1
|
Yu LT, Hancu MC, Kreutzberger MAB, Henrickson A, Demeler B, Egelman EH, Hartgerink JD. Hollow Octadecameric Self-Assembly of Collagen-like Peptides. J Am Chem Soc 2023; 145:5285-5296. [PMID: 36812303 PMCID: PMC10131286 DOI: 10.1021/jacs.2c12931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The folding of collagen is a hierarchical process that starts with three peptides associating into the characteristic triple helical fold. Depending on the specific collagen in question, these triple helices then assemble into bundles reminiscent of α-helical coiled-coils. Unlike α-helices, however, the bundling of collagen triple helices is very poorly understood with almost no direct experimental data available. In order to shed light on this critical step of collagen hierarchical assembly, we have examined the collagenous region of complement component 1q. Thirteen synthetic peptides were prepared to dissect the critical regions allowing for its octadecameric self-assembly. We find that short peptides (under 40 amino acids) are able to self-assemble into specific (ABC)6 octadecamers. This requires the ABC heterotrimeric composition as the self-assembly subunit, but does not require disulfide bonds. Self-assembly into this octadecamer is aided by short noncollagenous sequences at the N-terminus, although they are not entirely required. The mechanism of self-assembly appears to begin with the very slow formation of the ABC heterotrimeric helix, followed by rapid bundling of triple helices into progressively larger oligomers, terminating in the formation of the (ABC)6 octadecamer. Cryo-electron microscopy reveals the (ABC)6 assembly as a remarkable, hollow, crown-like structure with an open channel approximately 18 Å at the narrow end and 30 Å at the wide end. This work helps to illuminate the structure and assembly mechanism of a critical protein in the innate immune system and lays the groundwork for the de novo design of higher order collagen mimetic peptide assemblies.
Collapse
Affiliation(s)
- Le Tracy Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Maria C. Hancu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia Box 800733, Charlottesville, VA 22908, United States
| | - Amy Henrickson
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia Box 800733, Charlottesville, VA 22908, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| |
Collapse
|
2
|
Gasbarrino K, Hafiane A, Gianopoulos I, Zheng H, Mantzoros CS, Daskalopoulou SS. Relationship between circulating adipokines and cholesterol efflux in subjects with severe carotid atherosclerosis. Metabolism 2023; 140:155381. [PMID: 36566801 DOI: 10.1016/j.metabol.2022.155381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
AIMS Cholesterol efflux capacity (CEC) as a measure of high-density lipoprotein functionality is independently and inversely associated with increased risk of cardiovascular events and mortality, and advanced plaque morphology. Adipokines, adipose tissue-derived factors, can influence systemic lipoprotein metabolism, and participate in the regulation of vascular function and inflammation. We aimed to investigate the association between CEC and circulating adipokine levels (anti-inflammatory adiponectin, and pro-inflammatory chemerin and resistin) in subjects with severe carotid atherosclerotic disease and evaluate its impact on post-surgical outcomes. METHODS AND RESULTS This is a cross-sectional study with a 5-year follow-up component. Consecutive patients with severe carotid atherosclerosis scheduled for a carotid endarterectomy were recruited from hospital-based centres in Montreal, Canada (n = 285). Fasting blood samples were collected pre-operatively and used to measure plasma total and high-molecular weight (HMW) adiponectin, chemerin, and resistin, and to perform cholesterol efflux assays in J774 macrophage-like cells. Five-year post-surgery outcomes were obtained through medical chart review. Subjects had a mean age of 70.1 ± 9.4, were 67.0 % male, had various comorbidities (hypercholesterolemia [85.3 %], hypertension [83.5 %], type 2 diabetes [34.5 %], coronary artery disease [38.6 %]), and previously experienced cerebrovascular symptomatology (77.9 %). CEC was independently and positively associated with total and HMW adiponectin levels (ß [95 % confidence interval]; 0.216 [0.134-0.298] and 0.107 [0.037-0.176], respectively) but not with chemerin or resistin. Total adiponectin had the greatest association accounting for 8.3 % of the variance in CEC. Interaction regression models demonstrated a significant interaction between adiponectin and chemerin in increasing CEC. Notably, with each unit increase in CEC there was a 93.9 % decrease in the odds of having an ischemic cerebrovascular event 5 years post-surgery (0.061 [0.007-0.561]). CONCLUSIONS Our findings demonstrated circulating adiponectin to have a strong association with increased CEC in subjects with severe carotid atherosclerosis and high CEC to be associated with more favourable post-surgical outcomes. These findings reflect the importance of adipose tissue health in influencing CEC levels and atherosclerotic cardiovascular disease risk.
Collapse
Affiliation(s)
- Karina Gasbarrino
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada
| | - Anouar Hafiane
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada
| | - Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada
| | - Huaien Zheng
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, United States
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, Canada; Division of Internal Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, McGill University Montreal, Canada.
| |
Collapse
|
3
|
Rubina KA, Semina EV, Kalinina NI, Sysoeva VY, Balatskiy AV, Tkachuk VA. Revisiting the multiple roles of T-cadherin in health and disease. Eur J Cell Biol 2021; 100:151183. [PMID: 34798557 DOI: 10.1016/j.ejcb.2021.151183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
As a non-canonical member of cadherin superfamily, T-cadherin was initially described as a molecule involved in homophilic recognition in the nervous and vascular systems. The ensuing decades clearly demonstrated that T-cadherin is a remarkably multifunctional molecule. It was validated as a bona fide receptor for both: LDL exerting adverse atherogenic action and adiponectin mediating many protective metabolic and cardiovascular effects. Motivated by the latest progress and accumulated data unmasking important roles of T-cadherin in blood vessel function and tissue regeneration, here we revisit the original function of T-cadherin as a guidance receptor for the growing axons and blood vessels, consider the recent data on T-cadherin-induced exosomes' biogenesis and their role in myocardial regeneration and revascularization. The review expands upon T-cadherin contribution to mesenchymal stem/stromal cell compartment in adipose tissue. We also dwell upon T-cadherin polymorphisms (SNP) and their possible therapeutic applications. Furthermore, we scrutinize the molecular hub of insulin and adiponectin receptors (AdipoR1 and AdipoR2) conveying signals to their downstream targets in quest for defining a putative place of T-cadherin in this molecular circuitry.
