1
|
Ballarin G, Biasiotto M, Reisbitzer A, Hegels M, Bolte M, Krauß S, Berdnikova DV. A novel aurone RNA CAG binder inhibits the huntingtin RNA-protein interaction. RSC Med Chem 2024; 15:3092-3096. [PMID: 39309355 PMCID: PMC11411626 DOI: 10.1039/d4md00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/14/2024] [Indexed: 09/25/2024] Open
Abstract
Huntington's disease (HD) is a devastating, incurable condition whose pathophysiological mechanism relies on mutant RNA CAG repeat expansions. Aberrant recruitment of RNA-binding proteins by mutant CAG hairpins contributes to the progress of neurodegeneration. In this work, we identified a novel binder based on an aurone scaffold that reduces the level of binding of HTT mRNA to the MID1 protein in vitro. The obtained results introduce aurones as a novel platform for the design of functional ligands for disease-related RNA sequences.
Collapse
Affiliation(s)
- Giovanna Ballarin
- University of Padova, School of Pharmaceutical Sciences via Marzolo 5 35131 Padova Italy
- Institut für Biologie, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Organische Chemie II, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Maddalena Biasiotto
- University of Padova, School of Pharmaceutical Sciences via Marzolo 5 35131 Padova Italy
- Institut für Biologie, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Organische Chemie II, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Annika Reisbitzer
- Institut für Biologie, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Marlen Hegels
- Organische Chemie II, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität Max-von-Laue-Str. 7 60438 Frankfurt-am-Main Germany
| | - Sybille Krauß
- Institut für Biologie, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Daria V Berdnikova
- Organische Chemie II, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
| |
Collapse
|
2
|
Structural switching/polymorphism by sequential base substitution at quasi-palindromic SNP site (G → A) in LCR of human β-globin gene cluster. Int J Biol Macromol 2021; 201:216-225. [PMID: 34973267 DOI: 10.1016/j.ijbiomac.2021.12.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022]
Abstract
The human β-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression contains five tissue-specific DNase I-hypersensitive sites (HSs). A single nucleotide polymorphism (SNP) (A → G) present in HS4 region of locus control region (LCR), have shown a notable association between the G allele and the occurrence of β-thalassemia. This SNP site exhibiting a hairpin - duplex equilibrium manifested in A → B like DNA transition has previously been reported from this laboratory. Since, DNA is a dynamic and adaptable molecule, so any change of a single base within a primary DNA sequence can produce major biological consequences commonly manifested in genetic disorders such as sickle cell anemia and β-thalassemia. Herein, the differential behavior of sequential single base substitutions G → A on the quasi-palindromic sequence (d-TGGGGGCCCCA; HPG11) has been explored. A combination of native gel electrophoresis, circular dichroism (CD), and UV-thermal denaturation (Tm) techniques have been used to investigate the structural polymorphism associated with various variants of HPG11 i.e. HPG11A2 to HPG11A5. The CD spectra confirmed that all the HPG11 variants exhibit a hairpin - duplex equilibrium. Oligomer concentration dependence on CD spectra has been correlated with A → B DNA conformational transition. However, as revealed in gel electrophoresis, HPG11A2 → A5 exhibit the formation of a tetramolecular structure (four-way junction) at higher oligomer concentration. UV-melting studies also supported the melting of hairpin, duplex and four-way junction structure. This polymorphism pattern may possibly be significant for DNA-protein recognition, in the process of regulation of LCR in the β-globin gene.
Collapse
|
3
|
Huntingtin and Its Role in Mechanisms of RNA-Mediated Toxicity. Toxins (Basel) 2021; 13:toxins13070487. [PMID: 34357961 PMCID: PMC8310054 DOI: 10.3390/toxins13070487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is caused by a CAG-repeat expansion mutation in the Huntingtin (HTT) gene. It is characterized by progressive psychiatric and neurological symptoms in combination with a progressive movement disorder. Despite the ubiquitous expression of HTT, pathological changes occur quite selectively in the central nervous system. Since the discovery of HD more than 150 years ago, a lot of research on molecular mechanisms contributing to neurotoxicity has remained the focal point. While traditionally, the protein encoded by the HTT gene remained the cynosure for researchers and was extensively reviewed elsewhere, several studies in the last few years clearly indicated the contribution of the mutant RNA transcript to cellular dysfunction as well. In this review, we outline recent studies on RNA-mediated molecular mechanisms that are linked to cellular dysfunction in HD models. These mechanisms include mis-splicing, aberrant translation, deregulation of the miRNA machinery, deregulated RNA transport and abnormal regulation of mitochondrial RNA. Furthermore, we summarize recent therapeutical approaches targeting the mutant HTT transcript. While currently available treatments are of a palliative nature only and do not halt the disease progression, recent clinical studies provide hope that these novel RNA-targeting strategies will lead to better therapeutic approaches.
Collapse
|
4
|
Functional and Structural Analysis of Predicted Proteins Obtained from Homo sapiens' Minisatellite 33.15-Tagged Transcript pAKT-45 Variants. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2562950. [PMID: 32566673 PMCID: PMC7273396 DOI: 10.1155/2020/2562950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/18/2022]
Abstract
The spermatozoa are transcriptionally dormant entities which have been recognized to be an archive of mRNA, coding for a variety of functionally crucial cellular proteins. This significant repository of mRNA is predicted to be associated with early embryogenesis and postfertilization. The mRNA transcripts which are tagged with minisatellites have been involved in the regulation of the gene functions as well as their organization. However, very little information is available regarding the expression of the transcripts tagged with minisatellites in spermatozoa. Therefore, in order to understand the functions and the conformational behavior of the proteins expressed from these minisatellite-tagged transcripts, we have performed a detailed in silico analysis using the sequences of the transcripts. The protein predicted from KF274549 showed the functionalities similar to uncharacterized C4orf26 proteins, while that obtained from KF274557 predicted to be a metallophosphoesterase. Furthermore, the structural folds in the structure of these predicted proteins were analyzed by using the homology modeling and their conformational behaviors in the explicit water conditions were analyzed by using the techniques of Molecular Dynamics (MD) simulations. This detailed analysis will facilitate the understanding of these proteins in the spermatozoon region and can be used for uncovering other attributes of the metabolic network.
Collapse
|
5
|
Matthes F, Massari S, Bochicchio A, Schorpp K, Schilling J, Weber S, Offermann N, Desantis J, Wanker E, Carloni P, Hadian K, Tabarrini O, Rossetti G, Krauss S. Reducing Mutant Huntingtin Protein Expression in Living Cells by a Newly Identified RNA CAG Binder. ACS Chem Neurosci 2018; 9:1399-1408. [PMID: 29506378 DOI: 10.1021/acschemneuro.8b00027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expanded CAG trinucleotide repeats in Huntington's disease (HD) are causative for neurotoxicity. The mutant CAG repeat RNA encodes neurotoxic polyglutamine proteins and can lead to a toxic gain of function by aberrantly recruiting RNA-binding proteins. One of these is the MID1 protein, which induces aberrant Huntingtin (HTT) protein translation upon binding. Here we have identified a set of CAG repeat binder candidates by in silico methods. One of those, furamidine, reduces the level of binding of HTT mRNA to MID1 and other target proteins in vitro. Metadynamics calculations, fairly consistent with experimental data measured here, provide hints about the binding mode of the ligand. Importantly, furamidine also decreases the protein level of HTT in a HD cell line model. This shows that small molecules masking RNA-MID1 interactions may be active against mutant HTT protein in living cells.
