1
|
Pan X, Köberle M, Ghashghaeinia M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants (Basel) 2024; 13:968. [PMID: 39199214 PMCID: PMC11352176 DOI: 10.3390/antiox13080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In the small intestine, nutrients from ingested food are absorbed and broken down by enterocytes, which constitute over 95% of the intestinal epithelium. Enterocytes demonstrate diet- and segment-dependent metabolic flexibility, enabling them to take up large amounts of glutamine and glucose to meet their energy needs and transfer these nutrients into the bloodstream. During glycolysis, ATP, lactate, and H+ ions are produced within the enterocytes. Based on extensive but incomplete glutamine oxidation large amounts of alanine or lactate are produced. Lactate, in turn, promotes hypoxia-inducible factor-1α (Hif-1α) activation and Hif-1α-dependent transcription of various proton channels and exchangers, which extrude cytoplasmic H+-ions into the intestinal lumen. In parallel, the vitamin C-dependent and duodenal cytochrome b-mediated conversion of ferric iron into ferrous iron progresses. Finally, the generated electrochemical gradient is utilized by the divalent metal transporter 1 for H+-coupled uptake of non-heme Fe2+-ions. Iron efflux from enterocytes, subsequent binding to the plasma protein transferrin, and systemic distribution supply a wide range of cells with iron, including erythroid precursors essential for erythropoiesis. In this review, we discuss the impact of vitamin C on the redox capacity of human erythrocytes and connect enterocyte function with iron metabolism, highlighting its effects on erythropoiesis.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine and Health, Technical University of Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
2
|
Nielsen IØ, Clemmensen KKB, Fogde DL, Dietrich TN, Giacobini JD, Bilgin M, Jäättelä M, Maeda K. Cationic amphiphilic drugs induce accumulation of cytolytic lysoglycerophospholipids in the lysosomes of cancer cells and block their recycling into common membrane glycerophospholipids. Mol Biol Cell 2024; 35:ar25. [PMID: 38117591 PMCID: PMC10916870 DOI: 10.1091/mbc.e23-06-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023] Open
Abstract
Lysosomes are acidic organelles responsible for lipid catabolism, and their functions can be disrupted by cationic amphiphilic drugs that neutralize lumenal pH and thereby inhibit most lysosomal hydrolases. These drugs can also induce lysosomal membrane permeabilization and cancer cell death, but the underlying mechanism remains elusive. Here, we uncover that the cationic amphiphilic drugs induce a substantial accumulation of cytolytic lysoglycerophospholipids within the lysosomes of cancer cells, and thereby prevent the recycling of lysoglycerophospholipids to produce common membrane glycerophospholipids. Using quantitative mass spectrometry-based shotgun lipidomics, we demonstrate that structurally diverse cationic amphiphilic drugs, along with other types of lysosomal pH-neutralizing reagents, elevate the amounts of lysoglycerophospholipids in MCF7 breast carcinoma cells. Lysoglycerophospholipids constitute ∼11 mol% of total glycerophospholipids in lysosomes purified from MCF7 cells, compared with ∼1 mol% in the cell lysates. Treatment with cationic amphiphilic drug siramesine further elevates the lysosomal lysoglycerophospholipid content to ∼24 mol% of total glycerophospholipids. Exogenously added traceable lysophosphatidylcholine is rapidly acylated to form diacylphosphatidylcholine, but siramesine treatment sequesters the lysophosphatidylcholine in the lysosomes and prevents it from undergoing acylation. These findings shed light on the unexplored role of lysosomes in the recycling of lysoglycerophospholipids and uncover the mechanism of action of promising anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Mesut Bilgin
- Lipidomics Core Facility, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute (DCI), DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, DK-2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, DK-2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Kleuser B, Schumacher F, Gulbins E. New Therapeutic Options in Pulmonal Diseases: Sphingolipids and Modulation of Sphingolipid Metabolism. Handb Exp Pharmacol 2024; 284:289-312. [PMID: 37922034 DOI: 10.1007/164_2023_700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Pal P, Atilla-Gokcumen GE, Frasor J. Emerging Roles of Ceramides in Breast Cancer Biology and Therapy. Int J Mol Sci 2022; 23:ijms231911178. [PMID: 36232480 PMCID: PMC9569866 DOI: 10.3390/ijms231911178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
One of the classic hallmarks of cancer is the imbalance between elevated cell proliferation and reduced cell death. Ceramide, a bioactive sphingolipid that can regulate this balance, has long been implicated in cancer. While the effects of ceramide on cell death and therapeutic efficacy are well established, emerging evidence indicates that ceramide turnover to downstream sphingolipids, such as sphingomyelin, hexosylceramides, sphingosine-1-phosphate, and ceramide-1-phosphate, is equally important in driving pro-tumorigenic phenotypes, such as proliferation, survival, migration, stemness, and therapy resistance. The complex and dynamic sphingolipid network has been extensively studied in several cancers, including breast cancer, to find key sphingolipidomic alterations that can be exploited to develop new therapeutic strategies to improve patient outcomes. Here, we review how the current literature shapes our understanding of how ceramide synthesis and turnover are altered in breast cancer and how these changes offer potential strategies to improve breast cancer therapy.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| |
Collapse
|
6
|
Ung J, Tan SF, Fox TE, Shaw JJP, Vass LR, Costa-Pinheiro P, Garrett-Bakelman FE, Keng MK, Sharma A, Claxton DF, Levine RL, Tallman MS, Cabot MC, Kester M, Feith DJ, Loughran TP. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Rev 2022; 55:100950. [PMID: 35487785 PMCID: PMC9475810 DOI: 10.1016/j.blre.2022.100950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Su-Fern Tan
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Todd E Fox
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jeremy J P Shaw
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Luke R Vass
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro Costa-Pinheiro
- Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Francine E Garrett-Bakelman
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Michael K Keng
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - David F Claxton
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - Ross L Levine
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Mark Kester
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David J Feith
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Thomas P Loughran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America.
| |
Collapse
|
7
|
Ouro A, Correa-Paz C, Maqueda E, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Posado-Fernández A, Candamo-Lourido M, Alonso-Alonso ML, Hervella P, Iglesias-Rey R, Castillo J, Campos F, Sobrino T. Involvement of Ceramide Metabolism in Cerebral Ischemia. Front Mol Biosci 2022; 9:864618. [PMID: 35531465 PMCID: PMC9067562 DOI: 10.3389/fmolb.2022.864618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in worldwide. Although reperfusion therapies have shown efficacy in a limited number of patients with acute ischemic stroke, neuroprotective drugs and recovery strategies have been widely assessed, but none of them have been successful in clinical practice. Therefore, the search for new therapeutic approaches is still necessary. Sphingolipids consist of a family of lipidic molecules with both structural and cell signaling functions. Regulation of sphingolipid metabolism is crucial for cell fate and homeostasis in the body. Different works have emphasized the implication of its metabolism in different pathologies, such as diabetes, cancer, neurodegeneration, or atherosclerosis. Other studies have shown its implication in the risk of suffering a stroke and its progression. This review will highlight the implications of sphingolipid metabolism enzymes in acute ischemic stroke.
Collapse
Affiliation(s)
- Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elena Maqueda
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Adrián Posado-Fernández
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
8
|
The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry 2022; 27:307-314. [PMID: 34608263 PMCID: PMC8488928 DOI: 10.1038/s41380-021-01309-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase). The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine, and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of "old" drugs against COVID-19.
Collapse
|
9
|
Carroll DJ, Cao Y, Bochner BS, O’Sullivan JA. Siglec-8 Signals Through a Non-Canonical Pathway to Cause Human Eosinophil Death In Vitro. Front Immunol 2021; 12:737988. [PMID: 34721399 PMCID: PMC8549629 DOI: 10.3389/fimmu.2021.737988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a glycan-binding receptor bearing immunoreceptor tyrosine-based inhibitory and switch motifs (ITIM and ITSM, respectively) that is selectively expressed on eosinophils, mast cells, and, to a lesser extent, basophils. Previous work has shown that engagement of Siglec-8 on IL-5-primed eosinophils causes cell death via CD11b/CD18 integrin-mediated adhesion and NADPH oxidase activity and identified signaling molecules linking adhesion, reactive oxygen species (ROS) production, and cell death. However, the proximal signaling cascade activated directly by Siglec-8 engagement has remained elusive. Most members of the Siglec family possess similar cytoplasmic signaling motifs and recruit the protein tyrosine phosphatases SHP-1/2, consistent with ITIM-mediated signaling, to dampen cellular activation. However, the dependence of Siglec-8 function in eosinophils on these phosphatases has not been studied. Using Siglec-8 antibody engagement and pharmacological inhibition in conjunction with assays to measure cell-surface upregulation and conformational activation of CD11b integrin, ROS production, and cell death, we sought to identify molecules involved in Siglec-8 signaling and determine the stage of the process in which each molecule plays a role. We demonstrate here that the enzymatic activities of Src family kinases (SFKs), Syk, SHIP1, PAK1, MEK1, ERK1/2, PLC, PKC, acid sphingomyelinase/ceramidase, and Btk are all necessary for Siglec-8-induced eosinophil cell death, with no apparent role for SHP-1/2, SHIP2, or c-Raf. While most of these signaling molecules are necessary for Siglec-8-induced upregulation of CD11b integrin at the eosinophil cell surface, Btk is phosphorylated and activated later in the signaling cascade and is instead necessary for CD11b activation. In contrast, SFKs and ERK1/2 are phosphorylated far earlier in the process, consistent with their role in augmenting cell-surface levels of CD11b. In addition, pretreatment of eosinophils with latrunculin B or jasplakinolide revealed that actin filament disassembly is necessary and sufficient for surface CD11b integrin upregulation and that actin polymerization is necessary for downstream ROS production. These results show that Siglec-8 signals through an unanticipated set of signaling molecules in IL-5-primed eosinophils to induce cell death and challenges the expectation that ITIM-bearing Siglecs signal through inhibitory pathways involving protein tyrosine phosphatases to achieve their downstream functions.
