1
|
Li S, Ren X, Liu Y, Wang L, Zhou Y, Zhang Y, Yan Z, Lan X, Guo L. Multifunctional carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel loaded with ginsenoside Rg1 and polydopamine nanoparticles for infected diabetic wound healing. Int J Biol Macromol 2024; 282:136686. [PMID: 39427794 DOI: 10.1016/j.ijbiomac.2024.136686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Besides bacterial infection, diabetic wounds are often accompanied by local inflammatory response, oxidative stress imbalances, and vascular formation disorders, which are the main reasons for long-term non-healing of diabetic wounds. In order to solve this problem, Ch-OCMC-PDA NPs-Rg1 self-healing hydrogel was constructed by Schiff base reaction. With the addition of PDA NPs and Rg1, Ch-OCMC-PDA NPs-Rg1 hydrogel showed excellent physical properties, like compressive strength of 142 kPa, swelling ratio of 148.91 %, and Rg1 carried in the hydrogel could achieve a slow release of 90.59 % within 48 h. What's more, PDA NPs endowed it with highly efficient photothermal antibacterial properties. In addition to excellent biocompatibility, Ch-OCMC-PDA NPs-Rg1 hydrogel could effectively clear intracellular reactive oxygen species, promote macrophages M2 transformation, and facilitate human umbilical vein endothelial cells migration and tube formation. In vivo experiments exhibited that Ch-OCMC-PDA NPs-Rg1 hydrogel could reduce wound inflammation, stimulate early angiogenesis, promote collagen deposition, and shorten the healing process of diabetic infected wounds, and the wound healing rate was significantly increased compared with other groups, reaching 98.41 ± 0.31 %. In summary, the multi-functional dynamic Ch-OCMC-PDA NPs-Rg1 hydrogel provides a new possibility for the treatment of diabetic infection wounds.
Collapse
Affiliation(s)
- Sihui Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China; Ziyang Central Hospital, China
| | - Xiaofeng Ren
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Youbo Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Li Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yang Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yunan Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Zhongyi Yan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ling Guo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Tahvilian R, Golesorkhi MA, Parhoudeh F, Heydarpour F, Hosseini H, Baghshahi H, Akbari H, Memarzadeh MR, Mehran M, Bagheri H. The Effect of the Combination of Ginseng, Tribulus Terrestris, and L-arginine on the Sexual Performance of Men with Erectile Dysfunction: a randomized, double-blind, parallel, and placebo-controlled clinical trial. J Pharmacopuncture 2024; 27:82-90. [PMID: 38948316 PMCID: PMC11194517 DOI: 10.3831/kpi.2024.27.2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Nitric oxide is the most important mediator of penile erection after the onset of sexual excitement. It activates cyclic guanosine monophosphate (cGMP), increasing penile blood flow. Most pharmaceutical medications prevent enzyme phosphodiesterase type 5 (PDE-5) from breaking down cGMP, thus keeping its level high. However, due to the adverse effects of pharmacological therapies, herbal drugs that improve sexual function have gained attention recently. This study aimed to investigate the combined effects of ginseng, Tribulus terrestris, and L-arginine amino acid on the sexual performance of individuals with erectile dysfunction (ED) using the 5-item version of the International Index of Erectile Function (IIEF-5) questionnaire. Methods Over three months, 98 men with erectile dysfunction were randomly assigned to receive either 500 mg of herbal supplements or placebo pills. Each herbal tablet contained 100 mg of protodioscin, 35 mg of ginsenosides, and 250 mg of L-arginine. Results The results showed that the changes in the average scores of ILEF-5 within each group before and after the intervention indicated that all parameters related to the improvement of sexual function in patients with erectile dysfunction improved in the herbal treatment group (p < 0.001). The herbal group significantly improved IIEF-5 scores in non-diabetics (p < 0.05). However, there was no significant difference in the changes of IIEF-5 scores between the two intervention and control groups in diabetic patients. Conclusion In conclusion, ginseng, Tribulus terrestris, and L-arginine have properties that increase energy and strengthen sexual function, making them suitable for patients with sexual disorders.
Collapse
Affiliation(s)
- Reza Tahvilian
- School of Pharmacy, Pharmaceutical Sciences Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Farajollah Parhoudeh
- School of Medicine Imam Reza Hospital Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Heydarpour
- School of Health, Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Hossein Akbari
- Social Determinants of Health (SDH) Research Center, Department of Biostatistics and Epidemiology, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mehdi Mehran
- Barij Essence Medicinal Plants Research Center, Kashan, Iran
| | - Hosna Bagheri
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Atila D, Chen CY, Lin CP, Lee YL, Hasirci V, Tezcaner A, Lin FH. In vitro evaluation of injectable Tideglusib-loaded hyaluronic acid hydrogels incorporated with Rg1-loaded chitosan microspheres for vital pulp regeneration. Carbohydr Polym 2022; 278:118976. [PMID: 34973790 DOI: 10.1016/j.carbpol.2021.118976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Injectable systems receive attention in endodontics due to the complicated and irregular anatomical structure of root canals. Here, injectable Tideglusib (Td)-loaded hyaluronic acid hydrogels (HAH) incorporated with Rg1-loaded chitosan microspheres (CSM) were developed for vital pulp regeneration, providing release of Td and Rg1 to trigger odontoblastic differentiation of human dental pulp stem cells (DPSC) by Td and vascularization of pulp by Rg1. The optimal concentrations were determined as 90 nM and 50 μg/mL for Td and Rg1, and loaded in HA and CSM in HAH, respectively. Odontogenic (COL1A1, ALP, OCN, Axin-2, DSPP, and DMP1) and angiogenic (VEGFA, VEGFR2, and eNOS) differentiation of DPSC cultured in the presence of hydrogels was shown at gene expression level. Our results suggest that our injectable hydrogel formulation has potential to improve strategies for vital pulp regeneration. In vivo evaluations are needed to test the feasibility and potential of these hydrogels for vital pulp regeneration.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ching-Yun Chen
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Chun-Pin Lin
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University and Hospital, Taipei 106216, Taiwan
| | - Yuan-Ling Lee
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University and Hospital, Taipei 106216, Taiwan
| | - Vasif Hasirci
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34758, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey.
| | - Feng-Huei Lin
- Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli 35053, Taiwan; Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei 106216, Taiwan.
| |
Collapse
|
4
|
Hyun SH, Bhilare KD, In G, Park CK, Kim JH. Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles. J Ginseng Res 2022; 46:33-38. [PMID: 35058725 PMCID: PMC8753520 DOI: 10.1016/j.jgr.2021.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Traditionally, Asian ginseng or Korean ginseng, Panax ginseng has long been used in Korea and China to treat various diseases. The main active components of Panax ginseng is ginsenoside, which is known to have various pharmacological treatment effects such as antioxidant, vascular easing, anti-allergic, anti-inflammatory, anti-diabetes, and anticancer. Most reactive oxygen species (ROS) cause chronic diseases such as myocardial symptoms and cause fatal oxidative damage to cell membrane lipids and proteins. Therefore, many studies that inhibit the production of oxidative stress have been conducted in various fields of physiology, pathophysiology, medicine and health, and disease. Recently, ginseng or ginsenosides have been known to act as antioxidants in vitro and in vivo results, which have a beneficial effect on preventing cardiovascular disease. The current review aims to provide mechanisms and inform precious information on the effects of ginseng and ginsenosides on the prevention of oxidative stress and cardiovascular disease in animals and clinical trials.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Kiran D. Bhilare
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Jeollabuk-do, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeollabuk-do, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Jeollabuk-do, Republic of Korea
- Corresponding author. Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| |
Collapse
|
5
|
Moch Rizal D, Septiyorini N. Molecular Action of Herbal Medicine in Physiology of Erection and its Dysfunction. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224902002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Erection is a physiological process that involves vascular, hormonal, and nervous factors. Erectile dysfunction is one of the male sexual problems that occur globally and is reported to affect men's quality of life. Herbal plants have been widely used for disease treatment, including the problem of erectile dysfunction. This paper aims to review the molecular potential of various plants in the physiology of erection and to treat erectile dysfunction. The literature search was carried out through the Pubmed and Google Scholar databases regarding the molecular mechanisms of herbal plants and their potential involvement in the physiology of erection and overcoming erectile dysfunction. This paper focuses on six herbal plants: Panax ginseng, Ginkgo biloba, Epimedium, Black pepper, Tribulus terrestris, and Eurycoma longifolia. The six herbal plants have involvement in the erection process and have molecular potential in the treatment of erectile problems
Collapse
|
6
|
Yang F, Yang MY, Le JQ, Luo BY, Yin MD, Chao-Li, Jiang JL, Fang YF, Shao JW. Protective Effects and Therapeutics of Ginsenosides for Improving Endothelial Dysfunction: From Therapeutic Potentials, Pharmaceutical Developments to Clinical Trials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:749-772. [PMID: 35450513 DOI: 10.1142/s0192415x22500318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endothelium covers the internal lumen of the entire circulatory system and plays an important modulatory role in vascular homeostasis. Endothelium dysfunction, characterized by a vasoconstrictive, pro-inflammatory, and pro-coagulant state, usually manifests as a significant pathological process of vascular diseases, including hypertension, atherosclerosis (AS), stroke, diabetes mellitus, coronary artery disease, and cancer. Therefore, there is an urgent necessity to seek promising therapeutic drugs or remedies to ameliorate endothelial dysfunction-induced vascular ailments and complications. Recently, much attention has been attached to ginsenosides, the most significant active components of ginseng, which have always been referred to as "all-healing" and widely used for its extensively medicinal value. Surprisingly, ginsenosides have diverse biological activity which might be related to inflammation, apoptosis, oxidative stress, and angiogenesis. In this review, a brief introduction about endothelial dysfunction and ginsenosides was demonstrated, and the emphasis was put on summarizing multi-faceted pharmacological effects and underlying molecular mechanisms of ginsenosides on the endothelium, including vasorelaxation, anti-oxidation, anti-inflammation, and angio-modulation. Beyond that, nanotechnology to improve efficacy and the existing clinical trials of ginsenosides were concluded. Hopefully, our work will give suggestions for promoting clinical application of traditional Chinese medicine, e.g., hypertension, AS, diabetes, ischemic stroke, and cancer. This review provides a comprehensive base of knowledge for ginsenosides to prevention and treatment of vascular injury- related diseases with clinical significance.
