1
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Aziz M, Abdel-Rahman HM. Quinazoline-chalcone hybrids as HDAC/EGFR dual inhibitors: Design, synthesis, mechanistic, and in-silico studies of potential anticancer activity against multiple myeloma. Arch Pharm (Weinheim) 2024; 357:e2300626. [PMID: 38297894 DOI: 10.1002/ardp.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA), Assiut, Egypt
| |
Collapse
|
2
|
Chen K, Ernst P, Kim S, Si Y, Varadkar T, Ringel MD, Liu X“M, Zhou L. An Innovative Mitochondrial-targeted Gene Therapy for Cancer Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.584499. [PMID: 38585739 PMCID: PMC10996521 DOI: 10.1101/2024.03.24.584499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Targeting cancer cell mitochondria holds great therapeutic promise, yet current strategies to specifically and effectively destroy cancer mitochondria in vivo are limited. Here, we introduce mLumiOpto, an innovative mitochondrial-targeted luminoptogenetics gene therapy designed to directly disrupt the inner mitochondrial membrane (IMM) potential and induce cancer cell death. We synthesize a blue light-gated channelrhodopsin (CoChR) in the IMM and co-express a blue bioluminescence-emitting Nanoluciferase (NLuc) in the cytosol of the same cells. The mLumiOpto genes are selectively delivered to cancer cells in vivo by using adeno-associated virus (AAV) carrying a cancer-specific promoter or cancer-targeted monoclonal antibody-tagged exosome-associated AAV. Induction with NLuc luciferin elicits robust endogenous bioluminescence, which activates mitochondrial CoChR, triggering cancer cell IMM permeability disruption, mitochondrial damage, and subsequent cell death. Importantly, mLumiOpto demonstrates remarkable efficacy in reducing tumor burden and killing tumor cells in glioblastoma or triple-negative breast cancer xenografted mouse models. These findings establish mLumiOpto as a novel and promising therapeutic strategy by targeting cancer cell mitochondria in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Zorova LD, Abramicheva PA, Andrianova NV, Babenko VA, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT, Zorov DB. Targeting Mitochondria for Cancer Treatment. Pharmaceutics 2024; 16:444. [PMID: 38675106 PMCID: PMC11054825 DOI: 10.3390/pharmaceutics16040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.
Collapse
Affiliation(s)
- Ljubava D. Zorova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Polina A. Abramicheva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Savva D. Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Dmitry S. Semenovich
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Elmira I. Yakupova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
4
|
Jin Y, Wang Z, Aobulikasimu N, Hu Y, Zhang Z, Lv H, Mu Y, Jiang Y, Han L, Huang X. Discovery, synthesis, and cytotoxic evaluation of isoquinolinequinones produced by Streptomyces albidoflavus derived from lichen. RSC Adv 2023; 13:34670-34680. [PMID: 38035238 PMCID: PMC10682742 DOI: 10.1039/d3ra07416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Four isoquinolinequinones (1-4) were isolated from the fermentation broth of Streptomyces albidoflavus which were derived from lichens. Among them, mansouramycin H (1) was identified as a new isoquinolinequinone by comprehensive spectroscopic data analysis. The mansouramycins from S. albidoflavus presented broad cytotoxic activities, especially against MDA-MB-231, but the SAR and mechanism were still unclear. The total synthesis of mansouramycin H (1) and its twenty-three derivatives were completed and their cytotoxic activities against MDA-MB-231 were evaluated in vitro. Primary SAR revealed that the piperazine moieties introduced into the amino group at C-7 could improve the activities of mansouramycins. Benzoyl and phenylacetyl groups on piperazine fragments had better activities than those of benzyl substitution; the alkyl substituent on piperazine exhibited optimal activity. Among them, compound 1g showed the strongest cytotoxicity against MBA-MB-231 cells with an IC50 value of 5.12 ± 0.11 μM. Mechanistic studies revealed that 1g induced apoptosis in MBA-MB-231 cells through down-regulating the protein expression of Bcl-2, up-regulating the protein expression of bax, and, meanwhile, activating the cleavage of caspase-3 and caspase-9. 1g caused S phase cell cycle arrest in MBA-MB-231 cells by reducing the protein expression of CDK2 and cyclin A2 and increasing the protein levels of p21.
Collapse
Affiliation(s)
- Ying Jin
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| | - Zixuan Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| | - Nuerbiye Aobulikasimu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| | - Yixuan Hu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| | - Zengguang Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| | - Hang Lv
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University Kunming 650091 China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University Shenyang 110819 China
| |
Collapse
|
5
|
Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol 2023; 11:1266973. [PMID: 37808079 PMCID: PMC10556696 DOI: 10.3389/fcell.2023.1266973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Succinate serves as an essential circulating metabolite within the tricarboxylic acid (TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH), thereby contributing to energy production in fundamental mitochondrial metabolic pathways. Aberrant changes in succinate concentrations have been associated with pathological states, including chronic inflammation, ischemia/reperfusion (IR) injury, and cancer, resulting from the exaggerated response of specific immune cells, thereby rendering it a central area of investigation. Recent studies have elucidated the pivotal involvement of succinate and SDH in immunity beyond metabolic processes, particularly in the context of cancer. Current scientific endeavors are concentrated on comprehending the functional repercussions of metabolic modifications, specifically pertaining to succinate and SDH, in immune cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH alterations to manipulate immune cell functions in hypoxia-related diseases have been demonstrated. Consequently, a comprehensive understanding of succinate's role in metabolism and the regulation of SDH is crucial for effectively targeting succinate and SDH as therapeutic interventions to influence the progression of specific diseases. This review provides a succinct overview of the latest advancements in comprehending the emerging functions of succinate and SDH in metabolic processes. Furthermore, it explores the involvement of succinate, an intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with particular emphasis on the mechanisms underlying succinate accumulation. This review critically assesses the potential of modulating succinate accumulation and metabolism within the hypoxic milieu as a means to combat various diseases. It explores potential targets for therapeutic interventions by focusing on succinate metabolism and the regulation of SDH in hypoxia-related disorders.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Parveen N, Akbarsha MA, Latif Wani AB, Ansari MO, Ahmad MF, Shadab GGHA. Protective effect of quercetin and thymoquinone against genotoxicity and oxidative stress induced by ZnO nanoparticles in the Wistar rat model. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503661. [PMID: 37567646 DOI: 10.1016/j.mrgentox.2023.503661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in a variety of consumer and other commercial products. Hence, man faces the risk of exposure to ZnO-NPs and the consequent adverse health effects. Mitigation/prevention of such effects using natural products has drawn the attention of scientists. Therefore, the aim of the present study has been to find the toxic effects associated with exposure to ZnO-NPs, and the protective role of the phytochemicals thymoquinone (TQ) and quercetin (QCT) in the rat model. ZnO-NPs were administered to male Wistar rats through oral route; TQ / QCT was concurrently administered through intra-peritoneal route. The response in the animal was analyzed adopting chromosomal aberration test, micronucleus test, and comet assay of bone marrow cells to assess the genotoxicity, and biochemical assays of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total extractable protein of liver, and reduced glutathione (GSH) of liver homogenate to monitor the changes in the antioxidant defense mechanism in response to the oxidative stress. Treatment of 300 mg/kg body weight (bw) of ZnO-NPs produced adverse effects on all aspects analyzed viz., structural chromosomal aberrations, micronuclei formation, DNA damage, SOD, catalase, lipid peroxidation, GSH, and extractable total protein of liver. Co-treatment of TQ / QCT offered protection against the toxicity induced by ZnO-NPs. The most optimum doses of TQ and QCT that offered the best protection were 18 mg/kg bw and 500 mg/kg bw, respectively. The study reveals that TQ / QCT supplementation is beneficial in the context of toxic effects of ZnO-NPs.
Collapse
Affiliation(s)
- Nuzhat Parveen
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | | | - A B Latif Wani
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Owais Ansari
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Fahim Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - G G H A Shadab
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
7
|
Moon DO. Calcium's Role in Orchestrating Cancer Apoptosis: Mitochondrial-Centric Perspective. Int J Mol Sci 2023; 24:ijms24108982. [PMID: 37240331 DOI: 10.3390/ijms24108982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is an essential intracellular messenger that plays a vital role in controlling a broad range of cellular processes, including apoptosis. This review offers an in-depth analysis of calcium's multifaceted role in apoptosis regulation, focusing on the associated signaling pathways and molecular mechanisms. We will explore calcium's impact on apoptosis through its effects on different cellular compartments, such as the mitochondria and endoplasmic reticulum (ER), and discuss the connection between calcium homeostasis and ER stress. Additionally, we will highlight the interplay between calcium and various proteins, including calpains, calmodulin, and Bcl-2 family members, and the role of calcium in regulating caspase activation and pro-apoptotic factor release. By investigating the complex relationship between calcium and apoptosis, this review aims to deepen our comprehension of the fundamental processes, and pinpointing possible treatment options for illnesses associated with imbalanced cell death is crucial.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
8
|
Khallouki F, Hajji L, Saber S, Bouddine T, Edderkaoui M, Bourhia M, Mir N, Lim A, El Midaoui A, Giesy JP, Aboul-Soud MAM, Silvente-Poirot S, Poirot M. An Update on Tamoxifen and the Chemo-Preventive Potential of Vitamin E in Breast Cancer Management. J Pers Med 2023; 13:jpm13050754. [PMID: 37240924 DOI: 10.3390/jpm13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.
