1
|
Domitin S, Puff N, Pilot-Storck F, Tiret L, Joubert F. Role of cardiolipin in proton transmembrane flux and localization. Biophys J 2025; 124:408-416. [PMID: 39674891 DOI: 10.1016/j.bpj.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
In eukaryotic cells, the phospholipid cardiolipin (CL) is a crucial component that influences the function and organization of the mitochondrial inner membrane. In this study, we examined its potential role in passive proton transmembrane flux using unilamellar vesicles composed of natural egg phosphatidylcholine (PC) alone or with the inclusion of 18 or 34 mol % CL. A membrane potential was induced by a potassium gradient, and oxonol VI dye was used to monitor membrane potential dissipation resulting from proton transmembrane efflux. Increasing the CL content led to a net increase in proton efflux, which was also dependent on the magnitude of the membrane potential. The same increase in proton efflux was measured in the presence of the equally negatively charged phosphatidylglycerol, indicating that the charge of CL plays a more important role than its structure in this mechanism. When varying the proton membrane permeability (pH) using the protonophore CCCP, we observed that unlike PC liposomes, where a small amount of CCCP was sufficient to achieve maximum flux, a significantly larger amount of protonophore was required in the presence of CL. Conversely, increasing the buffer capacity increased proton flux, indicating that proton availability, rather than membrane permeability, may be the limiting factor for proton leak. Our findings demonstrated that a higher proton content associated with the membrane was correlated with an increasing leak in the presence of CL. Additionally, smaller liposome diameters appeared to favor proton leak. Taken together, our results suggest that the presence of negatively charged CL in a membrane traps protons and increases their leakage, potentially in a manner dependent on membrane curvature. We discuss the possible mechanisms and implications of these findings for mitochondrial respiration function.
Collapse
Affiliation(s)
- Sylvain Domitin
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physics, Paris, France; Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS, Université Paris Cité, Paris, France
| | - Fanny Pilot-Storck
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Laurent Tiret
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Frederic Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France.
| |
Collapse
|
2
|
Russo S, De Rasmo D, Rossi R, Signorile A, Lobasso S. SS-31 treatment ameliorates cardiac mitochondrial morphology and defective mitophagy in a murine model of Barth syndrome. Sci Rep 2024; 14:13655. [PMID: 38871974 DOI: 10.1038/s41598-024-64368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Barth syndrome (BTHS) is a lethal rare genetic disorder, which results in cardiac dysfunction, severe skeletal muscle weakness, immune issues and growth delay. Mutations in the TAFAZZIN gene, which is responsible for the remodeling of the phospholipid cardiolipin (CL), lead to abnormalities in mitochondrial membrane, including alteration of mature CL acyl composition and the presence of monolysocardiolipin (MLCL). The dramatic increase in the MLCL/CL ratio is the hallmark of patients with BTHS, which is associated with mitochondrial bioenergetics dysfunction and altered membrane ultrastructure. There are currently no specific therapies for BTHS. Here, we showed that cardiac mitochondria isolated from TAFAZZIN knockdown (TazKD) mice presented abnormal ultrastructural membrane morphology, accumulation of vacuoles, pro-fission conditions and defective mitophagy. Interestingly, we found that in vivo treatment of TazKD mice with a CL-targeted small peptide (named SS-31) was able to restore mitochondrial morphology in tafazzin-deficient heart by affecting specific proteins involved in dynamic process and mitophagy. This agrees with our previous data showing an improvement in mitochondrial respiratory efficiency associated with increased supercomplex organization in TazKD mice under the same pharmacological treatment. Taken together our findings confirm the beneficial effect of SS-31 in the amelioration of tafazzin-deficient dysfunctional mitochondria in a BTHS animal model.
Collapse
Affiliation(s)
- Silvia Russo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) , National Research Council (CNR), Bari, Italy
| | - Roberta Rossi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy.
| | - Simona Lobasso
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
3
|
Liang Z, Ralph-Epps T, Schmidtke MW, Kumar V, Greenberg ML. Decreased pyruvate dehydrogenase activity in Tafazzin-deficient cells is caused by dysregulation of pyruvate dehydrogenase phosphatase 1 (PDP1). J Biol Chem 2024; 300:105697. [PMID: 38301889 PMCID: PMC10884759 DOI: 10.1016/j.jbc.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vikalp Kumar
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
4
|
Sakurai A, Sakurai T, Ho HJ, Chiba H, Hui SP. Kaempferol Improves Cardiolipin and ATP in Hepatic Cells: A Cellular Model Perspective in the Context of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:508. [PMID: 38398832 PMCID: PMC10892986 DOI: 10.3390/nu16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Targeting mitochondrial function is a promising approach to prevent metabolic dysfunction-associated steatotic liver disease (MASLD). Cardiolipin (CL) is a unique lipid comprising four fatty acyl chains localized in the mitochondrial inner membrane. CL is a crucial phospholipid in mitochondrial function, and MASLD exhibits CL-related anomalies. Kaempferol (KMP), a natural flavonoid, has hepatoprotective and mitochondrial function-improving effects; however, its influence on CL metabolism in fatty liver conditions is unknown. In this study, we investigated the effects of KMP on mitochondrial function, focusing on CL metabolism in a fatty liver cell model (linoleic-acid-loaded C3A cell). KMP promoted mitochondrial respiratory functions such as ATP production, basal respiration, and proton leak. KMP also increased the gene expression levels of CPT1A and PPARGC1A, which are involved in mitochondrial β-oxidation. Comprehensive quantification of CL species and related molecules via liquid chromatography/mass spectrometry showed that KMP increased not only total CL content but also CL72:8, which strongly favors ATP production. Furthermore, KMP improved the monolysocardiolipin (MLCL)/CL ratio, an indicator of mitochondrial function. Our results suggest that KMP promotes energy production in a fatty liver cell model, associated with improvement in mitochondrial CL profile, and can serve as a potential nutrition factor in preventing MASLD.
Collapse
Affiliation(s)
- Akiko Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.S.); (H.-J.H.)
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.S.); (H.-J.H.)
| | - Hsin-Jung Ho
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.S.); (H.-J.H.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo 007-0894, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.S.); (H.-J.H.)
| |
Collapse
|
5
|
Golla VK, Boyd KJ, May ER. Curvature sensing lipid dynamics in a mitochondrial inner membrane model. Commun Biol 2024; 7:29. [PMID: 38182788 PMCID: PMC10770132 DOI: 10.1038/s42003-023-05657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024] Open
Abstract
Membrane curvature is essential for many cellular structures and processes, and factors such as leaflet asymmetry, lipid composition, and proteins all play important roles. Cardiolipin is the signature lipid of mitochondrial membranes and is essential for maintaining the highly curved shapes of the inner mitochondrial membrane (IMM) and the spatial arrangement of membrane proteins. In this study, we investigate the partitioning behavior of various lipids present in the IMM using coarse-grained molecular dynamics simulations. This study explores curved bilayer systems containing phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CDL) in binary and ternary component mixtures. Curvature properties such as mean and Gaussian curvatures, as well as the distribution of lipids into the various curved regions of the cristae models, are quantified. Overall, this work represents an advance beyond previous studies on lipid curvature sensing by simulating these systems in a geometry that has the morphological features and scales of curvature consistent with regions of the IMM. We find that CDL has a stronger preference for accumulating in regions of negative curvature than PE lipids, in agreement with previous results. Furthermore, we find lipid partitioning propensity is dominated by sensitivity to mean curvature, while there is a weaker correlation with Gaussian curvature.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
- NVIDIA, 2860 County Hwy G4, Santa Clara, CA, 95051, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
6
|
Sun H, Zhang J, Ye Q, Jiang T, Liu X, Zhang X, Zeng F, Li J, Zheng Y, Han X, Su C, Shi Y. LPGAT1 controls MEGDEL syndrome by coupling phosphatidylglycerol remodeling with mitochondrial transport. Cell Rep 2023; 42:113214. [PMID: 37917582 PMCID: PMC10729602 DOI: 10.1016/j.celrep.2023.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Qianqian Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Fanyu Zeng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Chuan Su
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Araújo COD, Pedroso AP, Boldarine VT, Fernandes AMAP, Perez JJM, Montenegro RM, Montenegro APDR, de Carvalho AB, Fernandes VO, Oyama LM, Carvalho PO, Maia CSC, Bueno AA, Ribeiro EB, Telles MM. Plasma signatures of Congenital Generalized Lipodystrophy patients identified by untargeted lipidomic profiling are not changed after a fat-containing breakfast meal. Prostaglandins Leukot Essent Fatty Acids 2023; 196:102584. [PMID: 37573715 DOI: 10.1016/j.plefa.2023.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The incapacity to store lipids in adipose tissue in Congenital Generalized Lipodystrophy (CGL) causes hypoleptinemia, increased appetite, ectopic fat deposition and lipotoxicity. CGL patients experience shortened life expectancy. The plasma lipidomic profile has not been characterized fully in CGL, nor has the extent of dietary intake in its modulation. The present work investigated the plasma lipidomic profile of CGL patients in comparison to eutrophic individuals at the fasted state and after a breakfast meal. METHOD Blood samples from 11 CGL patients and 10 eutrophic controls were collected after 12 h fasting (T0) and 90 min after an ad libitum fat-containing breakfast (T90). The lipidomic profile of extracted plasma lipids was characterized by non-target liquid chromatography mass spectrometry. RESULTS Important differences between groups were observed at T0 and at T90. Several molecular species of fatty acyls, glycerolipids, sphingolipids and glycerophospholipids were altered in CGL. All the detected fatty acyl molecular species, several diacylglycerols and one triacylglycerol species were upregulated in CGL. Among sphingolipids, one sphingomyelin and one glycosphingolipid species showed downregulation in CGL. Alterations in the glycerophospholipids glycerophosphoethanolamines, glycerophosphoserines and cardiolipins were more complex. Interestingly, when comparing T90 versus T0, the lipidomic profile in CGL did not change as intensely as it did for control participants. CONCLUSIONS The present study found profound alterations in the plasma lipidomic profile of complex lipids in CGL patients as compared to control subjects. A fat-containing breakfast meal did not appear to significantly influence the CGL profile observed in the fasted state. Our study may have implications for clinical practice, also aiding to a deeper comprehension of the role of complex lipids in CGL in view of novel therapeutic strategies.