Collapse
Affiliation(s)
| | | | | | - Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
10
|
Turkez H, Tozlu OO, Arslan ME, Mardinoglu A. Safety and Efficacy Assessments to Take Antioxidants in Glioblastoma Therapy: From In Vitro Experiences to Animal and Clinical Studies. Neurochem Int 2021; 150:105168. [PMID: 34450218 DOI: 10.1016/j.neuint.2021.105168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is considered one of the most common malignant brain tumors, occurring as over 15% of all primary central nervous system and brain neoplasms. The unique and standard treatment option towards GBM involves the combination of surgical resection followed by radiotherapy (RT) and chemotherapy (CT). However, due to the aggressive nature and heterogeneity of GBMs, they remained difficult to treat. Recent findings from preclinical studies have revealed that disruption of the redox balance via using either oxidative or anti-oxidative agents in GBM presented an effective and promising therapeutic approach. A limited number of clinical trials substantially encouraged their concomitant use with RT or CT. Thus, treatment of GBMs may benefit from natural or synthetic antioxidative compounds as novel therapeutics. Despite the presence of variegated in vitro and in vivo studies focusing on safety and efficacy issues of these promising therapeutics, nowadays their translation to clinics is far from applicability due to several challenges. In this review, we briefly introduce the enzymatic and non-enzymatic antioxidant defense systems as well as potential signaling pathways related to the pathogenesis of GBM with a special interest in antioxidant mechanisms. In addition, we describe the advantages and limitations of antioxidant supplementation in GBM cases or disease models as well as growing challenges for GBM therapies with antioxidants in the future.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.
| |
Collapse
|
11
|
Breiden B, Sandhoff K. Acid Sphingomyelinase, a Lysosomal and Secretory Phospholipase C, Is Key for Cellular Phospholipid Catabolism. Int J Mol Sci 2021; 22:9001. [PMID: 34445706 PMCID: PMC8396676 DOI: 10.3390/ijms22169001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Here, we present the main features of human acid sphingomyelinase (ASM), its biosynthesis, processing and intracellular trafficking, its structure, its broad substrate specificity, and the proposed mode of action at the surface of the phospholipid substrate carrying intraendolysosomal luminal vesicles. In addition, we discuss the complex regulation of its phospholipid cleaving activity by membrane lipids and lipid-binding proteins. The majority of the literature implies that ASM hydrolyses solely sphingomyelin to generate ceramide and ignores its ability to degrade further substrates. Indeed, more than twenty different phospholipids are cleaved by ASM in vitro, including some minor but functionally important phospholipids such as the growth factor ceramide-1-phosphate and the unique lysosomal lysolipid bis(monoacylglycero)phosphate. The inherited ASM deficiency, Niemann-Pick disease type A and B, impairs mainly, but not only, cellular sphingomyelin catabolism, causing a progressive sphingomyelin accumulation, which furthermore triggers a secondary accumulation of lipids (cholesterol, glucosylceramide, GM2) by inhibiting their turnover in late endosomes and lysosomes. However, ASM appears to be involved in a variety of major cellular functions with a regulatory significance for an increasing number of metabolic disorders. The biochemical characteristics of ASM, their potential effect on cellular lipid turnover, as well as a potential impact on physiological processes will be discussed.
Collapse
Affiliation(s)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, LIMES Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
12
|
Hayashi Y, Tsuchiya K, Yamamoto M, Nemoto-Sasaki Y, Tanigawa K, Hama K, Ueda Y, Tanikawa T, Gohda J, Maeda K, Inoue JI, Yamashita A. N-(4-Hydroxyphenyl) Retinamide Suppresses SARS-CoV-2 Spike Protein-Mediated Cell-Cell Fusion by a Dihydroceramide Δ4-Desaturase 1-Independent Mechanism. J Virol 2021; 95:e0080721. [PMID: 34106748 PMCID: PMC8354230 DOI: 10.1128/jvi.00807-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/02/2023] Open
Abstract
The membrane fusion between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host cells is essential for the initial step of infection; therefore, the host cell membrane components, including sphingolipids, influence the viral infection. We assessed several inhibitors of the enzymes pertaining to sphingolipid metabolism, against SARS-CoV-2 spike protein (S)-mediated cell-cell fusion and viral infection. N-(4-Hydroxyphenyl) retinamide (4-HPR), an inhibitor of dihydroceramide Δ4-desaturase 1 (DES1), suppressed cell-cell fusion and viral infection. The analysis of sphingolipid levels revealed that the inhibition efficiencies of cell-cell fusion and viral infection in 4-HPR-treated cells were consistent with an increased ratio of saturated sphinganine-based lipids to total sphingolipids. We investigated the relationship of DES1 with the inhibition efficiencies of cell-cell fusion. The changes in the sphingolipid profile induced by 4-HPR were mitigated by the supplementation with exogenous cell-permeative ceramide; however, the reduced cell-cell fusion could not be reversed. The efficiency of cell-cell fusion in DES1 knockout (KO) cells was at a level comparable to that in wild-type (WT) cells; however, the ratio of saturated sphinganine-based lipids to the total sphingolipids was higher in DES1 KO cells than in WT cells. 4-HPR reduced cell membrane fluidity without any significant effects on the expression or localization of angiotensin-converting enzyme 2, the SARS-CoV-2 receptor. Therefore, 4-HPR suppresses SARS-CoV-2 S-mediated membrane fusion through a DES1-independent mechanism, and this decrease in membrane fluidity induced by 4-HPR could be the major cause for the inhibition of SARS-CoV-2 infection. IMPORTANCE Sphingolipids could play an important role in SARS-CoV-2 S-mediated membrane fusion with host cells. We studied the cell-cell fusion using SARS-CoV-2 S-expressing cells and sphingolipid-manipulated target cells, with an inhibitor of the sphingolipid metabolism. 4-HPR (also known as fenretinide) is an inhibitor of DES1, and it exhibits antitumor activity and suppresses cell-cell fusion and viral infection. 4-HPR suppresses membrane fusion through a decrease in membrane fluidity, which could possibly be the cause for the inhibition of SARS-CoV-2 infection. There is accumulating clinical data on the safety of 4-HPR. Therefore, it could be a potential candidate drug against COVID-19.
Collapse
Affiliation(s)
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Kotaro Hama
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yusuke Ueda
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Takashi Tanikawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenji Maeda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Cottrill KA, Peterson RJ, Lewallen CF, Koval M, Bridges RJ, McCarty NA. Sphingomyelinase decreases transepithelial anion secretion in airway epithelial cells in part by inhibiting CFTR-mediated apical conductance. Physiol Rep 2021; 9:e14928. [PMID: 34382377 PMCID: PMC8358481 DOI: 10.14814/phy2.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel whose dysfunction causes cystic fibrosis (CF). The loss of CFTR function in pulmonary epithelial cells causes surface dehydration, mucus build-up, inflammation, and bacterial infections that lead to lung failure. Little has been done to evaluate the effects of lipid perturbation on CFTR activity, despite CFTR residing in the plasma membrane. This work focuses on the acute effects of sphingomyelinase (SMase), a bacterial virulence factor secreted by CF relevant airway bacteria which degrades sphingomyelin into ceramide and phosphocholine, on the electrical circuitry of pulmonary epithelial monolayers. We report that basolateral SMase decreases CFTR-mediated transepithelial anion secretion in both primary bronchial and tracheal epithelial cells from explant tissue, with current CFTR modulators unable to rescue this effect. Focusing on primary cells, we took a holistic ion homeostasis approach to determine a cause for reduced anion secretion following SMase treatment. Using impedance analysis, we determined that basolateral SMase inhibits apical and basolateral conductance in non-CF primary cells without affecting paracellular permeability. In CF primary airway cells, correction with clinically relevant CFTR modulators did not prevent SMase-mediated inhibition of CFTR currents. Furthermore, SMase was found to inhibit only apical conductance in these cells. Future work should determine the mechanism for SMase-mediated inhibition of CFTR currents, and further explore the clinical relevance of SMase and sphingolipid imbalances.