Collapse
Affiliation(s)
- Frank Matthes
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Serena Massari
- Department of Pharmaceutical Science, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Anna Bochicchio
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Judith Schilling
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Stephanie Weber
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Nina Offermann
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Jenny Desantis
- Department of Pharmaceutical Science, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Erich Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA-HPC, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Oriana Tabarrini
- Department of Pharmaceutical Science, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Sybille Krauss
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| |
Collapse
|
6
|
Martí E. RNA toxicity induced by expanded CAG repeats in Huntington's disease. Brain Pathol 2018; 26:779-786. [PMID: 27529325 DOI: 10.1111/bpa.12427] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) belongs to the group of inherited polyglutamine (PolyQ) diseases caused by an expanded CAG repeat in the coding region of the Huntingtin (HTT) gene that results in an elongated polyQ stretch. Abnormal function and aggregation of the mutant protein has been typically delineated as the main molecular cause underlying disease development. However, the most recent advances have revealed novel pathogenic pathways directly dependent on an RNA toxic gain-of-function. Expanded CAG repeats within exon 1 of the HTT mRNA induce toxicity through mechanisms involving, at least in part, gene expression perturbations. This has important implications not only for basic and translational research in HD, but also for other types of diseases carrying the expanded CAG in other genes, which likely share pathogenic aspects. Here I will review the evidence and mechanisms underlying RNA toxicity in CAG repeat expansions, with particular focus on HD. These comprise abnormal subcellular localization of the transcripts containing the expanded CAG repeats; sequestration of several types of proteins by the expanded CAG repeat which results in defects of alternative splicing events and gene expression; and aberrant biogenesis and detrimental activity of small CAG repeated RNAs (sCAG) that produce altered gene silencing. Although these altered pathways have been detected in HD models, their contribution to disease development and progress requires further study.
Collapse
Affiliation(s)
- Eulàlia Martí
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, 08003, Spain.,Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| |
Collapse
|
7
|
The influence of angiotensin-converting enzyme gene ID polymorphism on human physical fitness performance in European and other populations. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-016-0340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, Esteller M, Vavouri T, Peinado MA. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res 2016; 27:118-132. [PMID: 27999094 PMCID: PMC5204336 DOI: 10.1101/gr.207522.116] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%–4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.
Collapse
Affiliation(s)
- Mireia Jordà
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Anna Díez-Villanueva
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Izaskun Mallona
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Berta Martín
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Sergi Lois
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Víctor Barrera
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona 08907, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Tanya Vavouri
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| |
Collapse
|
9
|
Brázda V, Kolomazník J, Lýsek J, Hároníková L, Coufal J, Št'astný J. Palindrome analyser - A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem Biophys Res Commun 2016; 478:1739-45. [PMID: 27603574 DOI: 10.1016/j.bbrc.2016.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
DNA cruciform structures play an important role in the regulation of natural processes including gene replication and expression, as well as nucleosome structure and recombination. They have also been implicated in the evolution and development of diseases such as cancer and neurodegenerative disorders. Cruciform structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling and protein binding. They have received broad attention because of their important roles in biology. Computational approaches to study inverted repeats have allowed detailed analysis of genomes. However, currently there are no easily accessible and user-friendly tools that can analyse inverted repeats, especially among long nucleotide sequences. We have developed a web-based server, Palindrome analyser, which is a user-friendly application for analysing inverted repeats in various DNA (or RNA) sequences including genome sequences and oligonucleotides. It allows users to search and retrieve desired gene/nucleotide sequence entries from the NCBI databases, and provides data on length, sequence, locations and energy required for cruciform formation. Palindrome analyser also features an interactive graphical data representation of the distribution of the inverted repeats, with options for sorting according to the length of inverted repeat, length of loop, and number of mismatches. Palindrome analyser can be accessed at http://bioinformatics.ibp.cz.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Jan Kolomazník
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Lýsek
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Lucia Hároníková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jiří Št'astný
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| |
Collapse
|
10
|
Karunasena E, Mciver LJ, Bavarva JH, Wu X, Zhu H, Garner HR. 'Cut from the same cloth': Shared microsatellite variants among cancers link to ectodermal tissues-neural tube and crest cells. Oncotarget 2016; 6:22038-47. [PMID: 26246470 PMCID: PMC4673144 DOI: 10.18632/oncotarget.4194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/05/2015] [Indexed: 11/25/2022] Open
Abstract
The pluripotent cells of the embryonic ectodermal tissues are known to be a precursor for multiple tumor types. The adaptability of these cells is a trait exploited by cancer. We previously described cancer-associated microsatellite loci (CAML) shared between glioblastoma (GBM) and lower-grade gliomas. Therefore, we hypothesized that these variants, identified from germline DNA, are shared by cancers from tissues originating from ectodermal tissues: neural tube cells (NTC) and crest cells (NCC). Using exome sequencing data from four cancers with origins to NTC and NCC, a ‘signature’ of loci significant to each cancer (p-value ≤ 0.01) was created and compared with previously identified CAML from breast cancer. The results of this analysis show that variant loci among the cancers with tissue origins from NTC/NCC were closely linked. Signaling pathways linked to genes with non-coding CAML genotypes revealed enriched connections to hereditary, neurological, and developmental disease or disorders. Thus, variants in genes from tissues initiating from NTC/NCC, if recurrently detected, may indicate a common etiology. Additionally, CAML genotypes from non-tumor DNA may predict cancer phenotypes and are common to shared embryonic tissues of origin.
Collapse
Affiliation(s)
- Enusha Karunasena
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lauren J Mciver
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jasmin H Bavarva
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaowei Wu
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hongxiao Zhu
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Harold R Garner
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Karunasena E, McIver LJ, Rood BR, Wu X, Zhu H, Bavarva JH, Garner HR. Somatic intronic microsatellite loci differentiate glioblastoma from lower-grade gliomas. Oncotarget 2015; 5:6003-14. [PMID: 25153720 PMCID: PMC4171608 DOI: 10.18632/oncotarget.2076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Genomic studies of glioma sub-types have amassed new disease specific mutations, yet these only partially explain how mutations are linked to predisposition or progression. We hypothesized that microsatellite variation could expand the understanding of glioma etiology. Furthermore, germline markers for gliomas are typically undetectable; therefore we also hypothesize that the predictability of cancer-associated microsatellite loci in germline DNA may support the current hypothesis of a glioma cell of origin. In this study, “normal” germline exome sequenced DNA from the 1000 Genomes Project (n=390) were compared with exome sequences from germlines of subjects with WHO grade II and III lower-grade glioma (LGG, n=136) and WHO grade IV glioblastoma (GBM, n=252) from The Cancer Genome Atlas to identify microsatellite loci non-randomly associated with glioma. From germline data, we identified 48 GBM-specific loci, 42 Lower-grade glioma specific loci and 29 loci that distinguish GBM from LGG (p≤ 0.01). We then attempted to distinguish WHO grade II glioma (n=67) from GBM resulting in 8 informative loci. Significantly, in all glioma grades, comparisons between tumor and matched germline sequences demonstrated no significant differences in these variants (p≥ 0.01). Therefore, these microsatellite loci are considered to be components of grade-specific signatures for glioma which distinguish germline sequences of individuals with cancer from those of individuals that are “normal”. In order to better understand the significance of these loci, we identified biological processes enriched in genes with these variants. Most strikingly, six helicase genes were enriched in the GBM cohort (p≤ 1.0 ×10−3). The preservation of these glioma-specific loci could therefore serve as valuable diagnostic and therapeutic markers; especially since the heterogeneity of tumor cell populations can obscure the identification of mutations preceding a metastatic phenotype.