Collapse
Affiliation(s)
- Fang Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ming-Yue Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Qing Le
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bang-Yue Luo
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Meng-Die Yin
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao-Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jia-Li Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
7
|
Lycoperoside H, a Tomato Seed Saponin, Improves Epidermal Dehydration by Increasing Ceramide in the Stratum Corneum and Steroidal Anti-Inflammatory Effect. Molecules 2021; 26:molecules26195860. [PMID: 34641404 PMCID: PMC8510266 DOI: 10.3390/molecules26195860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Tomatoes are widely consumed, however, studies on tomato seeds are limited. In this study, we isolated 11 compounds including saponins and flavonol glycosides from tomato seeds and evaluated their effects on epidermal hydration. Among the isolated compounds, tomato seed saponins (10 µM) significantly increased the mRNA expression of proteins related to epidermal hydration, including filaggrin, involucrin, and enzymes for ceramide synthesis, by 1.32- to 1.91-fold compared with the control in HaCaT cells. Tomato seed saponins (10 µM) also decreased transepidermal water loss by 7 to 13 g/m2·h in the reconstructed human epidermal keratinization (RHEK) models. Quantitative analysis of the ceramide content in the stratum corneum (SC) revealed that lycoperoside H (1–10 µM) is a promising candidate to stimulate ceramide synthesis via the upregulation of ceramide synthase-3, glucosylceramide synthase, and β-glucocerebrosidase, which led to an increase in the total SC ceramides (approximately 1.5-fold) in concert with ceramide (NP) (approximately 2-fold) in the RHEK models. Evaluation of the anti-inflammatory and anti-allergic effects of lycoperoside H demonstrated that lycoperoside H is suggested to act as a partial agonist of the glucocorticoid receptor and exhibits anti-inflammatory effects (10 mg/kg in animal test). These findings indicate that lycoperoside H can improve epidermal dehydration and suppress inflammation by increasing SC ceramide and steroidal anti-inflammatory activity.
Collapse
|
8
|
Secondary Metabolites of Plants as Modulators of Endothelium Functions. Int J Mol Sci 2021; 22:ijms22052533. [PMID: 33802468 PMCID: PMC7959468 DOI: 10.3390/ijms22052533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time—from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide–cyclic guanosine monophosphate activation, prostacyclin–cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.
Collapse
|
9
|
Tian M, Li LN, Zheng RR, Yang L, Wang ZT. Advances on hormone-like activity of Panax ginseng and ginsenosides. Chin J Nat Med 2021; 18:526-535. [PMID: 32616193 DOI: 10.1016/s1875-5364(20)30063-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Traditional Chinese medicine (TCM) has been paid much attentions due to the prevention and treatment of steroid hormone disorders. Ginseng, the root of Panax ginseng C. A. Meyer (Araliaceae), is one of the most valuable herbs in complementary and alternative medicines around the world. A series of dammarane triterpenoid saponins, also known as phytosteroids, were reported as the primary ingredients of Ginseng, and indicated broad spectral pharmacological actions, including anti-cancer, anti-inflammation and anti-fatigue. The skeletons of the dammarane triterpenoid aglycone are structurally similar to the steroid hormones. Both in vitro and in vivo studies showed that Ginseng and its active ingredients have beneficial hormone-like role in hormonal disorders. This review thus summarizes the structural similarities between hormones and dammarane ginsenosides and integrates the analogous effect of Ginseng and ginsenosides on prevention and treatment of hormonal disorders published in recent twenty years (1998-2018). The review may provide convenience for anticipate structure-function relationship between saponins structure and hormone-like effect.
Collapse
Affiliation(s)
- Mei Tian
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lin-Nan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui-Rong Zheng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
The development of laminin-alginate microspheres encapsulated with Ginsenoside Rg1 and ADSCs for breast reconstruction after lumpectomy. Bioact Mater 2020; 6:1699-1710. [PMID: 33313449 PMCID: PMC7710511 DOI: 10.1016/j.bioactmat.2020.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Many technologies have been developed for breast reconstruction after lumpectomy. Although the technologies achieved promising success in clinical, there are still many shortages hanging over and trouble the researchers. Tissue engineering technology was introduced to plastic surgery that gave a light to lumpectomy patients in breast reconstruction. The unexpected absorption rate, resulting from limited vascularization and low cell survival rate, is a major factor that leads to unsatisfactory results for the previous studies in our lab. In the study, the laminin-modified alginate synthesized by a new method of low concertation of sodium periodate would be mixed with ADSCs and Rg1 in the medium; and then sprayed into a calcium chloride (CaCl2) solution to prepare into microsphere (abbreviated as ADSC–G-LAMS) by bio-electrospray with a power syringe for the mass production and smaller bead size. The developed ADSC–G-LAMS microspheres had the diameter of 232 ± 42 μm. Sustained-release of the Rg1 retained its biological activity. WST-1, live/dead staining, and chromosome aberration assay were evaluated to confirm the safety of the microspheres. In in vivo study, ADSC–G-LAMS microspheres combined with autologous adipocytes were transplanted into the dorsum of rats by subcutaneous injection. The efficacy was investigated by H&E and immunofluorescence staining. The results showed that the bioactive ADSC–G-LAMS microspheres could integrate well into the host adipose tissue with an adequate rate of angiogenesis by constantly releasing Rg1 to enhance the ADSC or adipocyte survival rate to join tissue growth and repair with adipogenesis for breast reconstruction after lumpectomy. Laminin-modified alginate was successfully synthesized to mimic early embryonic environment. Adipose-derived stem cells (ADSCs) and ginsenoside Rg1 were encapsulated into laminin-alginate microspheres (ADSC–G-LAMS) by bio-electrospray method. ADSC–G-LAMS microspheres integrated into the host adipose tissue with an adequate rate of angiogenesis by constantly releasing Rg1. The developed bioactive ADSC–G-LAMS microspheres can be potential scaffolds for stem cells and angiogenic factor carriers for tissue engineering.
Collapse
|
11
|
Zhang B, Pan W, Deng Y, He H, Gou J, Wang Y, Zhang Y, Yin T, Liu D, Tang X. Panax quinquefolium saponin liposomes prepared by passive drug loading for improving intestinal absorption. Drug Dev Ind Pharm 2020; 46:1684-1694. [PMID: 32996345 DOI: 10.1080/03639045.2020.1820036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Panax quinquefolium saponin (PQS) composed of 45% pseudo-ginsenoside F11 (PF11), is a natural mixture of sterol compounds obtained from the American ginseng plant, having numerous promising benefits for health. However, low solubility and permeability limit the development of PQS as a therapeutic agent for oral administration. In this study, PQS liposomes (PQS-Lips) were prepared by thin layer hydration, an in situ single-pass intestinal perfusion (SPIP) model was used to verify the improvement of membrane permeability of PQS-Lips. PQS-Lips had a high encapsulation efficiency (EE) of 65%∼70%, a particle size about 100.0 nm, and a zeta potential of -60 mV with regular spherical surface. FTIR and DSC showed the PQS in liposomes were amorphous, indicating that hydrogen bonds formed between one or several hydroxyl groups in PQS and C-O group at the phospholipid polar terminal. In addition, PQS-Lips showed sustained release in vitro than PQS at pH 1.2 and pH 6.8, and PQS-Lips had good stability in simulated gastric and intestinal fluid. Then, the absorption rate (K a) and effective permeability coefficient (P eff) of PQS-Lips in the whole small intestine were significantly higher than those in PQS solution (PQS-Sol), which proved that the PQS-Lips could significantly increase the membrane permeability of PQS and promote its absorption in the small intestine. From the experimental results, it could be known that liposome technology could effectively improve the absorption of PQS in the small intestine.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Traditional Chinese Pharmaceutics, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wenli Pan
- Department of Traditional Chinese Pharmaceutics, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, PR China.,Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, PR China
| | - Dongchun Liu
- Department of Traditional Chinese Pharmaceutics, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
12
|
He M, Halima M, Xie Y, Schaaf MJM, Meijer AH, Wang M. Ginsenoside Rg1 Acts as a Selective Glucocorticoid Receptor Agonist with Anti-Inflammatory Action without Affecting Tissue Regeneration in Zebrafish Larvae. Cells 2020; 9:cells9051107. [PMID: 32365641 PMCID: PMC7290513 DOI: 10.3390/cells9051107] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids are effective anti-inflammatory drugs, but their clinical use is complicated due to the wide range of side effects they induce. Patients requiring glucocorticoid therapy would benefit from more selective glucocorticoid receptor (GR) agonists, capable of attenuating the immune response without causing these side effects. Ginsenosides, such as the compound Rg1, are natural plant compounds with structural similarity to classical glucocorticoids and well-documented anti-inflammatory effects. Here, we have investigated the activity of the ginsenoside Rg1 using a zebrafish larval model, in which amputation of the tail fin allows us to assess drug effects on inflammation, while the ability to regenerate the wounded tissue serves as a readout for side effects. We found that Rg1 attenuates neutrophilic inflammation at the amputation site, similarly to a classical glucocorticoid, beclomethasone. Mutation of the Gr abolishes this anti-inflammatory effect of Rg1. Rg1 and beclomethasone differentially modulate gene expression, suggesting that Rg1 induces transrepression, but not transactivation, activity of Gr. Interestingly, we found no effect of Rg1 on tissue regeneration, whereas beclomethasone inhibits tissue regeneration entirely. We conclude that Rg1 is a promising candidate for development as a selective glucocorticoid drug, and that zebrafish larvae provide a useful model system for screening of such GR agonists.