Collapse
Affiliation(s)
- Camilla O D Araújo
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Amanda P Pedroso
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Valter T Boldarine
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Anna Maria A P Fernandes
- Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, SP, Brazil
| | - José J M Perez
- Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, SP, Brazil
| | - Renan M Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Ana Paula D R Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Annelise B de Carvalho
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Virgínia O Fernandes
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Lila M Oyama
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Patrícia O Carvalho
- Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, SP, Brazil
| | - Carla S C Maia
- Departamento de Nutrição, Universidade Estadual do Ceará (UECE), Campus do Itaperi, Fortaleza, CE, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, United Kingdom.
| | - Eliane B Ribeiro
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Mônica M Telles
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Jang S, Javadov S. Unraveling the mechanisms of cardiolipin function: The role of oxidative polymerization of unsaturated acyl chains. Redox Biol 2023; 64:102774. [PMID: 37300954 PMCID: PMC10363451 DOI: 10.1016/j.redox.2023.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiolipin is a unique phospholipid of the inner mitochondrial membrane (IMM) as well as in bacteria. It performs several vital functions such as resisting osmotic rupture and stabilizing the supramolecular structure of large membrane proteins, like ATP synthases and respirasomes. The process of cardiolipin biosynthesis results in the production of immature cardiolipin. A subsequent step is required for its maturation when its acyl groups are replaced with unsaturated acyl chains, primarily linoleic acid. Linoleic acid is the major fatty acid of cardiolipin across all organs and tissues, except for the brain. Linoleic acid is not synthesized by mammalian cells. It has the unique ability to undergo oxidative polymerization at a moderately accelerated rate compared to other unsaturated fatty acids. This property can enable cardiolipin to form covalently bonded net-like structures essential for maintaining the complex geometry of the IMM and gluing the quaternary structure of large IMM protein complexes. Unlike triglycerides, phospholipids possess only two covalently linked acyl chains, which constrain their capacity to develop robust and complicated structures through oxidative polymerization of unsaturated acyl chains. Cardiolipin, on the other hand, has four fatty acids at its disposal to form covalently bonded polymer structures. Despite its significance, the oxidative polymerization of cardiolipin has been overlooked due to the negative perception surrounding biological oxidation and methodological difficulties. Here, we discuss an intriguing hypothesis that oxidative polymerization of cardiolipin is essential for the structure and function of cardiolipin in the IMM in physiological conditions. In addition, we highlight current challenges associated with the identification and characterization of oxidative polymerization of cardiolipin in vivo. Altogether, the study provides a better understanding of the structural and functional role of cardiolipin in mitochondria.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA.
| |
Collapse
|
9
|
Olivar-Villanueva M, Ren M, Schlame M, Phoon CK. The critical role of cardiolipin in metazoan differentiation, development, and maturation. Dev Dyn 2023; 252:691-712. [PMID: 36692477 PMCID: PMC10238668 DOI: 10.1002/dvdy.567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiolipins are phospholipids that are central to proper mitochondrial functioning. Because mitochondria play crucial roles in differentiation, development, and maturation, we would also expect cardiolipin to play major roles in these processes. Indeed, cardiolipin has been implicated in the mechanism of three human diseases that affect young infants, implying developmental abnormalities. In this review, we will: (1) Review the biology of cardiolipin; (2) Outline the evidence for essential roles of cardiolipin during organismal development, including embryogenesis and cell maturation in vertebrate organisms; (3) Place the role(s) of cardiolipin during embryogenesis within the larger context of the roles of mitochondria in development; and (4) Suggest avenues for future research.
Collapse
Affiliation(s)
| | - Mindong Ren
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:289-301. [PMID: 36990846 DOI: 10.1016/j.joim.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/07/2022] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Recent investigations have demonstrated that Polygonum perfoliatum L. can protect against chemical liver injury, but the mechanism behind its efficacy is still unclear. Therefore, we studied the pharmacological mechanism at work in P. perfoliatum protection against chemical liver injury. METHODS To evaluate the activity of P. perfoliatum against chemical liver injury, levels of alanine transaminase, lactic dehydrogenase, aspartate transaminase, superoxide dismutase, glutathione peroxidase and malondialdehyde were measured, alongside histological assessments of the liver, heart and kidney tissue. A nontargeted lipidomics strategy based on ultra-performance liquid chromatography quadrupole-orbitrap high-resolution mass spectrometry method was used to obtain the lipid profiles of mice with chemical liver injury and following treatment with P. perfoliatum; these profiles were used to understand the possible mechanisms behind P. perfoliatum's protective activity. RESULTS Lipidomic studies indicated that P. perfoliatum protected against chemical liver injury, and the results were consistent between histological and physiological analyses. By comparing the profiles of liver lipids in model and control mice, we found that the levels of 89 lipids were significantly changed. In animals receiving P. perfoliatum treatment, the levels of 8 lipids were significantly improved, relative to the model animals. The results showed that P. perfoliatum extract could effectively reverse the chemical liver injury and significantly improve the abnormal liver lipid metabolism of mice with chemical liver injury, especially glycerophospholipid metabolism. CONCLUSION Regulation of enzyme activity related to the glycerophospholipid metabolism pathway may be involved in the mechanism of P. perfoliatum's protection against liver injury. Please cite this article as: Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. J Integr Med. 2023; Epub ahead of print.
Collapse
|
11
|
Bargui R, Solgadi A, Dumont F, Prost B, Vadrot N, Filipe A, Ho ATV, Ferreiro A, Moulin M. Sex-Specific Patterns of Diaphragm Phospholipid Content and Remodeling during Aging and in a Model of SELENON-Related Myopathy. Biomedicines 2023; 11:biomedicines11020234. [PMID: 36830771 PMCID: PMC9953087 DOI: 10.3390/biomedicines11020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Growing evidence shows that the lipid bilayer is a key site for membrane interactions and signal transduction. Surprisingly, phospholipids have not been widely studied in skeletal muscles, although mutations in genes involved in their biosynthesis have been associated with muscular diseases. Using mass spectrometry, we performed a phospholipidomic profiling in the diaphragm of male and female, young and aged, wild type and SelenoN knock-out mice, the murine model of an early-onset inherited myopathy with severe diaphragmatic dysfunction. We identified 191 phospholipid (PL) species and revealed an important sexual dimorphism in PLs in the diaphragm, with almost 60% of them being significantly different between male and female animals. In addition, 40% of phospholipids presented significant age-related differences. Interestingly, SELENON protein absence was responsible for remodeling of 10% PL content, completely different in males and in females. Expression of genes encoding enzymes involved in PL remodeling was higher in males compared to females. These results establish the diaphragm PL map and highlight an important PL remodeling pattern depending on sex, aging and partly on genotype. These differences in PL profile may contribute to the identification of biomarkers associated with muscular diseases and muscle aging.