Collapse
Affiliation(s)
- Enusha Karunasena
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division; Blacksburg, VA; These authors contributed equally to this work
| | - Lauren J McIver
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division; Blacksburg, VA; These authors contributed equally to this work
| | - Brian R Rood
- Center for Cancer and Blood Disorders at Children's National Medical Center; Washington, D.C
| | - Xiaowei Wu
- Department of Statistics at Virginia Tech; Blacksburg, VA
| | - Hongxiao Zhu
- Department of Statistics at Virginia Tech; Blacksburg, VA
| | - Jasmin H Bavarva
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division; Blacksburg, VA
| | - Harold R Garner
- Virginia Bioinformatics Institute, Medical Informatics and Systems Division; Blacksburg, VA
| |
Collapse
|
12
|
Akopiants K, Mohapatra S, Menon V, Zhou T, Valerie K, Povirk LF. Tracking the processing of damaged DNA double-strand break ends by ligation-mediated PCR: increased persistence of 3'-phosphoglycolate termini in SCAN1 cells. Nucleic Acids Res 2013; 42:3125-37. [PMID: 24371269 PMCID: PMC3950721 DOI: 10.1093/nar/gkt1347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To track the processing of damaged DNA double-strand break (DSB) ends in vivo, a method was devised for quantitative measurement of 3′-phosphoglycolate (PG) termini on DSBs induced by the non-protein chromophore of neocarzinostatin (NCS-C) in the human Alu repeat. Following exposure of cells to NCS-C, DNA was isolated, and labile lesions were chemically stabilized. All 3′-phosphate and 3′-hydroxyl ends were enzymatically capped with dideoxy termini, whereas 3′-PG ends were rendered ligatable, linked to an anchor, and quantified by real-time Taqman polymerase chain reaction. Using this assay and variations thereof, 3′-PG and 3′-phosphate termini on 1-base 3′ overhangs of NCS-C-induced DSBs were readily detected in DNA from the treated lymphoblastoid cells, and both were largely eliminated from cellular DNA within 1 h. However, the 3′-PG termini were processed more slowly than 3′-phosphate termini, and were more persistent in tyrosyl-DNA phosphodiesterase 1-mutant SCAN1 than in normal cells, suggesting a significant role for tyrosyl-DNA phosphodiesterase 1 in removing 3′-PG blocking groups for DSB repair. DSBs with 3′-hydroxyl termini, which are not directly induced by NCS-C, were formed rapidly in cells, and largely eliminated by further processing within 1 h, both in Alu repeats and in heterochromatic α-satellite DNA. Moreover, absence of DNA-PK in M059J cells appeared to accelerate resolution of 3′-PG ends.
Collapse
Affiliation(s)
- Konstantin Akopiants
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA and Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
13
|
Yang B, Rodgers MT. Base-pairing energies of proton-bound heterodimers of cytosine and modified cytosines: implications for the stability of DNA i-motif conformations. J Am Chem Soc 2013; 136:282-90. [PMID: 24320604 DOI: 10.1021/ja409515v] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The DNA i-motif conformation was discovered in (CCG)•(CGG)n trinucleotide repeats, which are associated with fragile X syndrome, the most widespread inherited cause of mental retardation in humans. The DNA i-motif is a four-stranded structure whose strands are held together by proton-bound dimers of cytosine (C(+)•C). The stronger base-pairing interactions in C(+)•C proton-bound dimers as compared to Watson-Crick G•C base pairs are the major forces responsible for stabilization of i-motif conformations. Methylation of cytosine results in silencing of the FMR1 gene and causes fragile X syndrome. However, the influence of methylation or other modifications such as halogenation of cytosine on the base-pairing energies (BPEs) in the i-motif remains elusive. To address this, proton-bound heterodimers of cytosine and 5-methylcytosine, 5-fluorocytosine, 5-bromocytosine, and 5-iodocytosine are probed in detail. Experimentally, the BPEs of proton-bound heterodimers of cytosine and modified cytosines are determined using threshold collision-induced dissociation (TCID) techniques. All modifications at the 5-position of cytosine are found to lower the BPE and therefore would tend to destabilize DNA i-motif conformations. However, the BPEs in these proton-bound heterodimers still significantly exceed those of the Watson-Crick G•C and neutral C•C base pairs, suggesting that C(+)•C mismatches are still energetically favored such that i-motif conformations are preserved. Excellent agreement between TCID measured BPEs and B3LYP calculated values is found with the def2-TZVPPD and 6-311+G(2d,2p) basis sets, suggesting that calculations at these levels of theory can be employed to provide reliable energetic predictions for related systems.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | | |
Collapse
|
14
|
In-silico analysis of simple and imperfect microsatellites in diverse tobamovirus genomes. Gene 2013; 530:193-200. [DOI: 10.1016/j.gene.2013.08.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
|
15
|
Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis 2013; 4:e752. [PMID: 23907466 PMCID: PMC3763438 DOI: 10.1038/cddis.2013.276] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/27/2023]
Abstract
Several inherited neurodegenerative disorders are caused by CAG trinucleotide repeat expansions, which can be located either in the coding region or in the untranslated region (UTR) of the respective genes. Polyglutamine diseases (polyQ diseases) are caused by an expansion of a stretch of CAG repeats within the coding region, translating into a polyQ tract. The polyQ tract expansions result in conformational changes, eventually leading to aggregate formation. It is widely believed that the aggregation of polyQ proteins is linked with disease development. In addition, in the last couple of years, it has been shown that RNA-mediated mechanisms also have a profound role in neurotoxicity in both polyQ diseases and diseases caused by elongated CAG repeat motifs in their UTRs. Here, we review the different molecular mechanisms assigned to mRNAs with expanded CAG repeats. One aspect is the mRNA folding of CAG repeats. Furthermore, pathogenic mechanisms assigned to CAG repeat mRNAs are discussed. First, we discuss mechanisms that involve the sequestration of the diverse proteins to the expanded CAG repeat mRNA molecules. As a result of this, several cellular mechanisms are aberrantly regulated. These include the sequestration of MBNL1, leading to misregulated splicing; sequestration of nucleolin, leading to reduced cellular rRNA; and sequestration of proteins of the siRNA machinery, resulting in the production of short silencing RNAs that affect gene expression. Second, we discuss the effect of expanded CAG repeats on the subcellular localization, transcription and translation of the CAG repeat mRNA itself. Here we focus on the MID1 protein complex that triggers an increased translation of expanded CAG repeat mRNAs and a mechanism called repeat-associated non-ATG translation, which leads to proteins aberrantly translated from CAG repeat mRNAs. In addition, therapeutic approaches for CAG repeat disorders are discussed. Together, all the findings summarized here show that mutant mRNA has a fundamental role in the pathogenesis of CAG repeat diseases.
Collapse
|
16
|
Abstract
Micro RNAs (miRNAs) are ∼22 nt small RNAs that function as posttranscriptional negative regulators of gene expression. Thousands of these molecules have so far been identified across the metazoan and plant kingdoms. Although most miRNAs share the same biogenesis pathway, numerous noncanonical miRNAs and other small RNAs have also been identified. In this review, we will discuss these alternate small RNA biogenesis pathways as well as recent discoveries of non-miRNA functions of the miRNA biogenesis machinery. This review will focus only on metazoan pathways.
Collapse
Affiliation(s)
- Janet H C Yeo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | | |
Collapse
|
17
|
Roy-Engel AM. LINEs, SINEs and other retroelements: do birds of a feather flock together? Front Biosci (Landmark Ed) 2012; 17:1345-61. [PMID: 22201808 DOI: 10.2741/3991] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mobile elements account for almost half of the mass of the human genome. Only the retroelements from the non-LTR (long terminal repeat) retrotransposon family, which include the LINE-1 (L1) and its non-autonomous partners, are currently active and contributing to new insertions. Although these elements seem to share the same basic amplification mechanism, the activity and success of the different types of retroelements varies. For example, Alu-induced mutagenesis is responsible for the majority of the documented instances of human disease induced by insertion of retroelements. Using copy number in mammals as an indicator, some SINEs have been vastly more successful than other retroelements, such as the retropseudogenes and even L1, likely due to differences in post-insertion selection and ability to overcome cellular controls. SINE and LINE integration can be differentially influenced by cellular factors, indicating some differences between in their amplification mechanisms. We focus on the known aspects of this group of retroelements and highlight their similarities and differences that may significantly influence their biological impact.