Collapse
Affiliation(s)
- Min He
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Leiden University—European Center for Chinese Medicine, Leiden University, 2333CC Leiden, The Netherlands
| | - Mahmoud Halima
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Leiden University—European Center for Chinese Medicine, Leiden University, 2333CC Leiden, The Netherlands
| | - Yufei Xie
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
| | - Marcel J. M. Schaaf
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Correspondence: (M.J.M.S.); (A.H.M.); (M.W.)
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Correspondence: (M.J.M.S.); (A.H.M.); (M.W.)
| | - Mei Wang
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Leiden University—European Center for Chinese Medicine, Leiden University, 2333CC Leiden, The Netherlands
- Correspondence: (M.J.M.S.); (A.H.M.); (M.W.)
| |
Collapse
|
13
|
Im DS. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules 2020; 10:biom10030444. [PMID: 32183094 PMCID: PMC7175368 DOI: 10.3390/biom10030444] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Panax ginseng, also known as Korean ginseng, is a famous medicinal plant used for the treatment of many inflammatory diseases. Ginsenosides (ginseng saponins) are the main class of active constituents of ginseng. The anti-inflammatory effects of ginseng extracts were proven with purified ginsenosides, such as ginsenosides Rb1, Rg1, Rg3, and Rh2, as well as compound K. The negative regulation of pro-inflammatory cytokine expressions (TNF-α, IL-1β, and IL-6) and enzyme expressions (iNOS and COX-2) was found as the anti-inflammatory mechanism of ginsenosides in M1-polarized macrophages and microglia. Recently, another action mechanism emerged explaining the anti-inflammatory effect of ginseng. This is a pro-resolution of inflammation derived by M2-polarized macrophages. Direct and indirect evidence supports how several ginsenosides (ginsenoside Rg3, Rb1, and Rg1) induce the M2 polarization of macrophages and microglia, and how these M2-polarized cells contribute to the suppression of inflammation progression and promotion of inflammation resolution. In this review, the new action mechanism of ginseng anti-inflammation is summarized.
Collapse
Affiliation(s)
- Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; ; Tel.: +82-2-961-9377; Fax: +82-2-961-9580
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
14
|
Austin JR, Kirkpatrick BJ, Rodríguez RR, Johnson ME, Lantvit DD, Burdette JE. Baicalein Is a Phytohormone that Signals Through the Progesterone and Glucocorticoid Receptors. Discov Oncol 2020; 11:97-110. [PMID: 32146686 DOI: 10.1007/s12672-020-00382-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/13/2020] [Indexed: 12/28/2022] Open
Abstract
While flavonoids have been studied extensively for estrogen receptor activity, they have not been well studied for their ability to modify progesterone receptor (PR) and glucocorticoid receptor (GR) signaling. Three flavonoid compounds, tangeretin, wogonin, and baicalein, were selected for testing for PR and GR activity based on their structural similarity to known phytoprogesterone-like compounds. Each compound was docked in the binding pocket of PR and GR. Of these compounds, baicalein was predicted to be most likely to bind to both receptors. A fluorescence polarization competitive binding assay for PR and GR confirmed that baicalein binds to both the PR and GR with IC50 values of 15.30 μM and 19.26 μM, respectively. In Ishikawa PR-B and T47D cells, baicalein acted as a PR antagonist in a hormone response element (HRE) luciferase (Luc) assay. In OVCAR5 cells, which only express GR, baicalein was a GR agonist via an HRE/Luc assay and induced GR target genes, FKBP5 and GILZ. RU486, a PR and GR antagonist, abrogated baicalein's activity in OVCAR5 cells, confirming baicalein's activity is mediated through the GR. In vivo, baicalein administered intraperitoneally to female mice twice a week for 4 weeks at a dose of 25 mg/kg induced the GR target gene GILZ in the reproductive tract, which was blocked by RU486. In summary, baicalein has PR antagonist and GR agonist activity in vitro and demonstrates GR agonist activity in the uterus in vivo.
Collapse
Affiliation(s)
- Julia R Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brenna J Kirkpatrick
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Rocío Rivera Rodríguez
- Department of Chemistry, College of Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, 00925, Puerto Rico
| | - Michael E Johnson
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
15
|
Kato M, Ayaki I, Tanaka I, Kimura M, Arai K, Akimoto R, Nozaki T, Ishihara KO. <i>Camellia japonica</i> Seed Extract Stimulates Nitric Oxide Production <i>via</i> Activation of Phosphoinositide 3-Kinase/Akt/endothelial Nitric Oxide Synthase Pathway in Endothelial Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Lee YS, Kim H, Kim J, Seol GH, Lee KW. Lancemaside A, a major triterpene saponin of Codonopsis lanceolata enhances regulation of nitric oxide synthesis via eNOS activation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:110. [PMID: 31126276 PMCID: PMC6534936 DOI: 10.1186/s12906-019-2516-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
Background Many studies on the effect of saponin-rich Codonopsis lanceolata as a bioactive source for improving physical health have been performed. C. lanceolata contains triterpenoid saponins, including lancemasides. These saponins are known to be particularly involved in the regulation of blood pressure or hypertension. This study investigated whether lancemaside A (LA), a major triterpenoid saponin from C. lanceolata, regulates nitric oxide (NO) production via the activation of endothelial NO synthase (eNOS) in human umbilical vein endothelial cells. Methods Upon separation with petroleum ether, ethyl acetate, and n-butanol, LA was found to be abundant in the n-butanol-soluble portion. For further purification of LA, HPLC was performed to collect fraction, and LA was identified using analysis of LC/MSMS and 13C-NMR values. In in vitro, the effects of LA on NO release mechanism in HUVECs were investigated by Griess assay, quantitative real-time reverse-transcription PCR, and Western blotting. Results Our results showed that NO production was efficiently improved by treatment with LA in a dose-dependent manner. In addition, the LA treatment resulted in extensive recovery of the NO production suppressed by the eNOS inhibitor, L-NAME, compared with that in the control group. Additionally, the level of eNOS mRNA was increased by this treatment in a dose-dependent manner. These results suggested that LA is an inducer of NO synthesis via eNOS mRNA expression. Also, the study indicated that LA is involved in activating the PI3K/Akt/eNOS signaling pathway. Conclusion These results suggested that LA is an inducer of NO synthesis via eNOS mRNA expression. Also, the study indicated that LA is involved in activating the PI3K/Akt/eNOS signaling pathway. These findings suggest the value of using LA as a component of functional foods and natural pharmaceuticals. Electronic supplementary material The online version of this article (10.1186/s12906-019-2516-6) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Park S, Ko E, Lee JH, Song Y, Cui CH, Hou J, Jeon BM, Kim HS, Kim SC. Gypenoside LXXV Promotes Cutaneous Wound Healing In Vivo by Enhancing Connective Tissue Growth Factor Levels Via the Glucocorticoid Receptor Pathway. Molecules 2019; 24:molecules24081595. [PMID: 31018484 PMCID: PMC6515290 DOI: 10.3390/molecules24081595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of Panax ginseng, promote wound healing, the proliferation and migration activities of 15 different ginsenosides were tested by MTT assay and scratched wound closure assay. Among ginsenosides, gypenoside LXXV (G75) showed the most potent wound healing effects. Thus, this study aimed to investigate the effects of G75 on wound healing in vivo and characterize associated molecular changes. G75 significantly increased proliferation and migration of keratinocytes and fibroblasts, and promoted wound closure in an excision wound mouse model compared with madecassoside (MA), which has been used to treat wounds. Additionally, RNA sequencing data revealed G75-mediated significant upregulation of connective tissue growth factor (CTGF), which is known to be produced via the glucocorticoid receptor (GR) pathway. Consistently, the increase in production of CTGF was confirmed by western blot and ELISA. In addition, GR-competitive binding assay and GR translocation assay results demonstrated that G75 can be bound to GR and translocated into the nucleus. These results demonstrated that G75 is a newly identified effective component in wound healing.