Collapse
Affiliation(s)
- K A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia.
| | - E V Semina
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - N I Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V Yu Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - A V Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
4
|
Stewart AN, Little HC, Clark DJ, Zhang H, Wong GW. Protein Modifications Critical for Myonectin/Erythroferrone Secretion and Oligomer Assembly. Biochemistry 2020; 59:2684-2697. [PMID: 32602701 DOI: 10.1021/acs.biochem.0c00461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myonectin/erythroferrone (also known as CTRP15) is a secreted hormone with metabolic function and a role in stress erythropoiesis. Despite its importance in physiologic processes, biochemical characterization of the protein is lacking. Here, we show that multiple protein modifications are critical for myonectin secretion and multimerization. Abolishing N-linked glycosylation by tunicamycin, glucosamine supplementation, or glutamine substitutions of all four potential Asn glycosylation sites blocked myonectin secretion. Mass spectrometry confirmed that Asn-229 and Asn-281 were glycosylated, and substituting both Asn sites with Gln prevented myonectin secretion. Although Asn-319 is not identified as glycosylated, Gln substitution caused protein misfolding and retention in the endoplasmic reticulum. Of the four conserved cysteines, Cys-273 and Cys-278 were required for proper protein folding; Ala substitution of either site inhibited protein secretion. In contrast, Ala substitutions of Cys-142, Cys-194, or both markedly enhanced protein secretion, suggesting endoplasmic reticulum retention that facilitates myonectin oligomer assembly. Secreted myonectin consists of trimers, hexamers, and high-molecular weight (HMW) oligomers. The formation of higher-order structures via intermolecular disulfide bonds depended on Cys-142 and Cys-194; while the C142A mutant formed almost exclusively trimers, the C194A mutant was impaired in HMW oligomer formation. Most Pro residues within the short collagen domain of myonectin were also hydroxylated, a modification that stabilized the collagen triple helix. Inhibiting Pro hydroxylation or deleting the collagen domain markedly reduced the rate of protein secretion. Together, our results reveal key determinants that are important for myonectin folding, secretion, and multimeric assembly and provide a basis for future structure-function studies.
Collapse
Affiliation(s)
- Ashley N Stewart
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hannah C Little
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - David J Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - G William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
5
|
CTRP9: An emerging potential anti-aging molecule in brain. Cell Signal 2020; 73:109694. [PMID: 32540339 DOI: 10.1016/j.cellsig.2020.109694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
C1q/tumor necrosis factor (TNF)-related proteins (CTRPs) particularly CTRP9, have been established to be as adiponectin (APN) highly conserved paralogs which assemble several APN regulatory functions. Recently, growing body of evidences drawn significant attention to evaluate metabolic and cardiovascular effect of CTRP9. However, the potential role of CTRP9 in brain tissue has not yet fully illustrated. Here, we aimed to uncover latest advances regarding the CTRP9 related signaling pathways and during brain aging process.
Collapse
|
6
|
Kita S, Maeda N, Shimomura I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J Clin Invest 2020; 129:4041-4049. [PMID: 31483293 DOI: 10.1172/jci129193] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue plays important roles in regulating whole-body energy metabolism through its storage function in white adipocytes and its dissipating function in brown and beige adipocytes. Adipose tissue also produces a variety of secreted factors called adipocytokines, including leptin and adiponectin. Furthermore, recent studies have suggested the important roles of extracellular vesicles of endosomal origin termed exosomes, which are secreted from adipocytes and other cells in adipose tissue and influence whole-body glucose and lipid metabolism. Adiponectin is known to be a pleiotropic organ-protective protein that is exclusively produced by adipocytes and decreased in obesity. Adiponectin accumulates in tissues such as heart, muscle, and vascular endothelium through binding with T-cadherin, a glycosylphosphatidylinositol-anchored (GPI-anchored) cadherin. Recently, adiponectin was found to enhance exosome biogenesis and secretion, leading to a decrease in cellular ceramides, excess of which is known to cause insulin resistance and cardiovascular disease phenotypes. These findings support the hypothesis that adipose tissue metabolism systemically regulates exosome production and whole-body metabolism through exosomes. This review focuses on intra-adipose and interorgan communication by exosomes, adiponectin-stimulated exosome production, and their dysregulation in metabolic diseases.
Collapse
Affiliation(s)
- Shunbun Kita
- Department of Metabolic Medicine.,Department of Adipose Management, and
| | - Norikazu Maeda
- Department of Metabolic Medicine.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | |
Collapse
|
7
|
Polito R, Monda V, Nigro E, Messina A, Di Maio G, Giuliano MT, Orrù S, Imperlini E, Calcagno G, Mosca L, Mollica MP, Trinchese G, Scarinci A, Sessa F, Salerno M, Marsala G, Buono P, Mancini A, Monda M, Daniele A, Messina G. The Important Role of Adiponectin and Orexin-A, Two Key Proteins Improving Healthy Status: Focus on Physical Activity. Front Physiol 2020; 11:356. [PMID: 32390865 PMCID: PMC7188914 DOI: 10.3389/fphys.2020.00356] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise represents the most important integrative therapy in metabolic, immunologic and chronic diseases; it represents a valid strategy in the non-pharmacological intervention of lifestyle linked diseases. A large body of evidence indicates physical exercise as an effective measure against chronic non-communicable diseases. The worldwide general evidence for health benefits are both for all ages and skill levels. In a dysregulated lifestyle such as in the obesity, there is an imbalance in the production of different cytokines. In particular, we focused on Adiponectin, an adipokine producted by adipose tissue, and on Orexin-A, a neuropeptide synthesized in the lateral hypothalamus. The production of both Adiponectin and Orexin-A increases following regular and structured physical activity and both these hormones have similar actions. Indeed, they improve energy and glucose metabolism, and also modulate energy expenditure and thermogenesis. In addition, a relevant biological role of Adiponectin and Orexin A has been recently highlighted in the immune system, where they function as immune-suppressor factors. The strong connection between these two cytokines and healthy status is mediated by physical activity and candidates these hormones as potential biomarkers of the beneficial effects induced by physical activity. For these reasons, this review aims to underly the interconnections among Adiponectin, Orexin-A, physical activity and healthy status. Furthermore, it is analyzed the involvement of Adiponectin and Orexin-A in physical activity as physiological factors improving healthy status through physical exercise.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Girolamo Di Maio
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Giuliano
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | | | - Giuseppe Calcagno
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Laura Mosca
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Maria Pina Mollica