Collapse
Affiliation(s)
- Astrid M Roy-Engel
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, SL-66 1430 Tulane Ave., New Orleans, LA 70112.
| |
Collapse
|
18
|
Molecular mining of alleles in water buffalo Bubalus bubalis and characterization of the TSPY1 and COL6A1 genes. PLoS One 2011; 6:e24958. [PMID: 21949806 PMCID: PMC3174239 DOI: 10.1371/journal.pone.0024958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/24/2011] [Indexed: 12/21/2022] Open
Abstract
Background Minisatellites are an integral part of eukaryotic genomes and show variation in the complexity of their organization. Besides their presence in non-coding regions, a small fraction of them are part of the transcriptome, possibly participating in gene regulation, expression and silencing. We studied the minisatellite (TGG)n tagged transcriptome in the water buffalo Bubalus bubalis across various tissues and the spermatozoa, and characterized the genes TSPY1 and COL6A1 discovered in the process. Results Minisatellite associated sequence amplification (MASA) conducted using cDNA and oligonucleotide primer (TGG)5 uncovered 38 different mRNA transcripts from somatic tissues and gonads and 15 from spermatozoa. These mRNA transcripts corresponded to several known and novel genes. The majority of the transcripts showed the highest level of expression either in the testes or spermatozoa with exception of a few showing higher expression levels in the lungs and liver. Transcript SR1, which is expressed in all the somatic tissues and gonads, was found to be similar to the Bos taurus collagen type VI alpha 1 gene (COL6A1). Similarly, SR29, a testis-specific transcript, was found to be similar to the Bos taurus testis-specific Y-encoded protein-1 representing cancer/testis antigen 78 (CT78). Subsequently, full length coding sequences (cds) of these two transcripts were obtained. Quantitative PCR (q-PCR) revealed 182-202 copies of theTSPY1 gene in water buffalo, which localized to the Y chromosome. Conclusions The MASA approach enabled us to identify several genes, including two of clinical significance, without screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack thereof would augment animal biotechnology.
Collapse
|
19
|
Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 2011; 40:11-26. [PMID: 21908410 PMCID: PMC3245940 DOI: 10.1093/nar/gkr729] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases.
Collapse
Affiliation(s)
- Wlodzimierz J Krzyzosiak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
20
|
Wojciechowska M, Krzyzosiak WJ. CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders. RNA Biol 2011; 8:565-71. [PMID: 21593608 DOI: 10.4161/rna.8.4.15397] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Over 20 genetic loci with abnormal expansions of short tandem repeats have been associated with human hereditary neurological diseases. Of these, specific trinucleotide repeats located in non-coding and coding regions of individual genes implicated in these disorders are strongly overrepresented. Expansions of CTG, CGG and CAG repeats are linked to, respectively, myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome (FXTAS), as well as Huntington's disease (HD) and a number of spinocerebellar ataxias (SCAs). Expanded CAG repeats in translated exons trigger the most disorders for which a protein gain-of-function mechanism has been proposed to explain neurodegeneration by polyglutamine-rich (poly-Q) proteins. However, the results of last years showed that RNA composed of mutated CAG repeats can also be toxic and contribute to pathogenesis of polyglutamine disorders through an RNA-mediated gain-of-function mechanism. This mechanism has been best characterized in the non-coding repeat disorder DM1 and is also implicated in several other diseases, such as FXTAS, spinocerebellar ataxia type 8 (SCA8), Huntington's disease-like 2 (HDL2), as well as in myotonic dystrophy type 2 (DM2), spinocerebellar ataxia type 10 (SCA10) and type 31 (SCA31). In this review, we summarize recent findings that emphasize the participation of coding mutant CAG repeat RNA in the pathogenesis of polyglutamine disorders, and we discuss the basis of an RNA gain-of-function model in non-coding diseases such as DM1, FXTAS and SCA8.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
21
|
Abstract
BACKGROUND Epigenetic features such as DNA hypomethylation have been associated with conditions related to cardiovascular risk. We evaluated whether lower blood DNA methylation in heavily methylated repetitive sequences predicts the risk of ischemic heart disease and stroke. METHODS We quantified blood DNA methylation of Long Interspersed Nucleotide Element-1 (LINE-1) repetitive elements through PCR-pyrosequencing in 712 elderly individuals from the Boston-area Normative Aging Study. We estimated risk-factor adjusted relative risks (RRs) for ischemic heart disease and stroke at baseline (242 prevalent cases), and during follow-up (44 new cases; median follow-up, 63 months), as well as subsequent mortality from ischemic heart disease (86 deaths; median follow-up, 75 months). RESULTS Blood LINE-1 hypomethylation was associated with baseline ischemic heart disease (RR = 2.1 [95% confidence interval = 1.2-4.0] for lowest vs. highest methylation quartile) and for stroke (2.5 [0.9-7.5]). Among participants free of baseline disease, individuals with methylation below the median also had higher risk of developing ischemic heart disease (4.0 [1.8-8.9]) or stroke (5.7 [0.8-39.5]). In the entire cohort, persons with methylation below the median had higher mortality from ischemic heart disease (3.3 [1.3-8.4]) and stroke (2.8 [0.6-14.3]). Total mortality was also increased (2.0 [1.2-3.3]). These results were confirmed in additional regression models using LINE-1 methylation as a continuous variable. CONCLUSIONS Subjects with prevalent IHD and stroke exhibited lower LINE-1 methylation. In longitudinal analyses, persons with lower LINE-1 methylation were at higher risk for incident ischemic heart disease and stroke, and for total mortality.
Collapse
|
22
|
When one is better than two: RNA with dual functions. Biochimie 2010; 93:633-44. [PMID: 21111023 DOI: 10.1016/j.biochi.2010.11.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/17/2010] [Indexed: 11/23/2022]
Abstract
The central dogma of biology, until not long ago, held that genetic information stored on DNA molecules was translated into the final protein products through RNA as intermediate molecules. Then, an additional level of complexity in the regulation of genome expression was added, implicating new classes of RNA molecules called non-coding RNA (ncRNA). These ncRNA are also often referred to as functional RNA in that, although they do not contain the capacity to encode proteins, do have a function as RNA molecules. They have been thus far considered as truly non-coding RNA since no ORF long enough to be considered, nor protein, have been associated with them. However, the recent identification and characterization of bifunctional RNA, i.e. RNA for which both coding capacity and activity as functional RNA have been reported, suggests that a definite categorization of some RNA molecules is far from being straightforward. Indeed, several RNA primarily classified as non-protein-coding RNA has been showed to hold coding capacities and associated peptides. Conversely, mRNA, usually regarded as strictly protein-coding, may act as functional RNA molecules. Here, we describe several examples of these bifunctional RNA that have been already characterized from bacteria to mammals. We also extend this concept to fortuitous acquisition of dual function in pathological conditions and to the recently highlighted duality between information carried by a gene and its pseudogenes counterparts.