Collapse
Affiliation(s)
- Farid Khallouki
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Lhoussain Hajji
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Somayya Saber
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Toufik Bouddine
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Nora Mir
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Adrian Lim
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Adil El Midaoui
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
| | - Mourad A M Aboul-Soud
- Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| |
Collapse
|
9
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
10
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Ray MN, Ozono M, Nakao M, Sano S, Kogure K. Only one carbon difference determines the pro-apoptotic activity of α-tocopheryl esters. FEBS J 2023; 290:1027-1048. [PMID: 36083714 DOI: 10.1111/febs.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
Abstract
α-Tocopheryl succinate (TS), a redox-silent succinyl ester of natural α-Tocopherol, has emerged as a novel anti-cancer agent. However, the underlying mechanism is unclear. We found that the terminal dicarboxylic moiety of tocopheryl esters contributes to apoptosis induction and thus cytotoxicity. To further examine this relationship, we compared the pro-apoptotic activity of TS, which has four carbon atoms in the terminal dicarboxylic moiety, to that of a newly synthesized, tocopheryl glutarate (Tglu), which has five. Cytotoxicity assays in vitro confirmed that TS stimulated apoptosis, while Tglu was non-cytotoxic. In investigating biological mechanisms leading to these opposing effects, we found that TS caused an elevation of intracellular superoxide, but Tglu did not. TS increased intracellular Ca2+ in cultured cells, suggesting induction of endoplasmic reticulum (ER) stress; however, Tglu did not affect Ca2+ homeostasis. 1,4,5-trisphosphate (IP3 ) receptor antagonist 2-Aminoethyl diphenylborinate (2-APB) decreased TS-induced intracellular Ca2+ , restored mitochondrial activity and cell viability in TS-treated cells, establishing the ER-mitochondria relationship in apoptosis induction. Moreover, real-time PCR, immunostaining and Western blotting assays revealed that TS downregulated glucose-regulated protein 78 (GRP78), which maintains ER homeostasis and promotes cell survival. Conversely, Tglu upregulates GRP78. Taken together, our results suggest a model in which TS-mediated superoxide production and GRP78 inhibition induce ER stress, which elevates intracellular Ca2+ and depolarizes mitochondria, leading to apoptosis. Because Tglu does not affect superoxide generation and increases GRP78 expression, it inhibits ER stress and is thereby non-cytotoxic. Our research provides insight into the structure-activity relationship of tocopheryl esters regarding the induction of apoptosis.
Collapse
Affiliation(s)
- Manobendro Nath Ray
- Department of Pharmaceutical Health Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Japan
| | - Mizune Ozono
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Michiyasu Nakao
- Department of Molecular Medicinal Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Shigeki Sano
- Department of Molecular Medicinal Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| |
Collapse
|
12
|
Marotta C, Giorgi E, Binacchi F, Cirri D, Gabbiani C, Pratesi A. An overview of recent advancements in anticancer Pt(IV) prodrugs: New smart drug combinations, activation and delivery strategies. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Huang Y, Mo S, Jin Y, Zheng Z, Wang H, Wu S, Ren Z, Wu J. Ammonia-induced excess ROS causes impairment and apoptosis in porcine IPEC-J2 intestinal epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114006. [PMID: 36037632 DOI: 10.1016/j.ecoenv.2022.114006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Ammonia is one of the most important toxic metabolites in the intestine of animals. It can cause intestinal damage and associated intestinal diseases through different endogenous or exogenous stimuli. However, the definition of harmful ammonia concentration and the molecular mechanism of ammonia - induced intestinal epithelial injury remain unclear. In this study, we found that the viability of porcine IPEC-J2 intestinal epithelial cells significantly decreased with the increase of NH4Cl dose (20-80 mM). Ammonia (40 mM NH4Cl) increased the expression level of ammonia transporter RHCG and disrupted the intestinal barrier function of IPEC-J2 cells by reducing the expression levels of the tight junction molecules ZO-1 and Claudin-1. Ammonia caused elevated levels of ROS and apoptosis in IPEC-J2 cells. This was manifested by decreased activity of antioxidant enzymes SOD and GPx, decreased mitochondrial membrane potential, and increased cytoplasmic Ca2+ concentration. In addition, the expression levels of apoptosis-related molecules Caspase-9, Caspase-3, Fas, Caspase-8, p53 and Bax were increased, the expression level of anti-apoptotic molecule Bcl-2 was decreased. Moreover, the antioxidant NAC (N-acetyl-L-cysteamine) effectively alleviated ammonia-induced cytotoxicity, reduced ROS level, Ca2+ concentration, and the apoptosis of IPEC-J2 cells. The results suggest that ammonia-induced excess ROS triggered apoptosis through mitochondrial pathway, death receptor pathway and DNA damage. This study can provide reference and theoretical basis for the definition of harmful ammonia concentration in pig intestine and the effect and mechanism of ammonia on pig intestinal health.
Collapse
Affiliation(s)
- Yihao Huang
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shangkun Mo
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi Jin
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuoning Zheng
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hanyi Wang
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaojuan Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuqing Ren
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Jian Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Ma Y, Hao G, Lin X, Zhao Z, Yang A, Cao Y, Zhang S, Fan L, Geng J, Zhang Y, Chen J, Song C, He M, Du H. Morroniside Protects Human Granulosa Cells against H 2O 2-Induced Oxidative Damage by Regulating the Nrf2 and MAPK Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8099724. [PMID: 36118095 PMCID: PMC9481377 DOI: 10.1155/2022/8099724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/05/2022]
Abstract
Morroniside is the main ingredient of Cornus officinalis and has a variety of biological activities including antioxidative effects. Ovarian granulosa cells (GCs) are responsible for regulating the development and atresia of follicles, which are susceptible to oxidative stress. In this study, we determined whether morroniside can inhibit the oxidative stress of GCs induced by hydrogen peroxide (H2O2), leading to improved oocyte quality. The oxidative damage and apoptosis of ovarian GCs cultured in vitro were induced by the addition of H2O2. After pretreatment with morroniside, the levels of ROS, MDA, and 8-OHdG in ovarian GCs were significantly decreased. Morroniside significantly upregulated p-Nrf2 and promoted the nuclear translocation of Nrf2, which transcriptionally activated antioxidant SOD and NQO1. In addition, morroniside significantly regulated the levels of apoptosis-related proteins Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 via the p38 and JNK pathways. These results suggest that morroniside can reduce the oxidative damage and apoptosis of ovarian GCs induced by H2O2.
Collapse
Affiliation(s)
- Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaohua Lin
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Aimin Yang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yucong Cao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Shuancheng Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Lijie Fan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Jingran Geng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Yu Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Cuimiao Song
- Department of Physiology, Basic Medical College, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| | - Huilan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, China
| |
Collapse
|
15
|
Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, Sinelnikov MY, Nikolenko VN, Bulygin KV, Mikhaleva LM, Reshetov IV, Gu Y, Zhang J, Cao Y, Somasundaram SG, Kirkland CE, Fan R, Aliev G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2022; 83:556-569. [PMID: 33035656 DOI: 10.1016/j.semcancer.2020.09.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Epigenetic regulation of mitochondrial DNA (mtDNA) is an emerging and fast-developing field of research. Compared to regulation of nucler DNA, mechanisms of mtDNA epigenetic regulation (mitoepigenetics) remain less investigated. However, mitochondrial signaling directs various vital intracellular processes including aerobic respiration, apoptosis, cell proliferation and survival, nucleic acid synthesis, and oxidative stress. The later process and associated mismanagement of reactive oxygen species (ROS) cascade were associated with cancer progression. It has been demonstrated that cancer cells contain ROS/oxidative stress-mediated defects in mtDNA repair system and mitochondrial nucleoid protection. Furthermore, mtDNA is vulnerable to damage caused by somatic mutations, resulting in the dysfunction of the mitochondrial respiratory chain and energy production, which fosters further generation of ROS and promotes oncogenicity. Mitochondrial proteins are encoded by the collective mitochondrial genome that comprises both nuclear and mitochondrial genomes coupled by crosstalk. Recent reports determined the defects in the collective mitochondrial genome that are conducive to breast cancer initiation and progression. Mutational damage to mtDNA, as well as its overproliferation and deletions, were reported to alter the nuclear epigenetic landscape. Unbalanced mitoepigenetics and adverse regulation of oxidative phosphorylation (OXPHOS) can efficiently facilitate cancer cell survival. Accordingly, several mitochondria-targeting therapeutic agents (biguanides, OXPHOS inhibitors, vitamin-E analogues, and antibiotic bedaquiline) were suggested for future clinical trials in breast cancer patients. However, crosstalk mechanisms between altered mitoepigenetics and cancer-associated mtDNA mutations remain largely unclear. Hence, mtDNA mutations and epigenetic modifications could be considered as potential molecular markers for early diagnosis and targeted therapy of breast cancer. This review discusses the role of mitoepigenetic regulation in cancer cells and potential employment of mtDNA modifications as novel anti-cancer targets.