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Giovanna Trinchese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Alessia Scarinci
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgery Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero Universitaria - Ospedali Riuniti, Foggia, Italy
| | - Pasqualina Buono
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Annamaria Mancini
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
8
|
Different spatiotemporal organization of GPI-anchored T-cadherin in response to low-density lipoprotein and adiponectin. Biochim Biophys Acta Gen Subj 2019; 1863:129414. [DOI: 10.1016/j.bbagen.2019.129414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023]
|
9
|
Hafiane A, Gasbarrino K, Daskalopoulou SS. The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism. Metabolism 2019; 100:153953. [PMID: 31377319 DOI: 10.1016/j.metabol.2019.153953] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022]
Abstract
Cholesterol efflux is the initial step in the reverse cholesterol transport pathway by which excess cholesterol in peripheral cells is exported and subsequently packaged into high-density lipoprotein (HDL) particles. Adiponectin is the most abundantly secreted adipokine that possesses anti-inflammatory and vasculoprotective properties via interaction with transmembrane receptors, AdipoR1 and AdipoR2. Evidence suggests that low levels of adiponectin may be a useful marker for atherosclerotic disease. A proposed anti-atherogenic mechanism of adiponectin involves its ability to promote cholesterol efflux. We performed a systematic review of the role of adiponectin in cholesterol efflux and HDL biogenesis, and of the proteins and receptors believed to be implicated in this process. Nineteen eligible studies (7 clinical, 11 fundamental, 1 clinical + fundamental) were identified through Ovid Medline, Ovid Embase, and Pubmed, that support the notion that adiponectin plays a key role in promoting ABCA1-dependent cholesterol efflux and in modulating HDL biogenesis via activation of the PPAR-γ/LXR-α signalling pathways in macrophages. AdipoR1 and AdipoR2 are suggested to also be implicated in this process, however the data are conflicting/insufficient to establish any firm conclusions. Once the exact mechanisms are unravelled, adiponectin may be critical in defining future treatment strategies directed towards increasing HDL functionality and ultimately reducing atherosclerotic disease.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| | - Karina Gasbarrino
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| | - Stella S Daskalopoulou
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Kita S, Fukuda S, Maeda N, Shimomura I. Native adiponectin in serum binds to mammalian cells expressing T-cadherin, but not AdipoRs or calreticulin. eLife 2019; 8:e48675. [PMID: 31647413 PMCID: PMC6822988 DOI: 10.7554/elife.48675] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/13/2019] [Indexed: 01/08/2023] Open
Abstract
Adiponectin is an adipocyte-derived atypically abundant circulating factor that protects various organs and tissues through its receptors, AdipoRs, calreticulin, and T-cadherin. To identify the major binding partner of circulating native adiponectin, we expressed these receptors on the surface of HEK293 cells. Adiponectin, either that in mouse or human serum, purified from serum, or produced by mammalian cells, bound to cells expressing T-cadherin, but not to those expressing AdipoR1 or calreticulin. The stable introduction of T-cadherin and AdipoR1 into CHO cells resulted in the cell surface localization of these receptors. Native adiponectin in serum bound to cells expressing T-cadherin, not to those expressing AdipoR1. The knockdown of T-cadherin, but not AdipoRs resulted in the significant attenuation of native adiponectin binding to C2C12 myotubes. Therefore, native adiponectin binding depended on the amount of T-cadherin expressed in HEK293 cells, CHO cells, and C2C12 myotubes. Collectively, our mammalian cell-based studies suggest that T-cadherin is the major binding partner of native adiponectin in serum.
Collapse
Affiliation(s)
- Shunbun Kita
- Department of Metabolic Medicine, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Adipose Management, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Metabolism and Atherosclerosis, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
11
|
Solarewicz J, Manly A, Kokoszka S, Sleiman N, Leff T, Cala S. Adiponectin secretion from cardiomyocytes produces canonical multimers and partial co-localization with calsequestrin in junctional SR. Mol Cell Biochem 2019; 457:201-214. [PMID: 30919218 DOI: 10.1007/s11010-019-03524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/15/2019] [Indexed: 01/21/2023]
Abstract
Adiponectin (ADN) is an abundant protein in serum, secreted by adipocytes, that acts as a signal for fat metabolism. It is marked by a complex molecular structure that results from processes within the secretory pathway, producing a canonical set of multimers. ADN may also be secreted from cardiomyocytes, where a unique sarcomeric endoplasmic/sarcoplasmic reticulum (ER/SR) substructure has been characterized primarily for its Ca handling. We expressed ADN in cultured primary adult cardiomyocytes and nonmuscle (COS) cells. After 48 h of ADN expression by adenovirus treatment, roughly half of synthesized ADN was secreted from cardiomyocytes, and half was still in-transit within inner membrane compartments, similar to COS cells. Cardiomyocytes and COS cells both produced ADN in the three canonical forms: trimers, hexamers, and 18-mers. Higher rates of secretion occurred for higher-molecular weight multimers, especially 18-mers. The highest levels of ADN protein, whether in transit or secreted, were present as trimers and hexamers. In nonmuscle cell lines, ADN trafficked through ER and Golgi compartments as expected. In contrast, ADN in primary adult cardiomyocytes populated ER/SR tubules along the edges of sarcomeres that emanated from nuclear surfaces. Prominent co-localization of ADN occurred with calsequestrin, a marker of junctional SR, the Ca2+-release compartment of the cell. The early steps in ADN trafficking re-trace those recently described for newly made junctional SR proteins, involving a nuclear envelope (NE) translocation into SR tubules that are oriented along sarcolemmal transverse (T)-tubules (NEST pathway).
Collapse
Affiliation(s)
- Joanna Solarewicz
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA
| | - Amanda Manly
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA
| | - Stephanie Kokoszka
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA
| | - Naama Sleiman
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, MI, 48201, USA
| | - Steven Cala
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Abstract
INTRODUCTION Adipocytes, which represent a substantial part of the tumor microenvironment in breast cancer, secrete several adipokines that affect tumorigenesis, cancer progression, metastasis, and treatment resistance via multiple signaling pathways. Areas covered: In this review, we focus on the role of leptin, adiponectin, autotaxin, and interleukin-6 in breast cancer initiation, progression, metastasis, and drug response. Furthermore, we investigated adipokines as potential targets of breast cancer-specific drugs. Expert opinion: Adipokines and adipokine receptors are deregulated in breast cancer. Adipokines play various roles in breast cancer initiation, progression, metastasis, and drug response, hence, adipokine signaling could be an effective drug target. Several clinical trials are in progress to test the efficacy of adipokine targeting agents. However, adipokines also affect metabolic homeostasis; hence, the adverse effects of the targeted drug should be investigated and addressed.
