1
|
Xu YD, Cheng M, Mao JX, Zhang X, Shang PP, Long J, Chen YJ, Wang Y, Yin LM, Yang YQ. Clara cell 10 (CC10) protein attenuates allergic airway inflammation by modulating lung dendritic cell functions. Cell Mol Life Sci 2024; 81:321. [PMID: 39078462 PMCID: PMC11335244 DOI: 10.1007/s00018-024-05368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Allergic asthma is a complex inflammatory disorder predominantly orchestrated by T helper 2 (Th2) lymphocytes. The anti-inflammatory protein Clara Cell 10-kDa (CC10), also known as secretoglobin family 1A member 1 (SCGB1A1), shows promise in modulating respiratory diseases. However, its precise role in asthma remains unclear. This study examines the potential of CC10 to suppress allergic asthma inflammation, specifically assessing its regulatory effects on Th2 cell responses and dendritic cells (DCs). Lower CC10 levels in asthma were observed and correlated with increased IgE and lymphocytes. Cc10-/- mice exhibited exacerbated allergic airway inflammation marked by increased inflammatory cell infiltration, Th2 cytokines, serum antigen-specific IgE levels, and airway hyperresponsiveness (AHR) in house dust mite (HDM)-induced models. Conversely, recombinant CC10 significantly attenuated these inflammatory responses. Intriguingly, CC10 did not directly inhibit Th cell activation but significantly downregulated the population of CD11b+CD103- DCs subsets in lungs of asthmatic mice and modulated the immune activation functions of DCs through NF-κB signaling pathway. The mixed lymphocyte response assay revealed that DCs mediated the suppressive effect of CC10 on Th2 cell responses. Collectively, CC10 profoundly mitigates Th2-type allergic inflammation in asthma by modulating lung DC phenotype and functions, highlighting its therapeutic potential for inflammatory airway conditions and other related immunological disorders.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jun-Xia Mao
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xue Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jie Long
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yu Wang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Lei-Miao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
2
|
Mootz M, Jakwerth CA, Schmidt‐Weber CB, Zissler UM. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 2022; 77:767-777. [PMID: 34343347 DOI: 10.1111/all.15033] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.
Collapse
Affiliation(s)
- Martine Mootz
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
- Technical University of Munich (TUM)TUM School of MedicineKlinikum Rechts der Isar Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| |
Collapse
|
3
|
García LN, Leimgruber C, Nicola JP, Quintar AA, Maldonado CA. Neonatal endotoxin stimulation is associated with a long-term bronchiolar epithelial expression of innate immune and anti-allergic markers that attenuates the allergic response. PLoS One 2020; 15:e0226233. [PMID: 32379832 PMCID: PMC7205282 DOI: 10.1371/journal.pone.0226233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
Allergic asthma is the most common phenotype of the pathology, having an early-onset in childhood and producing a Th2-driven airways remodeling process that leads to symptoms and pathophysiological changes. The avoidance of aeroallergen exposure in early life has been shown to prevent asthma, but without repeated success and with the underlying preventive mechanisms at the beginning of asthma far to be fully recognized. In the present study, we aimed to evaluate if neonatal LPS-induced boost in epithelial host defenses contribute to prevent OVA-induced asthma in adult mice. To this, we focused on the response of bronchiolar club cells (CC), which are highly specialized in maintaining the epithelial homeostasis in the lung. In these cells, neonatal LPS administration increased the expression of TLR4 and TNFα, as well as the immunodulatory/antiallergic proteins: club cell secretory protein (CCSP) and surfactant protein D (SP-D). LPS also prevented mucous metaplasia of club cells and reduced the epidermal growth factor receptor (EGFR)-dependent mucin overproduction, with mice displaying normal breathing patterns after OVA challenge. Furthermore, the overexpression of the epithelial Th2-related molecule TSLP was blunted, and normal TSLP and IL-4 levels were found in the bronchoalveolar lavage. A lower eosinophilia was detected in LPS-pretreated mice, along with an increase in phagocytes and regulatory cells (CD4+CD25+FOXP3+ and CD4+IL-10+), together with higher levels of IL-12 and TNFα. In conclusion, our study demonstrates stable asthma-preventive epithelial effects promoted by neonatal LPS stimulation, leading to the presence of regulatory cells in the lung. These anti-allergic dynamic mechanisms would be overlaid in the epithelium, favored by an adequate epidemiological environment, during the development of asthma.