Collapse
Affiliation(s)
- Kirsten A. Cottrill
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Raven J. Peterson
- Biochemistry, Cell, and Developmental Biology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Colby F. Lewallen
- Georgia Institute of TechnologyG.W. Woodruff School of Mechanical EngineeringAtlantaGeorgiaUSA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep MedicineDepartment of MedicineEmory UniversityAtlantaGeorgiaUSA
- Department of Cell BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsCenter for Genetic DiseasesChicago Medical SchoolNorth Chicago, IllinoisUSA
| | - Nael A. McCarty
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
14
|
Shin JK, Kim JS. Cytoprotection of rat hepatocytes by desipramine in a model of simulated ischemia/reperfusion. Biochem Biophys Rep 2021; 27:101075. [PMID: 34337165 PMCID: PMC8313843 DOI: 10.1016/j.bbrep.2021.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
We investigated the cytoprotective effect of desipramine (DMI) during in vitro simulated ischemia/reperfusion (I/R) of rat hepatocytes. Primary hepatocytes isolated from male Sprague-Dawley rats were subjected to 4 h of anoxia at pH 6.2 followed by normoxia at pH 7.4 for 2 h to simulate ischemia and reperfusion, respectively. During simulated reperfusion, some hepatocytes were reoxygenated using media containing 5 μM DMI. Necrotic cell death and the onset of mitochondrial permeability transition (MPT) were assessed using fluorometry and confocal microscopy. Changes in autophagic flux and autophagy-related proteins (ATGs) were analyzed by immunoblotting. DMI was shown to substantially delay MPT onset and suppress I/R related cell damage. Mechanistically, DMI treatment during reperfusion increased the expression level of the microtubule-associated protein 1A/1B-light chain 3 (LC3) processing enzymes, ATG4B and ATG7. Genetic knockdown of ATG4B abolished the cytoprotective effect of DMI. Together, these results indicate that DMI is a unique agent which enhances LC3 processing in an ATG4B-dependent way.
Collapse
Affiliation(s)
- Jun-Kyu Shin
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jae-Sung Kim
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Corresponding author. Department of Surgery, Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Wiese T, Dennstädt F, Hollmann C, Stonawski S, Wurst C, Fink J, Gorte E, Mandasari P, Domschke K, Hommers L, Vanhove B, Schumacher F, Kleuser B, Seibel J, Rohr J, Buttmann M, Menke A, Schneider-Schaulies J, Beyersdorf N. Inhibition of acid sphingomyelinase increases regulatory T cells in humans. Brain Commun 2021; 3:fcab020. [PMID: 33898989 PMCID: PMC8054263 DOI: 10.1093/braincomms/fcab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022] Open
Abstract
Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3+ regulatory T-cell frequencies among CD4+ T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4+ Foxp3+ regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3+ regulatory T cell among human CD4+ T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4+ Foxp3+ regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA− CD25high effector CD4+ Foxp3+ regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4+ Foxp3+ regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4+ T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4+ T cells in humans both in vivo and in vitro.
Collapse
Affiliation(s)
- Teresa Wiese
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Fabio Dennstädt
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Claudia Hollmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Saskia Stonawski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg 97080, Germany
| | - Catherina Wurst
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg 97080, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Erika Gorte
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg 97080, Germany.,Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg 97080, Germany.,Interdisciplinary Center for Clinical Research, University of Würzburg, Würzburg 97080, Germany
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,OSE Immunotherapeutics S.A., Nantes, France
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, Nuthetal D-14558, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Nuthetal D-14558, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Jan Rohr
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg 79106, Germany
| | - Mathias Buttmann
- Department of Neurology, Caritas Hospital, Bad Mergentheim 97980, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg 97080, Germany.,Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg 97080, Germany.,Interdisciplinary Center for Clinical Research, University of Würzburg, Würzburg 97080, Germany.,Medical Park Chiemseeblick, Bernau-Felden 83233, Germany
| | | | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg 97078, Germany
| |
Collapse
|
16
|
Vethakanraj HS, Chandrasekaran N, Sekar AK. Acid ceramidase, a double-edged sword in cancer aggression: A minireview. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-112652. [PMID: 33357194 DOI: 10.2174/1568009620666201223154621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a "double-edged sword" by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.
Collapse
|
17
|
Wu JMF, Schulze PC. Cardiovascular prognosis: a new role for ceramides and other cardiometabolites. ESC Heart Fail 2020; 7:3285-3287. [PMID: 33040495 PMCID: PMC7754998 DOI: 10.1002/ehf2.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jasmine M F Wu
- Division of Cardiology, Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | - P Christian Schulze
- Division of Cardiology, Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| |
Collapse
|
18
|
Nielsen IØ, Groth-Pedersen L, Dicroce-Giacobini J, Jonassen ASH, Mortensen M, Bilgin M, Schmiegelow K, Jäättelä M, Maeda K. Cationic amphiphilic drugs induce elevation in lysoglycerophospholipid levels and cell death in leukemia cells. Metabolomics 2020; 16:91. [PMID: 32851548 DOI: 10.1007/s11306-020-01710-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Repurposing of cationic amphiphilic drugs (CADs) emerges as an attractive therapeutic solution against various cancers, including leukemia. CADs target lysosomal lipid metabolism and preferentially kill cancer cells via induction of lysosomal membrane permeabilization, but the exact effects of CADs on the lysosomal lipid metabolism remain poorly illuminated. OBJECTIVES We aimed to systematically monitor CAD-induced alterations in the quantitative lipid profiles of leukemia cell lines in order to chart effects of CADs on the metabolism of various lipid classes present in these cells. METHODS We conducted this study on eight cultured cell lines representing two leukemia types, acute lymphoblastic leukemia and acute myeloid leukemia. Mass spectrometry-based quantitative shotgun lipidomics was employed to quantify the levels of around 400 lipid species of 26 lipid classes in the leukemia cell lines treated or untreated with a CAD, siramesine. RESULTS The two leukemia types displayed high, but variable sensitivities to CADs and distinct profiles of cellular lipids. Treatment with siramesine rapidly altered the levels of diverse lipid classes in both leukemia types. These included sphingolipid classes previously reported to play key roles in CAD-induced cell death, but also lipids of other categories. We demonstrated that the treatment with siramesine additionally elevated the levels of numerous cytolytic lysoglycerophospholipids in positive correlation with the sensitivity of individual leukemia cell lines to siramesine. CONCLUSIONS Our study shows that CAD treatment alters balance in the metabolism of glycerophospholipids, and proposes elevation in the levels of lysoglycerophospholipids as part of the mechanism leading to CAD-induced cell death of leukemia cells.
Collapse
Affiliation(s)
- Inger Ødum Nielsen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Line Groth-Pedersen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Jano Dicroce-Giacobini
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Anna Sofie Holm Jonassen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Monika Mortensen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Juliane Marie Centre, Rigshospitalet University Hospital, 2100, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Kenji Maeda
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark.
| |
Collapse
|
19
|
Jaddoa E, Masania J, Masiero E, Sgamma T, Arroo R, Sillence D, Zetterström T. Effect of antidepressant drugs on the brain sphingolipid system. J Psychopharmacol 2020; 34:716-725. [PMID: 32403969 DOI: 10.1177/0269881120915412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Major depression is a common mood disorder and the central sphingolipid system has been identified as a possible drug target of this condition. Here we investigated the action of antidepressant drugs on sphingolipid levels in rat brain regions, plasma and in cultured mouse macrophages. METHODS Two antidepressant drugs were tested: the serotonin reuptake inhibitor paroxetine and the noradrenaline reuptake inhibitor desipramine, either following acute or chronic treatments. Content of sphingosine and ceramide were analysed using LC-MS or HPLC-UV, respectively. This was from samples of brain, plasma and cultured mouse macrophages. Antidepressant-induced effects on mRNA expression for two key genes of the sphingolipid pathway, SMPD1 and ASAH1, were also measured by using quantitative real-time PCR. RESULTS Chronic but not acute administration of paroxetine or desipramine reduced sphingosine levels in the prefrontal cortex and hippocampus (only paroxetine) but not in the striatum. Ceramide levels were also measured in the hippocampus following chronic paroxetine and likewise to sphingosine this treatment reduced its levels. The corresponding collected plasma samples from chronically treated animals did not show any decrease of sphingosine compared to the corresponding controls. Both drugs failed to reduce sphingosine levels from cultured mouse macrophages. The drug-induced decrease of sphingolipids coincided with reduced mRNA expression of two enzymes of the central sphingolipid pathway, i.e. acid sphingomyelinase (SMPD1) and acid ceramidase (ASAH1). CONCLUSIONS This study supports the involvement of brain sphingolipids in the mechanism of action by antidepressant drugs and for the first time highlights their differential effects on brain versus plasma levels.