Collapse
Affiliation(s)
- Rezlène Bargui
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, CNRS UMR8251, F-75013 Paris, France
| | - Audrey Solgadi
- UMS-IPSIT-SAMM, Université Paris-Saclay, INSERM, CNRS, Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, F-91400 Orsay, France
| | - Florent Dumont
- UMS-IPSIT-Bioinfo, Université Paris-Saclay, INSERM, CNRS, Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, F-91400 Orsay, France
| | - Bastien Prost
- UMS-IPSIT-SAMM, Université Paris-Saclay, INSERM, CNRS, Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, F-91400 Orsay, France
| | - Nathalie Vadrot
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, CNRS UMR8251, F-75013 Paris, France
| | - Anne Filipe
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, CNRS UMR8251, F-75013 Paris, France
| | - Andrew T. V. Ho
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, CNRS UMR8251, F-75013 Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, CNRS UMR8251, F-75013 Paris, France
- AP-HP, Reference Centre for Neuromuscular Disorders, Institut of Myology, Neuromyology Department, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Maryline Moulin
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, CNRS UMR8251, F-75013 Paris, France
- Correspondence: ; Tel.: +01-57-27-79-54
| |
Collapse
|
12
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Corey RA, Harrison N, Stansfeld PJ, Sansom MSP, Duncan AL. Cardiolipin, and not monolysocardiolipin, preferentially binds to the interface of complexes III and IV. Chem Sci 2022; 13:13489-13498. [PMID: 36507170 PMCID: PMC9682889 DOI: 10.1039/d2sc04072g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
The mitochondrial electron transport chain comprises a series of protein complexes embedded in the inner mitochondrial membrane that generate a proton motive force via oxidative phosphorylation, ultimately generating ATP. These protein complexes can oligomerize to form larger structures called supercomplexes. Cardiolipin (CL), a conical lipid, unique within eukaryotes to the inner mitochondrial membrane, has proven essential in maintaining the stability and function of supercomplexes. Monolysocardiolipin (MLCL) is a CL variant that accumulates in people with Barth syndrome (BTHS). BTHS is caused by defects in CL biosynthesis and characterised by abnormal mitochondrial bioenergetics and destabilised supercomplexes. However, the mechanisms by which MLCL causes pathogenesis remain unclear. Here, multiscale molecular dynamics characterise the interactions of CL and MLCL with yeast and mammalian mitochondrial supercomplexes containing complex III (CIII) and complex IV (CIV). Coarse-grained simulations reveal that both CL and MLCL bind to sites at the interface between CIII and CIV of the supercomplex. Free energy perturbation calculations show that MLCL interaction is weaker than that of CL and suggest that interaction with CIV drives this difference. Atomistic contact analyses show that, although interaction with CIII is similar for CL and MLCL, CIV makes more contacts with CL than MLCL, demonstrating that CL is a more successful "glue" between the two complexes. Simulations of the human CIII2CIV supercomplex show that this interface site is maintained between species. Our study suggests that MLCL accumulation in people with BTHS disrupts supercomplex stability by formation of relatively weak interactions at the interface lipid binding site.
Collapse
Affiliation(s)
- Robin A Corey
- Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Noah Harrison
- Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Philllp J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
14
|
Russo S, De Rasmo D, Signorile A, Corcelli A, Lobasso S. Beneficial effects of SS-31 peptide on cardiac mitochondrial dysfunction in tafazzin knockdown mice. Sci Rep 2022; 12:19847. [PMID: 36400945 PMCID: PMC9674582 DOI: 10.1038/s41598-022-24231-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Barth Syndrome (BTHS), a genetic disease associated with early-onset cardioskeletal myopathy, is caused by loss-of-function mutations of the TAFAZZIN gene, which is responsible for remodeling the mitochondrial phospholipid cardiolipin (CL). Deregulation of CL biosynthesis and maturation in BTHS mitochondria result in a dramatically increased monolysocardiolipin (MLCL)/CL ratio associated with bioenergetic dysfunction. One of the most promising therapeutic approaches for BTHS includes the mitochondria-targeted tetrapeptide SS-31, which interacts with CL. Here, we used TAFAZZIN knockdown (TazKD) mice to investigate for the first time whether in vivo administration of SS-31 could affect phospholipid profiles and mitochondrial dysfunction. The CL fingerprinting of TazKD cardiac mitochondria obtained by MALDI-TOF/MS revealed the typical lipid changes associated with BTHS. TazKD mitochondria showed lower respiratory rates in state 3 and 4 together with a decreased in maximal respiratory rates. Treatment of TazKD mice with SS-31 improved mitochondrial respiratory capacity and promoted supercomplex organization, without affecting the MLCL/CL ratio. We hypothesize that SS-31 exerts its effect by influencing the function of the respiratory chain rather than affecting CL directly. In conclusion, our results indicate that SS-31 have beneficial effects on improving cardiac mitochondrial dysfunction in a BTHS animal model, suggesting the peptide as future pharmacologic agent for therapy.
Collapse
Affiliation(s)
- Silvia Russo
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Domenico De Rasmo
- grid.503043.1CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Anna Signorile
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Angela Corcelli
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Simona Lobasso
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Beecher G, Fleming MD, Liewluck T. Hereditary myopathies associated with hematological abnormalities. Muscle Nerve 2022; 65:374-390. [PMID: 34985130 DOI: 10.1002/mus.27474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023]
Abstract
The diagnostic evaluation of a patient with suspected hereditary muscle disease can be challenging. Clinicians rely largely on clinical history and examination features, with additional serological, electrodiagnostic, radiologic, histopathologic, and genetic investigations assisting in definitive diagnosis. Hematological testing is inexpensive and widely available, but frequently overlooked in the hereditary myopathy evaluation. Hematological abnormalities are infrequently encountered in this setting; however, their presence provides a valuable clue, helps refine the differential diagnosis, tailors further investigation, and assists interpretation of variants of uncertain significance. A diverse spectrum of hematological abnormalities is associated with hereditary myopathies, including anemias, leukocyte abnormalities, and thrombocytopenia. Recurrent rhabdomyolysis in certain glycolytic enzymopathies co-occurs with hemolytic anemia, often chronic and mild in phosphofructokinase and phosphoglycerate kinase deficiencies, or acute and fever-associated in aldolase-A and triosephosphate isomerase deficiency. Sideroblastic anemia, commonly severe, accompanies congenital-to-childhood onset mitochondrial myopathies including Pearson marrow-pancreas syndrome and mitochondrial myopathy, lactic acidosis, and sideroblastic anemia phenotypes. Congenital megaloblastic macrocytic anemia and mitochondrial dysfunction characterize SFXN4-related myopathy. Neutropenia, chronic or cyclical, with recurrent infections, infantile-to-childhood onset skeletal myopathy and cardiomyopathy are typical of Barth syndrome, while chronic neutropenia without infection occurs rarely in DNM2-centronuclear myopathy. Peripheral eosinophilia may accompany eosinophilic inflammation in recessive calpainopathy. Lipid accumulation in leukocytes on peripheral blood smear (Jordans' anomaly) is pathognomonic for neutral lipid storage diseases. Mild thrombocytopenia occurs in autosomal dominant, childhood-onset STIM1 tubular aggregate myopathy, STIM1 and ORAI1 deficiency syndromes, and GNE myopathy. Herein, we review these hereditary myopathies in which hematological features play a prominent role.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
17
|