Collapse
Affiliation(s)
- Luciana Noemi García
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Carolina Leimgruber
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Amado Alfredo Quintar
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Cristina Alicia Maldonado
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| |
Collapse
|
4
|
Zhu L, An L, Ran D, Lizarraga R, Bondy C, Zhou X, Harper RW, Liao SY, Chen Y. The Club Cell Marker SCGB1A1 Downstream of FOXA2 is Reduced in Asthma. Am J Respir Cell Mol Biol 2019; 60:695-704. [PMID: 30576223 PMCID: PMC6543749 DOI: 10.1165/rcmb.2018-0199oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
Human SCGB1A1 protein has been shown to be significantly reduced in BAL, sputum, and serum from humans with asthma as compared with healthy individuals. However, the mechanism of this reduction and its functional impact have not been entirely elucidated. By mining online datasets, we found that the mRNA of SCGB1A1 was significantly repressed in brushed human airway epithelial cells from individuals with asthma, and this repression appeared to be associated with reduced expression of FOXA2. Consistently, both Scgb1A1 and FoxA2 were downregulated in an ovalbumin-induced mouse model of asthma. Furthermore, compared with wild-type mice, Scgb1a1 knockout mice had increased airway hyperreactivity and inflammation when they were exposed to ovalbumin, confirming the antiinflammatory role of Scgb1a1 in protection against asthma phenotypes. To search for potential asthma-related stimuli of SCGB1A1 repression, we tested T-helper cell type 2 cytokines. Both IL-4 and IL-13 repressed epithelial expression of SCGB1A1 and FOXA2. Importantly, infection of epithelial cells with human rhinovirus similarly reduced expression of these two genes, which suggests that FOXA2 may be the common regulator of SCGB1A1. To establish the causal role of reduced FOXA2 in SCGB1A1 repression, we demonstrated that FOXA2 was required for SCGB1A1 expression at baseline. FOXA2 overexpression was sufficient to drive promoter activity and expression of SCGB1A1 and was also able to restore the repressed SCGB1A1 expression in IL-13-treated or rhinovirus-infected cells. Taken together, these findings suggest that low levels of epithelial SCGB1A1 in asthma are caused by reduced FOXA2 expression.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Lingling An
- Department of Epidemiology Biostatistics
- Interdisciplinary Program in Statistics
- Department of Biosystems Engineering, and
| | - Di Ran
- Department of Epidemiology Biostatistics
| | - Rosa Lizarraga
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Cheryl Bondy
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Xu Zhou
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Richart W. Harper
- Department of Internal Medicine, University of California, Davis, California
| | - Shu-Yi Liao
- Department of Internal Medicine, University of California, Davis, California
| | - Yin Chen
- Department of Pharmacology and Toxicology, School of Pharmacy
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
5
|
Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur J Pharmacol 2018; 833:339-348. [PMID: 29935171 DOI: 10.1016/j.ejphar.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The formyl peptide receptors (FPRs) are G protein coupled receptors that recognize a broad range of structurally distinct pathogen and danger-associated molecular patterns and mediate host defense to infection and tissue injury. It became evident that the cellular distribution and biological functions of FPRs extend beyond myeloid cells and governing their activation and trafficking. In recent years, significant progress has been made to position FPRs at check points that control the resolution of inflammation, tissue repair and return to homeostasis. Accumulating data indicate a role for FPRs in an ever-increasing range of human diseases, including atherosclerosis, chronic obstructive pulmonary disease, asthma, autoimmune diseases and cancer, in which dysregulated or defective resolution are increasingly recognized as critical component of the pathogenesis. This review summarizes recent advances on how FPRs recognize distinct ligands and integrate opposing cues to govern various responses and will discuss how this knowledge could be harnessed for developing novel therapeutic strategies to counter inflammation that underlies many human diseases.