Collapse
|
23
|
McIvor EI, Polak U, Napierala M. New insights into repeat instability: role of RNA•DNA hybrids. RNA Biol 2010; 7:551-8. [PMID: 20729633 DOI: 10.4161/rna.7.5.12745] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expansion of tandem repeat sequences is responsible for more than 20 human diseases. Several cis elements and trans factors involved in repeat instability (expansion and contraction) have been identified. However no comprehensive model explaining large intergenerational or somatic changes of the length of the repeating sequences exists. Several lines of evidence, accumulated from different model studies, indicate that transcription through repeat sequences is an important factor promoting their instability. The persistent interaction between transcription template DNA and nascent RNA (RNA•DNA hybrids, R loops) was shown to stimulate genomic instability. Recently, we demonstrated that cotranscriptional RNA•DNA hybrids are preferentially formed at GC-rich trinucleotide and tetranucleotide repeat sequences in vitro as well as in human genomic DNA. Additionally, we showed that cotranscriptional formation of RNA•DNA hybrids at CTG•CAG and GAA•TTC repeats stimulate instability of these sequences in both E. coli and human cells. Our results suggest that persistent RNA•DNA hybrids may also be responsible for other downstream effects of expanded trinucleotide repeats, including gene silencing. Considering the extent of transcription through the human genome as well as the abundance of GC-rich and/or non-canonical DNA structure forming tandem repeats, RNA•DNA hybrids may represent a common mutagenic conformation. Hence, R loops are potentially attractive therapeutic target in diseases associated with genomic instability.
Collapse
Affiliation(s)
- Elizabeth I McIvor
- Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
24
|
Kozlowski P, Sobczak K, Krzyzosiak WJ. Trinucleotide repeats: triggers for genomic disorders? Genome Med 2010; 2:29. [PMID: 20441603 PMCID: PMC2873807 DOI: 10.1186/gm150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among the various sequence repeats that shape the human genome, trinucleotide repeats have attracted special interest as a result of their involvement in a class of human genetic disorders known as triplet repeat expansion diseases. Recently, long TGG repeat tracts were shown to be implicated in a genomic disorder resulting from chromosome 14q32.2 deletion. Various different mechanisms might trigger this deletion, and looking at the problem from a structural biology perspective may help. Deeper insight into repeated sequences and their features may shed light on the mechanisms involved in this microdeletion and similar genomic rearrangements.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | |
Collapse
|
25
|
Srivastava J, Premi S, Kumar S, Ali S. Expressional dynamics of minisatellite 33.15 tagged spermatozoal transcriptome in Bubalus bubalis. BMC Genomics 2009; 10:303. [PMID: 19583837 PMCID: PMC2713999 DOI: 10.1186/1471-2164-10-303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptionally quiescent spermatozoa have been established to be a repository of mRNA coding for several functionally essential cellular proteins. This entourage of mRNA is envisaged to be involved in post-fertilization and early embryogenesis. Minisatellites tagged with mRNA transcripts have been implicated with gene organization, regulation and function. However, the organization and expression of the minisatellite tagged transcript diversity, particularly in spermatozoa, remains unclear. RESULTS In the present study, we identified and characterized 12 mRNA transcripts from the spermatozoa of water buffalo Bubalus bubalis employing minisatellite associated sequence amplification (MASA) and a consensus sequence of 33.15 repeat loci. Of these 33.15 tagged transcripts, only one was found to be homologous to Bovine steroid 21-hydroxylase (P-450-c21) gene. Other ten transcripts showed significant similarity with various mRNAs or chromosomal contigs across the species. The remaining one construed to be novel since this was unreported in the database (NCBI GenBank). All these uncharacterized and known transcripts showed highest expression in testis and spermatozoa compared to that in somatic tissues and ovary. Of these 12 mRNA transcripts, 4 showed differential expression in the forebrain and hindbrain of buffalo. Moreover, genes corresponding to all the 33.15 tagged spermatozoal transcripts were found to be conserved across 13 other species analyzed. CONCLUSION Our results show MASA as an important tool to capture mRNA transcript diversity tagged with minisatellites in the spermatozoa. Comprehensive characterization of these transcripts is envisaged to augment our understanding on the genes involved in testicular functions and sustenance of a viable paternal genome during pre- and post- fertilization events and early stages of development. Prospects of this approach in genome analysis in general and comparative genomics in particular are highlighted.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Molecular Genetic Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | | | |
Collapse
|
26
|
Yang X, Liang SH, Weyant DM, Lazarus P, Gallagher CJ, Omiecinski CJ. The expression of human microsomal epoxide hydrolase is predominantly driven by a genetically polymorphic far upstream promoter. J Pharmacol Exp Ther 2009; 330:23-30. [PMID: 19364907 DOI: 10.1124/jpet.109.150870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microsomal epoxide hydrolase (EPHX1) biotransforms epoxide derivatives of pharmaceuticals, including metabolites of certain antiepileptic medications, such as phenytoin and carbamazepine, and many environmental epoxides, such as those derived from butadiene, benzene, and carcinogenic polyaromatic hydrocarbons. We previously identified a far upstream promoter region, designated E1-b, in the EPHX1 gene that directs expression of an alternatively spliced EPHX1 mRNA transcript in human tissues. In this investigation, we characterized the structural features and expression character of the E1-b promoter region. Results of quantitative real-time polymerase chain reaction analyses demonstrated that the E1-b variant transcript is preferentially and broadly expressed in most tissues, such that it accounts for the majority of total EPHX1 transcript in vivo. Comparative genomic sequence comparisons indicated that the human EPHX1 E1-b gene regulatory region is primate-specific. Direct sequencing and genotyping approaches in 450 individuals demonstrated that the E1-b promoter region harbors a series of transposable element cassettes, including a polymorphic double Alu insertion. Results of reporter assays conducted in several human cell lines demonstrated that the inclusion of the Alu(+/+) insertion significantly decreases basal transcriptional activities. Furthermore, using haplotype block analyses, we determined that the E1-b polymorphic promoter region was not in linkage disequilibrium with two previously identified nonsynonomous single nucleotide polymorphisms (SNPs) in the coding region or with functional SNPs previously identified in the proximal promoter region of the gene. These results demonstrate that the upstream E1-b promoter is the major regulator of EPHX1 expression in human tissues and that polymorphism in this region may contribute an interindividual risk determinant to xenobiotic-induced toxicities.
Collapse
Affiliation(s)
- Xi Yang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wang P, Fedoruk MN, Rupert JL. Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists potential doping agents? Sports Med 2009; 38:1065-79. [PMID: 19026021 DOI: 10.2165/00007256-200838120-00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the decade since the angiotensin-converting enzyme (ACE) gene was first proposed to be a 'human gene for physical performance', there have been numerous studies examining the effects of ACE genotype on physical performance phenotypes such as aerobic capacity, muscle function, trainability, and athletic status. While the results are variable and sometimes inconsistent, and corroborating phenotypic data limited, carriers of the ACE 'insertion' allele (the presence of an alu repeat element in intron 16 of the gene) have been reported to have higher maximum oxygen uptake (VO2max), greater response to training, and increased muscle efficiency when compared with individuals carrying the 'deletion' allele (absence of the alu repeat). Furthermore, the insertion allele has been reported to be over-represented in elite athletes from a variety of populations representing a number of endurance sports. The mechanism by which the ACE insertion genotype could potentiate physical performance is unknown. The presence of the ACE insertion allele has been associated with lower ACE activity (ACEplasma) in number of studies, suggesting that individuals with an innate tendency to have lower ACE levels respond better to training and are at an advantage in endurance sporting events. This could be due to lower levels of angiotensin II (the vasoconstrictor converted to active form by ACE), higher levels of bradykinin (a vasodilator degraded by ACE) or some combination of the two phenotypes. Observations that individuals carrying the ACE insertion allele (and presumably lower ACEplasma) have an enhanced response to training or are over-represented amongst elite athletes raises the intriguing question: would individuals with artificially lowered ACEplasma have similar training or performance potential? As there are a number of drugs (i.e. ACE inhibitors and angiotensin II type 1 receptor antagonists [angiotensin receptor blockers--ARBs]) that have the ability to either reduce ACEplasma activity or block the action of angiotensin II, the question is relevant to the study of ergogenic agents and to the efforts to rid sports of 'doping'. This article discusses the possibility that ACE inhibitors and ARBs, by virtue of their effects on ACE or angiotensin II function, respectively, have performance-enhancing capabilities; it also reviews the data on the effects of these medications on VO2max, muscle composition and endurance capacity in patient and non-patient populations. We conclude that, while the direct evidence supporting the hypothesis that ACE-related medications are potential doping agents is not compelling, there are insufficient data on young, athletic populations to exclude the possibility, and there is ample, albeit indirect, support from genetic studies to suggest that they should be. Unfortunately, given the history of drug experimentation in athletes and the rapid appropriation of therapeutic agents into the doping arsenal, this indirect evidence, coupled with the availability of ACE-inhibiting and ACE-receptor blocking medications may be sufficiently tempting to unscrupulous competitors looking for a shortcut to the finish line.
