1
|
Mootz M, Jakwerth CA, Schmidt‐Weber CB, Zissler UM. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 2022; 77:767-777. [PMID: 34343347 DOI: 10.1111/all.15033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.
Collapse
Affiliation(s)
- Martine Mootz
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
- Technical University of Munich (TUM)TUM School of MedicineKlinikum Rechts der Isar Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| |
Collapse
|
2
|
Palalı M, Murat Özcan K, Özdaş S, Köseoğlu S, Özdaş T, Erbek SS, Yıldırım E, Ensari S, Dere H. Investigation of SCGB3A1 (UGRP2) gene arrays in patients with nasal polyposis. Eur Arch Otorhinolaryngol 2014; 271:3209-14. [DOI: 10.1007/s00405-014-3020-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
3
|
Bowman C, Delrieu O. Immunogenetics of drug-induced skin blistering disorders. Part II: Synthesis. Pharmacogenomics 2009; 10:779-816. [DOI: 10.2217/pgs.09.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The overall immunopathogenesis relevant to a large series of disorders caused by a drug or its associated hyperimmune condition is discussed based upon examining the genetics of severe drug-induced bullous skin problems (sporadic idiosyncratic adverse events including Stevens–Johnson syndrome and Toxic epidermal necrolysis). New results from an exemplar study on shared precipitating and perpetuating inner causes with other related disease phenotypes including aphtous stomatitis, Behçets, erythema multiforme, Hashimoto’s thyroiditis, pemphigus, periodic fevers, Sweet’s syndrome and drug-induced multisystem hypersensitivity are presented. A call for a collaborative, wider demographic profiling and deeper immunotyping in suggested future work is made.
Collapse
Affiliation(s)
- Clive Bowman
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AH, UK
| | | |
Collapse
|
4
|
Yamada A, Suzuki D, Miyazono A, Oshima K, Kamiya A, Zhao B, Takami M, Donnelly RP, Itabe H, Yamamoto M, Kimura S, Kamijo R. IFN-gamma down-regulates Secretoglobin 3A1 gene expression. Biochem Biophys Res Commun 2009; 379:964-8. [PMID: 19135978 PMCID: PMC2792195 DOI: 10.1016/j.bbrc.2008.12.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 12/30/2008] [Indexed: 11/21/2022]
Abstract
STAT1 mediates Interferon (IFN)-dependent positive and negative regulation of inflammatory gene expression in lung. In this study, we examined the effect of IFN-gamma on the expression of SCGB3A1 which is thought to play crucial roles in inflammation and epithelial cell differentiation in lung. We found that expression of SCGB3A1 was down-regulated by IFN-gamma in a time- and dose-dependent manner in the murine transformed Clara Cells (mtCC) line. IFN-gamma induced the phosphorylation of STAT1, which binds to a STAT-binding element (SBE) in the SCGB3A1 gene promoter, leading to decreased transcriptional activation of this gene.
Collapse
Affiliation(s)
- Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dai Suzuki
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Agasa Miyazono
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
- Department of Periodontology, School of Dentistry, Showa University, Ohta, Tokyo 145-8515, Japan
| | - Kumiko Oshima
- Department of Biological Chemistry, School of Pharmacy, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Akihide Kamiya
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Baohong Zhao
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Raymond P. Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Hiroyuki Itabe
- Department of Biological Chemistry, School of Pharmacy, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, School of Dentistry, Showa University, Ohta, Tokyo 145-8515, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
5
|
Tomita T, Yamada A, Miyakoshi M, Kido T, Sheikh F, Srisodsai A, Miyajima A, Donnelly RP, Kimura S. Oncostatin M regulates secretoglobin 3A1 and 3A2 expression in a bidirectional manner. Am J Respir Cell Mol Biol 2008; 40:620-30. [PMID: 18978304 DOI: 10.1165/rcmb.2008-0062oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Secretoglobin (SCGB) 3A1 and 3A2 are members of the small molecular weight secretoglobin gene superfamily. SCGB3A1 is a tumor suppressor gene, whereas SCGB3A2 has anti-inflammatory properties. Both genes are mainly expressed in the lung and trachea in mice. Whether the expression and/or function of these two genes are related is not known. Here we show that the expression of SCGB3A1 and SCGB3A2 are bidirectionally regulated by oncostatin M (OSM) when examined in a mouse transformed Clara cell line (mtCC); SCGB3A1 is up-regulated by OSM, while SCGB3A2 is down-regulated in a time- and dose-dependent manner. OSM-activated STAT3/5, through binding to the STAT-binding element located at -201 to -209 bp in the mouse Scgb3a1 gene promoter, and the extracellular signal-regulated kinase (ERK)- and p38-mitogen-activated protein kinase (MAPK) pathways are responsible for the OSM-induced up-regulation of SCGB3A1 expression. On the other hand, the -113 to -273 bp region in the Scgb3a2 promoter appears to be responsible for the OSM induced down-regulation of the gene. No significant differences in the levels or patterns of specific DNA-binding proteins were found in the -113 to -273 bp region as determined by electrophoretic mobility shift assays. Neither the ERK- nor p38-MAPK pathways were involved in the OSM-induced reduction of Scgb3a2 promoter activity. These results suggest that OSM-induced suppression of SCGB3A2 expression is an indirect effect of OSM. Expression of the Clara cell marker, CYP2F2, was markedly decreased upon OSM treatment in parallel with the decrease of SCGB3A2 expression in mtCC cells. The differential regulation of Scgb3a1 and Scgb3a2 gene expression by OSM may explain the unique functions of these genes in the lung.