Collapse
Affiliation(s)
- Estabraq Jaddoa
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Jinit Masania
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Eva Masiero
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Tiziana Sgamma
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Randolph Arroo
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Daniel Sillence
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Tyra Zetterström
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
20
|
Naser E, Kadow S, Schumacher F, Mohamed ZH, Kappe C, Hessler G, Pollmeier B, Kleuser B, Arenz C, Becker KA, Gulbins E, Carpinteiro A. Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. J Lipid Res 2020; 61:896-910. [PMID: 32156719 PMCID: PMC7269768 DOI: 10.1194/jlr.ra120000682] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/01/2020] [Indexed: 01/03/2023] Open
Abstract
Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.
Collapse
Affiliation(s)
- Eyad Naser
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Zainelabdeen H Mohamed
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany; Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Christian Kappe
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Gabriele Hessler
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Barbara Pollmeier
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Surgery, University of Cincinnati, Cincinnati, OH 45229
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Hematology, University Hospital Essen, 45147 Essen, Germany. mailto:
| |
Collapse
|
21
|
Kroll A, Cho HE, Kang MH. Antineoplastic Agents Targeting Sphingolipid Pathways. Front Oncol 2020; 10:833. [PMID: 32528896 PMCID: PMC7256948 DOI: 10.3389/fonc.2020.00833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging studies in the enigmatic area of bioactive lipids have made many exciting new discoveries in recent years. Once thought to play a strictly structural role in cellular function, it has since been determined that sphingolipids and their metabolites perform a vast variety of cellular functions beyond what was previously believed. Of utmost importance is their role in cellular signaling, for it is now well understood that select sphingolipids serve as bioactive molecules that play critical roles in both cancer cell death and survival, as well as other cellular responses such as chronic inflammation, protection from intestinal pathogens, and intrinsic protection from intestinal contents, each of which are associated with oncogenesis. Importantly, it has been demonstrated time and time again that many different tumors display dysregulation of sphingolipid metabolism, and the exact profile of said dysregulation has been proven to be useful in determining not only the presence of a tumor, but also the susceptibility to various chemotherapeutic drugs, as well as the metastasizing characteristics of the malignancies. Since these discoveries surfaced it has become apparent that the understanding of sphingolipid metabolism and profile will likely become of great importance in the clinic for both chemotherapy and diagnostics of cancer. The goal of this paper is to provide a comprehensive review of the current state of chemotherapeutic agents that target sphingolipid metabolism that are undergoing clinical trials. Additionally, we will formulate questions involving the use of sphingolipid metabolism as chemotherapeutic targets in need of further research.
Collapse
Affiliation(s)
- Alexander Kroll
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hwang Eui Cho
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
22
|
The Lysosomotropic Activity of Hydrophobic Weak Base Drugs is Mediated via Their Intercalation into the Lysosomal Membrane. Cells 2020; 9:cells9051082. [PMID: 32349204 PMCID: PMC7290590 DOI: 10.3390/cells9051082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lipophilic weak base therapeutic agents, termed lysosomotropic drugs (LDs), undergo marked sequestration and concentration within lysosomes, hence altering lysosomal functions. This lysosomal drug entrapment has been described as luminal drug compartmentalization. Consistent with our recent finding that LDs inflict a pH-dependent membrane fluidization, we herein demonstrate that LDs undergo intercalation and concentration within lysosomal membranes. The latter was revealed experimentally and computationally by (a) confocal microscopy of fluorescent compounds and drugs within lysosomal membranes, and (b) molecular dynamics modeling of the pH-dependent membrane insertion and accumulation of an assortment of LDs, including anticancer drugs. Based on the multiple functions of the lysosome as a central nutrient sensory hub and a degradation center, we discuss the molecular mechanisms underlying the alteration of morphology and impairment of lysosomal functions as consequences of LDs’ intercalation into lysosomes. Our findings bear important implications for drug design, drug induced lysosomal damage, diseases and pertaining therapeutics.
Collapse
|
23
|
Amitriptyline Treatment Mitigates Sepsis-Induced Tumor Necrosis Factor Expression and Coagulopathy. Shock 2020; 51:356-363. [PMID: 29608550 DOI: 10.1097/shk.0000000000001146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During sepsis, the early innate response and inflammatory cytokine cascade are associated with activation of the coagulation cascade. Acute hypercoagulability can contribute to lethal sequela of vascular thrombosis, tissue ischemia, and organ failure. We investigated if amitriptyline (AMIT), an antidepressant drug with a number of anti-inflammatory effects, could ameliorate sepsis in a murine model of sepsis-cecal ligation and puncture (CLP). We hypothesized that AMIT treatment would reduce inflammation and mitigate sepsis-induced coagulopathy. Coagulation was measured using thromboelastometry and ferric chloride-induced carotid artery thrombosis. Our findings demonstrate a dynamic early hypercoagulability, followed by delayed hypocoagulability in septic mice. However, septic mice treated with AMIT were unaffected by these coagulation changes and exhibited a coagulation profile similar to sham mice. TNFα was markedly elevated in septic mice, but decreased in AMIT-treated mice. Exogenous administration of recombinant TNFα in naive mice recapitulated the acute sepsis-induced hypercoagulability profile. After sepsis and endotoxemia, peritoneal macrophages were the predominant source of TNFα expression. AMIT treatment significantly decreased macrophage TNFα expression and blunted M1 polarization. Altogether, during polymicrobial sepsis, AMIT treatment suppressed macrophage TNFα expression and the M1 phenotype, mitigating an initial hypercoagulable state, and protecting septic mice from delayed hypocoagulability. We propose that AMIT treatment is a promising therapeutic approach in the treatment of sepsis-associated coagulopathy and prevention of acute thromboembolic events or delayed bleeding complications.
Collapse
|
24
|
Abstract
Sphingosine, ceramide, sphingosine-1-phosphate, and other related sphingolipids have emerged as important bioactive molecules involved in a variety of key cellular processes such as cell growth, differentiation, apoptosis, exosome release, and inter- and intracellular cell communication, making the pathways of sphingolipid metabolism a key domain in maintaining cell homeostasis (Hannun and Obeid, Trends Biochem Sci 20:73-77, 1995; Hannun and Obeid, Nat Rev Mol Cell Biol 9:139-150, 2008; Kosaka et al., J Biol Chem 288:10849-10859, 2013). Various studies have determined that these pathways play a central role in regulating intracellular production of ceramide and the other bioactive sphingolipids and hence are an important component of signaling in various diseases such as cancer, diabetes, and neurodegenerative and cardiovascular diseases (Chaube et al., Biochim Biophys Acta 1821:313-323, 2012; Clarke et al., Adv Enzyme Regul 51:51-58, 2011b; Horres and Hannun, Neurochem Res 37:1137-1149, 2012). In this chapter, we discuss one of the major enzyme classes in producing ceramide, sphingomyelinases (SMases), from a biochemical and structural perspective with an emphasis on their applicability as therapeutic targets.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Cancer Center, Stony Brook, NY, USA.
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
25
|
Beckmann N, Becker KA, Kadow S, Schumacher F, Kramer M, Kühn C, Schulz-Schaeffer WJ, Edwards MJ, Kleuser B, Gulbins E, Carpinteiro A. Acid Sphingomyelinase Deficiency Ameliorates Farber Disease. Int J Mol Sci 2019; 20:ijms20246253. [PMID: 31835809 PMCID: PMC6941101 DOI: 10.3390/ijms20246253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can’t achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients.
Collapse
Affiliation(s)
- Nadine Beckmann
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany;
| | - Melanie Kramer
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Claudine Kühn
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | | | - Michael J. Edwards
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA;
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany;
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA;
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-84579; Fax: +49-201-723-5974
| |
Collapse
|
26
|
Hollmann C, Wiese T, Dennstädt F, Fink J, Schneider-Schaulies J, Beyersdorf N. Translational Approaches Targeting Ceramide Generation From Sphingomyelin in T Cells to Modulate Immunity in Humans. Front Immunol 2019; 10:2363. [PMID: 31681273 PMCID: PMC6798155 DOI: 10.3389/fimmu.2019.02363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
In T cells, as in all other cells of the body, sphingolipids form important structural components of membranes. Due to metabolic modifications, sphingolipids additionally play an active part in the signaling of cell surface receptors of T cells like the T cell receptor or the co-stimulatory molecule CD28. Moreover, the sphingolipid composition of their membranes crucially affects the integrity and function of subcellular compartments such as the lysosome. Previously, studying sphingolipid metabolism has been severely hampered by the limited number of analytical methods/model systems available. Besides well-established high resolution mass spectrometry new tools are now available like novel minimally modified sphingolipid subspecies for click chemistry as well as recently generated mouse mutants with deficiencies/overexpression of sphingolipid-modifying enzymes. Making use of these tools we and others discovered that the sphingolipid sphingomyelin is metabolized to ceramide to different degrees in distinct T cell subpopulations of mice and humans. This knowledge has already been translated into novel immunomodulatory approaches in mice and will in the future hopefully also be applicable to humans. In this paper we are, thus, summarizing the most recent findings on the impact of sphingolipid metabolism on T cell activation, differentiation, and effector functions. Moreover, we are discussing the therapeutic concepts arising from these insights and drugs or drug candidates which are already in clinical use or could be developed for clinical use in patients with diseases as distant as major depression and chronic viral infection.
