1
|
Liu S, Zhao Y, Li C, Yi Y, Zhang Y, Tian J, Han J, Pan C, Lu X, Su Y, Wang L, Liu C, Meng J, Liang A. Long-term oral administration of Kelisha capsule does not cause hepatorenal toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118320. [PMID: 38740107 DOI: 10.1016/j.jep.2024.118320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kelisha capsules (KLS) are often used to treat acute diarrhoea, bacillary dysentery, heat stroke, and other diseases. One of its components, Asarum, contains aristolochic acid I which is both nephrotoxic and carcinogenic. However, the aristolochic acid (AA) content in KLS and its toxicity remain unclear. AIM OF THE STUDY The aims of this study were to quantitatively determine the contents of five aristolochic acid analogues (AAAs) in Asarum and KLS, and systematically evaluate the in vivo toxicity of KLS in rats. MATERIALS AND METHODS Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the content of the five AAAs in Asarum and KLS. Sprague-Dawley rats were administered KLS at 0, 0.75, 1.5, and 3.0 g/kg respectively, and then sacrificed after 4 weeks of administration or after an additional 2 weeks of recovery. The endpoints assessed included body weight measurements, serum biochemistry and haematology indices, and clinical and histopathological observations. RESULTS The AAAs content in Asarum sieboldii Miq. (HB-ESBJ) were much lower than those of the other Asarums. The contents of AA I, AA IVa, and aristolactam I in KLS were in the ranges of 0.03-0.06 μg/g, 1.89-2.16 μg/g, and 0.55-1.60 μg/g, respectively, whereas AA II and AA IIIa were not detected. None of the rats showed symptoms of toxic reactions and KLS was well tolerated throughout the study. Compared to the control group, the activated partial thromboplastin time values of rats in the 1.5 and 3.0 g/kg groups significantly reduced after administration (P < 0.05). In addition, the serum triglycerides of male rats in the 0.75 and 1.5 g/kg groups after administration, and the 0.75, 1.5, 3.0 g/kg groups after recovery were significantly decreased (P < 0.01 or P < 0.001). No significant drug-related toxicological changes were observed in other serum biochemical indices, haematology, or histopathology. CONCLUSIONS The AA I content in KLS met the limit requirements (<0.001%) of the Chinese Pharmacopoeia. Therefore, it is safe to use KLS in the short-term. However, for safety considerations, attention should be paid to the effects of long-term KLS administration on coagulation function and triglyceride metabolism.
Collapse
Affiliation(s)
- Suyan Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yong Zhao
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunying Li
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yan Yi
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yushi Zhang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingzhuo Tian
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiayin Han
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chen Pan
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao Lu
- Zhejiang Sukean Pharmaceutical CO.LTD, Hangzhou, 311228, China.
| | - Yan Su
- Zhejiang Sukean Pharmaceutical CO.LTD, Hangzhou, 311228, China.
| | - Lianmei Wang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chenyue Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Meng
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Aihua Liang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Liu ZH, Xu QY, Wang Y, Gao HX, Min YH, Jiang XW, Yu WH. Catalpol from Rehmannia glutinosa Targets Nrf2/NF-κB Signaling Pathway to Improve Renal Anemia and Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1451-1485. [PMID: 39075978 DOI: 10.1142/s0192415x24500575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rehmannia glutinosa is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within Rehmannia glutinosa, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both in vivo and in vitro. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-κB inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-κB p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-κB, and then inhibited the expression of IL-6, p-STAS3, TGF-β1 protein. Therefore, CAT can regulate Nrf2/NF-κB signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Qing-Yang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Hong-Xin Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Ya-Hong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Xiao-Wen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Wen-Hui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Heilongjiang Key Laboratory for the Prevention and Control of Common Animal Diseases, Harbin, Heilongjiang Province, 150030, P. R. China
| |
Collapse
|
3
|
Lu N, Wang X, Wang Y, Du Y, Gao Q, Zhang H. Establishment of enzyme-linked immunosorbent assay for aristolochic acid. Toxicon 2024; 244:107771. [PMID: 38795849 DOI: 10.1016/j.toxicon.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
