1
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
2
|
Frangiamone M, Lázaro Á, Cimbalo A, Font G, Manyes L. In vitro and in vivo assessment of AFB1 and OTA toxic effects and the beneficial role of bioactive compounds. A systematic review. Food Chem 2024; 447:138909. [PMID: 38489879 DOI: 10.1016/j.foodchem.2024.138909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The purpose of this review was to investigate the current knowledge about aflatoxin B1 (AFB1) and ochratoxin A (OTA) toxicity and the possible beneficial role of bioactive compounds by using in vitro and in vivo models. Although AFB1 and OTA were tested in a similar percentage, the majority of studies focused on nephrotoxicity, hepatotoxicity, immune toxicity and neurotoxicity in which oxidative stress, inflammation, structural damage and apoptosis were the main mechanisms of action reported. Conversely, several biological compounds were assayed in order to modulate mycotoxins damage mainly in the liver, brain, kidney and immune system. Among them, pumpkin, curcumin and fermented whey were the most employed. Although a clear progress has been made by using in vivo models, further research is needed to assess not only the toxicity of multiple mycotoxins contamination but also the effect of functional compounds mixture, thereby reproducing more realistic situations for human health risk assessment.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Álvaro Lázaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
3
|
Beraza E, Serrano-Civantos M, Izco M, Alvarez-Erviti L, Gonzalez-Peñas E, Vettorazzi A. High-Performance Liquid Chromatography-Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research. Toxins (Basel) 2024; 16:213. [PMID: 38787065 PMCID: PMC11125890 DOI: 10.3390/toxins16050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established for its quantification in mice, the primary animal model in this field, that include pivotal tissues in this area of research, such as the intestine and brain. To address this gap, we developed and validated a highly sensitive, rapid, and simple method using HPLC-FLD for OTA determination in mice tissues (kidney, liver, brain, and intestine) as well as plasma samples. The method was rigorously validated for selectivity, linearity, accuracy, precision, recovery, dilution integrity, carry-over effect, stability, and robustness, meeting the validation criteria outlined by FDA and EMA guidelines. Furthermore, the described method enables the quantification of OTA in each individual sample using minimal tissue mass while maintaining excellent recovery values. The applicability of the method was demonstrated in a repeated low-dose OTA study in Balb/c mice, which, together with the inclusion of relevant and less common tissues in the validation process, underscore its suitability for neurodegeneration-related research.
Collapse
Affiliation(s)
- Elba Beraza
- MITOX Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (E.B.); (M.S.-C.); (E.G.-P.)
| | - Maria Serrano-Civantos
- MITOX Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (E.B.); (M.S.-C.); (E.G.-P.)
| | - Maria Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (M.I.); (L.A.-E.)
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (M.I.); (L.A.-E.)
| | - Elena Gonzalez-Peñas
- MITOX Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (E.B.); (M.S.-C.); (E.G.-P.)
| | - Ariane Vettorazzi
- MITOX Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (E.B.); (M.S.-C.); (E.G.-P.)
| |
Collapse
|
4
|
Lu J, Su D, Yang Y, Shu M, Wang Y, Zhou X, Yu Q, Li C, Xie J, Chen Y. Disruption of intestinal epithelial permeability in the Co-culture system of Caco-2/HT29-MTX cells exposed individually or simultaneously to acrylamide and ochratoxin A. Food Chem Toxicol 2024; 186:114582. [PMID: 38460668 DOI: 10.1016/j.fct.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/13/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Mycotoxins and thermal processing hazards are common contaminants in various foods and cause severe problems in terms of food safety and health. Combined use of acrylamide (AA) and ochratoxin A (OTA) would result in more significant intestinal toxicity than either toxin alone, but the underlying mechanisms behind this poor outcome remain unclear. Herein, we established the co-culture system of Caco-2/HT29-MTX cells for simulating a real intestinal environment that is more sensitive to AA and OTA, and showed that the combination of AA and OTA could up-regulate permeability of the intestine via increasing LY permeabilization, and decreasing TEER, then induce oxidative stress imbalance (GSH, SOD, MDA, and ROS) and inflammatory system disorder (TNF-α, IL-1β, IL-10, and IL-6), thereby leading a rapid decline in cell viability. Western blot, PAS- and AB-staining revealed that AA and OTA showed a synergistic effect on the intestine mainly through the disruption of tight junctions (TJs) and a mucus layer. Furthermore, based on correlation analysis, oxidative stress was more relevant to the mucus layer and TJs. Therefore, our findings provide a better evaluation model and a potential mechanism for further determining or preventing the combined toxicity caused by AA and OTA.