Collapse
|
6
|
Wisnewski AV, Kanyo J, Asher J, Goodrich JA, Barnett G, Patrylak L, Liu J, Redlich CA, Nassar AF. Reaction products of hexamethylene diisocyanate vapors with "self" molecules in the airways of rabbits exposed via tracheostomy. Xenobiotica 2018; 48:488-497. [PMID: 28489470 PMCID: PMC5863241 DOI: 10.1080/00498254.2017.1329569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
1. Hexamethylenediisocyanate (HDI) is a widely used aliphatic diisocyanate and a well-recognized cause of occupational asthma. 2. "Self" molecules (peptides/proteins) in the lower airways, susceptible to chemical reactivity with HDI, have been hypothesized to play a role in asthma pathogenesis and/or chemical metabolism, but remain poorly characterized. 3. This study employed unique approaches to identify and characterize "self" targets of HDI reactivity in the lower airways. Anesthetized rabbits free breathed through a tracheostomy tube connected to chambers containing either, O2, or O2 plus ∼200 ppb HDI vapors. Following 60 minutes of exposure, the airways were lavaged and the fluid was analyzed by LC-MS and LC-MS/MS. 4. The low-molecular weight (<3 kDa) fraction of HDI exposed, but not control rabbit bronchoalveolar lavage (BAL) fluid identified 783.26 and 476.18 m/z [M+H]+ ions with high energy collision-induced dissociation (HCD) fragmentation patterns consistent with bis glutathione (GSH)-HDI and mono(GSH)-HDI. Proteomic analyses of the high molecular weight (>3 kDa) fraction of exposed rabbit BAL fluid identified HDI modification of specific lysines in uteroglobin (aka clara cell protein) and albumin. 5. In summary, this study utilized a unique approach to chemical vapor exposure in rabbits, to identify HDI reaction products with "self" molecules in the lower airways.
Collapse
Affiliation(s)
- Adam V Wisnewski
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Jean Kanyo
- b W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine , New Haven , CT , USA , and
| | - Jennifer Asher
- c Section of Comparative Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - James A Goodrich
- c Section of Comparative Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Grace Barnett
- c Section of Comparative Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Lyn Patrylak
- c Section of Comparative Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Jian Liu
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Carrie A Redlich
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Ala F Nassar
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
7
|
He HQ, Ye RD. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017; 22:E455. [PMID: 28335409 PMCID: PMC6155412 DOI: 10.3390/molecules22030455] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
The formyl peptide receptors (FPRs) are G protein-coupled receptors that transduce chemotactic signals in phagocytes and mediate host-defense as well as inflammatory responses including cell adhesion, directed migration, granule release and superoxide production. In recent years, the cellular distribution and biological functions of FPRs have expanded to include additional roles in homeostasis of organ functions and modulation of inflammation. In a prototype, FPRs recognize peptides containing N-formylated methionine such as those produced in bacteria and mitochondria, thereby serving as pattern recognition receptors. The repertoire of FPR ligands, however, has expanded rapidly to include not only N-formyl peptides from microbes but also non-formyl peptides of microbial and host origins, synthetic small molecules and an eicosanoid. How these chemically diverse ligands are recognized by the three human FPRs (FPR1, FPR2 and FPR3) and their murine equivalents is largely unclear. In the absence of crystal structures for the FPRs, site-directed mutagenesis, computer-aided ligand docking and structural simulation have led to the identification of amino acids within FPR1 and FPR2 that interact with several formyl peptides. This review article summarizes the progress made in the understanding of FPR ligand diversity as well as ligand recognition mechanisms used by these receptors.