Collapse
Affiliation(s)
- Yoon Jin Cha
- a Department of Pathology , Yonsei University College of Medicine, Severance Hospital , Seoul , South Korea
| | - Ja Seung Koo
- a Department of Pathology , Yonsei University College of Medicine, Severance Hospital , Seoul , South Korea
| |
Collapse
|
13
|
Lombardi G, Barbaro M, Locatelli M, Banfi G. Novel bone metabolism-associated hormones: the importance of the pre-analytical phase for understanding their physiological roles. Endocrine 2017; 56:460-484. [PMID: 28181144 DOI: 10.1007/s12020-017-1239-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
Abstract
The endocrine function of bone is now a recognized feature of this tissue. Bone-derived hormones that modulate whole-body homeostasis, are being discovered as for the effects on bone of novel and classic hormones produced by other tissues become known. Often, however, the data regarding these last generation bone-derived or bone-targeting hormones do not give about a clear picture of their physiological roles or concentration ranges. A certain degree of uncertainty could stem from differences in the pre-analytical management of biological samples. The pre-analytical phase comprises a series of decisions and actions (i.e., choice of sample matrix, methods of collection, transportation, treatment and storage) preceding analysis. Errors arising in this phase will inevitably be carried over to the analytical phase where they can reduce the measurement accuracy, ultimately, leading discrepant results. While the pre-analytical phase is all important, in routine laboratory medicine, it is often not given due consideration in research and clinical trials. This is particularly true for novel molecules, such as the hormones regulating the endocrine function of bone. In this review we discuss the importance of the pre-analytical variables affecting the measurement of last generation bone-associated hormones and describe their, often debated and rarely clear physiological roles.
Collapse
Affiliation(s)
| | - Mosè Barbaro
- Laboratory Medicine Service, San Raffaele Hospital, Milano, Italy
| | | | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
14
|
Collagen beta (1- O) galactosyltransferase 1 (GLT25D1) is required for the secretion of high molecular weight adiponectin and affects lipid accumulation. Biosci Rep 2017; 37:BSR20170105. [PMID: 28428430 PMCID: PMC5434890 DOI: 10.1042/bsr20170105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 01/28/2023] Open
Abstract
Secretion of high molecular weight (HMW) adiponectin is dependent on post-translational modification (PTM) of conserved lysines in the collagenous domain. The present study aims to characterize the enzymes responsible for the PTM of conserved lysines which leads to HMW adiponectin secretion, and to define its significance in relation to obesity. Collagen beta (1-O) galactosyltransferase 1 (GLT25D1) was knocked down in HEK cells modified for the stable expression of adiponectin (adiponectin expressing human embryonic kidney cells, Adipo-HEK) as well as in Simpson Golabi-Behmel-Syndrome (SGBS) adipocytes. Knockdown of GLT25D1 caused a significant decrease in HMW adiponectin in Adipo-HEK cells with no change in total adiponectin. Knockdown in the SGBS cells caused an increase in lipid accumulation yet inhibited adipogenesis. Co-immunoprecipitation with adiponectin and mass spectrometry showed that adiponectin formed a protein complex with lysyl hydroxylase 3 (LH3) and GLT25D1. Transient overexpression of GLT25D1 showed that the intracellular retention of LH3 was dependent on GLT25D1. To determine whether changes in GLT25D1 were significant in obesity, mice were fed a standard chow or high-fat diet (HFD) for 5 weeks. GLT25D1 was significantly decreased in mice fed HFD which coincided with a decrease in HMW adiponectin. We conclude that GLT25D1 regulates HMW adiponectin secretion and lipid accumulation, consistent with changes in mice after high-fat feeding. These results suggest a novel function of GLT25D1 leading to decreased HMW adiponectin secretion in early obesity.
Collapse
|
15
|
Balatskaya MN, Balatskii AV, Sharonov GV, Tkachuk VA. T-cadherin as a novel receptor regulating metabolism in the blood vessel and heart cells: from structure to function. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016020010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Harris PWR, Hampe L, Radjainia M, Brimble MA, Mitra AK. An investigation of the role of the adiponectin variable domain on the stability of the collagen-like domain. Biopolymers 2016; 102:313-21. [PMID: 24752567 DOI: 10.1002/bip.22501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/23/2014] [Accepted: 04/10/2014] [Indexed: 01/03/2023]
Abstract
The chemical synthesis is described of a polypeptide construct possessing both the variable and the collagen-like domain of adiponectin, which can be used as a model system for probing the influence of the variable domain on multimerization of this important circulating hormone. Using a collagen domain repeat peptide unit derived from native adiponectin or a glutamic acid analogue was ineffective due to noncollagenous conformational properties in both cases. However, employing a collagen model peptide and linking this to the variable domain thioester peptide using native chemical ligation proved effective. The 63 residue peptide was characterized by circular dichroism and mass spectrometry which demonstrated that a collagen-like triple-helical structure was preserved.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds St, Auckland, 1010, New Zealand
| | | | | | | | | |
Collapse
|
17
|
Hiwasa T, Zhang XM, Kimura R, Ohno M, Chen PM, Nishi E, Ono K, Kimura T, Kamitsukasa I, Wada T, Aotsuka A, Mine S, Takizawa H, Kashiwado K, Takemoto M, Kobayashi K, Kawamura H, Ishibashi R, Yokote K, Nakamura R, Tomiyoshi G, Shinmen N, Kuroda H. Elevated Adiponectin Antibody Levels in Sera of Patients with Atherosclerosis-Related Coronary Artery Disease, Cerebral Infarction and Diabetes Mellitus. J Circ Biomark 2016; 5:8. [PMID: 28936256 PMCID: PMC5548317 DOI: 10.5772/63218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
Adiponectin secreted from the adipocytes plays pleiotropic, anti-atherosclerotic roles, such as enhancement of insulin secretion and an increase in energy expenditure. The measurement of levels of circulating adiponectin is useful to evaluate the progression of atherosclerosis-related diseases, such as coronary artery disease (CAD), cerebral infarction (CI) and diabetes mellitus (DM). We examined the serum antibody levels against recombinant adiponectin protein via the amplified luminescent proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) method. The results revealed that the antibody levels were significantly higher in patients with CAD, CI and type 2 DM, than in healthy donors. Receiver operating curve analysis showed that the sensitivity was in a range of 41–48% for CAD, CI and DM. Thus, the serum anti-adiponectin antibody levels could be a common marker for atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Xiao-Meng Zhang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Risa Kimura
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Po-Min Chen
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takeshi Wada
- Department of Internal Medicine, Chiba Aoba Municipal Hospital, Chiba, Japan
| | - Akiyo Aotsuka
- Department of Internal Medicine, Chiba Aoba Municipal Hospital, Chiba, Japan
| | - Seiichiro Mine
- Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba, Japan.,Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, Japan
| | | | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Kobayashi
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Harukiyo Kawamura
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryoichi Ishibashi
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rika Nakamura
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, Japan
| | - Go Tomiyoshi