Collapse
Affiliation(s)
- Jiawen Lu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Dan Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Ying Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Mengni Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
5
|
Wang Y, Wang X, Zhu YC, Wang D, Lv L, Chen L, Jin Y. Co-exposure ochratoxin A and triadimefon influenced the hepatic glucolipid metabolism and intestinal micro-environment in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169339. [PMID: 38103602 DOI: 10.1016/j.scitotenv.2023.169339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin, and triadimefon (TDF) is a triazole fungicide. These compounds are prevalent in the environment, and their residues have been detected in crops. However, the precise health risks associated with mycotoxins and fungicides are not fully elucidated. In this work, five-week-old mice were gavage with OTA (0.3 and 1.5 mg/kg/day), TDF (10 and 50 mg/kg/day), and OTA + TDF (0.3 + 10 and 1.5 + 50 mg/kg/day) for 28 days. Exposure to OTA, TDF, and OTA + TDF led to significant alterations in liver total cholesterol (TC), triglyceride (TG), and glucose (GLU) levels, as well as in genes associated with glycolipid metabolism in mice. Reduced acylcarnitine levels in serum indicated that OTA, TDF, and co-exposure inhibited fatty acid (FA) β-oxidation. Furthermore, OTA and TDF disrupted the integrality of the gut barrier function and altered the structure of the intestinal microbiota. These findings suggested that OTA, TDF, and their co-exposure might disrupt the intestinal barrier, alter the structure of the microbiota, and subsequently inhibit FA β-oxidation, indicating the interference of OTA and TDF with glycolipid-related intestinal barrier dysfunction. Moreover, our data revealed a toxic additive effect between OTA and TDF, providing a foundation for assessing the combined toxicity risk of mycotoxins and fungicides.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, PR China.
| |
Collapse
|
6
|
Liu X, Yan C, Chang C, Meng F, Shen W, Wang S, Zhang Y. Ochratoxin A promotes chronic enteritis and early colorectal cancer progression by targeting Rinck signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155095. [PMID: 37844381 DOI: 10.1016/j.phymed.2023.155095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/01/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Mycotoxins, such as aflatoxin and ochratoxin A (OTA), are found at measurable levels in many staple foods; the health implications of long-term exposure of such toxins are poorly understood. Increasing evidence has confirmed the important role of OTA in upregulation of oxidative stress- and inflammatory response-induced tissue injury. However, it remains unknown whether ochratoxin A can promote chronic colitis and its associated colon cancer (CRC) development, and potential molecular mechanism. Additionally, RING finger-interacting protein with C kinase (RINCK) is a ubiquitin ligase and mediates immune response. Unfortunately, the potential molecular function of RINCK on regulation of colitis is still largely unknown. PURPOSE This study aims to provide mechanistic evidence that the role of RINCK in colitis and early colorectal cancer progression in response to OTA treatment via targeting nuclear factor erythroid 2-related factor 2 (NRF2). METHODS The Cancer Genome Atlas (TCGA) database, GEO database, human subjects with CC phenotype and CC cell lines were used in this work. Pathological links between OTA, RINCK and treatment of CC are revealed through comprehensive means such as biological information analysis, clinical experiments, RNA-seq, and verification experiments. RESULTS In this study, under oxidative stress in setting of colitis, we first identified RINCK as a key regulatory factor and a novel endogenous suppressor of nuclear factor erythroid 2-related factor 2 (NRF2), and we also confirm that RINCK is a NRF2 partner protein that catalyses its ubiquitination and degradation in intestinal epithelial cells (IECs). Notably, in vivo study, pathological phenotypes triggered by OTA pretreatment, accompanied by post-treatment of dextran sulfate sodium (DSS)-induced colitis was significantly mitigated by IEC-specific deficiency of Rinck, IEC-Rinck(KO) and adenovirus-associated virus (AAV)-triggered suppression of Rinck in rodent model, and lentivirus (LV)-mediated downregulation of Rinck (LV-shRinck) in rabbit model, as determined by decreased endogenous reactive oxygen species (ROS) production, pro-inflammatory cytokines contents, improved body weights, reduced survival rates, restored colon length, assuasive DAI and histological scores. Inversely, transgenic mice by IEC-specific Rinck overexpression, IEC-Rinck(OE) accelerated colitis in acute or chronic colitis rodent models and in vitro experiments. Moreover, we found that OTA pretreatment-promoted azoxymethane (AOM)/DSS-induced colitis-associated early colorectal cancer (CRC) was also dramatically reduced by IEC-Rinck(KO), indicated by the decreased tumor number and corresponding KI-67 levels. Clinical samples analysis revealed that RINCK levels were greatly increased in tumor tissues of patients with CRC phenotypes. In parallel, RINCK deletion remarkably retarded the proliferation of colon cancer and tumor growth in vitro and in vivo, respectively. Mechanistically, in response to onset of colitis, RINCK directly interacts with NRF2 and promotes ubiquitin-proteasome degradation via increasing K48-linkage ubiquitin chain, thus leads in suppression of NRF2 nuclear translocation and its downstream cascade inactivation, which retards antioxidant defense. CONCLUSION The findings suggested that oral sub-chronic exposure of OTA significantly facilitates DSS-induced colitis and colitis-associated CRC development. These results further elucidated the potential role of RINCK in colitis progression by mediating NRF2 degradation, and could be considered as a therapeutic target for the treatment of such disease.