Bozelli JC, Epand RM. Interplay between cardiolipin and plasmalogens in Barth syndrome. J Inherit Metab Dis 2022; 45:99-110. [PMID: 34655242 DOI: 10.1002/jimd.12449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Barth syndrome (BTHS) is a rare inherited metabolic disease resulting from mutations in the gene of the enzyme tafazzin, which catalyzes the acyl chain remodeling of the mitochondrial-specific lipid cardiolipin (CL). Tissue samples of individuals with BTHS present abnormalities in the level and the molecular species of CL. In addition, in tissues of a tafazzin knockdown mouse as well as in cells derived from BTHS patients it has been shown that plasmalogens, a subclass of glycerophospholipids, also have abnormal levels. Likewise, administration of a plasmalogen precursor to cells derived from BTHS patients led to an increase in plasmalogen and to some extent CL levels. These results indicate an interplay between CL and plasmalogens in BTHS. This interdependence is supported by the concomitant loss in these lipids in different pathological conditions. However, currently the molecular mechanism linking CL and plasmalogens is not fully understood. Here, a review of the evidence showing the linkage between the levels of CL and plasmalogens is presented. In addition, putative mechanisms that might play a role in this interplay are proposed. Finally, the opportunity of therapeutic approaches based on the regulation of plasmalogens as new therapies for the treatment of BTHS is discussed.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Oemer G, Koch J, Wohlfarter Y, Lackner K, Gebert REM, Geley S, Zschocke J, Keller MA. The lipid environment modulates cardiolipin and phospholipid constitution in wild type and tafazzin-deficient cells. J Inherit Metab Dis 2022; 45:38-50. [PMID: 34494285 DOI: 10.1002/jimd.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Deficiency of the transacylase tafazzin due to loss of function variants in the X-chromosomal TAFAZZIN gene causes Barth syndrome (BTHS) with severe neonatal or infantile cardiomyopathy, neutropenia, myopathy, and short stature. The condition is characterized by drastic changes in the composition of cardiolipins, a mitochondria-specific class of phospholipids. Studies examining the impact of tafazzin deficiency on the metabolism of other phospholipids have so far generated inhomogeneous and partly conflicting results. Recent studies showed that the cardiolipin composition in cells and different murine tissues is highly dependent on the surrounding lipid environment. In order to study the relevance of different lipid states and tafazzin function for cardiolipin and phospholipid homeostasis we conducted systematic modulation experiments in a CRISPR/Cas9 knock-out model for BTHS. We found that-irrespective of tafazzin function-the composition of cardiolipins strongly depends on the nutritionally available lipid pool. Tafazzin deficiency causes a consistent shift towards cardiolipin species with more saturated and shorter acyl chains. Interestingly, the typical biochemical BTHS phenotype in phospholipid profiles of HEK 293T TAZ knock-out cells strongly depends on the cellular lipid context. In response to altered nutritional lipid compositions, we measured more pronounced changes on phospholipids that were largely masked under standard cell culturing conditions, therewith giving a possible explanation for the conflicting results reported so far on BTHS lipid phenotypes.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita E M Gebert
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Serricchio M, Bütikofer P. A Conserved Mitochondrial Chaperone-Protease Complex Involved in Protein Homeostasis. Front Mol Biosci 2021; 8:767088. [PMID: 34859054 PMCID: PMC8630662 DOI: 10.3389/fmolb.2021.767088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are essential organelles involved in cellular energy production. The inner mitochondrial membrane protein stomatin-like protein 2 (SLP-2) is a member of the SPFH (stomatin, prohibitin, flotilin, and HflK/C) superfamily and binds to the mitochondrial glycerophospholipid cardiolipin, forming cardiolipin-enriched membrane domains to promote the assembly and/or stabilization of protein complexes involved in oxidative phosphorylation. In addition, human SLP-2 anchors a mitochondrial processing complex required for proteolytic regulation of proteins involved in mitochondrial dynamics and quality control. We now show that deletion of the gene encoding the Trypanosoma brucei homolog TbSlp2 has no effect on respiratory protein complex stability and mitochondrial functions under normal culture conditions and is dispensable for growth of T. brucei parasites. In addition, we demonstrate that TbSlp2 binds to the metalloprotease TbYme1 and together they form a large mitochondrial protein complex. The two proteins negatively regulate each other's expression levels by accelerating protein turnover. Furthermore, we show that TbYme1 plays a role in heat-stress resistance, as TbYme1 knock-out parasites displayed mitochondrial fragmentation and loss of viability when cultured at elevated temperatures. Unbiased interaction studies uncovered putative TbYme1 substrates, some of which were differentially affected by the absence of TbYme1. Our results support emerging evidence for the presence of mitochondrial quality control pathways in this ancient eukaryote.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
20
|
Almendro-Vedia V, Natale P, Valdivieso González D, Lillo MP, Aragones JL, López-Montero I. How rotating ATP synthases can modulate membrane structure. Arch Biochem Biophys 2021; 708:108939. [PMID: 34052190 DOI: 10.1016/j.abb.2021.108939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023]
Abstract
F1Fo-ATP synthase (ATP synthase) is a central membrane protein that synthetizes most of the ATP in the cell through a rotational movement driven by a proton gradient across the hosting membrane. In mitochondria, ATP synthases can form dimers through specific interactions between some subunits of the protein. The dimeric form of ATP synthase provides the protein with a spontaneous curvature that sustain their arrangement at the rim of the high-curvature edges of mitochondrial membrane (cristae). Also, a direct interaction with cardiolipin, a lipid present in the inner mitochondrial membrane, induces the dimerization of ATP synthase molecules along cristae. The deletion of those biochemical interactions abolishes the protein dimerization producing an altered mitochondrial function and morphology. Mechanically, membrane bending is one of the key deformation modes by which mitochondrial membranes can be shaped. In particular, bending rigidity and spontaneous curvature are important physical factors for membrane remodelling. Here, we discuss a complementary mechanism whereby the rotatory movement of the ATP synthase might modify the mechanical properties of lipid bilayers and contribute to the formation and regulation of the membrane invaginations.
Collapse
Affiliation(s)
- Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - M Pilar Lillo
- Departamento Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Juan L Aragones
- Departamento de Física Teórica de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Centre (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
21
|
Oemer G, Edenhofer ML, Wohlfarter Y, Lackner K, Leman G, Koch J, Cardoso LHD, Lindner HH, Gnaiger E, Dubrac S, Zschocke J, Keller MA. Fatty acyl availability modulates cardiolipin composition and alters mitochondrial function in HeLa cells. J Lipid Res 2021; 62:100111. [PMID: 34450173 PMCID: PMC8455370 DOI: 10.1016/j.jlr.2021.100111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
The molecular assembly of cells depends not only on the balance between anabolism and catabolism but to a large degree on the building blocks available in the environment. For cultured mammalian cells, this is largely determined by the composition of the applied growth medium. Here, we study the impact of lipids in the medium on mitochondrial membrane architecture and function by combining LC-MS/MS lipidomics and functional tests with lipid supplementation experiments in an otherwise serum-free and lipid-free cell culture model. We demonstrate that the composition of mitochondrial cardiolipins strongly depends on the lipid environment in cultured cells and favors the incorporation of essential linoleic acid over other fatty acids. Simultaneously, the mitochondrial respiratory complex I activity was altered, whereas the matrix-localized enzyme citrate synthase was unaffected. This raises the question on a link between membrane composition and respiratory control. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium. This underlines the importance of considering these factors when using and establishing cell culture models in biomedical research. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Marie-Luise Edenhofer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; Institute of Biological Chemistry, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Geraldine Leman
- Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Herbert H Lindner
- Institute of Clinical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments Corporation, Innsbruck, Austria
| | - Sandrine Dubrac
- Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
22
|
Köhler S, Fragneto G, Alcaraz JP, Nelson A, Martin DK, Maccarini M. Nanostructural Characterization of Cardiolipin-Containing Tethered Lipid Bilayers Adsorbed on Gold and Silicon Substrates for Protein Incorporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8908-8923. [PMID: 34286589 DOI: 10.1021/acs.langmuir.1c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key to the development of lipid membrane-based devices is a fundamental understanding of how the molecular structure of the lipid bilayer membrane is influenced by the type of lipids used to build the membrane. This is particularly important when membrane proteins are included in these devices since the precise lipid environment affects the ability to incorporate membrane proteins and their functionality. Here, we used neutron reflectometry to investigate the structure of tethered bilayer lipid membranes and to characterize the incorporation of the NhaA sodium proton exchanger in the bilayer. The lipid membranes were composed of two lipids, dioleoyl phosphatidylcholine and cardiolipin, and were adsorbed on gold and silicon substrates using two different tethering architectures based on functionalized oligoethylene glycol molecules of different lengths. In all of the investigated samples, the addition of cardiolipin caused distinct structural rearrangement including crowding of ethylene glycol groups of the tethering molecules in the inner head region and a thinning of the lipid tail region. The incorporation of NhaA in the tethered bilayers following two different protocols is quantified, and the way protein incorporation modulates the structural properties of these membranes is detailed.