Collapse
Affiliation(s)
- Kuo Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China; Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Pengwei Lu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - SubbaRao V Madhunapantula
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Mikhail Y Sinelnikov
- Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuanting Gu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China.
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation; Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr. 1, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
16
|
Yapryntseva MA, Maximchik PV, Zhivotovsky B, Gogvadze V. Mitochondrial sirtuin 3 and various cell death modalities. Front Cell Dev Biol 2022; 10:947357. [PMID: 35938164 PMCID: PMC9354933 DOI: 10.3389/fcell.2022.947357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuin 3, a member of the mammalian sirtuin family of proteins, is involved in the regulation of multiple processes in cells. It is a major mitochondrial NAD+-dependent deacetylase with a broad range of functions, such as regulation of oxidative stress, reprogramming of tumor cell energy pathways, and metabolic homeostasis. One of the intriguing functions of sirtuin 3 is the regulation of mitochondrial outer membrane permeabilization, a key step in apoptosis initiation/progression. Moreover, sirtuin 3 is involved in the execution of various cell death modalities, which makes sirtuin 3 a possible regulator of crosstalk between them. This review is focused on the role of sirtuin 3 as a target for tumor cell elimination and how mitochondria and reactive oxygen species (ROS) are implicated in this process.
Collapse
Affiliation(s)
| | - Polina V. Maximchik
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Vladimir Gogvadze
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
- *Correspondence: Vladimir Gogvadze,
| |
Collapse
|
17
|
Dietary supplementation of fructooligosaccharides alleviates enterotoxigenic E. coli-induced disruption of intestinal epithelium in a weaned piglet model. Br J Nutr 2021; 128:1526-1534. [PMID: 34763738 DOI: 10.1017/s0007114521004451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diarrhea caused by pathogens such as enterotoxigenic E. coli (ETEC) is a serious threat to the health of young animals and human infants. Here, we investigated the protective effect of fructooligosaccharides (FOS) on the intestinal epithelium with ETEC-challenge in a weaned piglet model. Twenty-four weaned piglets were randomly divided into three groups: (1) non-ETEC-challenged control (CON), (2) ETEC-challenged control (ECON), and (3) ETEC challenge + 2.5 g/kg FOS (EFOS). On day 19, the CON pigs were orally infused with sterile culture, while the ECON and EFOS pigs were orally infused with active ETEC (2.5 × 109 colony-forming units). On day 21, pigs were slaughtered to collect venous blood and small intestine. Result showed that the pre-treatment of FOS improved the antioxidant capacity and the integrity of intestinal barrier in the ETEC-challenged pigs without affecting their growth performance. Specifically, comparing with ECON pigs, the level of GSH-Px (glutathione peroxidase) and CAT (catalase) in the plasma and intestinal mucosa of EFOS pigs was increased (P<0.05), and the intestinal barrier marked by ZO-1 and plasmatic DAO was also improved in EFOS pigs. A lower level (P<0.05) of inflammatory cytokines in the intestinal mucosa of EFOS pigs might be involved in the inhibition of TLR4/MYD88/NF-κB pathway. The apoptosis of jejunal cells in EFOS pigs was also lower than that in ECON pigs (P<0.05). Our findings provide convincing evidence of possible prebiotic and protective effect of FOS on the maintenance of intestinal epithelial function under the attack of pathogens.
Collapse
|
18
|
Qiao S, Lu W, Glorieux C, Li J, Zeng P, Meng N, Zhang H, Wen S, Huang P. Wild-type IDH2 protects nuclear DNA from oxidative damage and is a potential therapeutic target in colorectal cancer. Oncogene 2021; 40:5880-5892. [PMID: 34349242 DOI: 10.1038/s41388-021-01968-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Although the role of isocitrate dehydrogenase (IDH) mutation in promoting cancer development has been well-characterized, the impact of wild-type IDH on cancer cells remains unclear. Here we show that the wild-type isocitrate dehydrogenase 2 (IDH2) is highly expressed in colorectal cancer (CRC) cells, and plays an unexpected role in protecting the cancer cells from oxidative damage. Genetic abrogation of IDH2 in CRC cells leads to reactive oxygen species (ROS)-mediated DNA damage and an accumulation of 8-oxoguanine with DNA strand breaks, which activates DNA damage response (DDR) with elevated γH2AX and phosphorylation of ataxia telangiectasia-mutated (ATM) protein, leading to a partial cell cycle arrest and eventually cell senescence. Mechanistically, the suppression of IDH2 results in a reduction of the tricarboxylic acid (TCA) cycle activity due to a decrease in the conversion of isocitrate to α-ketoglutarate (α-KG) with a concurrent decrease in NADPH production, leading to ROS accumulation and oxidative DNA damage. Importantly, abrogation of IDH2 inhibits CRC cell growth in vitro and in vivo, and renders CRC cells more vulnerable to DNA-damaging drugs. Screening of an FDA-approved drug library has identified oxaliplatin as a compound highly effective against CRC cells when IDH2 was suppressed. Our study has uncovered an important role of the wild-type IDH2 in protecting DNA from oxidative damage, and provides a novel biochemical basis for developing metabolic intervention strategy for cancer treatment.
Collapse
Affiliation(s)
- Shuang Qiao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenhua Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiangjiang Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peiting Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ning Meng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huiqin Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
- Metabolic Innovation Cancer, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
19
|
Fialova JL, Raudenska M, Jakubek M, Kejik Z, Martasek P, Babula P, Matkowski A, Filipensky P, Masarik M. Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini Rev Med Chem 2021; 21:816-832. [PMID: 33213355 DOI: 10.2174/1389557520666201118153242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
The search for mitochondria-targeted drugs has dramatically risen over the last decade. Mitochondria are essential organelles serving not only as a powerhouse of the cell but also as a key player in cell proliferation and cell death. Their central role in the energetic metabolism, calcium homeostasis and apoptosis makes them an intriguing field of interest for cancer pharmacology. In cancer cells, many mitochondrial signaling and metabolic pathways are altered. These changes contribute to cancer development and progression. Due to changes in mitochondrial metabolism and changes in membrane potential, cancer cells are more susceptible to mitochondria-targeted therapy. The loss of functional mitochondria leads to the arrest of cancer progression and/or a cancer cell death. Identification of mitochondrial changes specific for tumor growth and progression, rational development of new mitochondria-targeted drugs and research on delivery agents led to the advance of this promising area. This review will highlight the current findings in mitochondrial biology, which are important for cancer initiation, progression and resistance, and discuss approaches of cancer pharmacology with a special focus on the anti-cancer drugs referred to as 'mitocans'.
Collapse
Affiliation(s)
- Jindriska Leischner Fialova
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Zdenek Kejik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Pavel Martasek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Borowska 211, Poland
| | - Petr Filipensky
- Department of Urology, St. Anne's Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Liang L, Peng Y, Qiu L. Mitochondria-targeted vitamin E succinate delivery for reversal of multidrug resistance. J Control Release 2021; 337:117-131. [PMID: 34274383 DOI: 10.1016/j.jconrel.2021.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022]
Abstract
Inducing mitochondrial malfunction is an appealing strategy to overcome tumor multidrug resistance (MDR). Reported here a versatile mitochondrial-damaging molecule, vitamin E succinate (VES), is creatively utilized to assist MDR reversal of doxorubicin hydrochloride (DOX·HCl) via a nanovesicle platform self-assembled from amphiphilic polyphosphazenes containing pH-sensitive 1H-benzo-[d]imidazol-2-yl) methanamine (BIMA) groups. Driven by multiple non-covalent interactions, VES is fully introduced into the hydrophobic membrane of DOX·HCl-loaded nanovesicles with loading content of 23.5%. The incorporated VES also offers robust anti-leakage property toward DOX·HCl under normal physiological conditions. More importantly, upon release within acidic tumor cells, VES can target mitochondria and result in various dysfunctions including excessive generation of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm) loss, and inhibited adenosine triphosphate (ATP) synthesis, which contribute to cell apoptosis and insufficient energy supply for drug efflux pumps. Consequently, the killing-effect of DOX·HCl is significantly enhanced toward drug resistant cancer cells at the optimal mass ratio of DOX·HCl to VES. Further in vivo antitumor investigation on nude mice bearing xenograft drug-resistant human chronic myelogenous leukemia K562/ADR tumors verifies the extremely enhanced anti-tumor efficacy of the dual drug-loaded nanovesicle with the tumor inhibition rate (TIR) of 82.38%. Collectively, this study provides a s safe, facile and promising strategy for both precise drug delivery and MDR eradication to improve cancer therapy.