Collapse
Affiliation(s)
- Xin Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chunli Yan
- Department of Breast Internal Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chunxiao Chang
- Ward 2 of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fansong Meng
- Department of Medical Management, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wenjie Shen
- Clinical Trial Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Song Wang
- Department of Medical Management, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
7
|
Obafemi BA, Adedara IA, Rocha JBT. Neurotoxicity of ochratoxin A: Molecular mechanisms and neurotherapeutic strategies. Toxicology 2023; 497-498:153630. [PMID: 37709162 DOI: 10.1016/j.tox.2023.153630] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Data from epidemiological and experimental studies have evidenced that some chemical contaminants in food elicit their harmful effects by targeting the central nervous system. Ochratoxin A is a foodborne mycotoxin produced by Aspergillus and Penicillium species. Research on neurotoxicity associated with ochratoxin A exposure has increased greatly in recent years. The present review accrued substantial evidence on the neurotoxicity associated with ochratoxin A exposure as well as discussed notable susceptible targets of noxious ochratoxin A at molecular, cellular and genetic levels. Specifically, the neurotoxic mechanisms associated with ochratoxin A exposure were unequivocally unraveled in vitro using human neuroblastoma SH-SY5Y cells, mouse hippocampal HT22 cells, human astrocyte (NHA-SV40LT) cells and microglia cells as well as in vivo using mammalian and non-mammalian models. Data from human biomonitoring studies on plasma ochratoxin A levels in patients with neurodegenerative diseases with some age- and sex-related responses were also highlighted. Moreover, the neurotherapeutic mechanisms of some naturally occurring bioactive compounds against ochratoxin A neurotoxicity are reviewed. Collectively, accumulated data from literature demonstrate that ochratoxin A is a neurotoxin with potential pathological involvement in neurological disorders. Cutting edge original translational research on the development of neurotherapeutics for neurotoxicity associated with foodborne toxicants including ochratoxin A is indispensable.
Collapse
Affiliation(s)
- Blessing A Obafemi
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil; Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105- 900 Santa Maria, RS, Brazil.
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
8
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
9
|
Li N, Yao CY, Diao J, Liu XL, Tang EJ, Huang QS, Zhou YM, Hu YG, Li XK, Long JY, Xiao H, Li DW, Du N, Li YF, Luo P, Cai TJ. The role of MAPK/NF-κB-associated microglial activation in T-2 toxin-induced mouse learning and memory impairment. Food Chem Toxicol 2023; 174:113663. [PMID: 36775139 DOI: 10.1016/j.fct.2023.113663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
T-2 toxin is a mycotoxin with multiple toxic effects and has emerged as an important food pollutant. Microglia play a significant role in the toxicity of various neurotoxins. However, whether they participate in the neurotoxicity of T-2 toxin has not been reported. To clarify this point, an in vivo mouse model of T-2 toxin (4 mg/kg) poisoning was established. The results of Morris water maze and open-field showed that T-2 toxin induced learning and memory impairment and locomotor inhibition. Meanwhile, T-2 toxin induced microglial activation, while inhibiting microglia activation by minocycline (50 mg/kg) suppressed the toxic effect of the T-2 toxin. To further unveil the potential mechanisms involved in T-2 toxin-induced microglial activation, an in vitro model of T-2 toxin (0, 2.5, 5, 10 ng/mL) poisoning was established using BV-2 cells. Transcriptomic sequencing revealed lots of differentially expressed genes related to MAPK/NF-κB pathway. Western blotting results further confirmed that T-2 toxin (5 ng/mL) induced the activation of MAPKs and their downstream NF-κB. Moreover, the addition of inhibitors of NF-κB and MAPKs reversed the microglial activation induced by T-2 toxin. Overall, microglial activation may contribute a considerable role in T-2 toxin-induced behavioral abnormalities, which could be MAPK/NF-κB pathway dependent.