Collapse
Affiliation(s)
- Pei Wang
- School of Human Kinetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
28
|
van der Vaart M, Pretorius PJ. A Method for Characterization of Total Circulating DNA. Ann N Y Acad Sci 2008; 1137:92-7. [DOI: 10.1196/annals.1448.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Srivastava J, Premi S, Kumar S, Ali S. Organization and differential expression of the GACA/GATA tagged somatic and spermatozoal transcriptomes in Buffalo Bubalus bubalis. BMC Genomics 2008; 9:132. [PMID: 18366692 PMCID: PMC2346481 DOI: 10.1186/1471-2164-9-132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/20/2008] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Simple sequence repeats (SSRs) of GACA/GATA have been implicated with differentiation of sex-chromosomes and speciation. However, the organization of these repeats within genomes and transcriptomes, even in the best characterized organisms including human, remains unclear. The main objective of this study was to explore the buffalo transcriptome for its association with GACA/GATA repeats, and study the structural organization and differential expression of the GACA/GATA repeat tagged transcripts. Moreover, the distribution of GACA and GATA repeats in the prokaryotic and eukaryotic genomes was studied to highlight their significance in genome evolution. RESULTS We explored several genomes and transcriptomes, and observed total absence of these repeats in the prokaryotes, with their gradual accumulation in higher eukaryotes. Further, employing novel microsatellite associated sequence amplification (MASA) approach using varying length oligos based on GACA and GATA repeats; we identified and characterized 44 types of known and novel mRNA transcripts tagged with these repeats from different somatic tissues, gonads and spermatozoa of water buffalo Bubalus bubalis. GACA was found to be associated with higher number of transcripts compared to that with GATA. Exclusive presence of several GACA-tagged transcripts in a tissue or spermatozoa, and absence of the GATA-tagged ones in lung/heart highlights their tissue-specific significance. Of all the GACA/GATA tagged transcripts, approximately 30% demonstrated inter-tissue and/or tissue-spermatozoal sequence polymorphisms. Significantly, approximately 60% of the GACA-tagged and all the GATA-tagged transcripts showed highest or unique expression in the testis and/or spermatozoa. Moreover, approximately 75% GACA-tagged and all the GATA-tagged transcripts were found to be conserved across the species. CONCLUSION Present study is a pioneer attempt exploring GACA/GATA tagged transcriptome in any mammalian species highlighting their tissue, stage and species-specific expression profiles. Comparative analysis suggests the gradual accumulation of these repeats in the higher eukaryotes, and establishes the GACA richness of the buffalo transcriptome. This is envisaged to establish the roles of integral simple sequence repeats and tagged transcripts in gene expression or regulation.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | - Sanjay Premi
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | - Sudhir Kumar
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | - Sher Ali
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| |
Collapse
|
30
|
Hunt JL. Molecular pathology in anatomic pathology practice: a review of basic principles. Arch Pathol Lab Med 2008; 132:248-60. [PMID: 18251585 DOI: 10.5858/2008-132-248-mpiapp] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2007] [Indexed: 11/06/2022]
Abstract
Molecular testing in pathology emerged shortly after polymerase chain reaction became a standard molecular biology assay. Testing efforts began in the clinical laboratories primarily with assays for genetically inherited diseases and assays for clonality in hematologic malignancies. Today, the field has evolved into "molecular diagnostics," which encompasses testing in almost every area of anatomic pathology. Molecular testing is now even making its way definitively into both surgical pathology and cytopathology, although molecular anatomic pathology is still young with few standard tissue-based molecular assays. As more clinically valuable information is gained from molecular pathology testing of tissues, unique challenges are also becoming apparent at the intersection between tissue diagnosis and DNA diagnosis. This review focuses on basic molecular pathology concepts, with particular emphasis on the challenge of tissue-based testing in anatomic pathology.
Collapse
Affiliation(s)
- Jennifer L Hunt
- Cleveland Clinic, Department of Pathology, 9500 Euclid Ave L25, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
Rodriguez J, Vives L, Jordà M, Morales C, Muñoz M, Vendrell E, Peinado MA. Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 2007; 36:770-84. [PMID: 18084025 PMCID: PMC2241897 DOI: 10.1093/nar/gkm1105] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methylation of the cytosine is the most frequent epigenetic modification of DNA in mammalian cells. In humans, most of the methylated cytosines are found in CpG-rich sequences within tandem and interspersed repeats that make up to 45% of the human genome, being Alu repeats the most common family. Demethylation of Alu elements occurs in aging and cancer processes and has been associated with gene reactivation and genomic instability. By targeting the unmethylated SmaI site within the Alu sequence as a surrogate marker, we have quantified and identified unmethylated Alu elements on the genomic scale. Normal colon epithelial cells contain in average 25 486 ± 10 157 unmethylated Alu's per haploid genome, while in tumor cells this figure is 41 995 ± 17 187 (P = 0.004). There is an inverse relationship in Alu families with respect to their age and methylation status: the youngest elements exhibit the highest prevalence of the SmaI site (AluY: 42%; AluS: 18%, AluJ: 5%) but the lower rates of unmethylation (AluY: 1.65%; AluS: 3.1%, AluJ: 12%). Data are consistent with a stronger silencing pressure on the youngest repetitive elements, which are closer to genes. Further insights into the functional implications of atypical unmethylation states in Alu elements will surely contribute to decipher genomic organization and gene regulation in complex organisms.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Piriyapongsa J, Polavarapu N, Borodovsky M, McDonald J. Exonization of the LTR transposable elements in human genome. BMC Genomics 2007; 8:291. [PMID: 17725822 PMCID: PMC2008291 DOI: 10.1186/1471-2164-8-291] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 08/28/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retrotransposons have been shown to contribute to evolution of both structure and regulation of protein coding genes. It has been postulated that the primary mechanism by which retrotransposons contribute to structural gene evolution is through insertion into an intron or a gene flanking region, and subsequent incorporation into an exon. RESULTS We found that Long Terminal Repeat (LTR) retrotransposons are associated with 1,057 human genes (5.8%). In 256 cases LTR retrotransposons were observed in protein-coding regions, while 50 distinct protein coding exons in 45 genes were comprised exclusively of LTR RetroTransposon Sequence (LRTS). We go on to reconstruct the evolutionary history of an alternatively spliced exon of the Interleukin 22 receptor, alpha 2 gene (IL22RA2) derived from a sequence of retrotransposon of the Mammalian apparent LTR retrotransposons (MaLR) family. Sequencing and analysis of the homologous regions of genomes of several primates indicate that the LTR retrotransposon was inserted into the IL22RA2 gene at least prior to the divergence of Apes and Old World monkeys from a common ancestor (approximately 25 MYA). We hypothesize that the recruitment of the part of LTR as a novel exon in great ape species occurred prior to the divergence of orangutans and humans from a common ancestor (approximately 14 MYA) as a result of a single mutation in the proto-splice site. CONCLUSION Our analysis of LRTS exonization events has shown that the patterns of LRTS distribution in human exons support the hypothesis that LRTS played a significant role in human gene evolution by providing cis-regulatory sequences; direct incorporation of LTR sequences into protein coding regions was observed less frequently. Combination of computational and experimental approaches used for tracing the history of the LTR exonization process of IL22RA2 gene presents a promising strategy that could facilitate further studies of transposon initiated gene evolution.