In recent years, the nephrotoxicity and carcinogenicity of aristolochic acid have attracted worldwide attention, and the traditional Chinese medicine containing this ingredient has been banned in many places, affecting the TCM industry. To meet this challenge, researchers have developed various detection methods, such as high-performance liquid chromatography, gas chromatography-mass spectrometry and thin-layer chromatography. A rapid detection method must therefore be developed to ensure safety. A polyclonal antibody capable of recognizing aristolochic acid was prepared, and an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established to detect the amount of aristolochic acid in the sample to be measured. Methods Using 1-(4-chlorophenyl) cyclobutylamine as a hapten, immunogens and coating antigens were obtained by coupling with bovine serum albumin (BSA) and chicken ovalbumin (OVA) using the active ester method. UV scanning confirmed the successful coupling of the conjugate, and New Zealand white rabbits were immunized. The obtained antibody serum was screened for the best antibody by ic-ELISA detection. Use the chessboard method to determine three optimal combinations of original coating concentration and antibody dilution ratio, establish a standard curve for each combination to obtain the best combination, and establish a rapid detection method. Finally, the standard aristolochic acid A was added to the purchased apple vinegar and canned coffee for recycling experiments to verify the detection method.By changing the antigen antibody concentration, the antibody showed the highest sensitivity to aristolochic acid standard at the original coating, 1000-fold dilution, IC50 of 24.88 ng/mL, limit of detection IC10 of 3.19 ng/mL, and detection range IC20-IC80 of 6.81-90.91 ng/mL. The recovery experiments under this conditions yielded a recovery rate of 92%-105%, within reasonable limits, indicating the success of the ELISA rapid detection method. Conclusion The enzyme-linked immunoassay method established in this paper can quickly detect the content of aristolochic acid in the sample to be tested, and the antibody prepared by this method has good broad-spectrum and can detect other aristolochic acid, such as aristolochic acid A, aristolochic acid B, aristolochic acid C, and aristolochic acid D.
Collapse
Affiliation(s)
- Ning Lu
- Department of Biology and Food Engineering, Bozhou University, China; Anhui Engineering Research Center for Development and Application of Functional Blended Liquor(prepare), China
| | - Xiaolu Wang
- Department of Biology and Food Engineering, Bozhou University, China; Anhui Engineering Research Center for Development and Application of Functional Blended Liquor(prepare), China
| | - Yu Wang
- Department of Biology and Food Engineering, Bozhou University, China
| | - Yue Du
- Department of Biology and Food Engineering, Bozhou University, China
| | - Qianni Gao
- Department of Biology and Food Engineering, Bozhou University, China; Anhui Engineering Research Center for Development and Application of Functional Blended Liquor(prepare), China
| | - Huimin Zhang
- Department of Biology and Food Engineering, Bozhou University, China; Anhui Engineering Research Center for Development and Application of Functional Blended Liquor(prepare), China.
| |
Collapse
|
4
|
Dang M, Wu L, Jin G, Yang C, Isah MB, Zhang X. Quantum Dot-Based Immunoassays: Unraveling Sensitivity Discrepancies and Charting Future Frontiers. Anal Chem 2024; 96:980-984. [PMID: 38194441 DOI: 10.1021/acs.analchem.3c04791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The 2023 Nobel Prize in Chemistry honors the groundbreaking contributions of Alexei Ekimov, Louis Brus, and Moungi Bawendi to the field of quantum dots (QDs). In this spirit, we developed a direct competitive QD fluorescence immunoassay (dc-QD-FLISA) to detect aristolochic acid type I (AAI), a potent carcinogen found in herbal remedies. Unexpectedly, the dc-QD-FLISA exhibited lower sensitivity than that of an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA), contrary to our initial expectations. This discrepancy in the sensitivity prompted a comprehensive analysis of the entire experimental process. We propose that steric hindrance between QDs and antigen-binding sites on antibodies may significantly diminish the binding efficiency, reducing sensitivity within the dc-QD-FLISA method. Furthermore, issues such as buffer conditions, antibody handling, and separation methods are also contributing factors. We recommend site-directed QD modification and stringent consideration of the experimental conditions. This study not only provides insights into QD-based immunoassays but also highlights the need for future advancements in immunoassay technology in terms of augmenting sensitivity and specificity, potentially revolutionizing disease diagnosis, biomarker discovery, and biomedical research.
Collapse
Affiliation(s)
- Mei Dang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260 Singapore
| | - Longjiang Wu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Gelin Jin
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Chenxuan Yang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Murtala Bindawa Isah
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada
| |
Collapse
|