Collapse
Affiliation(s)
- Lina Liang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Peng
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
21
|
Sun X, Piao L, Jin H, Nogoy KMC, Zhang J, Sun B, Jin Y, Lee DH, Choi SH, Smith SB, Li X. Effects of dietary glucose oxidase, catalase, or both supplementation on reproductive performance, oxidative stress, fecal microflora and apoptosis in multiparous sows. Anim Biosci 2021; 35:75-86. [PMID: 34237918 PMCID: PMC8738931 DOI: 10.5713/ab.20.0839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/24/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The objective of this experiment was to investigate the effect of dietary glucose oxidase (GOD), catalase (CAT), or both supplementation on reproductive performance, oxidative stress, and apoptosis in sows. Methods A total of 104 multiparous sows were randomly assigned to four groups (n = 26) with each group given a basal diet, basal diet plus GOD at 60 U/kg, basal diet plus CAT at 75 U/kg, and basal diet plus GOD at 60 U/kg and CAT at 75 U/kg. Sows were fed the experimental diets throughout gestation and lactation. Results Dietary GOD supplementation increased average daily feed intake of sows and litter weight at weaning (p<0.05). Dietary CAT supplementation reduced the duration of parturition, stillbirth, and piglet mortality and increased growth performance of weaned piglets (p<0.05). Dietary GOD and CAT supplementation enhanced antioxidant enzyme activities and lessened oxidative stress product levels in plasma of sows and elevated antioxidant capacity of 14-day milk and plasma in weaned piglets (p<0.05). Dietary GOD supplementation increased fecal Lactobacillus counts and reduced Escherichia coli counts of sows (p<0.05). Compared with the basal diet, the GOD diet reduced fecal Escherichia coli counts of sows, but the addition of CAT did not reduce Escherichia coli counts in the GOD diet. Dietary GOD and CAT supplementation reduced the apoptosis rate of the liver, endometrium, and ovarian granulosa cells in sows (p<0.05). In the liver, uterus, and ovary of sows, the mRNA expression of caspase-3 and caspase-9 was downregulated by dietary GOD and CAT supplementation (p<0.05). Conclusion Dietary GOD and CAT supplementation could improve the antioxidant capacity of sows and weaned piglets, and alleviate hepatic, ovarian and uterine apoptosis by weakening apoptosis-related gene expression. Glucose oxidase regulated fecal microflora of sows, but supplementation of CAT to GOD could weaken the inhibitory effect of GOD on fecal Escherichia coli.
Collapse
Affiliation(s)
- Xiaojiao Sun
- Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Longguo Piao
- Department of Animal Science, Yanbian University, Yanji 133002, China.,CJ Cheiljedang feed (China) R&D center, Shenyang, Liaoning, 110000, China
| | - Haifeng Jin
- CJ Cheiljedang feed (China) R&D center, Shenyang, Liaoning, 110000, China
| | | | - Junfang Zhang
- Department of Biosystems Engineering, Chungbuk National University, Cheongju 28644, Korea
| | - Bin Sun
- Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Yi Jin
- Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Dong Hoon Lee
- Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Seong-Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju City 28644, Korea
| | - Stephen B Smith
- Department of Animal Science, Chungbuk National University, Cheongju City 28644, Korea
| | - Xiangzi Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
22
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
23
|
Hu C, Li G, Mu Y, Wu W, Cao B, Wang Z, Yu H, Guan P, Han L, Li L, Huang X. Discovery of Anti-TNBC Agents Targeting PTP1B: Total Synthesis, Structure-Activity Relationship, In Vitro and In Vivo Investigations of Jamunones. J Med Chem 2021; 64:6008-6020. [PMID: 33860662 DOI: 10.1021/acs.jmedchem.1c00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Twenty-three natural jamunone analogues along with a series of jamunone-based derivatives were synthesized and evaluated for their inhibitory effects against breast cancer (BC) MDA-MB-231 and MCF-7 cells. The preliminary structure-activity relationship revealed that the length of aliphatic side chain and free phenolic hydroxyl group at the scaffold played a vital role in anti-BC activities and the methyl group on chromanone affected the selectivity of molecules against MDA-MB-231 and MCF-7 cells. Among them, jamunone M (JM) was screened as the most effective anti-triple-negative breast cancer (anti-TNBC) candidate with a high selectivity against BC cells over normal human cells. Mechanistic investigations indicated that JM could induce mitochondria-mediated apoptosis and cause G0/G1 phase arrest in BC cells. Furthermore, JM significantly restrained tumor growth in MDA-MB-231 xenograft mice without apparent toxicity. Interestingly, JM could downregulate phosphatidylinositide 3-kinase (PI3K)/Akt pathway by suppressing protein-tyrosine phosphatase 1B (PTP1B) expression. These findings revealed the potential of JM as an appealing therapeutic drug candidate for TNBC.
Collapse
Affiliation(s)
- Caijuan Hu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Guoxun Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Wenxi Wu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Bixuan Cao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Zixuan Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Hainan Yu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
24
|
Vostrikova SM, Grinev AB, Gogvadze VG. Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy. BIOCHEMISTRY (MOSCOW) 2021; 85:1254-1266. [PMID: 33202210 DOI: 10.1134/s0006297920100132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Strictly regulated balance between the formation and utilization of reactive oxygen species (ROS) is the basis of normal functioning of organisms. ROS play an important role in the regulation of many metabolic processes; however, excessive content of ROS leads to the development of various disorders, including oncological diseases, as a result of ROS-induced mutations in DNA. In tumors, high levels of oxygen radicals promote cell proliferation and metastasis. On the other hand, high content of ROS can trigger cell death, a phenomenon used in the antitumor therapy. Water- and lipid-soluble antioxidants, as well as antioxidant enzyme systems, can inhibit ROS generation; however, they should be used with caution. Antioxidants can suppress ROS-dependent cell proliferation and metastasis, but at the same time, they may inhibit the death of tumor cells if the antitumor therapeutic agents stimulate oxidative stress. The data on the role of antioxidants in the death of tumor cells and on the effects of antioxidants taken as dietary supplements during antitumor therapy, are contradictory. This review focuses on the mechanisms by which antioxidants can affect tumor and healthy cells.
Collapse
Affiliation(s)
- S M Vostrikova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - A B Grinev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - V G Gogvadze
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia. .,Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| |
Collapse
|
25
|
Hoenke S, Serbian I, Deigner HP, Csuk R. Mitocanic Di- and Triterpenoid Rhodamine B Conjugates. Molecules 2020; 25:molecules25225443. [PMID: 33233650 PMCID: PMC7699795 DOI: 10.3390/molecules25225443] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The combination of the “correct” triterpenoid, the “correct” spacer and rhodamine B (RhoB) seems to be decisive for the ability of the conjugate to accumulate in mitochondria. So far, several triterpenoid rhodamine B conjugates have been prepared and screened for their cytotoxic activity. To obtain cytotoxic compounds with EC50 values in a low nano-molar range combined with good tumor/non-tumor selectivity, the Rho B unit has to be attached via an amine spacer to the terpenoid skeleton. To avoid spirolactamization, secondary amines have to be used. First results indicate that a homopiperazinyl spacer is superior to a piperazinyl spacer. Hybrids derived from maslinic acid or tormentic acid are superior to those from oleanolic, ursolic, glycyrrhetinic or euscaphic acid. Thus, a tormentic acid-derived RhoB conjugate 32, holding a homopiperazinyl spacer can be regarded, at present, as the most promising candidate for further biological studies.