Collapse
Affiliation(s)
- Claudia Hollmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Teresa Wiese
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fabio Dennstädt
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Anheuser S, Breiden B, Sandhoff K. Ganglioside GM2 catabolism is inhibited by storage compounds of mucopolysaccharidoses and by cationic amphiphilic drugs. Mol Genet Metab 2019; 128:75-83. [PMID: 31097363 DOI: 10.1016/j.ymgme.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
The catabolism of ganglioside GM2 is dependent on the lysosomal enzyme β-hexosaminidase A and a supporting lipid transfer protein, the GM2 activator protein. A genetically based disturbance of GM2 catabolism, leads to several subtypes of the GM2 gangliosidosis: Tay-Sachs disease, Sandhoff disease, the AB-variant and the B1-variant, all of them having GM2 as major lysosomal storage compound. Further on it is known that the gangliosides GM2 and GM3 accumulate as secondary storage compounds in mucopolysaccharidoses, especially in Hunter disease, Hurler disease, Sanfilippo disease and Sly syndrome, with chondroitin sulfate as primary storage compound. The exact mechanism of ganglioside accumulation in mucopolysaccaridoses is still a matter of debate. Here, we show that chondroitin sulfate strongly inhibits the catabolism of membrane-bound GM2 by β-hexosaminidase A in presence of GM2 activator protein in vitro already at low micromolar concentrations. In contrast, hyaluronan, the major storage compound in mucopolysaccharidosis IX, a milder disease without secondary ganglioside accumulation, is a less effective inhibitor. On the other hand, hydrolysis of micellar-bound GM2 by β-hexosaminidase A without the assistance of GM2AP was not impeded by chondroitin sulfate implicating that the inhibition of GM2 hydrolysis by chondroitin sulfate is most likely based on an interaction with GM2AP, the GM2AP-GM2 complex or the GM2-carrying membranes. We also studied the influence of some cationic amphiphilic drugs (desipramine, chlorpromazine, imipramine and chloroquine), provoking drug induced phospholipidosis and found that all of them inhibited the hydrolysis of GM2 massively.
Collapse
Affiliation(s)
- Susi Anheuser
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Bernadette Breiden
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Konrad Sandhoff
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
28
|
Breiden B, Sandhoff K. Emerging mechanisms of drug-induced phospholipidosis. Biol Chem 2019; 401:31-46. [DOI: 10.1515/hsz-2019-0270] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/01/2019] [Indexed: 11/15/2022]
Abstract
Abstract
Drug-induced phospholipidosis is a lysosomal storage disorder characterized by excessive accumulation of phospholipids. Its cellular mechanism is still not well understood, but it is known that cationic amphiphilic drugs can induce it. These drugs have a hydrophilic amine head group that can be protonated in the endolysosomal compartment. As cationic amphiphiles, they are trapped in lysosomes, where they interfere with negatively charged intralysosomal vesicles, the major platforms of cellular sphingolipid degradation. Metabolic principles observed in sphingolipid and phospholipid catabolism and inherited sphingolipidoses are of great importance for lysosomal function and physiological lipid turnover at large. Therefore, we also propose intralysosomal vesicles as major platforms for degradation of lipids and phospholipids reaching them by intracellular pathways like autophagy and endocytosis. Phospholipids are catabolized as components of vesicle surfaces by protonated, positively charged phospholipases, electrostatically attracted to the negatively charged vesicles. Model experiments suggest that progressively accumulating cationic amphiphilic drugs inserting into the vesicle membrane with their hydrophobic molecular moieties disturb and attenuate the main mechanism of lipid degradation as discussed here. By compensating the negative surface charge, cationic enzymes are released from the surface of vesicles and proteolytically degraded, triggering a progressive lipid storage and the formation of inactive lamellar bodies.
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES Institut , Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie , Universität Bonn, Gerhard-Domagk-Str. 1 , D-53121 Bonn , Germany
| | - Konrad Sandhoff
- LIMES Institut , Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie , Universität Bonn, Gerhard-Domagk-Str. 1 , D-53121 Bonn , Germany
| |
Collapse
|
29
|
Abstract
Glycosphingolipids are cell-type-specific components of the outer leaflet of mammalian plasma membranes. Gangliosides, sialic acid–containing glycosphingolipids, are especially enriched on neuronal surfaces. As amphi-philic molecules, they comprise a hydrophilic oligosaccharide chain attached to a hydrophobic membrane anchor, ceramide. Whereas glycosphingolipid formation is catalyzed by membrane-bound enzymes along the secretory pathway, degradation takes place at the surface of intralysosomal vesicles of late endosomes and lysosomes catalyzed in a stepwise fashion by soluble hydrolases and assisted by small lipid-binding glycoproteins. Inherited defects of lysosomal hydrolases or lipid-binding proteins cause the accumulation of undegradable material in lysosomal storage diseases (GM1 and GM2 gangliosidosis; Fabry, Gaucher, and Krabbe diseases; and metachromatic leukodystrophy). The catabolic processes are strongly modified by the lipid composition of the substrate-carrying membranes, and the pathological accumulation of primary storage compounds can trigger an accumulation of secondary storage compounds (e.g., small glycosphingolipids and cholesterol in Niemann-Pick disease).
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES Institute, Membrane Biology and Lipid Biochemistry Unit, Universität Bonn, D-53121 Bonn, Germany;,
| | - Konrad Sandhoff
- LIMES Institute, Membrane Biology and Lipid Biochemistry Unit, Universität Bonn, D-53121 Bonn, Germany;,
| |
Collapse
|
30
|
Cockburn CL, Green RS, Damle SR, Martin RK, Ghahrai NN, Colonne PM, Fullerton MS, Conrad DH, Chalfant CE, Voth DE, Rucks EA, Gilk SD, Carlyon JA. Functional inhibition of acid sphingomyelinase disrupts infection by intracellular bacterial pathogens. Life Sci Alliance 2019; 2:e201800292. [PMID: 30902833 PMCID: PMC6431796 DOI: 10.26508/lsa.201800292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Intracellular bacteria that live in host cell-derived vacuoles are significant causes of human disease. Parasitism of low-density lipoprotein (LDL) cholesterol is essential for many vacuole-adapted bacteria. Acid sphingomyelinase (ASM) influences LDL cholesterol egress from the lysosome. Using functional inhibitors of ASM (FIASMAs), we show that ASM activity is key for infection cycles of vacuole-adapted bacteria that target cholesterol trafficking-Anaplasma phagocytophilum, Coxiella burnetii, Chlamydia trachomatis, and Chlamydia pneumoniae. Vacuole maturation, replication, and infectious progeny generation by A. phagocytophilum, which exclusively hijacks LDL cholesterol, are halted and C. burnetii, for which lysosomal cholesterol accumulation is bactericidal, is killed by FIASMAs. Infection cycles of Chlamydiae, which hijack LDL cholesterol and other lipid sources, are suppressed but less so than A. phagocytophilum or C. burnetii A. phagocytophilum fails to productively infect ASM-/- or FIASMA-treated mice. These findings establish the importance of ASM for infection by intracellular bacteria and identify FIASMAs as potential host-directed therapies for diseases caused by pathogens that manipulate LDL cholesterol.
Collapse
Affiliation(s)
- Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Naomi N Ghahrai
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marissa S Fullerton
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Elizabeth A Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| |
Collapse
|
31
|
Baindara P. Host-directed therapies to combat tuberculosis and associated non-communicable diseases. Microb Pathog 2019; 130:156-168. [PMID: 30876870 DOI: 10.1016/j.micpath.2019.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has coevolved with a human host to evade and exploit the immune system in multiple ways. Mtb is an enormously successful human pathogen that can remain undetected in hosts for decades without causing clinical disease. While tuberculosis (TB) represents a perfect prototype of host-pathogen interaction, it remains a major challenge to develop new therapies to combat mycobacterial infections. Additionally, recent studies emphasize on comorbidity of TB with different non-communicable diseases (NCDs), highlighting the impact of demographic and lifestyle changes on the global burden of TB. In the recent past, host-directed therapies have emerged as a novel and promising approach to treating TB. Drugs modulating host responses are likely to avoid the development of bacterial resistance which is a major public health concern for TB treatment. Interestingly, many of these drugs also form treatment strategies for non-communicable diseases. In general, technological advances along with novel host-directed therapies may open an exciting and promising research area, which can eventually deliver effective TB treatment as well as curtail the emergent synergy with NCDs.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, USA.