Collapse
Affiliation(s)
- Sebastian Köhler
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
- Institut Laue-Langevin, 38042 Grenoble, France
| | | | - Jean-Pierre Alcaraz
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| | - Andrew Nelson
- ANSTO-Sydney, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Donald K Martin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| | - Marco Maccarini
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC/SyNaBi, 38000 Grenoble, France
| |
Collapse
|
23
|
Joubert F, Puff N. Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems. MEMBRANES 2021; 11:membranes11070465. [PMID: 34201754 PMCID: PMC8306996 DOI: 10.3390/membranes11070465] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria are known as the powerhouse of eukaryotic cells. Energy production occurs in specific dynamic membrane invaginations in the inner mitochondrial membrane called cristae. Although the integrity of these structures is recognized as a key point for proper mitochondrial function, less is known about the mechanisms at the origin of their plasticity and organization, and how they can influence mitochondria function. Here, we review the studies which question the role of lipid membrane composition based mainly on minimal model systems.
Collapse
Affiliation(s)
- Frédéric Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, 75005 Paris, France;
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physique, 75005 Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot-Paris 7, UMR 7057 CNRS, 75013 Paris, France
- Correspondence:
| |
Collapse
|
24
|
Bennett CF, O’Malley KE, Perry EA, Balsa E, Latorre-Muro P, Riley CL, Luo C, Jedrychowski M, Gygi SP, Puigserver P. Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly. Nat Chem Biol 2021; 17:703-710. [PMID: 33723432 PMCID: PMC8159895 DOI: 10.1038/s41589-021-00772-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III2+IV). The association of complexes I, III and IV into the respirasome is regulated by unknown mechanisms. Here, we designed a nanoluciferase complementation reporter for complex III and IV proximity to determine in vivo respirasome levels. In a chemical screen, we found that inhibitors of the de novo pyrimidine synthesis enzyme dihydroorotate dehydrogenase (DHODH) potently increased respirasome assembly and activity. By-passing DHODH inhibition via uridine supplementation decreases SC assembly by altering mitochondrial phospholipid composition, specifically elevated peroxisomal-derived ether phospholipids. Cell growth rates upon DHODH inhibition depend on ether lipid synthesis and SC assembly. These data reveal that nucleotide pools signal to peroxisomes to modulate synthesis and transport of ether phospholipids to mitochondria for SC assembly, which are necessary for optimal cell growth in conditions of nucleotide limitation.
Collapse
Affiliation(s)
- Christopher F. Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine E. O’Malley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A. Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher L. Riley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Correspondence:
| |
Collapse
|
25
|
Barker-Tejeda TC, Villaseñor A, Gonzalez-Riano C, López-López Á, Gradillas A, Barbas C. In vitro generation of oxidized standards for lipidomics. Application to major membrane lipid components. J Chromatogr A 2021; 1651:462254. [PMID: 34118530 DOI: 10.1016/j.chroma.2021.462254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022]
Abstract
Membrane lipids (sphingolipids, glycerophospholipids, cardiolipins, and cholesteryl esters) are critical in cellular functions. Alterations in the levels of oxidized counterparts of some of these lipids have been linked to the onset and development of many pathologies. Unfortunately, the scarce commercial availability of chemically defined oxidized lipids is a limitation for accurate quantitative analysis, characterization of oxidized composition, or testing their biological effects in lipidomic studies. To address this dearth of standards, several approaches rely on in-house prepared mixtures of oxidized species generated under in vitro conditions from different sources - non-oxidized commercial standards, liposomes, micelles, cells, yeasts, and human preparations - and using different oxidant systems - UVA radiation, air exposure, enzymatic or chemical oxidant systems, among others. Moreover, high-throughput analytical techniques such as liquid chromatography coupled to mass spectrometry (LC-MS) have provided evidence of their capabilities to study oxidized lipids both in in vitro models and complex biological samples. In this review, we describe the commercial resources currently available, the in vitro strategies carried out for obtaining oxidized lipids as standards for LC-MS analysis, and their applications in lipidomics studies, specifically for lipids found in cell and mitochondria membranes.
Collapse
Affiliation(s)
- Tomás Clive Barker-Tejeda
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain; Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Science, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain; Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Science, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Carolina Gonzalez-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Ángeles López-López
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| |
Collapse
|
26
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
27
|
Randolph CE, Shenault DM, Blanksby SJ, McLuckey SA. Localization of Carbon-Carbon Double Bond and Cyclopropane Sites in Cardiolipins via Gas-Phase Charge Inversion Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:455-464. [PMID: 33370110 PMCID: PMC8557092 DOI: 10.1021/jasms.0c00348] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cardiolipins (CLs) are comprised of two phosphatic acid moieties bound to a central glycerol backbone and are substituted with four acyl chains. Consequently, a vast number of distinct CL structures are possible in different biological contexts, representing a significant analytical challenge. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) has become a widely used approach for the detection, characterization, and quantitation of complex lipids, including CLs. Central to this approach is fragmentation of the [CLs - H]- or [CL - 2H]2- anions by collision-induced dissociation (CID). Product ions in the resulting tandem mass spectra confirm the CL subclass assignment and reveal the numbers of carbons and degrees of unsaturation in each of the acyl chains. Conventional CID, however, affords limited structural elucidation of the fatty acyl chains, failing to discriminate isomers arising from different site(s) of unsaturation or cyclopropanation and potentially obscuring their metabolic origins. Here, we report the application of charge inversion ion/ion chemistry in the gas phase to enhance the structural elucidation of CLs. Briefly, CID of [CL - H]2- anions generated via negative ion ESI allowed for the assignment of individual fatty acyl substituents and phosphatidic acid moieties. Next, gas-phase derivatization of the resulting CL product ions, including fatty acyl carboxylate anions, was effected with gas-phase ion/ion charge inversion reactions with tris-phenanthroline magnesium reagent dications. Subsequent isolation and activation of the charge-inverted fatty acyl complex cations permitted the localization of both carbon-carbon double bond and cyclopropane motifs within each of the four acyl chains of CLs. This approach was applied to the de novo elucidation of unknown CLs in a biological extract revealing distinct isomeric populations and regiochemical relationships between double bonds and carbocyles.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
28
|
Memme JM, Hood DA. Molecular Basis for the Therapeutic Effects of Exercise on Mitochondrial Defects. Front Physiol 2021; 11:615038. [PMID: 33584337 PMCID: PMC7874077 DOI: 10.3389/fphys.2020.615038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is common to many organ system disorders, including skeletal muscle. Aging muscle and diseases of muscle are often accompanied by defective mitochondrial ATP production. This manuscript will focus on the pre-clinical evidence supporting the use of regular exercise to improve defective mitochondrial metabolism and function in skeletal muscle, through the stimulation of mitochondrial turnover. Examples from aging muscle, muscle-specific mutations and cancer cachexia will be discussed. We will also examine the effects of exercise on the important mitochondrial regulators PGC-1α, and Parkin, and summarize the effects of exercise to reverse mitochondrial dysfunction (e.g., ROS production, apoptotic susceptibility, cardiolipin synthesis) in muscle pathology. This paper will illustrate the breadth and benefits of exercise to serve as "mitochondrial medicine" with age and disease.
Collapse
Affiliation(s)
- Jonathan M. Memme
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
29
|
Meex RCR, Blaak EE. Mitochondrial Dysfunction is a Key Pathway that Links Saturated Fat Intake to the Development and Progression of NAFLD. Mol Nutr Food Res 2021; 65:e1900942. [PMID: 32574416 PMCID: PMC7816225 DOI: 10.1002/mnfr.201900942] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is characterized by fat accumulation in the liver. Hypercaloric diets generally increase hepatic fat accumulation, whereas hypocaloric diets decrease liver fat content. In addition, there is evidence to suggest that moderate amounts of unsaturated fatty acids seems to be protective for the development of a fatty liver, while consumption of saturated fatty acids (SFA) appears to predispose toward hepatic steatosis. Recent studies highlight a key role for mitochondrial dysfunction in the development and progression of NAFLD. It is proposed that changes in mitochondrial structure and function are key mechanisms by which SFA lead to the development and progression of NAFLD. In this review, it is described how SFA intake is associated with liver steatosis and decreases the efficiency of the respiratory transport chain. This results in the production of reactive oxygen species and damage to nearby structures, eventually leading to inflammation, apoptosis, and scarring of the liver. Furthermore, studies demonstrating that SFA intake affects the composition of mitochondrial membranes are presented, and this process accelerates the progression of NAFLD. It is likely that events are intertwined and reinforce each other, leading to a constant deterioration in health.