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Immo Serbian
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Hans-Peter Deigner
- Medical and Life Science Faculty, Institute of Precision Medicine, Furtwangen University, Jakob–Kienzle–Street 17, D-78054 Villigen–Schwenningen, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
26
|
Effects of Different Processed Products of Polygonum multiflorum on the Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5235271. [PMID: 32215041 PMCID: PMC7085390 DOI: 10.1155/2020/5235271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
Objective Based on in vitro and in vivo experimental studies, the changes of the main components of Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. Methods The components of different processed products of Polygonum multiflorum were determined by HPLC. The effects of processed products of different processing time periods on HepG2 cells were detected by using cell count kit-8 and the apoptosis method; the effects of different processed products on the mouse liver were detected by reverse transcription polymerase chain reaction and immunohistochemistry. Results With the extension of processing time, the contents of various chemical components in Polygonum multiflorum increased, while the content of stilbene glucoside decreased. The serum of Polygonum multiflorum group and different steaming time groups had obvious inhibitory effect on HepG2 cells. For normal mice, the toxicity of raw Polygonum multiflorum and processed products at different processing time periods had certain toxicity to liver and gradually decreased with the prolongation of processing time. For mice in the liver injury group, the therapeutic effect of raw Polygonum multiflorum and processed products at different processing time periods was not obvious, but there is a trend of treatment. Conclusion The content of the main components in Radix Polygonum multiflorum can be affected by processing time; stilbene glycoside may be the main component leading to liver injury. The degree of liver injury caused by Radix Polygonum multiflorum is negatively correlated with processing time.
Collapse
|
27
|
Selenium-Enriched Yeast Alleviates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5490743. [PMID: 32256952 PMCID: PMC7106930 DOI: 10.1155/2020/5490743] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
To explore the effect of selenium-enriched yeast (SeY) on intestinal barrier functions in weaned pigs upon oxidative stress, a 2 × 2 factorial design was utilized and thirty-two pigs were randomly assigned into four groups. Pigs with or without exposure to oxidative stress (diquat challenge) were fed with a basal diet or a SeY-containing diet. The trial lasted for 21 days, and result showed that SeY supplementation attenuated body-weight reduction and significantly decreased the serum concentrations of diamine oxidase (DAO) and D-lactic acid in pigs upon diquat challenge (P < 0.05). Diquat challenge decreased the villus height and the ratio of villus height to crypt depth (V/C) in the jejunum and ileum (P < 0.05). However, SeY supplementation not only elevated the villus height and the ratio of V/C (P < 0.05) but also improved the distribution and abundance of tight-junction protein ZO-1 in the jejunum epithelium. Interestingly, SeY supplementation acutely decreased the total apoptosis rate of intestinal epithelial cells in pigs upon diquat challenge (P < 0.05). Moreover, SeY elevated the content of antioxidant molecules such as glutathione peroxidase (GSH-Px) and catalase (CAT) but significantly decreased the content of malondialdehyde (MDA) in the intestinal mucosa (P < 0.05). Importantly, SeY elevated the expression levels of critical functional genes such as the nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), sodium/glucose cotransporter 1 (SGLT1), and B-cell lymphoma-2 (BCL-2) in the intestinal mucosa upon diquat challenge (P < 0.05). Moreover, the expression of caspase-3 was downregulated by SeY in the duodenum and jejunum mucosa (P < 0.05). These results indicated that SeY attenuated oxidative stress-induced intestinal mucosa disruption, which was associated with elevated mucosal antioxidative capacity and improved intestinal barrier functions.
Collapse
|
28
|
Ashour HF, Abou-Zeid LA, El-Sayed MAA, Selim KB. 1,2,3-Triazole-Chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226. Eur J Med Chem 2020; 189:112062. [PMID: 31986406 DOI: 10.1016/j.ejmech.2020.112062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/23/2022]
Abstract
A new series of 1,2,3-triazole-chalcone hybrids has been synthesized and screened in vitro against a panel of 60 human cancer cell lines according to NCI (USA) protocol. Compound 4d having 3, 4-dimethoxyphenyl chalcone moiety, the most potent derivative, inhibited the growth of RPMI-8226 and SR leukemia cell lines by 99.73% and 94.95% at 10 μM, respectively. Also, it inhibited the growth of M14 melanoma, K-562 leukemia, and MCF7 breast cancer cell lines by more than 80% at the same test concentration. 4d showed IC50 values less than 1 μM on six types of tumor cells and high selectivity index reached to 104 fold on MCF7. Compound 4d showed superior activity than methotrexate and gefitinib against the most sensitive leukemia cell lines in addition to higher or comparable activity against the rest sensitive cell lines. Flow cytometry analysis in RPMI-8226 cells revealed that compound 4d caused cell cycle arrest at G2/M phase and induced apoptosis in a dose dependant manner. Mechanistic evaluation referred this apoptosis induction to triggering mitochondrial apoptotic pathway through inducing ROS accumulation, increasing Bax/Bcl-2 ratio and activation of caspases 3, 7 and 9.
Collapse
Affiliation(s)
- Heba F Ashour
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Dammeitta, Egypt
| | - Laila A Abou-Zeid
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University, Gamsaa, Egypt
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Dammeitta, Egypt.
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
29
|
Peng C, Sun Z, Wang L, Shu Y, He M, Ding H, Li Y, Wang X, Feng S, Li J, Wu J. Soybean antigen protein induces caspase-3/mitochondrion-regulated apoptosis in IPEC-J2 cells. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1702926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Chenglu Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Zhifeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yingshuang Shu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Mengchu He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, People’s Republic of China
| |
Collapse
|
30
|
Mitochondria as a Source and a Target for Uremic Toxins. Int J Mol Sci 2019; 20:ijms20123094. [PMID: 31242575 PMCID: PMC6627204 DOI: 10.3390/ijms20123094] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/23/2023] Open
Abstract
Elucidation of molecular and cellular mechanisms of the uremic syndrome is a very challenging task. More than 130 substances are now considered to be "uremic toxins" and represent a very diverse group of molecules. The toxicity of these molecules affects many cellular processes, and expectably, some of them are able to disrupt mitochondrial functioning. However, mitochondria can be the source of uremic toxins as well, as the mitochondrion can be the site of complete synthesis of the toxin, whereas in some scenarios only some enzymes of the pathway of toxin synthesis are localized here. In this review, we discuss the role of mitochondria as both the target and source of pathological processes and toxic compounds during uremia. Our analysis revealed about 30 toxins closely related to mitochondria. Moreover, since mitochondria are key regulators of cellular redox homeostasis, their functioning might directly affect the production of uremic toxins, especially those that are products of oxidation or peroxidation of cellular components, such as aldehydes, advanced glycation end-products, advanced lipoxidation end-products, and reactive carbonyl species. Additionally, as a number of metabolic products can be degraded in the mitochondria, mitochondrial dysfunction would therefore be expected to cause accumulation of such toxins in the organism. Alternatively, many uremic toxins (both made with the participation of mitochondria, and originated from other sources including exogenous) are damaging to mitochondrial components, especially respiratory complexes. As a result, a positive feedback loop emerges, leading to the amplification of the accumulation of uremic solutes. Therefore, uremia leads to the appearance of mitochondria-damaging compounds, and consecutive mitochondrial damage causes a further rise of uremic toxins, whose synthesis is associated with mitochondria. All this makes mitochondrion an important player in the pathogenesis of uremia and draws attention to the possibility of reducing the pathological consequences of uremia by protecting mitochondria and reducing their role in the production of uremic toxins.
Collapse
|
31
|
Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, Palmieri M. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 2019; 98:4-14. [PMID: 31039394 DOI: 10.1016/j.semcdb.2019.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elio Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
32
|
Yan W, Lu J, Li G, Wei H, Ren WH. Amidated Scolopin-2 inhibits proliferation and induces apoptosis of Hela cells in vitro and in vivo. Biotechnol Appl Biochem 2018; 65:672-679. [PMID: 29644748 DOI: 10.1002/bab.1661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the effect of Scolopin-2, a cationic antimicrobial peptide from centipede venoms, and amidated Scolopin-2 on Hela cell viability in vitro and in vivo. The cellular proliferation was investigated with the MTT assay. Confocal laser scanning, flow cytometry, and Western blot analysis were employed to localize Scolopin-2-NH2 in Hela cells and to study the caused cells apoptosis. We subcutaneously injected Hela cells into BALB/c nude mice and studied if Scolopin-2-NH2 suppressed tumor growth in the mice. Scolopin-2-NH2 inhibited Hela proliferation in vitro in a dose-dependent manner with an IC50 of 35 μM. In addition, Scolopin-2-NH2 combined with mitochondria and regulated caspase-related apoptosis pathways in Hela cells. Scolopin-2-NH2 significantly suppressed tumor growth in the tumor-bearing mice without side effects, such as weight loss or abnormal changes in tissues, including liver, spleen, kidney, and lung. These results indicate Scolopin-2-NH2 may be a good therapeutic candidate for the treatment of Hela cervical cancer.