Collapse
Affiliation(s)
- Sungjoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Eunsu Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Jun Hyoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Yoseb Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Chang-Hao Cui
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea.
| | - Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea.
| | - Byeong Min Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea.
| |
Collapse
|
18
|
Potential Dissociative Glucocorticoid Receptor Activity for Protopanaxadiol and Protopanaxatriol. Int J Mol Sci 2018; 20:ijms20010094. [PMID: 30591629 PMCID: PMC6337468 DOI: 10.3390/ijms20010094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids are steroid hormones that regulate inflammation, growth, metabolism, and apoptosis via their cognate receptor, the glucocorticoid receptor (GR). GR, acting mainly as a transcription factor, activates or represses the expression of a large number of target genes, among them, many genes of anti-inflammatory and pro-inflammatory molecules, respectively. Transrepression activity of glucocorticoids also accounts for their anti-inflammatory activity, rendering them the most widely prescribed drug in medicine. However, chronic and high-dose use of glucocorticoids is accompanied with many undesirable side effects, attributed predominantly to GR transactivation activity. Thus, there is a high need for selective GR agonist, capable of dissociating transrepression from transactivation activity. Protopanaxadiol and protopanaxatriol are triterpenoids that share structural and functional similarities with glucocorticoids. The molecular mechanism of their actions is unclear. In this study applying induced-fit docking analysis, luciferase assay, immunofluorescence, and Western blot analysis, we showed that protopanaxadiol and more effectively protopanaxatriol are capable of binding to GR to activate its nuclear translocation, and to suppress the nuclear factor-kappa beta activity in GR-positive HeLa and HEK293 cells, but not in GR-low level COS-7 cells. Interestingly, no transactivation activity was observed, whereas suppression of the dexamethasone-induced transactivation of GR and induction of apoptosis in HeLa and HepG2 cells were observed. Thus, our results indicate that protopanaxadiol and protopanaxatriol could be considered as potent and selective GR agonist.
Collapse
|
19
|
Hussain Sh A, Shahen M, . L, . S, Wang Y. Herbal Traditional Medicines Ginseng (Panax quinquennium L.) Effects on Anti-nose Cancer and Anti-toxin in Systematic Pharmacology Treatment Mechanism for Nose Cancer: A Review. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2019.10.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018; 42:264-269. [PMID: 29983607 PMCID: PMC6026386 DOI: 10.1016/j.jgr.2017.10.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023] Open
Abstract
Panax ginseng, also called Asian or Korean ginseng, has long been traditionally used in Korea and China to treat various diseases. The major active ingredients of P. ginseng are ginsenosides, which have been shown to have a variety of therapeutic effects, including antioxidation, anti-inflammatory, vasorelaxation, antiallergic, antidiabetic, and anticancer. To date, approximately 40 ginsenoside components have been reported. Current research is concentrating on using a single ginseng compound, one of the ginsenosides, instead of the total ginseng compounds, to determine the mechanisms of ginseng and ginsenosides. Recent in vitro and in vivo results show that ginseng has beneficial effects on cardiac and vascular diseases through efficacy, including antioxidation, control of vasomotor function, modulation of ion channels and signal transduction, improvement of lipid profiles, adjustment of blood pressure, improvement in cardiac function, and reduction in platelet adhesion. This review aims to provide valuable information on the traditional uses of ginseng and ginsenosides, their therapeutic applications in animal models and humans, and the pharmacological action of ginseng and ginsenosides.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
21
|
So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018; 42:549-561. [PMID: 30337816 PMCID: PMC6190493 DOI: 10.1016/j.jgr.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Ginseng has been traditionally used for several millennia in Asian countries, including Korea, China, and Japan, not only as a nourishing and tonifying agent but also as a therapeutic agent for a variety of diseases. In recent years, the various effects of red ginseng including immunity improvement, fatigue relief, memory improvement, blood circulation improvement, antioxidation, mitigation of menopausal women's symptoms, and anticancer an effect have been reported in clinical as well as basic research. Around the world, there is a trend of the rising consumption of health functional foods on the level of disease prevention along with increased interest in maintaining health because of population aging and the awareness of lifestyle diseases and chronic diseases. Red ginseng occupies an important position as a health functional food. But till now, international ginseng monographs including those of the World Health Organization have been based on data on white ginseng and have mentioned red ginseng only partly. Therefore, the red ginseng monograph is needed for component of red ginseng, functionality certified as a health functional food in the Korea Food and Drug Administration, major efficacy, action mechanism, and safety. The present red ginseng monograph will contribute to providing accurate information on red ginseng to agencies, businesses, and consumers both in South Korea and abroad.
Collapse
Affiliation(s)
- Seung-Ho So
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jong Won Lee
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Young-Sook Kim
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Zhang B, Zhou WJ, Gu CJ, Wu K, Yang HL, Mei J, Yu JJ, Hou XF, Sun JS, Xu FY, Li DJ, Jin LP, Li MQ. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Dis 2018; 9:574. [PMID: 29760378 PMCID: PMC5951853 DOI: 10.1038/s41419-018-0581-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
Endometriosis (EMS) is an estrogen-dependent gynecological disease with a low autophagy level of ectopic endometrial stromal cells (eESCs). Impaired NK cell cytotoxic activity is involved in the clearance obstruction of the ectopic endometrial tissue in the abdominopelvic cavity. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides, which have profound biological functions, such as anti-cancer activities. However, the role and mechanism of ginsenosides and metabolites in endometriosis are completely unknown. Here, we found that the compounds PPD, PPT, ginsenoside-Rg3 (G-Rg3), ginsenoside-Rh2 (G-Rh2), and esculentoside A (EsA) led to significant decreases in the viability of eESCs, particularly PPD (IC50 = 30.64 µM). In vitro and in vivo experiments showed that PPD promoted the expression of progesterone receptor (PR) and downregulated the expression of estrogen receptor α (ERα) in eESCs. Treatment with PPD obviously induced the autophagy of eESCs and reversed the inhibitory effect of estrogen on eESC autophagy. In addition, eESCs pretreated with PPD enhanced the cytotoxic activity of NK cells in response to eESCs. PPD decreased the numbers and suppressed the growth of ectopic lesions in a mouse EMS model. These results suggest that PPD plays a role in anti-EMS activation, possibly by restricting estrogen-mediated autophagy regulation and enhancing the cytotoxicity of NK cells. This result provides a scientific basis for potential therapeutic strategies to treat EMS by PPD or further structural modification.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Ke Wu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Jie Mei
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Jia-Jun Yu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Xiao-Fan Hou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 330022, Jiangxi, Nanchang, China
| | - Feng-Yuan Xu
- Wallace H.Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China
| | - Li-Ping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 200040, Shanghai, China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011, Shanghai, China.
