 39:513-523. [PMID: 35675021 DOI: 10.1007/s10719-022-10065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
Abstract
Pholiota adiposa is an edible chestnut mushroom with many health benefits, such as antioxidant and anticancer activity. In this paper, polysaccharides were extracted from Pholidota adiposa using an acid extraction process. The crude polysaccharide was purified using DEAE-cellulose chromatography, and two polysaccharide fractions of SPAP2-1 and SPAP2-2 were obtained. The structure was characterized using UV, GPC, GC, FT-IR, methylation, and NMR analysis. Monosaccharide component analysis indicated that SPAP2-1 (19 kDa) and SPAP2-2 (20 kDa) contained mannose, glucose, and galactose with different molecular ratios. Their antitumor effects were investigated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium (MTT) assay, Annexin V-fluorescein isothiocyanate (FITC), propidium iodide (PI) staining, and flow cytometry. By analyzing the changes in the cells, SPAP2-1 caused damage and changed the proliferation rate of HeLa cells. SPAP2-1 showed strong interference to the cell cycle of HeLa cells and induced cell apoptosis. Overall, these results suggested that polysaccharides from Pholiota adiposa, especially SPAP2-1, may have the potential to be used as a tumor cell inhibitor, which needs further study.
Collapse
Affiliation(s)
- Jiao Zhou
- Food science and engineering, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, China
| | - Jinhua Gong
- Food science and engineering, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, China.,Department of Biomedical Sciences, City University of Hong Kong, 999077, Hong Kong, China
| | - Yangyang Chai
- Food science and engineering, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, China
| | - Dehai Li
- Food science and engineering, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, China.
| | - Cong Zhou
- Food science and engineering, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, China.,Fujian Bakingdom Foods Co., Ltd, 363000, Zhangzhou, Fujian, China
| | - Changyan Sun
- Department of Food Science and Engineering, School of Chemical and Environmental Engineering, Harbin University of Science and Technology, 150040, Harbin, Heilongjiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, NY14853-7201, Ithaca, USA
| |
Collapse
|
28
|
Liu Y, Li H, Zheng Z, Niu A, Liu S, Li W, Ren P, Liu Y, Inam M, Guan L, Ma H. Rosa rugosa polysaccharide induces autophagy-mediated apoptosis in human cervical cancer cells via the PI3K/AKT/mTOR pathway. Int J Biol Macromol 2022; 212:257-274. [DOI: 10.1016/j.ijbiomac.2022.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
|
29
|
Shi S, Chang M, Liu H, Ding S, Yan Z, Si K, Gong T. The Structural Characteristics of an Acidic Water-Soluble Polysaccharide from Bupleurum chinense DC and Its In Vivo Anti-Tumor Activity on H22 Tumor-Bearing Mice. Polymers (Basel) 2022; 14:polym14061119. [PMID: 35335457 PMCID: PMC8952506 DOI: 10.3390/polym14061119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study explored the preliminary structural characteristics and in vivo anti-tumor activity of an acidic water-soluble polysaccharide (BCP) separated purified from Bupleurum chinense DC root. The preliminary structural characterization of BCP was established using UV, HPGPC, FT-IR, IC, NMR, SEM, and Congo red. The results showed BCP as an acidic polysaccharide with an average molecular weight of 2.01 × 103 kDa. Furthermore, we showed that BCP consists of rhamnose, arabinose, galactose, glucose, and galacturonic acid (with a molar ratio of 0.063:0.788:0.841:1:0.196) in both α- and β-type configurations. Using the H22 tumor-bearing mouse model, we assessed the anti-tumor activity of BCP in vivo. The results revealed the inhibitory effects of BCP on H22 tumor growth and the protective actions against tissue damage of thymus and spleen in mice. In addition, the JC-1 FITC-AnnexinV/PI staining and cell cycle analysis have collectively shown that BCP is sufficient to induce apoptosis and of H22 hepatocarcinoma cells in a dose-dependent manner. The inhibitory effect of BCP on tumor growth was likely attributable to the S phase arrest. Overall, our study presented significant anti-liver cancer profiles of BCP and its promising therapeutic potential as a safe and effective anti-tumor natural agent.