Collapse
Affiliation(s)
- Weili Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jia Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Guiting Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Huiyuan Wei
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Wen-Hua Ren
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
33
|
Nguyen F, Alferiev I, Guan P, Guerrero DT, Kolla V, Moorthy GS, Chorny M, Brodeur GM. Enhanced Intratumoral Delivery of SN38 as a Tocopherol Oxyacetate Prodrug Using Nanoparticles in a Neuroblastoma Xenograft Model. Clin Cancer Res 2018. [PMID: 29514842 DOI: 10.1158/1078-0432.ccr-17-3811] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose: Currently, <50% of high-risk pediatric solid tumors like neuroblastoma can be cured, and many survivors experience serious or life-threatening toxicities, so more effective, less toxic therapy is needed. One approach is to target drugs to tumors using nanoparticles, which take advantage of the enhanced permeability of tumor vasculature.Experimental Design: SN38, the active metabolite of irinotecan (CPT-11), is a potent therapeutic agent that is readily encapsulated in polymeric nanoparticles. Tocopherol oxyacetate (TOA) is a hydrophobic mitocan that was linked to SN38 to significantly increase hydrophobicity and enhance nanoparticle retention. We treated neuroblastomas with SN38-TOA nanoparticles and compared the efficacy with the parent prodrug CPT-11 using a mouse xenograft model.Results: Nanoparticle treatment induced prolonged event-free survival (EFS) in most mice, compared with CPT-11. This was shown for both SH-SY5Y and IMR-32 neuroblastoma xenografts. Enhanced efficacy was likely due to increased and sustained drug levels of SN38 in the tumor compared with conventional CPT-11 delivery. Interestingly, when recurrent CPT-11-treated tumors were re-treated with SN38-TOA nanoparticles, the tumors transformed from undifferentiated neuroblastomas to maturing ganglioneuroblastomas. Furthermore, these tumors were infiltrated with Schwann cells of mouse origin, which may have contributed to the differentiated histology.Conclusions: Nanoparticle delivery of SN38-TOA produced increased drug delivery and prolonged EFS compared to conventional delivery of CPT-11. Also, lower total dose and drug entrapment in nanoparticles during circulation should decrease toxicity. We propose that nanoparticle-based delivery of a rationally designed prodrug is an attractive approach to enhance chemotherapeutic efficacy in pediatric and adult tumors. Clin Cancer Res; 24(11); 2585-93. ©2018 AACR.
Collapse
Affiliation(s)
- Ferro Nguyen
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ivan Alferiev
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Peng Guan
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David T Guerrero
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Venkatadri Kolla
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ganesh S Moorthy
- Department of Anesthesiology and Critical Care, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael Chorny
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
34
|
Nedopekina DA, Gubaidullin RR, Odinokov VN, Maximchik PV, Zhivotovsky B, Bel'skii YP, Khazanov VA, Manuylova AV, Gogvadze V, Spivak AY. Mitochondria-targeted betulinic and ursolic acid derivatives: synthesis and anticancer activity. MEDCHEMCOMM 2017; 8:1934-1945. [PMID: 30108714 PMCID: PMC6072465 DOI: 10.1039/c7md00248c] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
A series of new betulinic and ursolic acid conjugates with a lipophilic triphenylphosphonium cation, meant to enhance the bioavailability and mitochondriotropic action of natural triterpenes, have been synthesized. The in vitro experiments on three human cancer cell lines (MCF-7, HCT-116 and TET21N) revealed that all the obtained triphenylphosphonium triterpene acid derivatives not only showed higher cytotoxicity as compared to betulinic acid but were also markedly superior in triggering mitochondria-dependent apoptosis, as assessed using a range of apoptosis markers such as cytochrome c release, stimulation of caspase-3 activity, and cleavage of poly(ADP-ribose) polymerase, which is one of the targets of caspase 3. The IC50 was much lower for all triphenylphosphonium derivatives when compared to betulinic acid. Out of the tested group of conjugates, the most potent toxicity was exhibited by the betulinic acid conjugate 9 (for 9, the IC50 values against MCF-7 and TET21N cells were 0.70 μM and 0.74 μM; for betulinic acid (BA), IC50 > 25 μM against MCF-7 cells).
Collapse
Affiliation(s)
- Darya A Nedopekina
- Institute of Petrochemistry and Catalysis , Russian Academy of Sciences , 141 prosp. Oktyabrya , Ufa 450075 , Russian Federation .
| | - Rinat R Gubaidullin
- Institute of Petrochemistry and Catalysis , Russian Academy of Sciences , 141 prosp. Oktyabrya , Ufa 450075 , Russian Federation .
| | - Victor N Odinokov
- Institute of Petrochemistry and Catalysis , Russian Academy of Sciences , 141 prosp. Oktyabrya , Ufa 450075 , Russian Federation .
| | - Polina V Maximchik
- Faculty of Fundamental Medicine , MV Lomonosov Moscow State University , 11999 Moscow , Russia .
| | - Boris Zhivotovsky
- Faculty of Fundamental Medicine , MV Lomonosov Moscow State University , 11999 Moscow , Russia .
- Division of Toxicology , Institute of Environmental Medicine , Karolinska Institutet , Box 210 , 17177 Stockholm , Sweden
| | - Yuriy P Bel'skii
- Innovative Pharmacology Research (IPHAR) , 79/4 Elizarova , Tomsk 634021 , Russian Federation
| | - Veniamin A Khazanov
- Innovative Pharmacology Research (IPHAR) , 79/4 Elizarova , Tomsk 634021 , Russian Federation
| | - Arina V Manuylova
- Innovative Pharmacology Research (IPHAR) , 79/4 Elizarova , Tomsk 634021 , Russian Federation
| | - Vladimir Gogvadze
- Faculty of Fundamental Medicine , MV Lomonosov Moscow State University , 11999 Moscow , Russia .
- Division of Toxicology , Institute of Environmental Medicine , Karolinska Institutet , Box 210 , 17177 Stockholm , Sweden
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis , Russian Academy of Sciences , 141 prosp. Oktyabrya , Ufa 450075 , Russian Federation .
| |
Collapse
|
35
|
Hou Y, Yao C, Ling L, Du Y, He R, Ismail M, Zhang Y, Fu Z, Li X. Novel dual VES phospholipid self-assembled liposomes with an extremely high drug loading efficiency. Colloids Surf B Biointerfaces 2017; 156:29-37. [PMID: 28499202 DOI: 10.1016/j.colsurfb.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/30/2017] [Accepted: 05/01/2017] [Indexed: 01/16/2023]
Abstract
Vitamin E succinate (VES), a unique selective anti-cancer drug, has attracted much attention for its ability to induce apoptosis in various cancer cells. Importantly, it has been reported that VES is largely non-toxic to normal cells. However, poor aqueous solubility and bioavailability extensively restricted its clinical utility. In this report, dual VES phospholipid conjugate (di-VES-GPC) prodrug based liposomes were prepared in order to develop an efficient delivery system for VES. Di-VES-GPC was first synthesized by conjugating VES with l-α-glycerophosphorylcholine (GPC) using N,N'-dicyclohexylcarbodiimide (DCC) as a coupling agent. The di-VES-GPC prodrug was able to self-assemble into liposomes by reverse-phase evaporation method. The structure of the liposomes was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and cryo-TEM. The results showed that di-VES-GPC assembled liposomes were spherical with an average diameter approximately 183nm. Cryo-TEM data confirmed the formation of multilamellar liposomes with the bilayer thickness about 5nm by the assembly of the conjugate without any excipient. The VES drug loading highly reaches up to 82.8wt% in the liposomes after a simple calculation. Furthermore, the in vitro release behavior of di-VES-GPC liposomes was evaluated in different media. It was found that the liposomes could release free VES at a weakly acidic microenvironment but exhibited good stability under a simulated biological condition. The cellular uptake and intracellular drug release tests demonstrated that di-VES-GPC liposomes could be internalized effectively and converted into parent drug VES in cancer cells. Furthermore, in vitro antitumor activities of the di-VES-GPC liposomes were evaluated by MTT assay and flow cytometry. It was revealed that the liposomes presented comparable cytotoxicities to free VES. Taken together, the di-VES-GPC liposomes might provide an excellent formulation of VES which have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Yongpeng Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ruiyu He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhenglin Fu
- National Center for Protein Science, Shanghai 200000, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
36
|
Yu YC, Kuang WB, Huang RZ, Fang YL, Zhang Y, Chen ZF, Ma XL. Design, synthesis and pharmacological evaluation of new 2-oxo-quinoline derivatives containing α-aminophosphonates as potential antitumor agents. MEDCHEMCOMM 2017; 8:1158-1172. [PMID: 30108826 DOI: 10.1039/c7md00098g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
A series of novel 2-oxo-quinoline derivatives containing α-aminophosphonates were designed and synthesized as antitumor agents. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay results demonstrated that some compounds exhibited moderate to high inhibitory activity against HepG2, SK-OV-3 and NCI-H460 tumor cell lines, and most compounds showed much lower cytotoxicity against HL-7702 normal cells than 5-FU and cisplatin. The action mechanism of representative compound 5b was investigated by fluorescence staining assay, flow cytometric analysis and western blot (WB) assay, which indicated that this compound induced apoptosis and G2/M phase arrest accompanied by an increase in the production of intracellular Ca2+ and reactive oxygen species (ROS) and affecting associated enzymes and genes.