| |
Collapse
|
32
|
Becker KA, Riethmüller J, Seitz AP, Gardner A, Boudreau R, Kamler M, Kleuser B, Schuchman E, Caldwell CC, Edwards MJ, Grassmé H, Brodlie M, Gulbins E. Sphingolipids as targets for inhalation treatment of cystic fibrosis. Adv Drug Deliv Rev 2018; 133:66-75. [PMID: 29698625 DOI: 10.1016/j.addr.2018.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/19/2023]
Abstract
Studies over the past several years have demonstrated the important role of sphingolipids in cystic fibrosis (CF), chronic obstructive pulmonary disease and acute lung injury. Ceramide is increased in airway epithelial cells and alveolar macrophages of CF mice and humans, while sphingosine is dramatically decreased. This increase in ceramide results in chronic inflammation, increased death of epithelial cells, release of DNA into the bronchial lumen and thereby an impairment of mucociliary clearance; while the lack of sphingosine in airway epithelial cells causes high infection susceptibility in CF mice and possibly patients. The increase in ceramide mediates an ectopic expression of β1-integrins in the luminal membrane of CF epithelial cells, which results, via an unknown mechanism, in a down-regulation of acid ceramidase. It is predominantly this down-regulation of acid ceramidase that results in the imbalance of ceramide and sphingosine in CF cells. Correction of ceramide and sphingosine levels can be achieved by inhalation of functional acid sphingomyelinase inhibitors, recombinant acid ceramidase or by normalization of β1-integrin expression and subsequent re-expression of endogenous acid ceramidase. These treatments correct pulmonary inflammation and prevent or treat, respectively, acute and chronic pulmonary infections in CF mice with Staphylococcus aureus and mucoid or non-mucoid Pseudomonas aeruginosa. Inhalation of sphingosine corrects sphingosine levels only and seems to mainly act against the infection. Many antidepressants are functional inhibitors of the acid sphingomyelinase and were designed for systemic treatment of major depression. These drugs could be repurposed to treat CF by inhalation.
Collapse
|
33
|
Voelkel-Johnson C, Norris JS, White-Gilbertson S. Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer. Adv Cancer Res 2018; 140:265-293. [PMID: 30060812 PMCID: PMC6460930 DOI: 10.1016/bs.acr.2018.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipid metabolism is known to play a role in cell death, survival, and therapy resistance in cancer. Sphingolipids, particularly dihydroceramide and ceramide, are associated with antiproliferative or cell death responses, respectively, and are central to effective cancer therapy. Within the last decade, strides have been made in elucidating many intricacies of sphingolipid metabolism. New information has emerged on the mechanisms by which sphingolipid metabolism is dysregulated during malignancy and how cancer cells survive and/or escape therapeutic interventions. This chapter focuses on three main themes: (1) sphingolipid enzymes that are dysregulated in cancer, particularly in prostate cancer; (2) inhibitors of sphingolipid metabolism that antagonize prosurvival responses; and (3) sphingolipid-driven escape mechanisms that allow cancer cells to evade therapies. We explore clinical and preclinical approaches to interdict sphingolipid metabolism and provide a rationale for combining strategies to drive the generation of antiproliferative ceramides with prevention of ceramide clearance.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - James S. Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
34
|
Sandhoff R, Sandhoff K. Emerging concepts of ganglioside metabolism. FEBS Lett 2018; 592:3835-3864. [PMID: 29802621 DOI: 10.1002/1873-3468.13114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
Gangliosides (GGs) are sialic acid-containing glycosphingolipids (GSLs) and major membrane components enriched on cellular surfaces. Biosynthesis of mammalian GGs starts at the cytosolic leaflet of endoplasmic reticulum (ER) membranes with the formation of their hydrophobic ceramide anchors. After intracellular ceramide transfer to Golgi and trans-Golgi network (TGN) membranes, anabolism of GGs, as well as of other GSLs, is catalyzed by membrane-spanning glycosyltransferases (GTs) along the secretory pathway. Combined activity of only a few promiscuous GTs allows for the formation of cell-type-specific glycolipid patterns. Following an exocytotic vesicle flow to the cellular plasma membranes, GGs can be modified by metabolic reactions at or near the cellular surface. For degradation, GGs are endocytosed to reach late endosomes and lysosomes. Whereas membrane-spanning enzymes of the secretory pathway catalyze GSL and GG formation, a cooperation of soluble glycosidases, lipases and lipid-binding cofactors, namely the sphingolipid activator proteins (SAPs), act as the main players of GG and GSL catabolism at intralysosomal luminal vesicles (ILVs).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group (G131), German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
35
|
Gebai A, Gorelik A, Li Z, Illes K, Nagar B. Structural basis for the activation of acid ceramidase. Nat Commun 2018; 9:1621. [PMID: 29692406 PMCID: PMC5915598 DOI: 10.1038/s41467-018-03844-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/14/2018] [Indexed: 01/21/2023] Open
Abstract
Acid ceramidase (aCDase, ASAH1) hydrolyzes lysosomal membrane ceramide into sphingosine, the backbone of all sphingolipids, to regulate many cellular processes. Abnormal function of aCDase leads to Farber disease, spinal muscular atrophy with progressive myoclonic epilepsy, and is associated with Alzheimer’s, diabetes, and cancer. Here, we present crystal structures of mammalian aCDases in both proenzyme and autocleaved forms. In the proenzyme, the catalytic center is buried and protected from solvent. Autocleavage triggers a conformational change exposing a hydrophobic channel leading to the active site. Substrate modeling suggests distinct catalytic mechanisms for substrate hydrolysis versus autocleavage. A hydrophobic surface surrounding the substrate binding channel appears to be a site of membrane attachment where the enzyme accepts substrates facilitated by the accessory protein, saposin-D. Structural mapping of disease mutations reveals that most would destabilize the protein fold. These results will inform the rational design of aCDase inhibitors and recombinant aCDase for disease therapeutics. Acid ceramidase (aCDase) hydrolyzes lysosomal membrane ceramide into sphingosine and its dysfunction leads to a variety of disease phenotypes. Here, the authors present structures of aCDase in its proenzyme and autocleaved forms, which provides insight into its mechanism of action.
Collapse
Affiliation(s)
- Ahmad Gebai
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zixian Li
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Katalin Illes
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
36
|
Sandhoff R, Schulze H, Sandhoff K. Ganglioside Metabolism in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:1-62. [DOI: 10.1016/bs.pmbts.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Abstract
Gangliosides are sialic acid containing glycosphingolipids, which are abundant in mammalian brain tissue. Several fatal human diseases are caused by defects in glycolipid metabolism. Defects in their degradation lead to an accumulation of metabolites upstream of the defective reactions, whereas defects in their biosynthesis lead to diverse problems in a large number of organs.Gangliosides are primarily positioned with their ceramide anchor in the neuronal plasma membrane and the glycan head group exposed on the cell surface. Their biosynthesis starts in the endoplasmic reticulum with the formation of the ceramide anchor, followed by sequential glycosylation reactions, mainly at the luminal surface of Golgi and TGN membranes, a combinatorial process, which is catalyzed by often promiscuous membrane-bound glycosyltransferases.Thereafter, the gangliosides are transported to the plasma membrane by exocytotic membrane flow. After endocytosis, they are degraded within the endolysosomal compartments by a complex machinery of degrading enzymes, lipid-binding activator proteins, and negatively charged lipids.
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Konrad Sandhoff
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
| |
Collapse
|
38
|
Morris TG, Borland SJ, Clarke CJ, Wilson C, Hannun YA, Ohanian V, Canfield AE, Ohanian J. Sphingosine 1-phosphate activation of ERM contributes to vascular calcification. J Lipid Res 2017; 59:69-78. [PMID: 29167409 DOI: 10.1194/jlr.m079731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/11/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is the deposition of mineral in the artery wall by vascular smooth muscle cells (VSMCs) in response to pathological stimuli. The process is similar to bone formation and is an independent risk factor for cardiovascular disease. Given that ceramide and sphingosine 1-phosphate (S1P) are involved in cardiovascular pathophysiology and biomineralization, their role in VSMC matrix mineralization was investigated. During phosphate-induced VSMC mineralization, endogenous S1P levels increased accompanied by increased sphingosine kinase (SK) activity and increased mRNA expression of SK1 and SK2. Consistent with this, mineralization was increased by exogenous S1P, but decreased by C2-ceramide. Mechanistically, exogenous S1P stimulated ezrin-radixin-moesin (ERM) phosphorylation in VSMCs and ERM phosphorylation was increased concomitantly with endogenous S1P during mineralization. Moreover, inhibition of acid sphingomyelinase and ceramidase with desipramine prevented increased S1P levels, ERM activation, and mineralization. Finally, pharmacological inhibition of ERM phosphorylation with NSC663894 decreased mineralization induced by phosphate and exogenous S1P. Although further studies will be needed to verify these findings in vivo, this study defines a novel role for the SK-S1P-ERM pathways in phosphate-induced VSMC matrix mineralization and shows that blocking these pathways with pharmacological inhibitors reduces mineralization. These results may inform new therapeutic approaches to inhibit or delay vascular calcification.
Collapse
Affiliation(s)
- Thomas G Morris
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Samantha J Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher J Clarke
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Claire Wilson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Vasken Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ann E Canfield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
39
|
Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction. Int J Mol Sci 2017; 18:ijms18040839. [PMID: 28420138 PMCID: PMC5412423 DOI: 10.3390/ijms18040839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients’ mortality. Acid sphingomyelinase (SMPD1)—the principal regulator for rapid and transient generation of the lipid mediator ceramide—is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1+/+ as well as SMPD1−/− animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1−/− littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine.