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, Japan
| | - Natsuko Shinmen
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, Japan
| | - Hideyuki Kuroda
- Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, Japan
| |
Collapse
|
18
|
Takuwa A, Yoshida T, Maruno T, Kawahara K, Mochizuki M, Nishiuchi Y, Kobayashi Y, Ohkubo T. Ordered self-assembly of the collagenous domain of adiponectin with noncovalent interactions via glycosylated lysine residues. FEBS Lett 2016; 590:195-201. [DOI: 10.1002/1873-3468.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Ayako Takuwa
- Graduate School of Pharmaceutical Sciences; Osaka University; Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences; Osaka University; Japan
| | - Takahiro Maruno
- Department of Biotechnology; Graduate School of Engineering; Osaka University; Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences; Osaka University; Japan
| | | | - Yuji Nishiuchi
- Peptide Institute Inc.; SAITO Res Ctr; Ibaraki Osaka Japan
| | - Yuji Kobayashi
- Department of Biotechnology; Graduate School of Engineering; Osaka University; Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences; Osaka University; Japan
| |
Collapse
|
19
|
Chandar AK, Devanna S, Lu C, Singh S, Greer K, Chak A, Iyer PG. Association of Serum Levels of Adipokines and Insulin With Risk of Barrett's Esophagus: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol 2015; 13:2241-55.e1-4; quiz e179. [PMID: 26188139 PMCID: PMC4827623 DOI: 10.1016/j.cgh.2015.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/15/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Metabolically active visceral fat may be associated with esophageal inflammation, metaplasia, and neoplasia. We performed a meta-analysis to evaluate the association of serum adipokines and insulin with Barrett's esophagus (BE). METHODS We performed a systematic search of multiple electronic databases, through April 2015, to identify all studies reporting associations between leptin, adiponectin, insulin, insulin resistance, and risk of BE in adults. Comparing the highest study-specific category with the reference category for each hormone, we estimated the summary adjusted odds ratio (aOR) and 95% confidence intervals (CI), using a random effects model. RESULTS We identified 9 observational studies (10 independent cohorts; 1432 patients with BE total, and 3550 control subjects). Meta-analysis revealed that high serum level of leptin was associated with 2-fold higher risk of BE (BE cases vs population control subjects in 5 studies: aOR, 2.23; 95% CI, 1.31-3.78; I(2), 59%). Total serum level of adiponectin was not associated with BE (BE cases vs population control subjects in 5 studies: aOR, 0.79; 95% CI, 0.46-1.34; I(2), 65%), although 1 study observed decreased risk of BE with increased level of low-molecular-weight adiponectin. High serum level of insulin was associated with increased risk of BE (BE cases vs population control subjects in 3 studies: aOR, 1.74; 95% CI, 1.14-2.65; I(2), 0), whereas insulin resistance was not associated with increased risk of BE (BE cases vs gastroesophageal reflux disease control subjects in 2 studies: aOR, 0.98; 95% CI, 0.42-2.30; I(2), 64%). CONCLUSIONS Increased serum levels of leptin and insulin are associated with increased risk of BE, compared with population control subjects. In contrast, increased total serum levels of adiponectin and insulin do not seem to modify BE risk. Well-designed longitudinal studies of incident BE are needed to clarify existing associations of serum adipokines and insulin with BE.
Collapse
Affiliation(s)
- Apoorva Krishna Chandar
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland; Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Swapna Devanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Chang Lu
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland
| | - Siddharth Singh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Katarina Greer
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland; Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Amitabh Chak
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland; Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
20
|
Seldin MM, Byerly MS, Petersen PS, Swanson R, Balkema-Buschmann A, Groschup MH, Wong GW. Seasonal oscillation of liver-derived hibernation protein complex in the central nervous system of non-hibernating mammals. ACTA ACUST UNITED AC 2015; 217:2667-79. [PMID: 25079892 DOI: 10.1242/jeb.095976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian hibernation elicits profound changes in whole-body physiology. The liver-derived hibernation protein (HP) complex, consisting of HP-20, HP-25 and HP-27, was shown to oscillate circannually, and this oscillation in the central nervous system (CNS) was suggested to play a role in hibernation. The HP complex has been found in hibernating chipmunks but not in related non-hibernating tree squirrels, leading to the suggestion that hibernation-specific genes may underlie the origin of hibernation. Here, we show that non-hibernating mammals express and regulate the conserved homologous HP complex in a seasonal manner, independent of hibernation. Comparative analyses of cow and chipmunk HPs revealed extensive biochemical and structural conservations. These include liver-specific expression, assembly of distinct heteromeric complexes that circulate in the blood and cerebrospinal fluid, and the striking seasonal oscillation of the HP levels in the blood and CNS. Central administration of recombinant HPs affected food intake in mice, without altering body temperature, physical activity levels or energy expenditure. Our results demonstrate that HP complex is not unique to the hibernators and suggest that the HP-regulated liver-brain circuit may couple seasonal changes in the environment to alterations in physiology.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mardi S Byerly
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pia S Petersen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roy Swanson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anne Balkema-Buschmann
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Diedrich J, Gusky HC, Podgorski I. Adipose tissue dysfunction and its effects on tumor metabolism. Horm Mol Biol Clin Investig 2015; 21:17-41. [PMID: 25781550 DOI: 10.1515/hmbci-2014-0045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
Growing by an alarming rate in the Western world, obesity has become a condition associated with a multitude of diseases such as diabetes, metabolic syndrome and various cancers. Generally viewed as an abnormal accumulation of hypertrophied adipocytes, obesity is also a poor prognostic factor for recurrence and chemoresistance in cancer patients. With more than two-thirds of the adult population in the United States considered clinically overweight or obese, it is critical that the relationship between obesity and cancer is further emphasized and elucidated. Adipocytes are highly metabolically active cells, which, through release of adipokines and cytokines and activation of endocrine and paracrine pathways, affect processes in neighboring and distant cells, altering their normal homeostasis. This work will examine specifically how adipocyte-derived factors regulate the cellular metabolism of malignant cells within the tumor niche. Briefly, tumor cells undergo metabolic pressure towards a more glycolytic and hypoxic state through a variety of metabolic regulators and signaling pathways, i.e., phosphoinositol-3 kinase (PI3K), hypoxia-inducible factor-1 alpha (HIF-1α), and c-MYC signaling. Enhanced glycolysis and high lactate production are hallmarks of tumor progression largely because of a process known as the Warburg effect. Herein, we review the latest literature pertaining to the body of work on the interactions between adipose and tumor cells, and underlining the changes in cancer cell metabolism that have been targeted by the currently available treatments.