Collapse
Affiliation(s)
- Yan-Cheng Yu
- College of Pharmacy , Guilin Medical University , Guilin 541004 , PR China . ; ; ; Tel: +86 773 5895132.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Wen-Bin Kuang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Ri-Zhen Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Yi-Lin Fang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Ye Zhang
- College of Pharmacy , Guilin Medical University , Guilin 541004 , PR China . ; ; ; Tel: +86 773 5895132.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China . .,Department of Chemistry & Pharmaceutical Science , Guilin Normal College , Guilin 541001 , PR China
| | - Zhen-Feng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Xian-Li Ma
- College of Pharmacy , Guilin Medical University , Guilin 541004 , PR China . ; ; ; Tel: +86 773 5895132
| |
Collapse
|
37
|
Cancer Cell Mitochondria Targeting by Pancratistatin Analogs is Dependent on Functional Complex II and III. Sci Rep 2017; 7:42957. [PMID: 28220885 PMCID: PMC5318952 DOI: 10.1038/srep42957] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/17/2017] [Indexed: 11/16/2022] Open
Abstract
Enhanced mitochondrial stability and decreased dependence on oxidative phosphorylation confer an acquired resistance to apoptosis in cancer cells, but may present opportunities for therapeutic intervention. The compound pancratistatin (PST) has been shown to selectively induce apoptosis in cancer cells. However, its low availability in nature has hindered its clinical advancement. We synthesized PST analogs and a medium-throughput screen was completed. Analogs SVTH-7, -6, and -5 demonstrated potent anti-cancer activity greater than PST and several standard chemotherapeutics. They disrupted mitochondrial function, activated the intrinsic apoptotic pathway, and reduced growth of tumor xenografts in vivo. Interestingly, the pro-apoptotic effects of SVTH-7 on cancer cells and mitochondria were abrogated with the inhibition of mitochondrial complex II and III, suggesting mitochondrial or metabolic vulnerabilities may be exploited by this analog. This work provides a scaffold for characterizing distinct mitochondrial and metabolic features of cancer cells and reveals several lead compounds with high therapeutic potential.
Collapse
|
38
|
Wu H, Liu S, Gong J, Liu J, Zhang Q, Leng X, Zhang N, Li Y. VCPA, a novel synthetic derivative of α-tocopheryl succinate, sensitizes human gastric cancer to doxorubicin-induced apoptosis via ROS-dependent mitochondrial dysfunction. Cancer Lett 2017; 393:22-32. [PMID: 28216375 DOI: 10.1016/j.canlet.2017.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/29/2022]
Abstract
Gastric carcinoma is a common malignant disease worldwide and has a dismal prognosis. Doxorubicin (DOX), one of the most widely used chemotherapeutic agents, has limited use because of its side effects and the development of tumor-cell resistance. Combinations of doxorubicin and non-cross-resistant agents have been required for adjuvant chemotherapy of gastric cancer. Here, we report that VCPA, a novel synthetic derivative of α-Tocopheryl Succinate, induced apoptosis via production of reactive oxygen species (ROS). When used in combination with doxorubicin, lower doses of VCPA sensitized human gastric cancer cells to DOX-induced apoptosis. The DOX/VCPA combination treatment caused an imbalance in the ratio of Bcl-2 to Bax and induced a lethal mitochondrial dysfunction. MAPKs were also activated in response to the DOX/VCPA treatment but played a protective role in DOX-induced cell death. In vivo studies further confirmed the sensitizing effect of VCPA. Combining DOX with VCPA markedly inhibited tumor growth in a tumor xenograft model of human gastric cancer. Taken together, our study revealed that VCPA, through increased ROS production, could synergize with DOX and circumvent DOX resistance in human gastric cancer cells.
Collapse
Affiliation(s)
- Han Wu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shaoping Liu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jiuyang Liu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qian Zhang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, China
| | - Xiaohua Leng
- Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, China
| | - Nian Zhang
- Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yan Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, China; Department of Peritoneal Cancer Surgery, Cancer Center of Beijing Shijitan Hospital, The Capital Medical University, Beijing, China.
| |
Collapse
|
39
|
Zhang JX, Wang R, Xi J, Shen L, Zhu AY, Qi Q, Wang QY, Zhang LJ, Wang FC, Lü HZ, Hu JG. Morroniside protects SK-N-SH human neuroblastoma cells against H2O2-induced damage. Int J Mol Med 2017; 39:603-612. [PMID: 28204825 PMCID: PMC5360361 DOI: 10.3892/ijmm.2017.2882] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/31/2017] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress-induced cell injury has been linked to the pathogenesis of neurodegenerative disorders such as spinal cord injury, Parkinson's disease, and multiple sclerosis. Morroniside is an antioxidant derived from the Chinese herb Shan-Zhu-Yu. The present study investigated the neuroprotective effect of morroniside against hydrogen peroxide (H2O2)-induced cell death in SK-N-SH human neuroblastoma cells. H2O2 increased cell apoptosis, as determined by flow cytometry and Hoechst 33342 staining. This effect was reversed by pretreatment with morroniside at concentrations of 1–100 µM. The increase in intracellular reactive oxygen species (ROS) generation and lipid peroxidation induced by H2O2 was also abrogated by morroniside. H2O2 induced a reduction in mitochondrial membrane potential, increased caspase-3 activity, and caused downregulation of B cell lymphoma-2 (Bcl-2) and upregulation of Bcl-2-associated X protein (Bax) expression. These effects were blocked by morroniside pretreatment. Thus, morroniside protects human neuroblastoma cells against oxidative damage by inhibiting ROS production while suppressing Bax and stimulating Bcl-2 expression, thereby blocking mitochondrial-mediated apoptosis. These results indicate that morroniside has therapeutic potential for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing-Xing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - An-You Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qi-Yi Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lun-Jun Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Feng-Chao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - He-Zuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jian-Guo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
40
|
Qu Q, Ma X, Zhao Y. Anticancer Effect of α-Tocopheryl Succinate Delivered by Mitochondria-Targeted Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34261-34269. [PMID: 27998109 DOI: 10.1021/acsami.6b13974] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondria targeted mesoporous silica nanoparticles (MSNPs) having an average diameter of 68 nm were fabricated and then loaded with hydrophobic anticancer agent α-tocopheryl succinate (α-TOS). The property of targeting mitochondria was achieved by the surface functionalization of triphenylphosphonium (TPP) on MSNPs, since TPP is an effective mitochondria-targeting ligand. Intracellular uptake and mitochondria targeting of fabricated MSNPs were evaluated in HeLa and HepG2 cancerous cell lines as well as HEK293 normal cell line. In addition, various biological assays were conducted with the aim to investigate the effectiveness of α-TOS delivered by the functional MSNPs, including studies of cytotoxicity, mitochondria membrane potential, intracellular adenosine triphosphate (ATP) production, and apoptosis. On the basis of these experiments, high anticancer efficiency of α-TOS delivered by mitochondria targeted MSNPs was demonstrated, indicating a promising application potential of MSNP-based platform in mitochondria targeted delivery of anticancer agents.