Collapse
Affiliation(s)
- Na Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Diao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Chongqing Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400050, China
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - En-Jie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing-Song Huang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yue-Gu Hu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiu-Kuan Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jin-Yun Long
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Da-Wei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ning Du
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Tong-Jian Cai
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
In vitro study of ochratoxin A in the expression of genes associated with neuron survival and viability. Toxicology 2023; 483:153376. [PMID: 36400265 DOI: 10.1016/j.tox.2022.153376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Ochratoxin A (OTA) is a common mycotoxin and known contaminant of crops, foods and drinks. As OTA crosses the blood-brain barrier, this study investigated the role of OTA, as an environmental hazard, on neuronal survival and viability. The impact of a range of OTA concentrations on the expression of MAPT, BAX, P53, BDNF and TPPP genes was investigated using human neuroblastoma (SH-SY5Y) cells. The absence of altered gene expression determined using reverse transcription quantitative PCR demonstrated that exposure to a typical daily dose of OTA delivered to the brain (2 fM), may not trigger neuronal dysfunction. However, a dose of OTA (2 pM) decreased BDNF expression. BDNF and TPPP expression were significantly reduced after 1 day and significantly increased after 2 days of exposure to 1 µM OTA. The expression of P53, MAPT, and BAX was reduced at both days. Thus, despite OTA cytotoxicity, SH-SY5Y cells entered a survival state following a strong toxic insult. A typical daily environmental OTA exposure does not appear to carry an increased risk of neurodegenerative disease. However, BDNF dysfunction may occur through prolonged exposure to a dose one thousand times higher than the typical daily consumed OTA dose potentially causing adverse effects on neuronal health.
Collapse
|
11
|
Analysis and Comparison of Rapid Methods for the Determination of Ochratoxin a Levels in Organs and Body Fluids Obtained from Exposed Mice. Toxins (Basel) 2022; 14:toxins14090634. [PMID: 36136572 PMCID: PMC9503121 DOI: 10.3390/toxins14090634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Mycotoxins are bioaccumulative contaminants impacting animals and humans. The simultaneous detection of frequent active exposures and accumulated mycotoxin level (s) in exposed organisms would be the most ideal to enable appropriate actions. However, few methods are available for the purpose, and there is a demand for dedicated, sensitive, reliable, and practical assays. To demonstrate the issue, mice were exposed to a relevant agent Ochratoxin A (OTA), and accumulated OTA was measured by fine-tuned commercial assays. Quantitative high-performance liquid chromatography with fluorescence detection, enzyme-linked immunosorbent assay, and flow cytometry assays have been developed/modified using reagents available as commercial products when appropriate. Assays were performed on excised samples, and results were compared. Accumulated OTA could be detected and quantified; positive correlations (between applied doses of exposure and accumulated OTA levels and the results from assays) were found. Dedicated assays could be developed, which provided comparable results. The presence and accumulation of OTA following even a short exposure could be quantitatively detected. The assays performed similarly, but HPLC had the greatest sensitivity. Blood contained higher levels of OTA than liver and kidney. We demonstrate that specific but flexible and practical assays should be used for specific/local purposes, to measure the exposure itself and accumulation in blood or organs.