Collapse
Affiliation(s)
| | - Nalini Polavarapu
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Mark Borodovsky
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- Division of Computational Science and Engineering at College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - John McDonald
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
33
|
Kourtidis A, Drosopoulou E, Pantzartzi CN, Chintiroglou CC, Scouras ZG. Three new satellite sequences and a mobile element found inside HSP70 introns of the Mediterranean mussel (Mytilus galloprovincialis). Genome 2007; 49:1451-8. [PMID: 17426760 DOI: 10.1139/g06-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the characterization of 3 new repetitive sequences from the bivalve mollusc Mytilus galloprovincialis, designated Mg1, Mg2, and Mg3, with monomer lengths of 169, 260, and 70 bp, respectively. The 3 repeats together constitute approximately 7.8% of the M. galloprovincialis genome and were found, together with ApaI-type 2 repeats, inside the introns of 2 genes of the HSP70 family, hsc70 and hsc71. Both the monomer length and the genomic content of the repeats indicate satellite sequences. The Mg1 repetitive region and its flanking sequences exhibit significant homology to CvE, a member of the Pearl family of mobile elements found in the eastern oyster (Crassostrea virginica). Thus, the whole homologous region is designated MgE, the first putative transposable element characterized in M. galloprovincialis. The ApaI, Mg2, and Mg3 repeats are continuously arranged inside the introns of both the hsc70 and hsc71 genes. The presence of perfect inverted repeats flanking the ApaI-Mg2-Mg3 repetitive region, as well as a sequence analysis of the repeats, indicates a transposition-like insertion of this region. The genes of the HSP70 family are highly conserved, and the presence of repetitive DNA or of mobile elements inside their introns is reported here for the first time.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Genetics, Development, and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki (AUTh), GR-54124, Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
34
|
Rozanska M, Sobczak K, Jasinska A, Napierala M, Kaczynska D, Czerny A, Koziel M, Kozlowski P, Olejniczak M, Krzyzosiak WJ. CAG and CTG repeat polymorphism in exons of human genes shows distinct features at the expandable loci. Hum Mutat 2007; 28:451-8. [PMID: 17226796 DOI: 10.1002/humu.20466] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the trinucleotide repeats are present in the exons of numerous human genes, the allele distribution is not well known, and the factors responsible for their intergenic and intragenic variability are not well understood. We have analyzed the length and sequence variation within the most commonly occurring CAG and CTG repeats in a large number of human genes selected to contain the longest reported repeat tracts. Our study revealed that in genes other than those implicated in the Triplet Repeat Expansion Diseases (TREDs), the very long and highly polymorphic repeats are rather infrequent. The length of pure repeat tract in the most frequent allele was found to correlate well with the rate of the repeat length polymorphism, and CAA triplets were shown to be the most frequent CAG repeat interruptions. As both the CAG and CAA triplets code for glutamine, our results may suggest that the selective pressure disfavors the long uninterrupted CAG repeats in genes and transcripts but not the long normal polyglutamine tracts in proteins. This may indicate that hairpin structures formed in ssDNA and RNA by long pure CAG repeats would be selected against as they may impede normal cellular processes.
Collapse
Affiliation(s)
- Matylda Rozanska
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sui Y, Yang Z, Xiong S, Zhang L, Blanchard KL, Peiper SC, Dynan WS, Tuan D, Ko L. Gene amplification and associated loss of 5' regulatory sequences of CoAA in human cancers. Oncogene 2006; 26:822-35. [PMID: 16878147 PMCID: PMC9245580 DOI: 10.1038/sj.onc.1209847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CoAA is an RRM-containing transcriptional coactivator that stimulates transcriptional activation and regulates alternative splicing. We show that the CoAA gene is amplified at the chromosome 11q13 locus in a subset of primary human cancers including non-small cell lung carcinoma, squamous cell skin carcinoma and lymphoma. Analysis of 42 primary tumors suggests that CoAA amplifies independently from the CCND1 locus. Detailed mapping of three CoAA amplicons reveals that the amplified CoAA gene is consistently located at the 5' boundaries of the amplicons. The CoAA coding and basal promoter sequences are retained within the amplicons but upstream silencing sequences are lost. CoAA protein is overexpressed in tumors containing the amplified CoAA gene. RNA dot blot analysis of 100 cases of primary tumors suggests elevated CoAA mRNA expression. CoAA positively regulates its own basal promoter in transfection assays. Thus, gene amplification, loss of silencing sequence and positive feedback regulation may lead to drastic upregulation of CoAA protein. CoAA has transforming activities when tested in soft agar assays, and CoAA is homologous to oncoproteins EWS and TLS, which regulate alternative splicing. These data imply that CoAA may share a similar oncogenic mechanism with oncogene EWS and that CoAA deregulation may alter the alternative splicing of target genes.
Collapse
Affiliation(s)
- Y Sui
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Z Yang
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - S Xiong
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - L Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - KL Blanchard
- Lilly Research Laboratories, Indianapolis, IN, USA
| | - SC Peiper
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - WS Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - D Tuan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - L Ko
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
36
|
Cattori V, Tandon R, Pepin A, Lutz H, Hofmann-Lehmann R. Rapid detection of feline leukemia virus provirus integration into feline genomic DNA. Mol Cell Probes 2006; 20:172-81. [PMID: 16488115 DOI: 10.1016/j.mcp.2005.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/18/2005] [Indexed: 01/21/2023]
Abstract
Feline leukemia virus (FeLV) is a gamma retrovirus that induces fatal diseases in domestic cats. Efficacious FeLV vaccines prevent persistent viremia and development of FeLV-related disease after virus exposure, but not minimal viral replication and a provirus-positive state as recently demonstrated using sensitive real-time PCR assays. Proviral integration is an important parameter of latent infection and persistence of retroviruses in infected cells. So far, FeLV-specific real-time PCR assays could not distinguish between the integrated and episomal forms of the provirus. Thus, it was the aim of the present study to develop a rapid assay for the detection of FeLV proviral integration. The test combines conventional and quantitative real-time PCR that use virus-specific primers and primers specific for cat genomic small interspersed nuclear elements. It was applied to analyze the time course of proviral integration into the genome of a feline fibroblast cell line and detect provirus integration in peripheral white blood cells from vaccinated and unvaccinated, FeLV-exposed cats. The newly developed rapid test will essentially contribute to a better understanding of the mechanisms involved in the pathogenesis of FeLV infection and be especially useful in the development of antiretroviral vaccines and therapies aimed at the inhibition of proviral integration.
Collapse
Affiliation(s)
- Valentino Cattori
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E. GREM, a technique for genome-wide isolation and quantitative analysis of promoter active repeats. Nucleic Acids Res 2006; 34:e67. [PMID: 16698959 PMCID: PMC3303178 DOI: 10.1093/nar/gkl335] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We developed a technique called GREM (Genomic Repeat Expression Monitor) that can be applied to genome-wide isolation and quantitative analysis of any kind of transcriptionally active repetitive elements. Briefly, the technique includes three major stages: (i) generation of a transcriptome wide library of cDNA 5′ terminal fragments, (ii) selective amplification of repeat-flanking genomic loci and (iii) hybridization of the cDNA library (i) to the amplicon (ii) with subsequent selective amplification and cloning of the cDNA-genome hybrids. The sequences obtained serve as ‘tags’ for promoter active repetitive elements. The advantage of GREM is an unambiguous mapping of individual promoter active repeats at a genome-wide level. We applied GREM for genome-wide experimental identification of human-specific endogenous retroviruses and their solitary long terminal repeats (LTRs) acting in vivo as promoters. Importantly, GREM tag frequencies linearly correlated with the corresponding LTR-driven transcript levels found using RT–PCR. The GREM technique enabled us to identify 54 new functional human promoters created by retroviral LTRs.