Collapse
Affiliation(s)
- Hui-Qiong He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
8
|
Zhu L, Di PYP, Wu R, Pinkerton KE, Chen Y. Repression of CC16 by cigarette smoke (CS) exposure. PLoS One 2015; 10:e0116159. [PMID: 25635997 PMCID: PMC4312097 DOI: 10.1371/journal.pone.0116159] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023] Open
Abstract
Club (Clara) Cell Secretory Protein (CCSP, or CC16) is produced mainly by non-ciliated airway epithelial cells including bronchiolar club cells and the change of its expression has been shown to associate with the progress and severity of Chronic Obstructive Pulmonary Disease (COPD). In an animal model, the lack of CC16 renders the animal susceptible to the tumorigenic effect of a major CS carcinogen. A recent population-based Tucson Epidemiological Study of Airway Obstructive Diseases (TESAOD) has indicated that the low serum CC16 concentration is closely linked with the smoke-related mortality, particularly that driven by the lung cancer. However, the study of CC16 expression in well-defined smoke exposure models has been lacking, and there is no experimental support for the potential causal link between CC16 and CS-induced pathophysiological changes in the lung. In the present study, we have found that airway CC16 expression was significantly repressed in COPD patients, in monkey CS exposure model, and in CS-induced mouse model of COPD. Additionally, the lack of CC16 exacerbated airway inflammation and alveolar loss in the mouse model. Therefore, CC16 may play an important protective role in CS-related diseases.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, United States of America
| | - Peter Y. P. Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, United States of America
| | - Reen Wu
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, 95616, United States of America
| | - Kent E. Pinkerton
- Department of Pediatrics, University of California Davis, Davis, CA, 95616, United States of America
| | - Yin Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, United States of America
| |
Collapse
|
9
|
Côté O, Clark ME, Viel L, Labbé G, Seah SYK, Khan MA, Douda DN, Palaniyar N, Bienzle D. Secretoglobin 1A1 and 1A1A differentially regulate neutrophil reactive oxygen species production, phagocytosis and extracellular trap formation. PLoS One 2014; 9:e96217. [PMID: 24777050 PMCID: PMC4002474 DOI: 10.1371/journal.pone.0096217] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022] Open
Abstract
Secretoglobin family 1A member 1 (SCGB 1A1) is a small protein mainly secreted by mucosal epithelial cells of the lungs and uterus. SCGB 1A1, also known as club (Clara) cell secretory protein, represents a major constituent of airway surface fluid. The protein has anti-inflammatory properties, and its concentration is reduced in equine recurrent airway obstruction (RAO) and human asthma. RAO is characterized by reversible airway obstruction, bronchoconstriction and neutrophilic inflammation. Direct effects of SCGB 1A1 on neutrophil functions are unknown. We have recently identified that the SCGB1A1 gene is triplicated in equids and gives rise to two distinct proteins. In this study we produced the endogenously expressed forms of SCGBs (SCGB 1A1 and 1A1A) as recombinant proteins, and analyzed their effects on reactive oxygen species production, phagocytosis, chemotaxis and neutrophil extracellular trap (NET) formation ex vivo. We further evaluated whether NETs are present in vivo in control and inflamed lungs. Our data show that SCGB 1A1A but not SCGB 1A1 increase neutrophil oxidative burst and phagocytosis; and that both proteins markedly reduce neutrophil chemotaxis. SCGB 1A1A reduced chemotaxis significantly more than SCGB 1A1. NET formation was significantly reduced in a time- and concentration-dependent manner by SCGB 1A1 and 1A1A. SCGB mRNA in bronchial biopsies, and protein concentration in bronchoalveolar lavage fluid, was lower in horses with RAO. NETs were present in bronchoalveolar lavage fluid from horses with exacerbated RAO, but not in fluid from horses with RAO in remission or in challenged healthy horses. These findings indicate that SCGB 1A1 and 1A1A have overlapping and diverging functions. Considering disparities in the relative abundance of SCGB 1A1 and 1A1A in airway secretions of animals with RAO suggests that these functional differences may contribute to the pathogenesis of RAO and other neutrophilic inflammatory lung diseases.