| |
Collapse
|
23
|
El-Bassossy HM, Neamatallah T, Balamash KS, Abushareb AT, Watson ML. Arginase overexpression and NADPH oxidase stimulation underlie impaired vasodilation induced by advanced glycation end products. Biochem Biophys Res Commun 2018; 499:992-997. [PMID: 29627571 DOI: 10.1016/j.bbrc.2018.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Advanced glycation endproducts (AGEs) play a major role in the development of many vascular complications that are mediated by endothelial dysfunction. The present work aimed to investigate the mechanism by which AGEs impair vasodilation. METHODS The effect of AGEs on vasodilation induced by acetylcholine or D NONOate was examined by incubating isolated rat aortae with different AGEs concentrations. ACh-induced nitric oxide generation was assessed using the fluorescent probe diaminofluorecein (DAF-FM). The effect of AGEs on expression of mRNA for arginase 2, NADPH oxidase and endothelial nitric oxide synthase (eNOS) were determined by real-time PCR. RESULTS One-hour in vitro incubation of rat aortae with AGEs impaired endothelial-dependent vasodilation produced by ACh, while increasing D NONOate-induced vasodilation. Preincubation of aortae with l-ornithine, an arginase 2-inhibitor, prevented the impairment effect induced by AGEs on endothelial-dependent vasodilation. Superoxide scavenging by tempol or NADPH oxidase inhibition by apocynin also blocked the effect of AGEs. AGEs decreased ACh-induced NO production and this was inhibited by both l-ornithine and apocynin. Furthermore, AGEs exposure increased arginase mRNA expression but decreased mRNA expression for eNOS in isolated rat aortae. CONCLUSION The present results indicate that AGEs impairs endothelial-dependent vasodilation, and this effect is mediated via arginase overexpression and NADPH oxidase stimulation.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Thikryat Neamatallah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadijah S Balamash
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | - Amani T Abushareb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | | |
Collapse
|
24
|
González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Schinella GR, Mosca SM, Ríos JL. Cardioprotection and natural polyphenols: an update of clinical and experimental studies. Food Funct 2018; 9:6129-6145. [DOI: 10.1039/c8fo01307a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms involved in ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Luisa F. González Arbeláez
- Centro de Investigaciones Cardiovasculares
- CCT-CONICET
- Universidad Nacional de la Plata
- 1900 La Plata
- Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares
- CCT-CONICET
- Universidad Nacional de la Plata
- 1900 La Plata
- Argentina
| | - Juliana C. Fantinelli
- Centro de Investigaciones Cardiovasculares
- CCT-CONICET
- Universidad Nacional de la Plata
- 1900 La Plata
- Argentina
| | - Guillermo R. Schinella
- Cátedra de Farmacología Básica
- Facultad de Ciencias Médicas
- Universidad Nacional de La Plata
- 1900 La Plata
- Argentina
| | - Susana M. Mosca
- Centro de Investigaciones Cardiovasculares
- CCT-CONICET
- Universidad Nacional de la Plata
- 1900 La Plata
- Argentina
| | - José-Luis Ríos
- Departament de Farmacologia
- Facultat de Farmàcia
- Universitat de València
- 46100 Burjassot
- Spain
| |
Collapse
|
25
|
Hu C, Lau AJ, Wang R, Chang TK. Comparative analysis of ginsenosides in human glucocorticoid receptor binding, transactivation, and transrepression. Eur J Pharmacol 2017; 815:501-511. [DOI: 10.1016/j.ejphar.2017.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023]
|
26
|
Kwok HH, Poon PY, Mak KHM, Zhang LY, Liu P, Zhang H, Mak NK, Yue PYK, Wong RNS. Role of G3BP1 in glucocorticoid receptor-mediated microRNA-15b and microRNA-23a biogenesis in endothelial cells. Cell Mol Life Sci 2017; 74:3613-3630. [PMID: 28523344 PMCID: PMC11107666 DOI: 10.1007/s00018-017-2540-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Po-Ying Poon
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kylie Hin-Man Mak
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lin-Yao Zhang
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Pei Liu
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nai-Ki Mak
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Patrick Ying-Kit Yue
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ricky Ngok-Shun Wong
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
27
|
Wu XD, Guo T, Liu L, Wang C, Zhang K, Liu HQ, Wang F, Bai WD, Zhang MY. MiR-23a targets RUNX2 and suppresses ginsenoside Rg1-induced angiogenesis in endothelial cells. Oncotarget 2017; 8:58072-58085. [PMID: 28938538 PMCID: PMC5601634 DOI: 10.18632/oncotarget.19489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/19/2017] [Indexed: 02/02/2023] Open
Abstract
Rg1 is a predominant protopanaxatriol-type of ginsenoside found in Panax ginseng, and it has been shown to have anti-cancer effects in multiple types of cancer cells. However, Rg1 also induces the expression of proangiogenic factors, such as vascular endothelial growth factor (VEGF-A), in endothelial cells. Unfortunately, angiogenesis positively correlates with cancer development. In this study, we identified RUNX2 as a regulator of ginsenoside Rg1-induced angiogenesis for the first time. We found that RUNX2 was directly targeted and regulated by miR-23a. Additionally, miR-23a was shown to inhibit angiogenesis in both human umbilical vein endothelial cells (HUVECs) and in zebrafish. Furthermore, a decrease in RUNX2 expression resulted in translational repression of VEGF-A in HUVECs. Taken together, this study identified a MiR-23a/RUNX2/VEGF-A pathway in angiogenesis and shed light on the molecular mechanism of Rg1-induced angiogenesis. Thus, RUNX2 might be a potential therapeutic target in Rg1-mediated angiogenesis in cancer.
Collapse
Affiliation(s)
- Xiao-Dong Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ting Guo
- Department of Nutrition and Food Hygiene, Fourth Military Medical University, Xi'an 710032, China
| | - Li Liu
- Department of Stomatology, PLA General Hospital, Beijing 100700, China
| | - Chao Wang
- Department of Stomatology, PLA General Hospital, Beijing 100700, China
| | - Kun Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China.,College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Han-Qiang Liu
- Department of Nutrition and Food Hygiene, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Wang
- Department of Nutrition and Food Hygiene, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Dong Bai
- Clinical Laboratory Medicine Center, Xinjiang Command General Hospital of PLA, Urumqi 830000, China
| | - Meng-Yao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China.,Beijing Institute of Biotechnology, Beijing 100071, China.,Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
28
|
Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev 2017; 38:625-654. [DOI: 10.1002/med.21450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/28/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-yi Qi
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Li Li
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Hui Ma
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| |
Collapse
|
29
|
Dean M, Murphy BT, Burdette JE. Phytosteroids beyond estrogens: Regulators of reproductive and endocrine function in natural products. Mol Cell Endocrinol 2017; 442:98-105. [PMID: 27986590 PMCID: PMC5276729 DOI: 10.1016/j.mce.2016.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Foods and botanical supplements can interfere with the endocrine system through the presence of phytosteroids - chemicals that interact with steroids receptors. Phytoestrogens are well studied, but compounds such as kaempferol, apigenin, genistein, ginsenoside Rf, and glycyrrhetinic acid have been shown to interact with non-estrogen nuclear receptors. These compounds can have agonist, antagonist, or mixed agonist/antagonist activity depending on compound, receptor, cell line or tissue, and concentration. Some phytosteroids have also been shown to inhibit steroid metabolizing enzymes, resulting in biological effects through altered endogenous steroid concentrations. An interesting example, compound A (4-[1-chloro-2-(methylamino)ethyl]phenyl acetate hydrochloride (1:1)) is a promising selective glucocorticoid receptor modulator (SGRM) based on a phytosteroid isolated from Salsola tuberculatiformis Botschantzev. Given that $6.9 billion of herbal supplements are sold each year, is clear that further identification and characterization of phytosteroids is needed to ensure the safe and effective use of botanical supplements.
Collapse
Affiliation(s)
- Matthew Dean
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T Murphy
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
30
|
Jin Y, Peng J, Wang X, Zhang D, Wang T. Ameliorative Effect of Ginsenoside Rg1 on Lipopolysaccharide-Induced Cognitive Impairment: Role of Cholinergic System. Neurochem Res 2017; 42:1299-1307. [DOI: 10.1007/s11064-016-2171-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
|
31
|
Salarian M, Xu WZ, Bohay R, Lui EMK, Charpentier PA. Angiogenic Rg 1 /Sr-Doped TiO 2 Nanowire/Poly(Propylene Fumarate) Bone Cement Composites. Macromol Biosci 2016; 17. [PMID: 27618224 DOI: 10.1002/mabi.201600156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/29/2016] [Indexed: 12/11/2022]
Abstract
A new approach is provided for preparing radiopaque and angiogenic poly(propylene fumarate) (PPF) bone cements by integrating Sr-doped n-TiO2 nanowires and ginsenoside Rg1 suitable for treating osteonecrosis. High aspect ratio radiopaque TiO2 -nanowires are synthesized by strontium doping in supercritical CO2 for the first time, showing a new phase, SrTiO3 . PPF is synthesized using a transesterification method by reacting diethyl fumarate and propylene glycol, then functionalized using maleic anhydride to produce terminal carboxyl groups, which are subsequently linked to the nanowires. The strong interfacial adhesion between functionalized PPF and nanowires is examined by scanning electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, thermal analysis, and mechanical testing. An angiogenic modulator, ginsenoside Rg1 , is integrated into the bone cement formulation with the mechanical properties, radiopacity, drug release, and angiogenesis behavior of the formed composites explored. The results show superior radiopacity and excellent release of ginsenoside Rg1 in vitro, as well as a dose-dependent increase in the branching point numbers. The present study suggests this new methodology provides sufficient mechanical properties, radiopacity, and angiogenic activity to be suitable for cementation of necrotic bone.
Collapse
Affiliation(s)
- Mehrnaz Salarian
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,The Ontario Ginseng Innovation & Research Consortium, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - William Z Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Richard Bohay
- Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Edmund M K Lui
- The Ontario Ginseng Innovation & Research Consortium, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| | - Paul A Charpentier
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada.,Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9, Canada
| |
Collapse
|
32
|
Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor. J Ginseng Res 2016; 41:477-486. [PMID: 29021694 PMCID: PMC5628332 DOI: 10.1016/j.jgr.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Our previous studies have demonstrated that ginsenoside-Rg1 can promote angiogenesis in vitro and in vivo through activation of the glucocorticoid receptor (GR). Furthermore, microRNA (miRNA) expression profiling has shown that Rg1 can modulate the expression of a subset of miRNAs to induce angiogenesis. Moreover, Rb1 was shown to be antiangiogenic through activation of a different pathway. These studies highlight the important functions of miRNAs on ginseng-regulated physiological processes. The aim of this study was to determine the angiogenic properties of Korean Red Ginseng extract (KGE). METHODS AND RESULTS Combining in vitro and in vivo data, KGE at 500 μg/mL was found to induce angiogenesis. According to the miRNA sequencing, 484 differentially expressed miRNAs were found to be affected by KGE. Among them, angiogenic-related miRNAs; miR-15b, -23a, -214, and -377 were suppressed by KGE. Meanwhile, their corresponding angiogenic proteins were stimulated, including vascular endothelial growth factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and MET transmembrane tyrosine kinase. The miRNAs-regulated signaling pathways of KGE were then found by Cignal 45-Pathway Reporter Array, proving that KGE could activate GR. CONCLUSION KGE was found capable of inducing angiogenesis both in vivo and in vitro models through activating GR. This study provides a valuable insight into the angiogenic mechanisms depicted by KGE in relation to specific miRNAs.