Collapse
Affiliation(s)
- Takeshi Tomita
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tomita T, Kimura S. Regulation of mouse Scgb3a1 gene expression by NF-Y and association of CpG methylation with its tissue-specific expression. BMC Mol Biol 2008; 9:5. [PMID: 18194566 PMCID: PMC2266941 DOI: 10.1186/1471-2199-9-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 01/14/2008] [Indexed: 11/10/2022] Open
Abstract
Background Secretoglobin (SCGB) 3A1 is a secretory protein of small molecular weight with tumor suppressor function. It is highly expressed in lung and trachea in both human and mouse, with additional tissues expressing the protein that differ depending on the species. However, little is known about the function and transcriptional regulation of this gene in normal mouse tissues. Results By reporter gene transfection and gel mobility shift analyses, we demonstrated that expression of the mouse Scgb3a1 gene is regulated by a PU-box binding protein and a ubiquitous transcription factor NF-Y that respectively binds to the PU-boxes located at -99 to -105 bp and -158 to -164 bp, and the "CCAAT" binding sites located at -425 to -429 bp and -498 to -502 bp from the transcription start site of the gene. However, the effect of PU-box binding protein on transcriptional activation is minimal as compared to NF-Y, suggesting that NF-Y is a more critical transcription factor for mouse Scgb3a1 gene transcription. Despite that NF-Y is a ubiquitous factor, Scgb3a1 is highly expressed only in mouse lung and mtCC cells that are derived from SV40 transformed mouse Clara cells, but not in ten other mouse tissues/cells examined. Gene methylation analysis revealed that within 600 bp of the Scgb3a1 gene promoter region, there are nine CpG methylation sites present, of which two CpGs closest to the transcription start site of the gene are unmethylated in the tissues/cells expressing SCGB3A1. Conclusion A ubiquitous transcription factor NF-Y binds to and activates expression of the mouse Scgb3a1 gene and tissue-specific expression of the gene is associated with CpG methylation of the promoter.
Collapse
Affiliation(s)
- Takeshi Tomita
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
7
|
Krop I, Parker MT, Bloushtain-Qimron N, Porter D, Gelman R, Sasaki H, Maurer M, Terry MB, Parsons R, Polyak K. HIN-1, an inhibitor of cell growth, invasion, and AKT activation. Cancer Res 2005; 65:9659-69. [PMID: 16266985 DOI: 10.1158/0008-5472.can-05-1663] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HIN-1 gene encoding a small, secreted protein is silenced due to methylation in a substantial fraction of breast, prostate, lung, and pancreatic carcinomas, suggesting a potential tumor suppressor function. The receptor of HIN-1 is unknown, but ligand-binding studies indicate the presence of high-affinity cell surface HIN-1 binding on epithelial cells. Here, we report that HIN-1 is a potent inhibitor of anchorage-dependent and anchorage-independent cell growth, cell migration, and invasion. Expression of HIN-1 in synchronized cells inhibits cell cycle reentry and the phosphorylation of the retinoblastoma protein (Rb), whereas in exponentially growing cells, HIN-1 induces apoptosis without apparent cell cycle arrest and effect on Rb phosphorylation. Investigation of multiple signaling pathways revealed that mitogen-induced phosphorylation and activation of AKT are inhibited in HIN-1-expressing cells. In addition, expression of constitutively activate AKT abrogates HIN-1-mediated growth arrest. Taken together, these studies provide further evidence that HIN-1 possesses tumor suppressor functions, and that these activities may be mediated through the AKT signaling pathway.
Collapse
Affiliation(s)
- Ian Krop
- Department of Medical Oncology and Biostatistics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamada A, Sheikh F, Niimi T, DeMayo FJ, Keegan AD, Donnelly RP, Kimura S. Induction of uteroglobin-related protein 2 (Ugrp2) gene expression by the Th2 cytokines IL-4 and IL-13. THE JOURNAL OF IMMUNOLOGY 2005; 175:5708-15. [PMID: 16237061 PMCID: PMC1364478 DOI: 10.4049/jimmunol.175.9.5708] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uteroglobin-related proteins 1 and 2 (UGRP1 and -2) are thought to play important roles in inflammation and immunologic responses in the lung. In this study we demonstrate that IL-4 and IL-13 enhance Ugrp2 gene expression in the mouse transformed Clara cell line, mtCC, in a time- and dose-dependent manner. Addition of actinomycin D abrogated the IL-4- and IL-13-induced increase of Ugrp2 expression, demonstrating that this increase occurs at the transcriptional level. When mtCC cells were pretreated with IFN-gamma before the addition of IL-4 or IL-13, IL-4- and 13-induced Ugrp2 mRNA increase was markedly decreased. IL-4 and IL-13 induced phosphorylation of STAT6 in mtCC cells, which binds to the proximal STAT-binding element (SBE) in the Ugrp2 gene promoter, leading to transcriptional activation of this gene. Mutations of the proximal SBE abrogated the binding of activated STAT6 to this site and the IL-4-induced increase in Ugrp2 gene promoter activity. IFN-gamma-activated STAT1 binds to the same SBE in the Ugrp2 gene promoter to which STAT6 binds and decreases the binding of STAT6 to this site. Furthermore, an IL-4-induced increase in Ugrp2 expression was not observed in primary cultures of lung cells derived from STAT6-deficient mice. These results indicate that Ugrp2 expression is enhanced by IL-4 and IL-13 through STAT6 binding to the proximal SBE located in the Ugrp2 gene promoter.
Collapse
Affiliation(s)
- Atsushi Yamada
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|