Collapse
Affiliation(s)
- Ruth C. R. Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| |
Collapse
|
30
|
Serricchio M, Hierro-Yap C, Schädeli D, Ben Hamidane H, Hemphill A, Graumann J, Zíková A, Bütikofer P. Depletion of cardiolipin induces major changes in energy metabolism in Trypanosoma brucei bloodstream forms. FASEB J 2020; 35:e21176. [PMID: 33184899 DOI: 10.1096/fj.202001579rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Carolina Hierro-Yap
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johannes Graumann
- Weill Cornell Medicine - Qatar, Doha, State of Qatar.,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alena Zíková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Pastor-Maldonado CJ, Suárez-Rivero JM, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Munuera-Cabeza M, Suárez-Carrillo A, Talaverón-Rey M, Sánchez-Alcázar JA. Coenzyme Q 10: Novel Formulations and Medical Trends. Int J Mol Sci 2020; 21:E8432. [PMID: 33182646 PMCID: PMC7697799 DOI: 10.3390/ijms21228432] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to shed light over the most recent advances in Coenzyme Q10 (CoQ10) applications as well as to provide detailed information about the functions of this versatile molecule, which have proven to be of great interest in the medical field. Traditionally, CoQ10 clinical use was based on its antioxidant properties; however, a wide range of highly interesting alternative functions have recently been discovered. In this line, CoQ10 has shown pain-alleviating properties in fibromyalgia patients, a membrane-stabilizing function, immune system enhancing ability, or a fundamental role for insulin sensitivity, apart from potentially beneficial properties for familial hypercholesterolemia patients. In brief, it shows a remarkable amount of functions in addition to those yet to be discovered. Despite its multiple therapeutic applications, CoQ10 is not commonly prescribed as a drug because of its low oral bioavailability, which compromises its efficacy. Hence, several formulations have been developed to face such inconvenience. These were initially designed as lipid nanoparticles for CoQ10 encapsulation and distribution through biological membranes and eventually evolved towards chemical modifications of the molecule to decrease its hydrophobicity. Some of the most promising formulations will also be discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III. Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.J.P.-M.); (J.M.S.-R.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.M.-C.); (A.S.-C.); (M.T.-R.)
| |
Collapse
|
32
|
Cardiolipin in Immune Signaling and Cell Death. Trends Cell Biol 2020; 30:892-903. [DOI: 10.1016/j.tcb.2020.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
|
33
|
Ahmadpour ST, Mahéo K, Servais S, Brisson L, Dumas JF. Cardiolipin, the Mitochondrial Signature Lipid: Implication in Cancer. Int J Mol Sci 2020; 21:E8031. [PMID: 33126604 PMCID: PMC7662448 DOI: 10.3390/ijms21218031] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiolipins (CLs) are specific phospholipids of the mitochondria composing about 20% of the inner mitochondria membrane (IMM) phospholipid mass. Dysregulation of CL metabolism has been observed in several types of cancer. In most cases, the evidence for a role for CL in cancer is merely correlative, suggestive, ambiguous, and cancer-type dependent. In addition, CLs could play a pivotal role in several mitochondrial functions/parameters such as bioenergetics, dynamics, mitophagy, and apoptosis, which are involved in key steps of cancer aggressiveness (i.e., migration/invasion and resistance to treatment). Therefore, this review focuses on studies suggesting that changes in CL content and/or composition, as well as CL metabolism enzyme levels, may be linked with the progression and the aggressiveness of some types of cancer. Finally, we also introduce the main mitochondrial function in which CL could play a pivotal role with a special focus on its implication in cancer development and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jean-François Dumas
- Université de Tours, Inserm, Nutrition, Croissance et Cancer UMR1069, 37032 Tours, France; (S.T.A.); (K.M.); (S.S.); (L.B.)
| |
Collapse
|
34
|
Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Apostolopoulos EJ, Melita H, Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med Res Rev 2020; 41:275-313. [PMID: 32959403 DOI: 10.1002/med.21732] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria provide energy to the cell during aerobic respiration by supplying ~95% of the adenosine triphosphate (ATP) molecules via oxidative phosphorylation. These organelles have various other functions, all carried out by numerous proteins, with the majority of them being encoded by nuclear DNA (nDNA). Mitochondria occupy ~1/3 of the volume of myocardial cells in adults, and function at levels of high-efficiency to promptly meet the energy requirements of the myocardial contractile units. Mitochondria have their own DNA (mtDNA), which contains 37 genes and is maternally inherited. Over the last several years, a variety of functions of these organelles have been discovered and this has led to a growing interest in their involvement in various diseases, including cardiovascular (CV) diseases. Mitochondrial dysfunction relates to the status where mitochondria cannot meet the demands of a cell for ATP and there is an enhanced formation of reactive-oxygen species. This dysfunction may occur as a result of mtDNA and/or nDNA mutations, but also as a response to aging and various disease and environmental stresses, leading to the development of cardiomyopathies and other CV diseases. Designing mitochondria-targeted therapeutic strategies aiming to maintain or restore mitochondrial function has been a great challenge as a result of variable responses according to the etiology of the disorder. There have been several preclinical data on such therapies, but clinical studies are scarce. A major challenge relates to the techniques needed to eclectically deliver the therapeutic agents to cardiac tissues and to damaged mitochondria for successful clinical outcomes. All these issues and progress made over the last several years are herein reviewed.
Collapse
Affiliation(s)
- Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | | | | | | | | | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
35
|
Miklas JW, Ruohola-Baker H. Using Mitochondrial Trifunctional Protein Deficiency to Understand Maternal Health. JOURNAL OF CELLULAR SIGNALING 2020; 1:97-101. [PMID: 32995760 PMCID: PMC7521838 DOI: 10.33696/signaling.1.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fatty acid oxidation disorders unfortunately can result in the sudden unexplained death of infants. Mitochondrial trifunctional protein (MTP) deficiency is one such disease where long-chain fatty acids cannot be fully oxidized through beta-oxidation which, can lead to cardiac arrythmias in an infant. Furthermore, mothers who are carrying an MTP deficient fetus have a prevalence for pregnancy complications, especially AFLP, acute fatty liver of pregnancy and HELLP syndrome. To better understand the etiology of the potential pro-arrhythmic state the MTP deficient infants may enter, we developed an in vitro model of MTP deficiency in cardiomyocytes to elucidate the underpinning molecular mechanism of this disease. Using CRISPR/Cas9, we developed MTP deficient mutant and knockout pluripotent stem cell lines. Furthermore, we generated patient derived induced pluripotent stem cell lines harboring a so-called founder mutation, the most commonly identified alteration in MTP in the population. Upon differentiating these mutant stem cells into cardiomyocytes and then challenging with fatty acids, we observed pro-arrhythmic behavior, depressed mitochondrial energetics, and elevated hydroxylated long-chain fatty acids, all perhaps expected phenotypes due to MTP deficiency. However, unexpectedly, we also identified an inability of these disease cardiomyocytes to generate mature cardiolipin. Cardiolipin is a key pillar of the powerhouse of life, mitochondria. For the first time this disease-in-a-dish model revealed the key culprit for the dramatic MTP mutant mitochondrial defects and identified potentially a second role for the enzyme HADHA in MTP. HADHA is required for the biosynthesis of functional cardiolipin and therefore healthy mitochondria. However, in the disease, defective cardiolipin results in mitochondrial abnormalities and cardiac arrythmias in infants. These studies reveal an important target for sudden infant death syndrome therapy. With this foundational work on an in vitro model of MTP deficiency and potential avenues for therapy, the next important task is to extend this model to address fetal-maternal interactions towards better governing maternal health.