Collapse
|
22
|
Adiponectin inhibits mouse mammary tumor growth and reduced tumor-induced hematopoiesis. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0019-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
23
|
Hampe L, Radjainia M, Xu C, Harris PWR, Bashiri G, Goldstone DC, Brimble MA, Wang Y, Mitra AK. Regulation and Quality Control of Adiponectin Assembly by Endoplasmic Reticulum Chaperone ERp44. J Biol Chem 2015; 290:18111-18123. [PMID: 26060250 DOI: 10.1074/jbc.m115.663088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 01/09/2023] Open
Abstract
Adiponectin, a collagenous hormone secreted abundantly from adipocytes, possesses potent antidiabetic and anti-inflammatory properties. Mediated by the conserved Cys(39) located in the variable region of the N terminus, the trimeric (low molecular weight (LMW)) adiponectin subunit assembles into different higher order complexes, e.g. hexamers (middle molecular weight (MMW)) and 12-18-mers (high molecular weight (HMW)), the latter being mostly responsible for the insulin-sensitizing activity of adiponectin. The endoplasmic reticulum (ER) chaperone ERp44 retains adiponectin in the early secretory compartment and tightly controls the oxidative state of Cys(39) and the oligomerization of adiponectin. Using cellular and in vitro assays, we show that ERp44 specifically recognizes the LMW and MMW forms but not the HMW form. Our binding assays with short peptide mimetics of adiponectin suggest that ERp44 intercepts and converts the pool of fully oxidized LMW and MMW adiponectin, but not the HMW form, into reduced trimeric precursors. These ERp44-bound precursors in the cis-Golgi may be transported back to the ER and released to enhance the population of adiponectin intermediates with appropriate oxidative state for HMW assembly, thereby underpinning the process of ERp44 quality control.
Collapse
Affiliation(s)
- Lutz Hampe
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Mazdak Radjainia
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 999007 Hong Kong, China
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Ghader Bashiri
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - David C Goldstone
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 999007 Hong Kong, China
| | - Alok K Mitra
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand.
| |
Collapse
|
24
|
Abstract
Central obesity is involved in the pathogenesis and progression of Barrett's esophagus to esophageal adenocarcinoma. Involved are likely both mechanical and nonmechanical effects. Mechanical effects of increased abdominal fat cause disruption of the gastroesophageal reflux barrier leading to increased reflux events. Nonmechanical effects may be mediated by inflammation, via classically activated macrophages, pro-inflammatory cytokines, and adipokines such as Leptin, all of which likely potentiate reflux-mediated inflammation. Insulin resistance, associated with central obesity, is also associated with both Barrett's pathogenesis and progression to adenocarcinoma. Molecular pathways activated in obesity, inflammation and insulin resistance overlap with those involved in Barrett's pathogenesis and progression.
Collapse
|
25
|
Katira A, Tan PH. Adiponectin and its receptor signaling: an anti-cancer therapeutic target and its implications for anti-tumor immunity. Expert Opin Ther Targets 2015; 19:1105-25. [DOI: 10.1517/14728222.2015.1035710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Ebrahimi-Mamaeghani M, Mohammadi S, Arefhosseini SR, Fallah P, Bazi Z. Adiponectin as a potential biomarker of vascular disease. Vasc Health Risk Manag 2015; 11:55-70. [PMID: 25653535 PMCID: PMC4303398 DOI: 10.2147/vhrm.s48753] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The increasing prevalence of diabetes and its complications heralds an alarming situation worldwide. Obesity-associated changes in circulating adiponectin concentrations have the capacity to predict insulin sensitivity and are a link between obesity and a number of vascular diseases. One obvious consequence of obesity is a decrease in circulating levels of adiponectin, which are associated with cardiovascular disorders and associated vascular comorbidities. Human and animal studies have demonstrated decreased adiponectin to be an independent risk factor for cardiovascular disease. However, in animal studies, increased circulating adiponectin alleviates obesity-induced endothelial dysfunction and hypertension, and also prevents atherosclerosis, myocardial infarction, and diabetic cardiac tissue disorders. Further, metabolism of a number of foods and medications are affected by induction of adiponectin. Adiponectin has beneficial effects on cardiovascular cells via its antidiabetic, anti-inflammatory, antioxidant, antiapoptotic, antiatherogenic, vasodilatory, and antithrombotic activity, and consequently has a favorable effect on cardiac and vascular health. Understanding the molecular mechanisms underlying the regulation of adiponectin secretion and signaling is critical for designing new therapeutic strategies. This review summarizes the recent evidence for the physiological role and clinical significance of adiponectin in vascular health, identification of the receptor and post-receptor signaling events related to the protective effects of the adiponectin system on vascular compartments, and its potential use as a target for therapeutic intervention in vascular disease.
Collapse
MESH Headings
- Adiponectin/immunology
- Adiponectin/metabolism
- Adipose Tissue/immunology
- Adipose Tissue/metabolism
- Adipose Tissue/physiopathology
- Animals
- Biomarkers/metabolism
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Humans
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Protective Factors
- Receptors, Adiponectin/metabolism
- Risk Factors
- Signal Transduction
- Vascular Diseases/immunology
- Vascular Diseases/metabolism
- Vascular Diseases/physiopathology
- Vascular Diseases/prevention & control
Collapse
Affiliation(s)
| | - Somayeh Mohammadi
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Rafie Arefhosseini
- Department of Food Technology, Faculty of Nutrition Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Fallah
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Zahra Bazi
- Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Ghantous CM, Azrak Z, Hanache S, Abou-Kheir W, Zeidan A. Differential Role of Leptin and Adiponectin in Cardiovascular System. Int J Endocrinol 2015; 2015:534320. [PMID: 26064110 PMCID: PMC4433709 DOI: 10.1155/2015/534320] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Leptin and adiponectin are differentially expressed adipokines in obesity and cardiovascular diseases. Leptin levels are directly associated with adipose tissue mass, while adiponectin levels are downregulated in obesity. Although significantly produced by adipocytes, leptin is also produced by vascular smooth muscle cells and cardiomyocytes. Plasma leptin concentrations are elevated in cases of cardiovascular diseases, such as hypertension, congestive heart failure, and myocardial infarction. As for the event of left ventricular hypertrophy, researchers have been stirring controversy about the role of leptin in this form of cardiac remodeling. In this review, we discuss how leptin has been shown to play an antihypertrophic role in the development of left ventricular hypertrophy through in vitro experiments, population-based cross-sectional studies, and longitudinal cohort studies. Conversely, we also examine how leptin may actually promote left ventricular hypertrophy using in vitro analysis and human-based univariate and multiple linear stepwise regression analysis. On the other hand, as opposed to leptin's generally detrimental effects on the cardiovascular system, adiponectin is a cardioprotective hormone that reduces left ventricular and vascular hypertrophy, oxidative stress, and inflammation. In this review, we also highlight adiponectin signaling and its protective actions on the cardiovascular system.