Collapse
|
30
|
Xu Y, Zhang C, Qi M, Huang W, Sui Z, Corke H. Chemical Characterization and In Vitro Anti-Cancer Activities of a Hot Water Soluble Polysaccharide from Hulless Barley Grass. Foods 2022; 11:foods11050677. [PMID: 35267310 PMCID: PMC8909257 DOI: 10.3390/foods11050677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Hulless barley grass may confer many health benefits attributed to its bioactive functional components, such as polysaccharides. Here, a hot water soluble polysaccharide was extracted from hulless barley grass, and its chemical characterization and in vitro anti-cancer activities were investigated. The yield of hulless barley grass polysaccharide (HBGP) was 2.3%, and the purity reached 99.1% with a polydispersity index (PDI) of 1.11 after purification by a diethylaminoethyl cellulose (DE-32) column and an S-400 high resolution (HR) column. The molecular weight and number-average molecular weight of HBGP were 3.3 × 104 and 2.9 × 104 Da, respectively. The monosaccharide composition of HBGP included 35.1% galactose, 25.6% arabinose, 5.5% glucose, and 5.3% xylose. Based on infrared spectrum analysis, HBGP possessed pyranose and galactose residues. In addition, this water-soluble polysaccharide showed significant cell proliferation inhibitory effects against cancer cell lines HT29, Caco-2, 4T1, and CT26.WT in a dose-dependent manner, especially for HT29 (the half-inhibitory concentration IC50 value = 2.72 mg/mL). The results provide a basis for the development and utilization of hulless barley grass in functional foods to aid in preventing cancer.
Collapse
Affiliation(s)
- Yijuan Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (C.Z.); (M.Q.)
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (C.Z.); (M.Q.)
| | - Meng Qi
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (C.Z.); (M.Q.)
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: or (W.H.); or (Z.S.)
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (C.Z.); (M.Q.)
- Correspondence: or (W.H.); or (Z.S.)
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China;
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
31
|
Antitumor activity and immunomodulation mechanism of a novel polysaccharide extracted from Polygala tenuifolia Willd. evaluated by S180 cells and S180 tumor-bearing mice. Int J Biol Macromol 2021; 192:546-556. [PMID: 34648800 DOI: 10.1016/j.ijbiomac.2021.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 01/19/2023]
Abstract
We recently isolated a polysaccharide from Polygala tenuifolia Willd. (PTP) and reported that such a PTP could induce cell apoptosis with FAS/FAS-L-mediated death receptor pathway in human lung cancer cells. Herein, we indicate antitumor activity and immunoregulation of PTP for S180 sarcoma cells by in vitro and in vivo targeting. In vitro, S180 cells took on prominent characteristics of apoptosis under-treated with PTP in follow-up antitumor activity studies, including irregular shrinkage and fragmentation nuclear, apoptotic bodies formation, and reduction of mitochondrial membrane potential (MMP). Additionally, flow cytometry indicated that the number of normal cells (FITC-/PI-) gradually decreased from 98.08% to 16.31%, while the number of apoptotic cells (FITC+/PI- or FITC+/PI+) increased from 0.87% to 54.84%. The ratio of BAX and Bcl-2 increased, which promoted the release of Cytochrome C (CytC), and it further maximized the expression of activated-caspase-9/-3. Additionally, the PTP revised the immune organ indexes, the activities of NK cells and lymphocytes, and induced the secretion of IL-2 (7.34-16.17%), IFN-γ (14.34-20.85%) and TNF-α (12.32-22.58%) in vivo. Thus, PTP can induce cell apoptosis and activate the immunoregulation mechanism thereby exhibiting biological activity.
Collapse
|
32
|
Zheng B, Zhou X, Hu X, Chen Y, Xie J, Yu Q. Advances in the regulation of natural polysaccharides on human health: The role of apoptosis/autophagy pathway. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34711083 DOI: 10.1080/10408398.2021.1995844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Due to the multiple biological activities of polysaccharides, their great potential as "natural drugs" for many diseases has been the subject of continuous exploration in the field of food and nutrition. Apoptosis and autophagy play a key role in mammalian growth, development and maintenance of cellular homeostasis. Recent studies suggest that apoptosis/autophagy may be the key regulatory target for the beneficial effects of polysaccharides. However, the regulation of apoptosis and autophagy by polysaccharides is not consistent in different disease models. Therefore, this review outlined the relationship between apoptosis/autophagy and some common human diseases, then discussed the role of apoptosis/autophagy pathway in the regulation of human health by polysaccharides, Furthermore, the application of visualization, imaging and multi-omics techniques was proposed in the future trend. The present review may be beneficial to accelerate our understanding of the anti-disease mechanisms of polysaccharides, and promote the development and utilization of polysaccharides.
Collapse
Affiliation(s)
- Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|