Collapse
Affiliation(s)
- Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Li Y, Lou W, Grevel A, Böttinger L, Liang Z, Ji J, Patil VA, Liu J, Ye C, Hüttemann M, Becker T, Greenberg ML. Cardiolipin-deficient cells have decreased levels of the iron-sulfur biogenesis protein frataxin. J Biol Chem 2020; 295:11928-11937. [PMID: 32636300 PMCID: PMC7450130 DOI: 10.1074/jbc.ra120.013960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays an important role in mitochondrial bioenergetics. Previous studies in the yeast model have indicated that CL is required for optimal iron homeostasis, which is disrupted by a mechanism not yet determined in the yeast CL mutant, crd1Δ. This finding has implications for the severe genetic disorder, Barth syndrome (BTHS), in which CL metabolism is perturbed because of mutations in the CL-remodeling enzyme, tafazzin. Here, we investigate the effects of tafazzin deficiency on iron homeostasis in the mouse myoblast model of BTHS tafazzin knockout (TAZ-KO) cells. Similarly to CL-deficient yeast cells, TAZ-KO cells exhibited elevated sensitivity to iron, as well as to H2O2, which was alleviated by the iron chelator deferoxamine. TAZ-KO cells exhibited increased expression of the iron exporter ferroportin and decreased expression of the iron importer transferrin receptor, likely reflecting a regulatory response to elevated mitochondrial iron. Reduced activities of mitochondrial iron-sulfur cluster enzymes suggested that the mechanism underlying perturbation of iron homeostasis was defective iron-sulfur biogenesis. We observed decreased levels of Yfh1/frataxin, an essential component of the iron-sulfur biogenesis machinery, in mitochondria from TAZ-KO mouse cells and in CL-deleted yeast crd1Δ cells, indicating that the role of CL in iron-sulfur biogenesis is highly conserved. Yeast crd1Δ cells exhibited decreased processing of the Yfh1 precursor upon import, which likely contributes to the iron homeostasis defects. Implications for understanding the pathogenesis of BTHS are discussed.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Alexander Grevel
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Böttinger
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vinay A Patil
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Cunqi Ye
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
37
|
Randolph CE, Fabijanczuk KC, Blanksby SJ, McLuckey SA. Proton Transfer Reactions for the Gas-Phase Separation, Concentration, and Identification of Cardiolipins. Anal Chem 2020; 92:10847-10855. [PMID: 32639138 PMCID: PMC7490759 DOI: 10.1021/acs.analchem.0c02545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiolipin (CL) analysis demands high specificity, due to the extensive diversity of CL structures, and high sensitivity, due to their low relative abundance within the lipidome. While electrospray ionization mass spectrometry (ESI-MS) is the most widely used technology in lipidomics, the potential for multiple charging presents unique challenges for CL identification and quantification. Depending on the conditions, ESI-MS of lipid extracts in negative ion mode can give rise to cardiolipins ionized as both singly and doubly deprotonated anions. This signal degeneracy diminishes the signal-to-noise ratio, while in addition (for direct infusion), the dianion population falls within a m/z range already heavily congested with monoanions from more abundant glycerophospholipid subclasses. Herein, we describe a direct infusion strategy for CL profiling from total lipid extracts utilizing gas-phase proton-transfer ion/ion reactions. In this approach, lipid extracts are ionized by negative ion ESI generating both singly deprotonated phospholipids and doubly deprotonated CL anions. Charge reduction of the negative ion population by ion/ion reactions leads to an enhancement in singly deprotonated [CL - H]- species via proton transfer to the corresponding [CL - 2H]2-̅ dianions. To concentrate the [CL - H]- anion signal, multiple iterations of ion accumulation and proton-transfer ion/ion reaction can be performed prior to subsequent interrogation. Mass selection and collisional activation of the enriched population of [CL - H]- anions facilitates the assignment of individual fatty acyl substituents and phosphatidic acid moieties. Demonstrated advantages of this new approach derive from the improved performance in complex mixture analysis affording detailed characterization of low abundant CLs directly from a total biological extract.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
38
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
39
|
Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem Soc Trans 2020; 48:993-1004. [PMID: 32453413 PMCID: PMC7329354 DOI: 10.1042/bst20190932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Monolysocardiolipin (MLCL) is a three-tailed variant of cardiolipin (CL), the signature lipid of mitochondria. MLCL is not normally found in healthy tissue but accumulates in mitochondria of people with Barth syndrome (BTHS), with an overall increase in the MLCL:CL ratio. The reason for MLCL accumulation remains to be fully understood. The effect of MLCL build-up and decreased CL content in causing the characteristics of BTHS are also unclear. In both cases, an understanding of the nature of MLCL interaction with mitochondrial proteins will be key. Recent work has shown that MLCL associates less tightly than CL with proteins in the mitochondrial inner membrane, suggesting that MLCL accumulation is a result of CL degradation, and that the lack of MLCL–protein interactions compromises the stability of the protein-dense mitochondrial inner membrane, leading to a decrease in optimal respiration. There is some data on MLCL–protein interactions for proteins involved in the respiratory chain and in apoptosis, but there remains much to be understood regarding the nature of MLCL–protein interactions. Recent developments in structural, analytical and computational approaches mean that these investigations are now possible. Such an understanding will be key to further insights into how MLCL accumulation impacts mitochondrial membranes. In turn, these insights will help to support the development of therapies for people with BTHS and give a broader understanding of other diseases involving defective CL content.
Collapse
|
40
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
41
|
Garcia AM, McPhaul JC, Sparagna GC, Jeffrey DA, Jonscher R, Patel SS, Sucharov CC, Stauffer BL, Miyamoto SD, Chatfield KC. Alteration of cardiolipin biosynthesis and remodeling in single right ventricle congenital heart disease. Am J Physiol Heart Circ Physiol 2020; 318:H787-H800. [PMID: 32056460 DOI: 10.1152/ajpheart.00494.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite advances in both medical and surgical therapies, individuals with single ventricle heart disease (SV) remain at high risk for the development of heart failure (HF). However, the molecular mechanisms underlying remodeling and eventual HF in patients with SV are poorly characterized. Cardiolipin (CL), an inner mitochondrial membrane phospholipid, is critical for proper mitochondrial function, and abnormalities in CL content and composition are known in various cardiovascular disease etiologies. The purpose of this study was to investigate myocardial CL content and composition in failing and nonfailing single right ventricle (RV) samples compared with normal control RV samples, to assess mRNA expression of CL biosynthetic and remodeling enzymes, and to quantitate relative mitochondrial copy number. A cross-sectional analysis of RV myocardial tissue from 22 failing SV (SVHF), 9 nonfailing SV (SVNF), and 10 biventricular control samples (BVNF) was performed. Expression of enzymes involved in CL biosynthesis and remodeling were analyzed using RT-qPCR and relative mitochondrial DNA copy number determined by qPCR. Normal phase high-pressure liquid chromatography coupled to electrospray ionization mass spectrometry was used to quantitate total and specific CL species. While mitochondrial copy number was not significantly different between groups, total CL content was significantly lower in SVHF myocardium compared with BVNF controls. Despite having lower total CL content however, the relative percentage of the major tetralinoleoyl CL species is preserved in SVHF samples relative to BVNF controls. Correspondingly, expression of enzymes involved in CL biosynthesis and remodeling were upregulated in SVHF samples when compared with both SVNF samples and BVNF controls.NEW & NOTEWORTHY The mechanisms underlying heart failure in the single ventricle (SV) congenital heart disease population are largely unknown. In this study we identify alterations in cardiac cardiolipin metabolism, composition, and content in children with SV heart disease. These findings suggest that cardiolipin could be a novel therapeutic target in this unique population of patients.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Jessica C McPhaul
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Danielle A Jeffrey
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Raleigh Jonscher
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Sonali S Patel
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Division of Cardiology, Denver Health Medical Center, Denver, Colorado
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Kathryn C Chatfield
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
42
|
Helmer PO, Korf A, Hayen H. Analysis of artificially oxidized cardiolipins and monolyso-cardiolipins via liquid chromatography/high-resolution mass spectrometry and Kendrick mass defect plots after hydrophilic interaction liquid chromatography based sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8566. [PMID: 31469924 DOI: 10.1002/rcm.8566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Cardiolipins (CL) are a special lipid class which plays a main role in energy metabolism in mitochondria and is involved in apoptosis. In contrast to other glycerophospholipids, they contain four fatty acyl residues which results in a high structural diversity. Oxidation, for example by reactive oxygen species, or lyso forms such as monolyso-CL (MLCL), increases this diversity. Mass spectrometric analysis and computational identification of CL, MLCL and their oxidation products is therefore a challenging task. METHODS In order to distinguish CL, MLCL and their oxidation products, a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed. A hydrophilic interaction liquid chromatography (HILIC)-based solid-phase extraction (SPE) clean-up approach was developed for CL enrichment. Graphical analysis of CL, MLCL and their oxidation products was carried out by a three-dimensional Kendrick mass defect (3D-KMD) plot module, as well as a refined lipid search module of the open-source metabolomics data mining software MZmine 2. RESULTS The HILIC-based SPE clean-up enabled complete separation of polar and nonpolar lipid classes. A yeast (Saccharomyces cerevisiae) lipid extract, which was artificially oxidized by means of the Fenton reaction, was analyzed by the developed LC/MS/MS method. CL species with differences in chain length and degree of unsaturation have been separated by high-performance liquid chromatography (HPLC). In total 66 CL, MLCL and oxidized species have been identified utilizing 3D-KMD plots in combination with database matching using MZmine 2. For further characterization of annotated species, MS/MS experiments have been utilized. CONCLUSIONS 3D-KMD plots capturing chromatographic and high-resolution mass spectrometry data have been successfully used for graphical identification of CL, MLCL as well as their oxidized species. Therefore, we chose multiple KMD bases such as hydrogen and oxygen to visualize the degree of unsaturation and oxidation capturing chromatographic data by means of a color-coded paint scale as the third dimension. In combination with database matching, the analysis of low concentrated lipid species in complex samples has been significantly improved.