Collapse
Affiliation(s)
- Olivier Côté
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Laurent Viel
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Geneviève Labbé
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Meraj A. Khan
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - David N. Douda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nades Palaniyar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
10
|
Uteroglobin, a possible ligand of the lipoxin receptor inhibits serum amyloid A-driven inflammation. Mediators Inflamm 2014; 2014:876395. [PMID: 24782597 PMCID: PMC3981015 DOI: 10.1155/2014/876395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 11/18/2022] Open
Abstract
Serum amyloid A (SAA) production is increased by inflamed arthritic synovial tissue, where it acts as a cytokine/chemoattractant for inflammatory and immune cells and as an inducer of matrix degrading enzymes. SAA has been shown to bind lipoxin A4 receptor, a member of the formyl-peptide related 2 G-protein coupled receptor family (ALX) and elicit proinflammatory activities in human primary fibroblast-like synoviocytes (FLS). We report on the identification of uteroglobin, a small globular protein with potent anti-inflammatory activities, as a possible ligand of ALX. Uteroglobin-specific association with ALX was demonstrated by an enzyme immunoassay experiment employing a cell line engineered to express the human ALX receptor. Uteroglobin's interaction with ALX resulted in the inhibition of SAA responses, such as attenuation of phospholipase A2 activation and cellular chemotaxis. In FLS, uteroglobin showed an antagonism against SAA-induced interleukin-8 release and decreased cell migration. These novel roles described for uteroglobin via ALX may help elucidate genetic and clinical observations indicating that a polymorphism in the uteroglobin promoter is linked to disease outcome, specifically prediction of bone erosion in patients with rheumatoid arthritis or severity of IgA glomerulonephritis and sarcoidosis.
Collapse
|
11
|
Hesselink RW, Findlay JBC. Expression, characterization and ligand specificity of lipocalin-1 interacting membrane receptor (LIMR). Mol Membr Biol 2014; 30:327-37. [PMID: 23964685 DOI: 10.3109/09687688.2013.823018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human lipocalin-1 interacting membrane receptor (LIMR) was the first lipocalin receptor to be identified, as a specific receptor for lipocalin-1 (Lcn1). Subsequently LIMR has been reported to interact with other ligands as well, notably with the bovine lipocalin β-lactoglobulin (BLG) and with the unrelated secretoglobin uteroglobin (UG). To study the ligand-binding behaviour of this prototypic lipocalin receptor in more detail, a system was developed for the recombinant expression of LIMR in Drosophila Schneider 2 (S2) cells, and for the subsequent solubilization and purification of the protein. The receptor forms dimers or larger oligomers when solubilized in n-dodecyl β-D-maltoside (DDM). The full-length, functional receptor was captured onto a surface plasmon resonance (SPR) chip via an α-V5 antibody, and the binding of various potential ligands was followed in time. In this way, LIMR was shown to be highly specific for Lcn1, binding the lipocalin with low micromolar to high nanomolar affinity. No interactions with any of the other putative ligands could be detected, raising doubts about the physiological relevance of the reported binding of BLG and UG to the receptor.
Collapse
|
12
|
Recombinant rat CC10 protein inhibits PDGF-induced airway smooth muscle cells proliferation and migration. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690937. [PMID: 24106713 PMCID: PMC3784082 DOI: 10.1155/2013/690937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/24/2013] [Accepted: 08/11/2013] [Indexed: 11/18/2022]
Abstract
Abnormal migration and proliferation of airway smooth muscle cells (ASMCs) in the airway cause airway wall thickening, which is strongly related with the development of airway remodeling in asthma. Clara cell 10 kDa protein (CC10), which is secreted by the epithelial clara cells of the pulmonary airways, plays an important role in the regulation of immunological and inflammatory processes. Previous studies suggested that CC10 protein had great protective effects against inflammation in asthma. However, the effects of CC10 protein on ASMCs migration and proliferation in airway remodeling were poorly understood. In this study, we constructed the pET-22b-CC10 recombinant plasmid, induced expression and purified the recombinant rat CC10 protein from E. coli by Ni(2+) affinity chromatography and ion exchange chromatography purification. We investigated the effect of recombinant rat CC10 protein on platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation and migration. Our results demonstrated that the recombinant CC10 protein could inhibit PDGF-BB-induced cell viability, proliferation and migration. Western blot analysis showed that PDGF-BB-induced activation of cyclin D1 was inhibited by CC10. These findings implicated that CC10 could inhibit increased ASMCs proliferation, and migration induced by PDGF-BB, and this suppression effect might be associated with inhibition of cyclin D1 expression, which might offer hope for the future treatment of airway remodeling.