Collapse
|
33
|
Salarian M, Samimi R, Xu WZ, Wang Z, Sham TK, Lui EMK, Charpentier PA. Microfluidic Synthesis and Angiogenic Activity of Ginsenoside Rg1-Loaded PPF Microspheres. ACS Biomater Sci Eng 2016; 2:1872-1882. [DOI: 10.1021/acsbiomaterials.6b00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehrnaz Salarian
- Biomedical
Engineering Graduate Program, University of Western Ontario, London, Ontario N6A 5B9, Canada
- The Ontario Ginseng Innovation & Research Consortium, London, Ontario N6A 5C1, Canada
| | - Raziye Samimi
- The Ontario Ginseng Innovation & Research Consortium, London, Ontario N6A 5C1, Canada
- Chemical
and Biochemical Engineering Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| | - William Z. Xu
- Chemical
and Biochemical Engineering Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| | - Zhiqiang Wang
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Tsun-Kong Sham
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Soochow-Western
Centre for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Edmund M. K. Lui
- The Ontario Ginseng Innovation & Research Consortium, London, Ontario N6A 5C1, Canada
- Department
of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Paul A. Charpentier
- The Ontario Ginseng Innovation & Research Consortium, London, Ontario N6A 5C1, Canada
- Chemical
and Biochemical Engineering Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| |
Collapse
|
34
|
Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J Ginseng Res 2016; 41:215-221. [PMID: 28413327 PMCID: PMC5386121 DOI: 10.1016/j.jgr.2016.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/06/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023] Open
Abstract
Ginseng has been used in China for at least two millennia and is now popular in over 35 countries. It is one of the world's popular herbs for complementary and alternative medicine and has been shown to have helpful effects on cognition and blood circulation, as well as anti-aging, anti-cancer, and anti-diabetic effects, among many others. The pharmacological activities of ginseng are dependent mainly on ginsenosides. Ginsenosides have a cholesterol-like four trans-ring steroid skeleton with a variety of sugar moieties. Nuclear receptors are one of the most important molecular targets of ginseng, and reports have shown that members of the nuclear receptor superfamily are regulated by a variety of ginsenosides. Here, we review the published literature on the effects of ginseng and its constituents on two main sex steroid hormone receptors: estrogen and androgen receptors. Furthermore, we discuss applications for sex steroid hormone receptor modulation and their therapeutic efficacy.
Collapse
|
35
|
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016; 21:807. [PMID: 27338339 PMCID: PMC4928700 DOI: 10.3390/molecules21060807] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic;
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|
36
|
Son YM, Jeong DH, Park HJ, Rhee MH. The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation. J Ginseng Res 2016; 41:96-102. [PMID: 28123327 PMCID: PMC5223082 DOI: 10.1016/j.jgr.2016.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Korean ginseng, Panax ginseng Meyer, has been used as a traditional oriental medicine to treat illness and promote health for several thousand years. Ginsenosides are the main constituents for the pharmacological effects of P. ginseng. Since several ginsenosides, including ginsenoside (G)-Rg3 and G-Rp1, have reported antiplatelet activity, here we investigate the ability of G-Rp4 to modulate adenosine diphosphate (ADP)-induced platelet aggregation. The ginsenoside Rp4, a similar chemical structure of G-Rp1, was prepared from G-Rg1 by chemical modification. METHODS To examine the effects of G-Rp4 on platelet activation, we performed several experiments, including antiplatelet ability, the modulation of intracellular calcium concentration, and P-selectin expression. In addition, we examined the activation of integrin αIIbβ3 and the phosphorylation of signaling molecules using fibrinogen binding assay and immunoblotting in rat washed platelets. RESULTS G-Rp4 inhibited ADP-induced platelet aggregation in a dose-dependent manner. We found that G-Rp4 decreased calcium mobilization and P-selectin expression in ADP-activated platelets. Moreover, fibrinogen binding to integrin αIIbβ3 by ADP was attenuated in G-Rp4-treated platelets. G-Rp4 significantly attenuated phosphorylation of extracellular signal-regulated protein kinases 1 and 2, p38, and c-Jun N-terminal kinase, as well as protein kinase B, phosphatidylinositol 3-kinase, and phospholipase C-γ phosphorylations. CONCLUSION G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.
Collapse
Affiliation(s)
- Young-Min Son
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Da-Hye Jeong
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Hwa-Jin Park
- Department of Biomedical Laboratory Science, College of Biomedical Science, Inje University, Gimhae, Korea
| | - Man-Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
37
|
Wong AST, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 2015; 32:256-72. [PMID: 25347695 DOI: 10.1039/c4np00080c] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Ginseng, a key ingredient in traditional Chinese medicine, shows great promise as a new treatment option. As listed by the U.S. National Institutes of Health as a complementary and alternative medicine, its anti-cancer functions are being increasingly recognized. This review covers the mechanisms of action of ginsenosides and their metabolites, which can modulate signaling pathways associated with inflammation, oxidative stress, angiogenesis, metastasis, and stem/progenitor-like properties of cancer cells. The emerging use of structurally modified ginsenosides and recent clinical studies on the use of ginseng either alone or in combination with other herbs or Western medicines which are exploited as novel therapeutic strategies will also be explored.
Collapse
Affiliation(s)
- Alice S T Wong
- State Key Laboratory of Oncogenes and Related Genes, and School of Biological Sciences, The University of Hong Kong, Hong Kong.
| | | | | |
Collapse
|
38
|
Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015; 7:129. [PMID: 26236231 PMCID: PMC4503934 DOI: 10.3389/fnagi.2015.00129] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
Ginseng (Order: Apiales, Family: Araliaceae, Genus: Panax) has been used as a traditional herbal medicine for over 2000 years, and is recorded to have antianxiety, antidepressant and cognition enhancing properties. The protective effects of ginseng on neurological disorders are discussed in this review. Ginseng species and ginsenosides, and their intestinal metabolism and bioavailability are briefly introduced. This is followed by molecular mechanisms of effects of ginseng on the brain, including glutamatergic transmission, monoamine transmission, estrogen signaling, nitric oxide (NO) production, the Keap1/Nrf2 adaptive cellular stress pathway, neuronal survival, apoptosis, neural stem cells and neuroregeneration, microglia, astrocytes, oligodendrocytes and cerebral microvessels. The molecular mechanisms of the neuroprotective effects of ginseng in Alzheimer’s disease (AD) including β-amyloid (Aβ) formation, tau hyperphosphorylation and oxidative stress, major depression, stroke, Parkinson’s disease and multiple sclerosis are presented. It is hoped that this discussion will stimulate more studies on the use of ginseng in neurological disorders.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore Singapore, Singapore ; Neurobiology and Ageing Research Programme, National University of Singapore Singapore, Singapore
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH, USA
| | - Hwee-Ling Koh
- Department of Pharmacy, National University of Singapore Singapore, Singapore
| | - Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH, USA
| | - Eng-Ang Ling
- Department of Anatomy, National University of Singapore Singapore, Singapore
| |
Collapse
|
39
|
Kwok HH, Chan LS, Poon PY, Yue PYK, Wong RNS. Ginsenoside-Rg1 induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. Toxicol Appl Pharmacol 2015; 287:276-83. [PMID: 26115870 DOI: 10.1016/j.taap.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg1 (Rg1), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg1-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg1 could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3'-UTR. Intriguingly, ginsenoside-Rg1 was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg1-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg1 could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg1, and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lai-Sheung Chan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Po-Ying Poon
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Patrick Ying-Kit Yue
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ricky Ngok-Shun Wong
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
40
|
Hsu CH, Lin CL, Wang SE, Sheu SJ, Chien CT, Wu CH. Oral treatment with herbal formula B401 alleviates penile toxicity in aging mice with manganism. Clin Interv Aging 2015; 10:907-18. [PMID: 26064043 PMCID: PMC4455845 DOI: 10.2147/cia.s82026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The present study aims to elucidate the roles of nitric oxide synthase activity, oxidative stress, inflammation, and apoptosis in penile toxicity of aging mice associated with excess manganese (Mn) treatment and to investigate the effect of oral treatment with the herbal formula B401 in this respect. ICR strain mice were divided into two groups: the vehicle (sham group) and the B401 (50 mg/kg) group. The mice were orally treated for 5 days; then a high single dose of MnCl2 (100 mg/kg) was given by intraperitoneal injection to the mice. One day after MnCl2 treatment, corpora cavernosal tissues of both Mn-treated mice and their controls were simultaneously sampled to examine their immunohistochemical staining and Western blot analysis. Nitric oxide (NO) production, levels of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS), expression levels of factors governing angiogenesis (vascular endothelial growth factor), oxidative stress (catalase, superoxide dismutase 2,4-hydroxynonenal), inflammation (tumor necrosis factor alpha), apoptosis (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein [Bax], cleaved poly(adenosine diphosphate-ribose) polymerase [c-PARP], cytochrome C, caspase-12, and caspase-3) were evaluated in penile corpus cavernosum of the mice. We found that penile toxicity in the mice was enhanced under excess Mn treatment through reduction of NOS activity and increase in oxidative stress, inflammation, and apoptosis in the penile cavernous tissue. Furthermore, the penile toxicity in mice with manganism was alleviated by oral B401 treatment through enhancement of both nitric oxide synthesis and angiogenesis, with simultaneous reduction of oxidative stress, inflammation, and apoptosis in penile corpus cavernosum. We suggest that the herbal formula B401 may serve as a potential dietotherapeutic supplement for penile toxicity or dysfunction in aging males.