Collapse
|
12
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Juan-García A. Effectiveness of beetroot extract in SH-SY5Y neuronal cell protection against Fumonisin B1, Ochratoxin A and its combination. Food Chem Toxicol 2022; 165:113164. [PMID: 35605710 DOI: 10.1016/j.fct.2022.113164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
Fumonisin B1 (FB1) and ochratoxin A (OTA) are fungal metabolites of worldwide concern because of their effect on human and animal health, as both have been classified by IARC as possible carcinogens (Group 2B). Beetroot is a source of dietary fiber, folic acid, and vitamin C, and some studies have demonstrated their antioxidant activity. Therefore, this work presents the cytoprotective effect of beetroot extract (BRE) on a neuroblastoma cell line (SH-SY5Y cells) exposed to FB1, OTA, and its combination. Cytotoxicity was studied by the MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, for 24 h and 48 h. Simultaneous treatment and pre-treatment strategies were tested with 1:512-1:2 and 1:0 dilutions of BRE, with a concentration range from 0.4 to 100 μM of FB1 and from 0.19 to 50 μM of OTA. IC50 values of 5.8 μM and 9.1 μM at 24 h and 48 h, respectively were obtained for OTA while no cytotoxic effect was detected at the concentrations tested for FB1. Cytoprotection with increased viability was obtained when the simultaneous BRE + OTA strategy was performed. Finally, better protection was observed in the pretreatment strategy in which cells were exposed 24 h previously to BRE, compared to that shown in the simultaneous assay.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
13
|
Furian AF, Fighera MR, Royes LFF, Oliveira MS. RECENT ADVANCES IN ASSESSING THE EFFECTS OF MYCOTOXINS USING ANIMAL MODELS. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Frangiamone M, Alonso-Garrido M, Font G, Cimbalo A, Manyes L. Pumpkin extract and fermented whey individually and in combination alleviated AFB1- and OTA-induced alterations on neuronal differentiation invitro. Food Chem Toxicol 2022; 164:113011. [PMID: 35447289 DOI: 10.1016/j.fct.2022.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023]
Abstract
Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by functional compounds like carotenoids and fermented whey. Among mycotoxins, the most toxic and studied are aflatoxin B1 (AFB1) and ochratoxin A (OTA), which neurotoxicity is not well reported. Therefore, SH-SY5Y human neuroblastoma cells ongoing differentiation were exposed during 7 days to digested bread extracts contained pumpkin and fermented whey, individually and in combination, along with AFB1 and OTA and their combination, in order to evaluate their presumed effects on neuronal differentiation. The immunofluorescence analysis of βIII-tubulin and dopamine markers pointed to OTA as the most damaging treatment for cell differentiation. Cell cycle analysis reported the highest significant differences for OTA-contained bread compared to the control in phase G0/G1. Lastly, RNA extraction was performed and gene expression was analyzed by qPCR. The selected genes were related to neuronal differentiation and cell cycle. The addition of functional ingredients in breads not only enhancing the expression of neuronal markers, but also induced an overall improvement of gene expression compromised by mycotoxins activity. These data confirm that in vitro neuronal differentiation may be impaired by AFB1 and OTA-exposure, which could be modulated by bioactive compounds naturally found in diet.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Manuel Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain.
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
15
|
Wei CC, Yang NC, Huang CW. Zearalenone Induces Dopaminergic Neurodegeneration via DRP-1-Involved Mitochondrial Fragmentation and Apoptosis in a Caenorhabditis elegans Parkinson's Disease Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12030-12038. [PMID: 34586801 DOI: 10.1021/acs.jafc.1c05836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The contamination of mycotoxin zearalenone (ZEN) in foods has been reported worldwide, resulting in potential risks to food safety. However, the toxic mechanism of ZEN on neurodegenerative diseases has not been fully elucidated. Therefore, this study conducted in vivo ZEN neurotoxicity assessment on Parkinson's disease (PD)-related dopaminergic neurodegeneration and mitochondrial dysfunction using Caenorhabditis elegans. The results demonstrated that dopaminergic neuron damage was induced by ZEN exposure (1.25, 10, and 50 μM), and dopaminergic neuron-related behaviors were adversely affected subsequently. Additionally, the mitochondrial fragmentation was significantly increased by ZEN exposure. Moreover, upregulated expression of mitochondrial fission and cell apoptosis-related genes (drp-1, egl-1, ced-4, and ced-3) revealed the crucial role of DRP-1 on ZEN-induced neurotoxicity, which was further confirmed by drp-1 mutant and RNAi assays. In conclusion, our study indicates ZEN-induced dopaminergic neurodegeneration via DRP-1-involved mitochondrial fragmentation and apoptosis, which might cause harmful effects on PD-related symptoms.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Nien-Chieh Yang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Chi-Wei Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| |
Collapse
|
16
|
Cuciureanu M, Tuchiluș C, Vartolomei A, Tamba BI, Filip L. An Immunoenzymatic Method for the Determination of Ochratoxin A in Biological Liquids (Colostrum and Cow's Milk). Toxins (Basel) 2021; 13:673. [PMID: 34678966 PMCID: PMC8538136 DOI: 10.3390/toxins13100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
Ochratoxins are mycotoxins that have been extensively studied lately due to the multiple toxic effects such as nephrotoxicity, hepatotoxicity, and carcinogenicity. These toxins contaminate plant and animal foods and after ingestion they reach into body fluids. The method of competitive direct enzyme immunoassay, in the solid phase, was validated through the determination of specific parameters (performance, linearity, recovery percentage, limit of detection, limit of quantification). The validated method was used to determine ochratoxin A in colostrum and cow's milk. The method applied for the determination of ochratoxin A was linear for the concentration range of 0.0-0.5 ng/mL, the value for the regression coefficient (r) was 0.9838. Ochratoxin A was present in 91.67% of the colostrum and in 93.33% of cow's milk samples. The linearity of the method, demonstrated for very low concentrations of analyte, the detection limit as well as the limit of quantification recommend the method for the determinations of micro-pollutants from foods, including biological fluids.