Collapse
|
13
|
Wisniewski J, Agrawal R, Woodfolk JA. Mechanisms of tolerance induction in allergic disease: integrating current and emerging concepts. Clin Exp Allergy 2013; 43:164-76. [PMID: 23331558 DOI: 10.1111/cea.12016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The prevalence of atopy and allergic disease continues to escalate worldwide. Defining immune mechanisms that suppress the underlying Th2-driven inflammatory process is critical for the rational design of new treatments to prevent or attenuate disease. Allergen immunotherapy has provided a useful framework for evaluating changes in the immune response that occur during the development of tolerance. Despite this, elucidating the phenotypic and functional properties of regulatory cells, has proven challenging in humans with allergic disease. This article provides an overview of our current understanding of the immune pathways that orchestrate allergen tolerance, with an emphasis on emerging concepts related to human disease. A variety of regulatory cell types, including IL-10-secreting T and B cells, play a pivotal role in suppressing allergic responses to inhaled, ingested and injected allergens. These cells may inhibit Th2 effectors directly, or else indirectly, through other cell types and mediators. Protective antibodies, including IgG4, Fc sialylated IgG, and IgA, have the capacity to modulate the response by preventing allergen binding to surface-bound IgE, or inhibiting dendritic cell maturation. Immune cell plasticity may augment suppression of Th2 cells by T regulatory cells, through mechanisms that involve T cell conversion, or else unconventional roles of classical effector cells. These actions depend upon external cues provided by the in vivo milieu. As such, specific anatomical sites may preferentially favour tolerance induction. Recent scientific advances now allow a global analysis of immune parameters that capture novel markers of tolerance induction in allergic patients. Such markers could provide new molecular targets for assessing tolerance, and for designing treatments that confer long-lasting protection in a safe and efficacious fashion.
Collapse
Affiliation(s)
- J Wisniewski
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908-1355, USA
| | | | | |
Collapse
|
14
|
Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci 2013; 14:7193-230. [PMID: 23549262 PMCID: PMC3645683 DOI: 10.3390/ijms14047193] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022] Open
Abstract
The formyl peptide receptor 2 (FPR2) is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR) family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ)-42 and prion protein (Prp)106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP)-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC), protein kinase C (PKC) isoforms, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, the mitogen-activated protein kinase (MAPK) pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2 agonists.
Collapse
|
15
|
Sukkar MB, Ullah MA, Gan WJ, Wark PAB, Chung KF, Hughes JM, Armour CL, Phipps S. RAGE: a new frontier in chronic airways disease. Br J Pharmacol 2012; 167:1161-76. [PMID: 22506507 PMCID: PMC3504985 DOI: 10.1111/j.1476-5381.2012.01984.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/13/2012] [Accepted: 02/22/2012] [Indexed: 12/21/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand-RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions.
Collapse
Affiliation(s)
- Maria B Sukkar
- School of Pharmacy, The University of Technology SydneyNSW, Australia
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
| | - Md Ashik Ullah
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| | - Wan Jun Gan
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| | - Peter AB Wark
- Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of NewcastleNSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter HospitalNSW, Australia
| | - Kian Fan Chung
- Airways Disease Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | | | - Carol L Armour
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
| | - Simon Phipps
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| |
Collapse
|
16
|
Abstract
Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.
Collapse
Affiliation(s)
- Anil B Mukherjee
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1830, USA.
| | | |
Collapse
|
17
|
CC16 inhibits the migration of eosinophils towards the formyl peptide fMLF but not towards PGD2. Inflammation 2009; 32:65-9. [PMID: 19132521 DOI: 10.1007/s10753-008-9103-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clara cell 16-kDa (CC16) is an anti-inflammatory protein chiefly produced in the lung epithelium. CC16 has been shown to inhibit the migration of rabbit neutrophils and human monocytes toward the formyl peptide N-formyl-methionine-leucin-phenylalanin (fMLF). Eosinophils migrate towards prostaglandin D2 (PGD(2)) and CC16 has been shown to bind to PGD(2). Therefore we investigated if CC16 could inhibit the migration of human eosinophils and neutrophils towards fMLF and/or PGD(2). Migration of eosinophils and neutrophils was assessed in a microplate migration system using specific ligands and receptor antagonists. CC16 inhibited the migration of eosinophils and neutrophils toward fMLF, which is likely to result from the interaction of CC16 with members of the formyl-peptide receptor family. However, CC16 did not inhibit eosinophil migration towards PGD(2). We therefore propose that CC16 may down-modulate the entry of human eosinophils and neutrophils into the airways during inflammation in the lung.