Collapse
|
40
|
Chen JY, Newcomb B, Zhou C, Pondick JV, Ghoshal S, York SR, Motola DL, Coant N, Yi JK, Mao C, Tanabe KK, Bronova I, Berdyshev EV, Fuchs BC, Hannun Y, Chung RT, Mullen AC. Tricyclic Antidepressants Promote Ceramide Accumulation to Regulate Collagen Production in Human Hepatic Stellate Cells. Sci Rep 2017; 7:44867. [PMID: 28322247 PMCID: PMC5359599 DOI: 10.1038/srep44867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) in response to injury is a key step in hepatic fibrosis, and is characterized by trans-differentiation of quiescent HSCs to HSC myofibroblasts, which secrete extracellular matrix proteins responsible for the fibrotic scar. There are currently no therapies to directly inhibit hepatic fibrosis. We developed a small molecule screen to identify compounds that inactivate human HSC myofibroblasts through the quantification of lipid droplets. We screened 1600 compounds and identified 21 small molecules that induce HSC inactivation. Four hits were tricyclic antidepressants (TCAs), and they repressed expression of pro-fibrotic factors Alpha-Actin-2 (ACTA2) and Alpha-1 Type I Collagen (COL1A1) in HSCs. RNA sequencing implicated the sphingolipid pathway as a target of the TCAs. Indeed, TCA treatment of HSCs promoted accumulation of ceramide through inhibition of acid ceramidase (aCDase). Depletion of aCDase also promoted accumulation of ceramide and was associated with reduced COL1A1 expression. Treatment with B13, an inhibitor of aCDase, reproduced the antifibrotic phenotype as did the addition of exogenous ceramide. Our results show that detection of lipid droplets provides a robust readout to screen for regulators of hepatic fibrosis and have identified a novel antifibrotic role for ceramide.
Collapse
Affiliation(s)
- Jennifer Y Chen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Benjamin Newcomb
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Chan Zhou
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Joshua V Pondick
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Sarani Ghoshal
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA USA
| | - Samuel R York
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Daniel L Motola
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Nicolas Coant
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Jae Kyo Yi
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Cungui Mao
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA USA
| | | | | | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA USA
| | - Yusuf Hannun
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Raymond T Chung
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA.,Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| |
Collapse
|
41
|
Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium. Sci Rep 2017; 7:41226. [PMID: 28117364 PMCID: PMC5259750 DOI: 10.1038/srep41226] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
The Ebola crisis occurred in West-Africa highlights the urgency for its clinical treatments. Currently, no Food and Drug Administration (FDA)-approved therapeutics are available. Several FDA-approved drugs, including selective estrogen receptor modulators (SERMs), possess selective anti-Ebola activities. However, the inhibitory mechanisms of these drugs remain elusive. By analyzing the structures of SERMs and their incidental biological activity (cholesterol accumulation), we hypothesized that this incidental biological activity induced by SERMs could be a plausible mechanism as to their inhibitory effects on Ebola infection. Herein, we demonstrated that the same dosages of SERMs which induced cholesterol accumulation also inhibited Ebola infection. SERMs reduced the cellular sphingosine and subsequently caused endolysosomal calcium accumulation, which in turn led to blocking the Ebola entry. Our study clarified the specific anti-Ebola mechanism of SERMs, even the cationic amphiphilic drugs (CADs), this mechanism led to the endolysosomal calcium as a critical target for development of anti-Ebola drugs.
Collapse
|
42
|
Chung HY, Hupe DC, Otto GP, Sprenger M, Bunck AC, Dorer MJ, Bockmeyer CL, Deigner HP, Gräler MH, Claus RA. Acid Sphingomyelinase Promotes Endothelial Stress Response in Systemic Inflammation and Sepsis. Mol Med 2016; 22:412-423. [PMID: 27341515 DOI: 10.2119/molmed.2016.00140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023] Open
Abstract
The pathophysiology of sepsis involves activation of acid sphingomyelinase (SMPD1) with subsequent generation of the bioactive mediator ceramide. We herein evaluated the hypothesis that the enzyme exerts biological effects in endothelial stress response. Plasma-secreted sphingomyelinase activity, ceramide generation and lipid raft formation were measured in human microcirculatory endothelial cells (HMEC-1) stimulated with serum obtained from sepsis patients. Clustering of receptors relevant for signal transduction was studied by immuno staining. The role of SMPD1 for macrodomain formation was tested by pharmacological inhibition. To confirm the involvement of the stress enzyme, direct inhibitors (amino bisphosphonates) and specific downregulation of the gene was tested with respect to ADAMTS13 expression and cytotoxicity. Plasma activity and amount of SMPD1 were increased in septic patients dependent on clinical severity. Increased breakdown of sphingomyelin to ceramide in HMECs was observed following stimulation with serum from sepsis patients in vitro. Hydrolysis of sphingomyelin, clustering of receptor complexes, such as the CD95L/Fas-receptor, as well as formation of ceramide enriched macrodomains was abrogated using functional inhibitors (desipramine and NB6). Strikingly, the stimulation of HMECs with serum obtained from sepsis patients or mixture of proinflammatory cytokines resulted in cytotoxicity and ADAMTS13 downregulation which was abrogated using desipramine, amino bisphosphonates and genetic inhibitors. SMPD1 is involved in the dysregulation of ceramide metabolism in endothelial cells leading to macrodomain formation, cytotoxicity and downregulation of ADAMTS13 expression. Functional inhibitors, such as desipramine, are capable to improve endothelial stress response during sepsis and might be considered as a pharmacological treatment strategy to favor the outcome.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Daniel C Hupe
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Gordon P Otto
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Marcel Sprenger
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Alexander C Bunck
- Department of Radiology, University Hospital Cologne, Cologne, Germany
| | - Michael J Dorer
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Clemens L Bockmeyer
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Hans-Peter Deigner
- Hochschule Furtwangen University, Faculty Medical and Life Sciences, Villingen-Schwenningen, Germany.,Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Markus H Gräler
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Ralf A Claus
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| |
Collapse
|
43
|
Matty MA, Roca FJ, Cronan MR, Tobin DM. Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma. Immunol Rev 2015; 264:276-87. [PMID: 25703566 DOI: 10.1111/imr.12273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent work in a variety of animal models, including mice, zebrafish, and macaques, as well as in humans, has led to a reassessment of several tenets of mycobacterial infection. In this review, we describe new findings about the composition and dynamics of the tuberculous granuloma, the central host structure in mycobacterial infection, as well as inflammatory mediators that drive a successful anti-microbial response on one hand and pathological inflammation on the other. We highlight granuloma heterogeneity that emerges in the context of infection, the functional consequences of angiogenesis in tuberculous granulomas, and data that balanced inflammation in humans, with a central role for tumor necrosis factor, appears to play a key role in optimal defense against mycobacterial infection. These findings have suggested new and specific host-directed therapies that await further clinical exploration.
Collapse
Affiliation(s)
- Molly A Matty
- Department of Molecular Genetics and Microbiology, Center for Host-Microbial Interactions, Duke University Medical Center, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | | | | | | |
Collapse
|
44
|
Abstract
The topic of ceramidases has experienced an enormous boost during the last few years. Ceramidases catalyze the degradation of ceramide to sphingosine and fatty acids. Ceramide is not only the central hub of sphingolipid biosynthesis and degradation, it is also a key molecule in sphingolipid signaling, promoting differentiation or apoptosis. Acid ceramidase inhibition sensitizes certain types of cancer to chemo- and radio-therapy and this is suggestive of a role of acid ceramidase inhibitors as chemo-sensitizers which can act synergistically with chemo-therapeutic drugs. In this review, we summarize the development of ceramide analogues as first-generation ceramidase inhibitors together with data on their activity in cells and disease models. Furthermore, we describe the recent developments that have led to highly potent second-generation ceramidase inhibitors that act at nanomolar concentrations. In the third part, various assays of ceramidases are described and their relevance for accurately measuring ceramidase activities and for the development of novel inhibitors is highlighted. Besides potential clinical implications, the recent improvements in ceramidase inhibition and assaying may help to better understand the mechanisms of ceramide biology.