Collapse
Affiliation(s)
- Chih-Hsiang Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Lung Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Sheue-Er Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
41
|
Zhu JQ, Song WS, Hu Z, Ye QF, Liang YB, Kang LY. Traditional Chinese medicine's intervention in endothelial nitric oxide synthase activation and nitric oxide synthesis in cardiovascular system. Chin J Integr Med 2015. [PMID: 25666326 DOI: 10.1007/s11655-015-1964-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is one of the most dangerous diseases which has become a major cause of human death. Many researches evidenced that nitric oxide (NO)/endothelial nitric oxide synthase (eNOS) system plays a significant role in the occurrence and development of CVD. NO, an important signaling molecule, closely associated with the regulation of vasodilatation, blood rheology, blood clotting and other physiological and pathological processes. The synthesis of NO in the endothelial cells primarily depends on the eNOS activity, thus the exploration of the mechanisms and effects of the eNOS activation on NO production is of great significance. Recently, studies on the effects of traditional Chinese medicine (TCM) and its extracts on eNOS activation and NO synthesis have gradually attracted more and more attentions. In this paper, we reviewed the mechanisms of NO synthesis and eNOS activation in the vascular endothelial cells (VECs) and intervention of TCM, so as to provide reference and train of thought to the intensive study of NO/eNOS system and the research and development of new drug for the treatment of CVD.
Collapse
Affiliation(s)
- Jin-Qiang Zhu
- Institute of Traditional Chinese Medicine, Tianjin Key Laboratory of Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | | | | | | | | | | |
Collapse
|
42
|
Li L, Bonneton F, Chen XY, Laudet V. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine. Mol Cell Endocrinol 2015; 401:221-37. [PMID: 25449417 DOI: 10.1016/j.mce.2014.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network.
Collapse
Affiliation(s)
- Ling Li
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France.; School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - François Bonneton
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France
| | - Xiao Yong Chen
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France..
| |
Collapse
|
43
|
Jiang R, Dong J, Li X, Du F, Jia W, Xu F, Wang F, Yang J, Niu W, Li C. Molecular mechanisms governing different pharmacokinetics of ginsenosides and potential for ginsenoside-perpetrated herb-drug interactions on OATP1B3. Br J Pharmacol 2015; 172:1059-73. [PMID: 25297453 DOI: 10.1111/bph.12971] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 09/20/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Ginsenosides are bioactive saponins derived from Panax notoginseng roots (Sanqi) and ginseng. Here, the molecular mechanisms governing differential pharmacokinetics of 20(S)-protopanaxatriol-type ginsenoside Rg1 , ginsenoside Re and notoginsenoside R1 and 20(S)-protopanaxadiol-type ginsenosides Rb1, Rc and Rd were elucidated. EXPERIMENTAL APPROACH Interactions of ginsenosides with human and rat hepatobiliary transporters were characterized at the cellular and vesicular levels. A rifampin-based inhibition study in rats evaluated the in vivo role of organic anion-transporting polypeptide (Oatp)1b2. Plasma protein binding was assessed by equilibrium dialysis. Drug-drug interaction indices were calculated to estimate potential for clinically relevant ginsenoside-mediated interactions due to inhibition of human OATP1Bs. KEY RESULTS All the ginsenosides were bound to human OATP1B3 and rat Oatp1b2 but only the 20(S)-protopanaxatriol-type ginsenosides were transported. Human multidrug resistance-associated protein (MRP)2/breast cancer resistance protein (BCRP)/bile salt export pump (BSEP)/multidrug resistance protein-1 and rat Mrp2/Bcrp/Bsep also mediated the transport of the 20(S)-protopanaxatriol-type ginsenosides. Glomerular-filtration-based renal excretion of the 20(S)-protopanaxatriol-type ginsenosides was greater than that of the 20(S)-protopanaxadiol-type counterparts due to differences in plasma protein binding. Rifampin-impaired hepatobiliary excretion of the 20(S)-protopanaxatriol-type ginsenosides was effectively compensated by the renal excretion in rats. The 20(S)-protopanaxadiol-type ginsenosides were potent inhibitors of OATP1B3. CONCLUSION AND IMPLICATIONS Differences in hepatobiliary and in renal excretory clearances caused markedly different systemic exposure and different elimination kinetics between the two types of ginsenosides. Caution should be exercised with the long-circulating 20(S)-protopanaxadiol-type ginsenosides as they could induce hepatobiliary herb-drug interactions, particularly when patients receive long-term therapies with high-dose i.v. Sanqi or ginseng extracts.
Collapse
Affiliation(s)
- Rongrong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang BR, Hong SJ, Lee SMY, Cong WH, Wan JB, Zhang ZR, Zhang QW, Zhang Y, Wang YT, Lin ZX. Pro-angiogenic activity of notoginsenoside R1 in human umbilical vein endothelial cells in vitro and in a chemical-induced blood vessel loss model of zebrafish in vivo. Chin J Integr Med 2014; 22:420-9. [PMID: 25533511 DOI: 10.1007/s11655-014-1954-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study aimed at investigating whether notoginsenoside R1 (R1), a unique saponin found in Panax notoginseng could promote angiogenic activity on human umbilical vein endothelial cells (HUVECs) and elucidate their potential molecular mechanisms. In addition, vascular restorative activities of R1 was assessed in a chemically-induced blood vessel loss model in zebrafish. METHODS The in vitro angiogenic effect of R1 was compared with other previously reported angiogenic saponins Rg1 and Re. The HUVECs proliferation in the presence of R1 was determined by cell proliferation kit II (XTT) assay. R1, Rg1 and Re-induced HUVECs invasion across polycarbonate membrane was stained with Hoechst-33342 and quantified microscopically. Tube formation assay using matrigelcoated wells was performed to evaluate the pro-angiogenic actions of R1. In order to understand the mechanism underlying the pro-angiogenic effect, various pathway inhibitors such as SU5416, wortmannin (wort) or L-Nω-nitro- L-arginine methyl ester hydrochloride (L-NAME), SH-6 were used to probe the possible involvement of signaling pathway in the R1 mediated HUVECs proliferation. In in vivo assays, zebrafish embryos at 21 hpf were pre-treated with vascular endothelial growth factor (VEGF) receptor kinase inhibitor II (VRI) for 3 h only and subsequently post-treated with R1 for 48 h, respectively. The intersegmental vessels (ISVs) in zebrafish were assessed for the restorative effect of R1 on defective blood vessels. RESULTS R1 could stimulate the proliferation of HUVECs. In the chemoinvasion assay, R1 significantly increased the number of cross-membrane HUVECs. In addition, R1 markedly enhanced the tube formation ability of HUVECs. The proliferative effects of these saponins on HUVECs were effectively blocked by the addition of SU5416 (a VEGF-KDR/Flk-1 inhibitor). Similarly, pre-treatment with wort [a phosphatidylinositol 3-kinase (PI3K)-kinase inhibitor], L-NAME [an endothelial nitric oxide synthase (eNOS) inhibitor] or SH-6 (an Akt pathway inhibitor) significantly abrogated the R1 induced proliferation of HUVECs. In chemicallyinduced blood vessel loss model in zebrafish, R1 significantly rescue the damaged ISVs. CONCLUSION R1, similar to Rg1 and Re, had been showed pro-angiogenic action, possibly via the activation of the VEGF-KDR/Flk-1 and PI3K-Akt-eNOS signaling pathways. Our findings also shed light on intriguing pro-angiogenic effect of R1 under deficient angiogenesis condition in a pharmacologic-induced blood vessels loss model in zebrafish. The present study in vivo and in vitro provided scientific evidence to explain the ethnomedical use of Panax notoginseng in the treatment of cardiovascular diseases, traumatic injuries and wound healing.
Collapse
Affiliation(s)
- Bin-Rui Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si-Jia Hong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Wei-Hong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhe-Rui Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
45
|
Zhan S, Fan X, Zhang F, Wang Y, Kang L, Li Z. A proteomic study of Shengmai injection's mechanism on preventing cardiac ischemia-reperfusion injury via energy metabolism modulation. MOLECULAR BIOSYSTEMS 2014; 11:540-8. [PMID: 25427756 DOI: 10.1039/c4mb00161c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Energy metabolism modulation plays an important role in protecting the heart from ischemia-reperfusion (IR) injury. Shengmai injection (SMI) is a Chinese medicine, which is widely used in China to treat ischemic heart diseases with speculated functions of modulating energy metabolism. To uncover the molecular mechanisms underlying the cardioprotective activity of SMI via the modulation of energy metabolism, a proteomic analysis was performed on ischemia-reperfusion (IR) injured hearts of rats in this study. Two-dimensional gel electrophoresis (2-DE) was used to measure the protein expression profiles of heart tissues. Differentially expressed proteins among groups were identified using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS/MS). Western blot analysis was used to validate differentially expressed proteins. Proteomic data revealed 14 major differentially expressed proteins that are related to the energy metabolism. It was found that the glucose oxidation, TCA cycle and ATP synthesis related proteins were consistently up-regulated in SMI treated rats, which is beneficial to aerobic respiration and ATP generation. In contrast, two proteins catalyzing fatty acid β-oxidation were down-regulated, implying the inhibition of this pathway to avoid high oxygen consumption. It is thus concluded that one of the major mechanisms of SMI protection against IR injury was modulation of the myocardial energy metabolism to improve cardiac efficiency through multiple metabolic pathways including stimulating glucose metabolism and inhibiting fatty acid metabolism. It provided potential protein targets for the therapeutic strategy through modulation of the myocardial energy metabolism.