Collapse
Affiliation(s)
- Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow 117997, Russia.
| | | | | | | |
Collapse
|
38
|
Lucchinetti E, Feng J, Silva RD, Tolstonog GV, Schaub MC, Schumann GG, Zaugg M. Inhibition of LINE-1 expression in the heart decreases ischemic damage by activation of Akt/PKB signaling. Physiol Genomics 2006; 25:314-24. [PMID: 16418318 DOI: 10.1152/physiolgenomics.00251.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microarray analyses indicate that ischemic and pharmacological preconditioning suppress overexpression of the non-long terminal repeat retrotransposon long interspersed nuclear element 1 (LINE-1, L1) after ischemia-reperfusion in the rat heart. We tested whether L1 overexpression is mechanistically involved in postischemic myocardial damage. Isolated, perfused rat hearts were treated with antisense or scrambled oligonucleotides (ODNs) against L1 for 60 min and exposed to 40 min of ischemia followed by 60 min of reperfusion. Functional recovery and infarct size were measured. Effective nuclear uptake was determined by FITC-labeled ODNs, and downregulation of L1 transcription was confirmed by RT-PCR. Immunoblot analysis was used to assess changes in expression levels of the L1-encoded proteins ORF1p and ORF2p. Immunohistochemistry was performed to localize ORF1/2 proteins in cardiac tissue. Effects of ODNs on prosurvival protein kinase B (Akt/PKB) expression and activity were also determined. Antisense ODNs against L1 prevented L1 burst after ischemia-reperfusion. Inhibition of L1 increased Akt/PKBbeta expression, enhanced phosphorylation of PKB at serine 473, and markedly improved postischemic functional recovery and decreased infarct size. Antisense ODN-mediated protection was abolished by LY-294002, confirming the involvement of the Akt/PKB survival pathway. ORF1p and ORF2p were found to be expressed in rat heart. ORF1p showed a predominantly nuclear localization in cardiomyocytes, whereas ORF2p was exclusively present in endothelial cells. ORF1p levels increased in response to ischemia, which was reversed by antisense ODN treatment. No significant changes in ORF2p were noted. Our results demonstrate that L1 suppression favorably affects postischemic outcome in the heart. Modifying transcriptional activity of L1 may represent a novel anti-ischemic therapeutic strategy.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Cardiovascular Anesthesia Research Laboratory, Institute of Anesthesiology, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Ebersole T, Okamoto Y, Noskov VN, Kouprina N, Kim JH, Leem SH, Barrett JC, Masumoto H, Larionov V. Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Res 2005; 33:e130. [PMID: 16141190 PMCID: PMC1197135 DOI: 10.1093/nar/gni129] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human artificial chromosomes (HACs) provide a unique opportunity to study kinetochore formation and to develop a new generation of vectors with potential in gene therapy. An investigation into the structural and the functional relationship in centromeric tandem repeats in HACs requires the ability to manipulate repeat substructure efficiently. We describe here a new method to rapidly amplify human alphoid tandem repeats of a few hundred base pairs into long DNA arrays up to 120 kb. The method includes rolling-circle amplification (RCA) of repeats in vitro and assembly of the RCA products by in vivo recombination in yeast. The synthetic arrays are competent in HAC formation when transformed into human cells. As short multimers can be easily modified before amplification, this new technique can identify repeat monomer regions critical for kinetochore seeding. The method may have more general application in elucidating the role of other tandem repeats in chromosome organization and dynamics.
Collapse
Affiliation(s)
| | - Yasuhide Okamoto
- Division of Biological Science, Graduate School of Science, Nagoya UniversityChikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | - Vladimir Larionov
- To whom correspondence should be addressed. Tel: +1 301 496 7941; Fax: +1 301 480 2772;
| |
Collapse
|
40
|
Harbig J, Sprinkle R, Enkemann SA. A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array. Nucleic Acids Res 2005; 33:e31. [PMID: 15722477 PMCID: PMC549426 DOI: 10.1093/nar/gni027] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
One of the biggest problems facing microarray experiments is the difficulty of translating results into other microarray formats or comparing microarray results to other biochemical methods. We believe that this is largely the result of poor gene identification. We re-identified the probesets on the Affymetrix U133 plus 2.0 GeneChip array. This identification was based on the sequence of the probes and the sequence of the human genome. Using the BLAST program, we matched probes with documented and postulated human transcripts. This resulted in the redefinition of approximately 37% of the probes on the U133 plus 2.0 array. This updated identification specifically points out where the identification is complicated by cross-hybridization from splice variants or closely related genes. More than 5000 probesets detect multiple transcripts and therefore the exact protein affected cannot be readily concluded from the performance of one probeset alone. This makes naming difficult and impacts any downstream analysis such as associating gene ontologies, mapping affected pathways or simply validating expression changes. We have now automated the sequence-based identification and can more appropriately annotate any array where the sequence on each spot is known.
Collapse
Affiliation(s)
| | | | - Steven A. Enkemann
- To whom correspondence should be addressed. Tel: +1 813 745 9033; Fax: +1 813 979 7265;
| |
Collapse
|
41
|
Napierala M, Michalowski D, de Mezer M, Krzyzosiak WJ. Facile FMR1 mRNA structure regulation by interruptions in CGG repeats. Nucleic Acids Res 2005; 33:451-63. [PMID: 15659577 PMCID: PMC548340 DOI: 10.1093/nar/gki186] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA metabolism is a major contributor to the pathogenesis of clinical disorders associated with premutation size alleles of the fragile X mental retardation (FMR1) gene. Herein, we determined the structural properties of numerous FMR1 transcripts harboring different numbers of both CGG repeats and AGG interruptions. The stability of hairpins formed by uninterrupted repeat-containing transcripts increased with the lengthening of the repeat tract. Even a single AGG interruption in the repeated sequence dramatically changed the folding of the 5'UTR fragments, typically resulting in branched hairpin structures. Transcripts containing different lengths of CGG repeats, but sharing a common AGG pattern, adopted similar types of secondary structures. We postulate that interruption-dependent structure variants of the FMR1 mRNA contribute to the phenotype diversity, observed in premutation carriers.
Collapse
|
42
|
Valente L, Nishikura K. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:299-338. [PMID: 16096031 DOI: 10.1016/s0079-6603(04)79006-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Louis Valente
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
43
|
Sobczak K, Krzyzosiak WJ. CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J Biol Chem 2004; 280:3898-910. [PMID: 15533937 DOI: 10.1074/jbc.m409984200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2), one of the hereditary human neurodegenerative disorders, is caused by the expansion of the CAG tandem repeats in the translated sequence of the SCA2 gene. In a normal population the CAG repeat is polymorphic not only in length but also in the number and localization of its CAA interruptions. The aim of this study was to determine the structure of the repeat region in the normal and mutant SCA2 transcripts and to reveal the structural basis of its normal function and dysfunction. We show here that the properties of the CAA interruptions are major determinants of the CAG repeat folding in the normal SCA2 transcripts. We also show that the uninterrupted repeats in mutant transcripts form slippery hairpins, whose length is further reduced by the base pairing of the repeat portion with a specific flanking sequence. The structural organization of the repeat interruption systems present in other human transcripts, such as SCA1, TBP, FOXP2, and MAML2, are also discussed.
Collapse
Affiliation(s)
- Krzysztof Sobczak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | |
Collapse
|
44
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447475 DOI: 10.1002/cfg.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|