Collapse
Affiliation(s)
- Essa M Saied
- Humboldt Universität zu Berlin, Institute for Chemistry, Berlin, Germany; Suez Canal University, Chemistry Department, Faculty of Science, Ismailia, Egypt
| | - Christoph Arenz
- Humboldt Universität zu Berlin, Institute for Chemistry, Berlin, Germany.
| |
Collapse
|
45
|
Abstract
Fenretinide, N-(4-hydroxyphenyl)retinamide, (4-HPR), a synthetic retinoid, owes its cancer-toxic effects in part to the generation of ceramide, a potent tumor-suppressing sphingolipid. As such, 4-HPR has garnered considerable interest as a chemotherapeutic. Cancer cells, however, via various metabolic routes, inactivate ceramide, and this can limit 4-HPR efficacy. As relatively little is known regarding 4-HPR-induced ceramide management in acute myelogeneous leukemia (AML), we undertook the present study to evaluate the impact of 4-HPR on ceramide production, metabolism, and cytotoxicity. In KG-1, HL-60, and HL-60/VCR (multidrug resistant) human leukemia cells, 4-HPR induced 15-, 2-, and 20-fold increases in ceramide (measured using [3H]palmitic acid), respectively. By use of specific inhibitors we show that ceramide was produced by sphingomyelinase and de novo pathways in response to 4-HPR exposure. HL-60/VCR cells metabolized ceramide to glucosylceramide (GC). 4-HPR exposure (1.25-10 μM) reduced viability in all cell lines, with approximate IC50's ranging from 1 to 8.0 μM. Reactive oxygen species (ROS) were generated in response to 4-HPR treatment, and the concomitant cytotoxicity was reversed by addition of vitamin E. 4-HPR was not cytotoxic nor did it elicit ceramide formation in K562, a chronic myeloid leukemia cell line; however, K562 cells were sensitive to a cell-deliverable form of ceramide, C6-ceramide. Treatment of Molt-3, an acute lymphoblastic leukemia cell line, with 4-HPR revealed moderate ceramide production (5-fold over control), robust conversion of ceramide to GC and sphingomyelin, and resistance to 4-HPR and C6-ceramide. In conclusion, this work demonstrates diversity within and among leukemia in 4-HPR sensitivity and ceramide generation and subsequent metabolism. As such, knowledge of these metabolic pathways can provide guidance for enhancing ceramide-driven effects of 4-HPR in treatment of leukemia.
Collapse
|
46
|
Abstract
Host-directed therapies are a relatively new and promising approach to treatment of tuberculosis. Modulation of specific host immune pathways, including those that impact inflammation and immunopathology, can limit mycobacterial infection and pathology, both in cell culture and in animal models. This review explores a range of host pathways and drugs, some already approved for clinical use that have the potential to provide new adjunctive therapies for tuberculosis. Drugs targeting host processes may largely avoid the development of bacterial antibiotic resistance, a major public health concern for tuberculosis. However, these drugs may also have generally increased risk for side effects on the host. Understanding the specific mechanisms by which these drugs act and the relationship of these mechanisms to Mycobacterium tuberculosis pathogenesis will be critical in selecting appropriate host-directed therapy. Overall, these host-directed compounds provide a novel strategy for antituberculosis therapy.
Collapse
Affiliation(s)
- David M Tobin
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Center for AIDS Research, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
47
|
Morad SAF, Cabot MC. Tamoxifen regulation of sphingolipid metabolism--Therapeutic implications. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1134-45. [PMID: 25964209 DOI: 10.1016/j.bbalip.2015.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/25/2022]
Abstract
Tamoxifen, a triphenylethylene antiestrogen and one of the first-line endocrine therapies used to treat estrogen receptor-positive breast cancer, has a number of interesting, off-target effects, and among these is the inhibition of sphingolipid metabolism. More specifically, tamoxifen inhibits ceramide glycosylation, and enzymatic step that can adventitiously support the influential tumor-suppressor properties of ceramide, the aliphatic backbone of sphingolipids. Additionally, tamoxifen and metabolites N-desmethyltamoxifen and 4-hydroxytamoxifen, have been shown to inhibit ceramide hydrolysis by the enzyme acid ceramidase. This particular intervention slows ceramide destruction and thereby depresses formation of sphingosine 1-phosphate, a mitogenic sphingolipid with cancer growth-promoting properties. As ceramide-centric therapies are becoming appealing clinical interventions in the treatment of cancer, agents like tamoxifen that can retard the generation of mitogenic sphingolipids and buffer ceramide clearance via inhibition of glycosylation, take on new importance. In this review, we present an abridged, lay introduction to sphingolipid metabolism, briefly chronicle tamoxifen's history in the clinic, examine studies that demonstrate the impact of triphenylethylenes on sphingolipid metabolism in cancer cells, and canvass works relevant to the use of tamoxifen as adjuvant to drive ceramide-centric therapies in cancer treatment. The objective is to inform the readership of what could be a novel, off-label indication of tamoxifen and structurally-related triphenylethylenes, an indication divorced from estrogen receptor status and one with application in drug resistance.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, 115 Heart Drive, Greenville, NC 27834, USA; Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, 115 Heart Drive, Greenville, NC 27834, USA.
| |
Collapse
|
48
|
Endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes its subendothelial retention in vascular wall. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:823071. [PMID: 24817993 PMCID: PMC4003761 DOI: 10.1155/2014/823071] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 11/24/2022]
Abstract
Oxidized low density of lipoprotein (oxLDL) is the major lipid found in atherosclerotic lesion and elevated plasma oxLDL is recognized to be a risk factor of atherosclerosis. Whether plasma oxLDL could be transported across endothelial cells and initiate atherosclerotic changes remains unknown. In an established in vitro cellular transcytosis model, the present study found that oxLDL could traffic across vascular endothelial cells and further that the regulation of endogenous ceramide production by ceramide metabolizing enzyme inhibitors significantly altered the transcytosis of oxLDL across endothelial cells. It was found that acid sphingomyelinase inhibitor, desipramine (DES), and de novo ceramide synthesis inhibitor, myriocin (MYR), both decreasing the endogenous ceramide production, significantly inhibited the transcytosis of oxLDL. Ceramidase inhibitor, N-oleoylethanolamine (NOE), and sphingomyelin synthase inhibitor, O-Tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt (D609), both increasing the endogenous ceramide production, significantly upregulated the transcytosis of oxLDL. In vivo, injection of fluorescence labeled oxLDL into mice body also predisposed to the subendothelial retention of these oxidized lipids. The observations provided in the present study demonstrate that endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes the initiating step of atherosclerosis—the subendothelial retention of lipids in vascular wall.
Collapse
|
49
|
Labeled chemical biology tools for investigating sphingolipid metabolism, trafficking and interaction with lipids and proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1161-73. [PMID: 24389251 DOI: 10.1016/j.bbalip.2013.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
The unraveling of sphingolipid metabolism and function in the last 40 years relied on the extensive study of inherited human disease and specifically-tailored mouse models. However, only few of the achievements made so far would have been possible without chemical biology tools, such as fluorescent and/or radio-labeled and other artificial substrates, (mechanism-based) enzyme inhibitors, cross-linking probes or artificial membrane models. In this review we provide an overview over chemical biology tools that have been used to gain more insight into the molecular basis of sphingolipid-related biology. Many of these tools are still of high relevance for the investigation of current sphingolipid-related questions, others may stimulate the tailoring of novel probes suitable to address recent and future issues in the field. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
|
50
|
Ashoor R, Yafawi R, Jessen B, Lu S. The contribution of lysosomotropism to autophagy perturbation. PLoS One 2013; 8:e82481. [PMID: 24278483 PMCID: PMC3838419 DOI: 10.1371/journal.pone.0082481] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/02/2013] [Indexed: 11/18/2022] Open
Abstract
Autophagy refers to the catabolic process in eukaryotic cells that delivers cytoplasmic material to lysosomes for degradation. This highly conserved process is involved in the clearance of long-lived proteins and damaged organelles. Consequently, autophagy is important in providing nutrients to maintain cellular function under starvation, maintaining cellular homeostasis, and promoting cell survival under certain conditions. Several pathways, including mTOR, have been shown to regulate autophagy. However, the impact of lysosomal function impairment on the autophagy process has not been fully explored. Basic lipophilic compounds can accumulate in lysosomes via pH partitioning leading to perturbation of lysosomal function. Our hypothesis is that these types of compounds can disturb the autophagy process. Eleven drugs previously shown to accumulate in lysosomes were selected and evaluated for their effects on cytotoxicity and autophagy using ATP depletion and LC3 assessment, respectively. All eleven drugs induced increased staining of endogenous LC3 and exogenous GFP-LC3, even at non toxic dose levels. In addition, an increase in the abundance of SQSTM1/p62 by all tested compounds denotes that the increase in LC3 is due to autophagy perturbation rather than enhancement. Furthermore, the gene expression profile resulting from in vitro treatment with these drugs revealed the suppression of plentiful long-lived proteins, including structural cytoskeletal and associated proteins, and extracellular matrix proteins. This finding indicates a retardation of protein turnover which further supports the notion of autophagy inhibition. Interestingly, upregulation of genes containing antioxidant response elements, e.g. glutathione S transferase and NAD(P)H dehydrogenase quinone 1 was observed, suggesting activation of Nrf2 transcription factor. These gene expression changes could be related to an increase in SQSTM1/p62 resulting from autophagy deficiency. In summary, our data indicate that lysosomal accumulation due to the basic lipophilic nature of xenobiotics could be a general mechanism contributing to the perturbation of the autophagy process.
Collapse
Affiliation(s)
- Roshan Ashoor
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Rolla Yafawi
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Bart Jessen
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Shuyan Lu
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|