Collapse
Affiliation(s)
- Qiuyu Qu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
| | - Xing Ma
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
41
|
Gao Y, Qi X, Zheng Y, Ji H, Wu L, Zheng N, Tang J. Nanoemulsion enhances α-tocopherol succinate bioavailability in rats. Int J Pharm 2016; 515:506-514. [DOI: 10.1016/j.ijpharm.2016.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 01/30/2023]
|
42
|
Zhou R, Song J, Si J, Zhang H, Liu B, Gan L, Zhou X, Wang Y, Yan J, Zhang Q. Effects of Ru(CO)3Cl-glycinate on the developmental toxicities induced by X-ray and carbon-ion irradiation in zebrafish embryos. Mutat Res 2016; 793-794:41-50. [PMID: 27837686 DOI: 10.1016/j.mrfmmm.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The inhibitory effects of carbon monoxide (CO), generated by Ru(CO)3Cl-glycinate [CO-releasing molecule (CORM-3)], on developmental toxicity in zebrafish embryos induced by ionizing radiation with different linear energy transfer (LET) were studied. Zebrafish embryos at 5h post-fertilization were irradiated with X-ray (low-LET) and carbon-ion (high-LET) with or without pretreatment of CORM-3 1h before irradiation. CORM-3 pre-treatment showed a significant inhibitory effect on X-ray irradiation-induced developmental toxicity, but had little effect on carbon-ion irradiation-induced developmental toxicity. X-ray irradiation-induced significant increase in ROS levels and cell apoptosis could be modified by CORM-3 pretreatment. However, embryos exposed to carbon-ion irradiation showed significantly increase of cell apoptosis without obvious ROS generation, which could not be attenuated by CORM-3 pretreatment. CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. The expression of pro-apoptotic genes increased significantly after X-ray irradiation, but increased expression was reduced markedly when CORM-3 was applied before irradiation. Moreover, the protein levels of P53 and γ-H2AX increased markedly after X-ray irradiation, which could be modified by the presence of CORM-3. The protective effect of CORM-3 on X-ray irradiation occurred mainly by suppressing ROS generation and DNA damage, and thus inhibiting the activation of P53 and the mitochondrial apoptotic pathway, leading to the attenuation of cell apoptosis and consequently alleviating X-ray irradiation-induced developmental toxicity at lethal and sub-lethal levels.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Jing'e Song
- School/Hospital of stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| | - Bin Liu
- School/Hospital of stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Xin Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Junfang Yan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
43
|
Gao H, Hou F, Dong R, Wang Z, Zhao C, Tang W, Wu Y. Rho-Kinase inhibitor fasudil suppresses high glucose-induced H9c2 cell apoptosis through activation of autophagy. Cardiovasc Ther 2016; 34:352-9. [PMID: 27333569 DOI: 10.1111/1755-5922.12206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Huikuan Gao
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Fei Hou
- Department of Infection; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Ruiqing Dong
- Department of Cardiology; Hangzhou First People's Hospital; Zhejiang China
| | - Zefeng Wang
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Can Zhao
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Wurina Tang
- Department of Cardiology; Baotou Central Hospital; Inner Mongolia China
| | - Yongquan Wu
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| |
Collapse
|
44
|
Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis. Oncotarget 2016; 6:31039-49. [PMID: 26427039 PMCID: PMC4741587 DOI: 10.18632/oncotarget.5024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/24/2015] [Indexed: 01/02/2023] Open
Abstract
Alpha-tochopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.
Collapse
|
45
|
Yang P, Zhao J, Hou L, Yang L, Wu K, Zhang L. Vitamin E succinate induces apoptosis via the PI3K/AKT signaling pathways in EC109 esophageal cancer cells. Mol Med Rep 2016; 14:1531-7. [PMID: 27357907 PMCID: PMC4940098 DOI: 10.3892/mmr.2016.5445] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Esophageal cancer is the fourth most common gastrointestinal cancer, it generally has a poor prognosis and novel strategies are required for prevention and treatment. Vitamin E succinate (VES) is a potential chemical agent for cancer prevention and therapy as it exerts anti‑tumor effects in a variety of cancers. However, the role of VES in tumorigenesis and progression of cancer remains to be elucidated. The present study aimed to determine the effects of VES in regulating the survival and apoptosis of human esophageal cancer cells. EC109 human esophageal cancer cells were used to investigate the anti‑proliferative effects of VES. The MTT and Annexin V‑fluorescein isothiocyanate/propidium iodide assays demonstrated that VES inhibited cell proliferation and induced apoptosis in esophageal cancer cells. Furthermore, VES downregulated constitutively active basal levels of phosphorylated (p)‑serine‑threonine kinase AKT (AKT) and p‑mammalian target of rapamycin (mTOR), and decreased the phosphorylation of AKT substrates Bcl‑2‑associated death receptor and caspase‑9, in addition to mTOR effectors, ribosomal protein S6 kinase β1 and eIF4E‑binding protein 1. Phosphoinositide‑3‑kinase (PI3K) inhibitor, LY294002 suppressed p‑AKT and p‑mTOR, indicating PI3K is a common upstream mediator. The apoptosis induced by VES was increased by inhibition of AKT or mTOR with their respective inhibitor in esophageal cancer cells. The results of the present study suggested that VES targeted the PI3K/AKT signaling pathways and induced apoptosis in esophageal cancer cells. Furthermore, the current study suggests that VES may be useful in a combinational therapeutic strategy employing an mTOR inhibitor.
Collapse
Affiliation(s)
- Peng Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiaying Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Liying Hou
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lei Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Kun Wu
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
46
|
Kim WS, Kim I, Kim WK, Choi JY, Kim DY, Moon SG, Min HK, Song MK, Sung JH. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation. Biomol Ther (Seoul) 2016; 24:305-11. [PMID: 26869457 PMCID: PMC4859794 DOI: 10.4062/biomolther.2015.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 11/21/2022] Open
Abstract
Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.
Collapse
Affiliation(s)
- Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Wang-Kyun Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ju-Yeon Choi
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Doo Yeong Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sung-Guk Moon
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hyung-Keun Min
- Cleanup Dermatologic Clinic, Seoul 07301, Republic of Korea
| | - Min-Kyu Song
- Cleanup Dermatologic Clinic, Seoul 07301, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
47
|
Yan B, Dong L, Neuzil J. Mitochondria: An intriguing target for killing tumour-initiating cells. Mitochondrion 2016; 26:86-93. [DOI: 10.1016/j.mito.2015.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
|
48
|
Huang RZ, Wang CY, Li JF, Yao GY, Pan YM, Ye MY, Wang HS, Zhang Y. Synthesis, antiproliferative and apoptosis-inducing effects of novel asiatic acid derivatives containing α-aminophosphonates. RSC Adv 2016. [DOI: 10.1039/c6ra11397d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel asiatic acid derivatives containing α-aminophosphonates was designed and synthesized as antitumor agents. Compound 3d blocked the T24 cell cycle at G1/S phase by the p53-dependent pathway and induced apoptosis through mitochondrial pathway.
Collapse
Affiliation(s)
- Ri-Zhen Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- PR China
- Department of Pharmaceutical Engineering
| | - Cai-Yi Wang
- College of Chemical and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- China
| | - Jian-Fei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- PR China
| | - Gui-Yang Yao
- Department of Pharmaceutical Engineering
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- PR China
| | - Ying-Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- PR China
| | - Man-Yi Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- PR China
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- PR China
| | - Ye Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- PR China
- Department of Chemistry & Pharmaceutical Science
| |
Collapse
|
49
|
Khatun M, Choudhury S, Liu B, Lemmens P, Pal SK, Mazumder S. Resveratrol–ZnO nanohybrid enhanced anti-cancerous effect in ovarian cancer cells through ROS. RSC Adv 2016. [DOI: 10.1039/c6ra16664d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The use of nanotechnology in medicine and more specifically in drug delivery is expected to spread rapidly.
Collapse
Affiliation(s)
- Mahamuda Khatun
- Department of Biochemistry
- Ballygunge Science College
- University of Calcutta
- Kolkata 700 019
- India
| | - Susobhan Choudhury
- Department of Chemical
- Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Bo Liu
- Institute for Condensed Matter Physics
- 38106 Braunschweig
- Germany
| | - Peter Lemmens
- Institute for Condensed Matter Physics
- 38106 Braunschweig
- Germany
- Laboratory for Emerging Nanometrology
- 38106 Braunschweig
| | - Samir Kumar Pal
- Department of Chemical
- Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Santasree Mazumder
- Department of Biochemistry
- Ballygunge Science College
- University of Calcutta
- Kolkata 700 019
- India
| |
Collapse
|
50
|
Sobotka O, Drahota Z, Kučera O, Endlicher R, Rauchová H, Červinková Z. The effect of alpha-tocopheryl succinate on succinate respiration in rat liver mitochondria. Physiol Res 2015; 64:S609-15. [PMID: 26674283 DOI: 10.33549/physiolres.933219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We compared the effect of alpha-tocopheryl succinate (TOS) on succinate-dependent respiration in rat liver mitochondria, homogenate and permeabilized hepatocytes in both a coupled and uncoupled state. In isolated mitochondria, a significant inhibitory effect was observed at a concentration of 5 microM, in liver homogenate at 25 microM and in permeabilized hepatocytes at 50 microM. The inhibitory effect of TOS on succinate respiration in an uncoupled state was less pronounced than in a coupled state in all the experimental models tested. When the concentration dependence of the TOS inhibitory effect was tested, the most sensitive in both states were isolated mitochondria; the most resistant were permeabilized hepatocytes.
Collapse
Affiliation(s)
- O Sobotka
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|