Collapse
Affiliation(s)
- Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Ansgar Korf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
43
|
Eramo MJ, Lisnyak V, Formosa LE, Ryan MT. The ‘mitochondrial contact site and cristae organising system’ (MICOS) in health and human disease. J Biochem 2019; 167:243-255. [DOI: 10.1093/jb/mvz111] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
AbstractThe ‘mitochondrial contact site and cristae organising system’ (MICOS) is an essential protein complex that promotes the formation, maintenance and stability of mitochondrial cristae. As such, loss of core MICOS components disrupts cristae structure and impairs mitochondrial function. Aberrant mitochondrial cristae morphology and diminished mitochondrial function is a pathological hallmark observed across many human diseases such as neurodegenerative conditions, obesity and diabetes mellitus, cardiomyopathy, and in muscular dystrophies and myopathies. While mitochondrial abnormalities are often an associated secondary effect to the pathological disease process, a direct role for the MICOS in health and human disease is emerging. This review describes the role of MICOS in the maintenance of mitochondrial architecture and summarizes both the direct and associated roles of the MICOS in human disease.
Collapse
Affiliation(s)
- Matthew J Eramo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| |
Collapse
|
44
|
ALCAT1 Overexpression Affects Supercomplex Formation and Increases ROS in Respiring Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9186469. [PMID: 31885824 PMCID: PMC6925921 DOI: 10.1155/2019/9186469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
Cardiolipin (CL) is a multifunctional dimeric phospholipid that physically interacts with electron transport chain complexes I, III, and IV, and ATP synthase (complex V). The enzyme ALCAT1 catalyzes the conversion of cardiolipin by incorporating polyunsaturated fatty acids into cardiolipin. The resulting CL species are said to be more susceptible to oxidative damage. This is thought to negatively affect the interaction of cardiolipin and electron transport chain complexes, leading to increased ROS production and mitochondrial dysfunction. Furthermore, it is discussed that ALCAT1 itself is upregulated due to oxidative stress. Here, we investigated the effects of overexpression of ALCAT1 under different metabolic conditions. ALCAT1 is located at the ER and mitochondria, probably at contact sites. We found that respiration stimulated by galactose supply promoted supercomplex assembly but also led to increased mitochondrial ROS levels. Endogeneous ALCAT1 protein expression levels showed a fairly high variability. Artificially induced ALCAT1 overexpression reduced supercomplex formation, further promoted ROS production, and prevented upregulation of coupled respiration. Taken together, our data suggest that the amount of the CL conversion enzyme ALCAT1 is critical for coupling mitochondrial respiration and metabolic plasticity.
Collapse
|
45
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
46
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
47
|
Elmer-Dixon MM, Hoody J, Steele HBB, Becht DC, Bowler BE. Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles. J Phys Chem B 2019; 123:9111-9122. [DOI: 10.1021/acs.jpcb.9b07690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Exercise training counteracts urothelial carcinoma-induced alterations in skeletal muscle mitochondria phospholipidome in an animal model. Sci Rep 2019; 9:13423. [PMID: 31530825 PMCID: PMC6748971 DOI: 10.1038/s41598-019-49010-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer associated body wasting is the cause of physical disability, reduced tolerance to anticancer therapy and reduced survival of cancer patients and, similarly to cancer, its incidence is increasing. There is no cure for this clinical condition, and the pathophysiological process involved is largely unknown. Exercise training appears as the gold standard non-pharmacological therapy for the management of this wasting syndrome. Herein we used a lipidomics approach based on liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS) to study the effect of exercise in the modulation of phospholipids profile of mitochondria isolated from gastrocnemius muscle of a pre-clinical model of urothelial carcinoma-related body wasting (BBN induced), submitted to 13 weeks of treadmill exercise after diagnosis. Multivariate analysis showed a close relationship between the BBN exercise group and both control groups (control sedentary and control exercise), while the BBN sedentary group was significantly separated from the control groups and the BBN exercise group. Univariate statistical analysis revealed differences mainly in phosphatidylserine (PS) and cardiolipin (CL), although some differences were also observed in phosphatidylinositol (PI, LPI) and phosphatidylcholine (PC) phospholipids. PS with shorter fatty acyl chains were up-regulated in the BBN sedentary group, while the other species of PS with longer FA and a higher degree of unsaturation were down-regulated, but the BBN exercise group was mostly similar to control groups. Remarkably, exercise training prevented these alterations and had a positive impact on the ability of mitochondria to produce ATP, restoring the healthy phospholipid profile. The remodelling of mitochondria phospholipid profile in rats with urothelial carcinoma allowed confirming the importance of the lipid metabolism in mitochondria dysfunction in cancer-induced skeletal muscle remodelling. The regulation of phospholipid biosynthetic pathways observed in the BBN exercise group supported the current perspective that exercise is an adequate therapeutic approach for the management of cancer-related muscle remodeling.
Collapse
|
49
|
Pizzuto M, Lonez C, Baroja-Mazo A, Martínez-Banaclocha H, Tourlomousis P, Gangloff M, Pelegrin P, Ruysschaert JM, Gay NJ, Bryant CE. Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4. Cell Mol Life Sci 2019; 76:3667-3678. [PMID: 31062071 PMCID: PMC6697720 DOI: 10.1007/s00018-019-03113-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Cardiolipins (CLs) are tetra-acylated diphosphatidylglycerols found in bacteria, yeast, plants, and animals. In healthy mammals, CLs are unsaturated, whereas saturated CLs are found in blood cells from Barth syndrome patients and in some Gram-positive bacteria. Here, we show that unsaturated but not saturated CLs block LPS-induced NF-κB activation, TNF-α and IP-10 secretion in human and murine macrophages, as well as LPS-induced TNF-α and IL-1β release in human blood mononuclear cells. Using HEK293 cells transfected with Toll-like receptor 4 (TLR4) and its co-receptor Myeloid Differentiation 2 (MD2), we demonstrate that unsaturated CLs compete with LPS for binding TLR4/MD2 preventing its activation, whereas saturated CLs are TLR4/MD2 agonists. As a consequence, saturated CLs induce a pro-inflammatory response in macrophages characterized by TNF-α and IP-10 secretion, and activate the alternative NLRP3 inflammasome pathway in human blood-derived monocytes. Thus, we identify that double bonds discriminate between anti- and pro-inflammatory properties of tetra-acylated molecules, providing a rationale for the development of TLR4 activators and inhibitors for use as vaccine adjuvants or in the treatment of TLR4-related diseases.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Blvd du Triomphe Access 2, 1050, Brussels, Belgium.
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK.
- Molecular Inflammation Group, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120, Murcia, Spain.
| | - Caroline Lonez
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Blvd du Triomphe Access 2, 1050, Brussels, Belgium
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120, Murcia, Spain
| | - Helios Martínez-Banaclocha
- Molecular Inflammation Group, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120, Murcia, Spain
| | - Panagiotis Tourlomousis
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120, Murcia, Spain
| | - Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Blvd du Triomphe Access 2, 1050, Brussels, Belgium
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| |
Collapse
|
50
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells 2019; 8:cells8070728. [PMID: 31315173 PMCID: PMC6678812 DOI: 10.3390/cells8070728] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, mitochondria are involved in a large array of metabolic and bioenergetic processes that are vital for cell survival. Phospholipids are the main building blocks of mitochondrial membranes. Cardiolipin (CL) is a unique phospholipid which is localized and synthesized in the inner mitochondrial membrane (IMM). It is now widely accepted that CL plays a central role in many reactions and processes involved in mitochondrial function and dynamics. Cardiolipin interacts with and is required for optimal activity of several IMM proteins, including the enzyme complexes of the electron transport chain (ETC) and ATP production and for their organization into supercomplexes. Moreover, CL plays an important role in mitochondrial membrane morphology, stability and dynamics, in mitochondrial biogenesis and protein import, in mitophagy, and in different mitochondrial steps of the apoptotic process. It is conceivable that abnormalities in CL content, composition and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of pathophysiological situations and diseases. In this review, we focus on the role played by CL in mitochondrial function and dynamics in health and diseases and on the potential of pharmacological modulation of CL through several agents in attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
| | | | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|