Collapse
Affiliation(s)
- Magdalena Cuciureanu
- Departament of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Tuchiluș
- Departament of Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Anca Vartolomei
- Department of Environmental and Food Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Bogdan Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Lorena Filip
- Departament of Bromatology, Hygiene, Nutrition, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania;
| |
Collapse
|
17
|
Arce-López B, Alvarez-Erviti L, De Santis B, Izco M, López-Calvo S, Marzo-Sola ME, Debegnach F, Lizarraga E, López de Cerain A, González-Peñas E, Vettorazzi A. Biomonitoring of Mycotoxins in Plasma of Patients with Alzheimer's and Parkinson's Disease. Toxins (Basel) 2021; 13:477. [PMID: 34357949 PMCID: PMC8310068 DOI: 10.3390/toxins13070477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to environmental contaminants might play an important role in neurodegenerative disease pathogenesis, such as Parkinson´s disease (PD) and Alzheimer´s disease (AD). For the first time in Spain, the plasmatic levels of 19 mycotoxins from patients diagnosed with a neurodegenerative disease (44 PD and 24 AD) and from their healthy companions (25) from La Rioja region were analyzed. The studied mycotoxins were aflatoxins B1, B2, G1, G2 and M1, T-2 and HT-2, ochratoxins A (OTA) and B (OTB), zearalenone, sterigmatocystin (STER), nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, deepoxy-deoxynivalenol, neosolaniol, diacetoxyscirpenol and fusarenon-X. Samples were analyzed by LC-MS/MS before and after treatment with β-glucuronidase/arylsulfatase in order to detect potential metabolites. Only OTA, OTB and STER were detected in the samples. OTA was present before (77% of the samples) and after (89%) the enzymatic treatment, while OTB was only detectable before (13%). Statistically significant differences in OTA between healthy companions and patients were observed but the observed differences might seem more related to gender (OTA levels higher in men, p-value = 0.0014) than the disease itself. STER appeared only after enzymatic treatment (88%). Statistical analysis on STER, showed distributions always different between healthy controls and patients (patients' group > controls, p-value < 0.0001). Surprisingly, STER levels weakly correlated positively with age in women (rho = 0.3384), while OTA correlation showed a decrease of levels with age especially in the men with PD (rho = -0.4643).
Collapse
Affiliation(s)
- Beatriz Arce-López
- Department of Pharmaceutical Technology and Chemistry, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.A.-L.); (E.L.); (E.G.-P.)
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3rd Floor, 26006 Logroño, Spain; (L.A.-E.); (M.I.)
| | - Barbara De Santis
- National Reference Laboratory for Mycotoxins and Plant Toxins, Istituto Superiore di Sanità, 00161 Roma, Italy; (B.D.S.); (F.D.)
| | - María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3rd Floor, 26006 Logroño, Spain; (L.A.-E.); (M.I.)
| | - Silvia López-Calvo
- Servicio de Neurología, Hospital San Pedro, Piqueras 98, 26006 Logroño, Spain; (S.L.-C.); (M.E.M.-S.)
| | - Maria Eugenia Marzo-Sola
- Servicio de Neurología, Hospital San Pedro, Piqueras 98, 26006 Logroño, Spain; (S.L.-C.); (M.E.M.-S.)
| | - Francesca Debegnach
- National Reference Laboratory for Mycotoxins and Plant Toxins, Istituto Superiore di Sanità, 00161 Roma, Italy; (B.D.S.); (F.D.)
| | - Elena Lizarraga
- Department of Pharmaceutical Technology and Chemistry, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.A.-L.); (E.L.); (E.G.-P.)
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.A.-L.); (E.L.); (E.G.-P.)
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|