Collapse
|
18
|
Mukherjee AB, Zhang Z, Chilton BS. Uteroglobin: a steroid-inducible immunomodulatory protein that founded the Secretoglobin superfamily. Endocr Rev 2007; 28:707-25. [PMID: 17916741 DOI: 10.1210/er.2007-0018] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Blastokinin or uteroglobin (UG) is a steroid-inducible, evolutionarily conserved, secreted protein that has been extensively studied from the standpoint of its structure and molecular biology. However, the physiological function(s) of UG still remains elusive. Isolated from the uterus of rabbits during early pregnancy, UG is the founding member of a growing superfamily of proteins called Secretoglobin (Scgb). Numerous studies demonstrated that UG is a multifunctional protein with antiinflammatory/ immunomodulatory properties. It inhibits soluble phospholipase A(2) activity and binds and perhaps sequesters hydrophobic ligands such as progesterone, retinols, polychlorinated biphenyls, phospholipids, and prostaglandins. In addition to its antiinflammatory activities, UG manifests antichemotactic, antiallergic, antitumorigenic, and embryonic growth-stimulatory activities. The tissue-specific expression of the UG gene is regulated by several steroid hormones, although a nonsteroid hormone, prolactin, further augments its expression in the uterus. The mucosal epithelia of virtually all organs that communicate with the external environment express UG, and it is present in the blood, urine, and other body fluids. Although the physiological functions of this protein are still under investigation, a single nucleotide polymorphism in the UG gene appears to be associated with several inflammatory/autoimmune diseases. Investigations with UG-knockout mice revealed that the absence of this protein leads to phenotypes that suggest its critical homeostatic role(s) against oxidative damage, inflammation, autoimmunity, and cancer. Recent studies on UG-binding proteins (receptors) provide further insight into the multifunctional nature of this protein. Based on its antiinflammatory and antiallergic properties, UG is a potential drug target.
Collapse
Affiliation(s)
- Anil B Mukherjee
- Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institute of Health, Building 10, Bethesda, Maryland 20892-1830, USA.
| | | | | |
Collapse
|
19
|
Li C, Han J, Li L, Yue S, Li J, Feng D, Liu H, Jiang D, Qin X, Luo Z. Interaction of antiflammin-1 with uteroglobin-binding protein induces phosphorylation of ERK1/2 in NIH 3T3 cells. Peptides 2007; 28:2137-45. [PMID: 17928103 DOI: 10.1016/j.peptides.2007.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Previously, it has been suggested that uteroglobin (UG)-binding protein functions as a putative receptor of UG; however, the specific epitope of UG that interacts with this receptor has not yet been identified. The downstream events of UG-binding protein signaling remain unclear. Here we report that antiflammin-1 (AF-1, a bioactive C-terminal peptide of UG) specifically binds to UG-binding protein and has a cellular signaling consequence. We reduced the level of endogenous UG-binding protein expression in murine fibroblast cell line NIH 3T3 by RNA interference and found that knockdown of UG-binding protein inhibited AF-1-induced extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation. Meanwhile, the interaction between AF-1 and UG-binding protein was confirmed by flow cytometry-based binding assays and co-localization of AF-1 and enhanced green fluorescent protein (EGFP)-tagged UG-binding protein. The present study provides evidence for the first time for AF-1 binding with UG-binding protein, and preliminarily characterized UG-binding protein as a point downstream of AF-1 in mediating ERK phosphorylation.
Collapse
Affiliation(s)
- Chen Li
- Department of Physiology, Xiangya School of Medicine, Central South University, 110 Xiang Ya Road, Changsha 410078, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|