Collapse
Affiliation(s)
- C. M. Ghantous
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Z. Azrak
- Department of Pharmacology and Toxicology, American University of Beirut, DTS-255, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - S. Hanache
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - W. Abou-Kheir
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - A. Zeidan
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
- *A. Zeidan:
| |
Collapse
|
28
|
|
29
|
Abstract
Adiponectin is among the most studied adipokines, the collection of molecules secreted from adipose tissue. It is also one of the most architecturally complex adipokines with its various oligomeric states that include trimers, hexamers, nonamers (9mers), dodecamers (12mers), and octadecamers (18mers). The importance of adiponectin in metabolic regulation is underscored by its strong positive associations with improvement in insulin action and also decreased risks for developing type 2 diabetes. Understanding the mechanisms involved in maintaining the steady-state concentrations of adiponectin oligomers in circulation is therefore likely to provide important insight into the development of insulin resistance. This review will discuss the current state of knowledge regarding the biochemical composition of adiponectin oligomers, the commonly used techniques to analyze them, and the known post-translational modifications that affect their assembly. Evidence based on in vitro oligomer assembly reactions in support of a "cystine ratchet" model of adiponectin oligomer formation will be considered along with limitations of the evidence. Secretory pathway proteins that have been shown to affect the distribution of adiponectin oligomers will also be discussed along with hypotheses regarding their potential involvement in the cystine ratchet model of adiponectin oligomerization.
Collapse
Affiliation(s)
- Tsu-Shuen Tsao
- Department of Chemistry and Biochemistry, University of Arizona, MRB Diabetes Research, P.O. Box 245218, Tucson, AZ, 85724, USA,
| |
Collapse
|
30
|
Abstract
Maintaining proper energy balance in mammals entails intimate crosstalk between various tissues and organs. These inter-organ communications are mediated, to a great extent, by secreted hormones that circulate in blood. Regulation of the complex metabolic networks by secreted hormones (e.g., insulin, glucagon, leptin, adiponectin, FGF21) constitutes an important mechanism governing the integrated control of whole-body metabolism. Disruption of hormone-mediated metabolic circuits frequently results in dysregulated energy metabolism and pathology. As part of an effort to identify novel metabolic hormones, we recently characterized a highly conserved family of 15 secreted proteins, the C1q/TNF-related proteins (CTRP1-15). While related to adiponectin in sequence and structural organization, each CTRP has its own unique tissue expression profile and non-redundant function in regulating sugar and/or fat metabolism. Here, we summarize the current understanding of the physiological functions of CTRPs, emphasizing their metabolic roles. Future studies using gain-of-function and loss-of-function mouse models will provide greater mechanistic insights into the critical role CTRPs play in regulating systemic energy homeostasis.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | | |
Collapse
|
31
|
Karow AR, Götzl J, Garidel P. Resolving power of dynamic light scattering for protein and polystyrene nanoparticles. Pharm Dev Technol 2014; 20:84-9. [PMID: 24773236 DOI: 10.3109/10837450.2014.910808] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dynamic light scattering (DLS) is a non-invasive, label-free technique for the characterization of particles ranging from nanometer to micrometer size. It is widely used for the analysis of proteins to assess association states and the nature of protein aggregates. Despite its frequent use, little quantitative information on its size resolution capabilities, in particular for protein material, is available. This study explores the resolving power of a standard DLS setup for binary mixtures of latex standard particles and mixtures of protein monomer and protein particles made from cross-linked protein material. At constant instrument settings, the resolving power depends on the size ratio and the mass ratio of the species in a mixture as well as on the total concentration and the scattering characteristics of the material. In this study, we provide a summary at which parameter combinations resolution of two species with varying size is possible. These data guide the quantitative evaluation of DLS results for mixtures. We found that a mixture of an antibody monomer and protein particles of an average hydrodynamic diameter of 50 nm can be resolved at a 1-20-fold excess of monomer (by mass). A mixture of monomer and 70 nm particles can be resolved at a 2-30-fold excess, a mixture of monomer and 190 nm particles at a 200-1700-fold excess of monomer. The findings allow to better judge DLS results for protein samples of unknown composition.
Collapse
Affiliation(s)
- Anne R Karow
- Department of Biopharmaceuticals, Process Science/Protein Science, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach an der Riss , Germany
| | | | | |
Collapse
|
32
|
Singh SP, Häussler S, Heinz JFL, Saremi B, Mielenz B, Rehage J, Dänicke S, Mielenz M, Sauerwein H. Supplementation with conjugated linoleic acids extends the adiponectin deficit during early lactation in dairy cows. Gen Comp Endocrinol 2014; 198:13-21. [PMID: 24384531 DOI: 10.1016/j.ygcen.2013.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 01/21/2023]
Abstract
Decreasing insulin sensitivity (IS) in peripheral tissues allows for partitioning nutrients towards the mammary gland. In dairy cows, extensive lipid mobilization and continued insulin resistance (IR) are typical for early lactation. Adiponectin, an adipokine, promotes IS. Supplementation with conjugated linoleic acids (CLA) in rodents and humans reduces fat mass whereby IR and hyperinsulinemia may occur. In dairy cows, CLA reduce milk fat, whereas body fat, serum free fatty acids and leptin are not affected. We aimed to investigate the effects of CLA supplementation on serum and adipose tissue (AT) adiponectin concentrations in dairy cows during the lactation driven and parity modulated changes of metabolism. High yielding cows (n=33) were allocated on day 1 post partum to either 100 g/day of a CLA mixture or a control fat supplement (CON) until day 182 post partum. Blood and subcutaneous (sc) AT (AT) biopsy samples were collected until day 252 post partum to measure adiponectin. Serum adiponectin decreased from day 21 pre partum reaching a nadir at calving and thereafter increased gradually. The distribution of adiponectin molecular weight forms was neither affected by time, parity nor treatment. Cows receiving CLA had decreased serum adiponectin concentrations whereby primiparous cows responded about 4 weeks earlier than multiparous cows. The time course of adiponectin concentrations in sc AT (corrected for residual blood) was similar to serum concentrations, without differences between CLA and CON. CLA supplementation attenuated the post partum increase of circulating adiponectin thus acting towards prolongation of peripartal IR and drain of nutrients towards the mammary gland.