Collapse
Affiliation(s)
- Shuyu Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
46
|
Lim HJ, Lee HY, Lim DY. Inhibitory effects of ginsenoside-rb2 on nicotinic stimulation-evoked catecholamine secretion. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:431-9. [PMID: 25352764 PMCID: PMC4211128 DOI: 10.4196/kjpp.2014.18.5.431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 (3~30 µM), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 (10 µM) also time-dependently inhibited the CA secretion evoked by DMPP (100 µM, a selective neuronal nicotinic receptor agonist) and high K(+) (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 (50 µg/mL), the secretory responses of CA evoked by veratridine (a selective Na(+) channel activator (50 µM), Bay-K-8644 (an L-type dihydropyridine Ca(2+) channel activator, 10 µM), and cyclopiazonic acid (a cytoplasmic Ca(2+)-ATPase inhibitor, 10 µM) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 (10 µM) and L-NAME (an inhibitor of NO synthase, 30 µM), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 (10 µM) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of Ca(2+) and Na(+) into the adrenomedullary chromaffin cells and also by suppressing the release of Ca(2+) from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.
Collapse
Affiliation(s)
- Hyo-Jeong Lim
- Department of Internal Medicine (Division of Pulmonary and Critical Care Medicine), Veterans Health Service Medical Center, Seoul 134-791, Korea
| | - Hyun-Young Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Dong-Yoon Lim
- Department of Pharmacology, School of Medicine, Chosun University, Gwangju 501-759, Korea
| |
Collapse
|
47
|
Zhan JYX, Yao P, Bi CWC, Zheng KYZ, Zhang WL, Chen JP, Dong TTX, Su ZR, Tsim KWK. The sulfur-fumigation reduces chemical composition and biological properties of Angelicae Sinensis Radix. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1318-1324. [PMID: 25172796 DOI: 10.1016/j.phymed.2014.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/27/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Angelica Sinensis Radix (roots of Angelica sinensis; ASR) is a popular herbal supplement in China for promoting blood circulation. Today, sulfur-fumigation is commonly used to treat ASR as a means of pest control; however, the studies of sulfur-fumigation on the safety and efficacy of ASR are very limited. Here, we elucidated the destructive roles of sulfur-fumigation on ASR by chemical and biological assessments. After sulfur-fumigation, the chemicals in ASR were significantly lost. The biological activities of anti-platelet aggregation, induction of NO production and estrogenic properties were compared between the water extracts of non-fumigated and sulfur-fumigated ASR. In all cases, the sulfur-fumigation significantly reduced the biological properties of ASR. In addition, application of water extract deriving from sulfur-fumigated ASR showed toxicity to cultured MCF-7 cells. In order to ensure the safety and to achieve the best therapeutic effect, it is recommended that sulfur-fumigation is an unacceptable approach for processing herbal materials.
Collapse
Affiliation(s)
- Janis Ya-Xian Zhan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Ping Yao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Cathy Wen-Chuan Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Ken Yu-Zhong Zheng
- Department of Biology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Wendy Li Zhang
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Jian-Ping Chen
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Tina Ting-Xia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Zi-Ren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| |
Collapse
|
48
|
Ginsenoside Re enhances small-conductance Ca(2+)-activated K(+) current in human coronary artery endothelial cells. Life Sci 2014; 115:15-21. [PMID: 25242515 DOI: 10.1016/j.lfs.2014.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/23/2014] [Accepted: 09/09/2014] [Indexed: 01/26/2023]
Abstract
AIMS Ginsenosides, active components in ginseng, have been shown to increase nitric oxide (NO) production in aortic endothelial cells. This effect was reversed by tetraethylammonium (TEA) inhibition of endothelial Ca(2+)-activated K(+) (KCa) channels. The objectives of this study, therefore, were to test 1) whether vasorelaxing ginsenoside Re could affect KCa current, an important regulator of NO production, in human coronary artery endothelial cells (HCAECs); and 2) whether small-conductance KCa (SKCa) channel was the channel subtype involved. MAIN METHODS Ionic currents of cultured HCAECs were studied using whole-cell patch clamp technique. KEY FINDINGS Ginsenoside Re dose-dependently increased endothelial outward currents, with an EC50 of 408.90±1.59nM, and a maximum increase of 36.20±5.62% (mean±SEM; p<0.05). Apamin, an SKCa channel inhibitor, could block this effect, while La(3+), a nonselective cation channel (NSC) blocker, could not. When NSC channel, inward-rectifier K(+) channel, intermediate-, and large-conductance KCa channels were simultaneously blocked, ginsenoside Re could still increase outward currents significantly (35.49±4.22%; p<0.05); this effect was again abolished by apamin. Repeating the experiments when Cl(-) channel was additionally blocked gave similar results. Finally, we demonstrated that ginsenoside Re could hyperpolarize HCAECs; this effect was reversed by apamin. These data clearly indicate that ginsenoside Re increased HCAEC outward current via SKCa channel activation, and NSC channel was not involved. SIGNIFICANCE This is the first report to demonstrate that ginsenoside Re could increase SKCa channel activity in HCAECs. This can be a mechanism mediating ginseng's beneficial actions on coronary vessels.
Collapse
|
49
|
Wang Y, Liu Y, Zhang XY, Xu LH, Ouyang DY, Liu KP, Pan H, He J, He XH. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways. Int Immunopharmacol 2014; 23:77-84. [PMID: 25179784 DOI: 10.1016/j.intimp.2014.07.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/15/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
Ginsenoside Rg1 is one of the major active components of ginseng, which has been shown to regulate the immune response of hosts. However, the mechanism underlying the immunomodulatory effect of Rg1 is incompletely understood. In this study, we aimed to explore whether and how Rg1 regulates the innate immune response in macrophages. The results showed that Rg1 treatment significantly increased tumor necrosis factor (TNF)-α but decreased interleukin-6 (IL-6) protein expression in both lipopolysaccharide (LPS)-activated RAW 264.7 cells and mouse peritoneal macrophages. However, Rg1 reduced the mRNA levels of both cytokines in LPS-activated macrophages, which might be a consequence of decreased activation of IκB and nuclear factor-κB (NF-κB). Importantly, Rg1 treatment further promoted LPS-induced activation of the Akt/mechanistic target of rapamycin (mTOR) pathway, which is critical for controlling protein translation. The elevated Akt/mTOR signaling was likely responsible for increased production of TNF-α protein at the translational level, as suppression of this pathway by LY294002, an inhibitor of the upstream phosphatidylinositol 3-kinase (PI3K), abrogated such an enhancement of TNF-α protein expression even though its mRNA levels were conversely increased. These findings highlight a novel mechanism for Rg1 to regulate the innate immune response in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways.
Collapse
Affiliation(s)
- Yao Wang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Xiao-Yu Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Kun-Peng Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Jian He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
50
|
Shergis JL, Di YM, Zhang AL, Vlahos R, Helliwell R, Ye JM, Xue CC. Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complement Ther Med 2014; 22:944-53. [PMID: 25440386 DOI: 10.1016/j.ctim.2014.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/06/2014] [Accepted: 08/10/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a major global health burden and will become the third largest cause of death in the world by 2030. It is currently believed that an exaggerated inflammatory response to inhaled irritants, in particular cigarette smoke, cause progressive airflow limitation. This inflammation, where macrophages, neutrophils and lymphocytes are prominent, leads to oxidative stress, emphysema, airways fibrosis and mucus hypersecretion. COPD responds poorly to current anti-inflammatory treatments including corticosteroids, which produce little or no benefit. Panax ginseng has a long history of use in Chinese medicine for respiratory conditions, including asthma and COPD. OBJECTIVES In this perspective we consider the therapeutic potential of Panax ginseng for the treatment of COPD. RESULTS Panax ginseng and its compounds, ginsenosides, have reported effects through multiple mechanisms but primarily have anti-inflammatory and anti-oxidative effects. Ginsenosides are functional ligands of glucocorticoid receptors and appear to inhibit kinase phosphorylation including MAPK and ERK1/2, NF-κB transcription factor induction/translocation, and DNA binding. They also inhibit pro-inflammatory mediators, TNF-α, IL-6, IL-8, ROS, and proteases such as MMP-9. Panax ginseng protects against oxidative stress by increasing anti-oxidative enzymes and reducing the production of oxidants. CONCLUSION Given that Panax ginseng and ginsenosides appear to inhibit processes related to COPD pathogenesis, they represent an attractive therapeutic target for the treatment of COPD.
Collapse
Affiliation(s)
- J L Shergis
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - Y M Di
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - A L Zhang
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - R Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - R Helliwell
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - J M Ye
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - C C Xue
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|