Collapse
Affiliation(s)
- Shiva P Singh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Susanne Häussler
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| | - Johanna F L Heinz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Behnam Saremi
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Birgit Mielenz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Manfred Mielenz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
33
|
Single-nucleotide polymorphisms in adiponectin, AdipoR1, and AdipoR2 genes: insulin resistance and type 2 diabetes mellitus candidate genes. Am J Ther 2014; 20:414-21. [PMID: 23656997 DOI: 10.1097/mjt.0b013e318235f206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has already been a decade and a half since the discovery of adiponectin and its role as an insulin sensitizer and only 7 years since its receptors, AdipoR1 and AdipoR2, were described. A single-nucleotide polymorphism (SNP) is a DNA sequence variation that affects only one nucleotide; it may vary from one population to another with different predisposing factors to diseases and other ailments. Once some of the effects of adiponectin and its receptors were known, it was not long until an effort was made to find the associations between specific SNPs of the genes of this hormone and its receptors as genetic risk factors for insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, although these genes were investigated as possible candidates related to the development of these metabolic disorders. All of these possible associations were studied in different populations from France, Finland, the United Kingdom, North America, and Japan, showing hardly concluding results, and because of that it is highly controversial to directly associate one of the genes mentioned above to insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. All of these inconsistencies lead to a review that summarizes the SNPs of the genes of adiponectin, AdipoR1, and AdipoR2 that are mostly related to insulin resistance syndrome, type 2 diabetes mellitus, and metabolic syndrome, although presenting the possible factors that should be taken into account to homogenize the results obtained until now.
Collapse
|
34
|
Golbidi S, Laher I. Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res 2014; 2014:726861. [PMID: 24563869 PMCID: PMC3915640 DOI: 10.1155/2014/726861] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/18/2013] [Indexed: 12/25/2022] Open
Abstract
The lack of adequate physical activity and obesity created a worldwide pandemic. Obesity is characterized by the deposition of adipose tissue in various parts of the body; it is now evident that adipose tissue also acts as an endocrine organ capable of secreting many cytokines that are though to be involved in the pathophysiology of obesity, insulin resistance, and metabolic syndrome. Adipokines, or adipose tissue-derived proteins, play a pivotal role in this scenario. Increased secretion of proinflammatory adipokines leads to a chronic inflammatory state that is accompanied by insulin resistance and glucose intolerance. Lifestyle change in terms of increased physical activity and exercise is the best nonpharmacological treatment for obesity since these can reduce insulin resistance, counteract the inflammatory state, and improve the lipid profile. There is growing evidence that exercise exerts its beneficial effects partly through alterations in the adipokine profile; that is, exercise increases secretion of anti-inflammatory adipokines and reduces proinflammatory cytokines. In this paper we briefly describe the pathophysiologic role of four important adipokines (adiponectin, leptin, TNF-α, and IL-6) in the metabolic syndrome and review some of the clinical trials that monitored these adipokines as a clinical outcome before and after exercise.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
- *Ismail Laher:
| |
Collapse
|
35
|
High-resolution identification of human adiponectin oligomers and regulation by pioglitazone in type 2 diabetic patients. Anal Biochem 2013; 437:150-60. [DOI: 10.1016/j.ab.2013.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/03/2013] [Accepted: 02/07/2013] [Indexed: 11/24/2022]
|
36
|
Golbidi S, Laher I. Potential mechanisms of exercise in gestational diabetes. J Nutr Metab 2013; 2013:285948. [PMID: 23691290 PMCID: PMC3649306 DOI: 10.1155/2013/285948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/31/2013] [Accepted: 02/10/2013] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance first diagnosed during pregnancy. This condition shares same array of underlying abnormalities as occurs in diabetes outside of pregnancy, for example, genetic and environmental causes. However, the role of a sedentary lifestyle and/or excess energy intake is more prominent in GDM. Physically active women are less likely to develop GDM and other pregnancy-related diseases. Weight gain in pregnancy causes increased release of adipokines from adipose tissue; many adipokines increase oxidative stress and insulin resistance. Increased intramyocellular lipids also increase cellular oxidative stress with subsequent generation of reactive oxygen species. A well-planned program of exercise is an important component of a healthy lifestyle and, in spite of old myths, is also recommended during pregnancy. This paper briefly reviews the role of adipokines in gestational diabetes and attempts to shed some light on the mechanisms by which exercise can be beneficial as an adjuvant therapy in GDM. In this regard, we discuss the mechanisms by which exercise increases insulin sensitivity, changes adipokine profile levels, and boosts antioxidant mechanisms.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
37
|
Mielenz M, Mielenz B, Singh SP, Kopp C, Heinz J, Häussler S, Sauerwein H. Development, validation, and pilot application of a semiquantitative Western blot analysis and an ELISA for bovine adiponectin. Domest Anim Endocrinol 2013; 44:121-30. [PMID: 23291015 DOI: 10.1016/j.domaniend.2012.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 11/23/2022]
Abstract
Adiponectin is an adipose tissue-derived glycoprotein circulating as highly abundant multimers. It regulates glucose metabolism and insulin sensitivity. In ruminants, valid data about serum concentrations and tissue-specific protein expression are lacking, and we, therefore, aimed to generate a polyclonal antibody against bovine adiponectin to apply it in immunodetection. The specificity of the purified anti-adiponectin antibody was established by Western blot analysis with the use of reducing and denaturing conditions applied to both the purified protein and the bovine serum samples. Besides bovine serum, the applicability of the antibody for immunodetection of adiponectin was confirmed for the supernatant fluid of in vitro-differentiated bovine adipocytes, for protein extracts from bovine adipose tissue, and also in a multispecies comparison: bands comparable in size with monomeric bovine adiponectin were obtained under denaturing conditions in serum of camel, horse, human, mouse, pig, roe deer, and sheep. In addition, when used in immunohistochemistry on bovine adipose tissue sections, a characteristic adipocyte-specific staining pattern was obtained with this antibody. The antibody was used for establishing a semiquantitative Western blot procedure and the development of an ELISA. Both methods were extensively validated and were first applied to characterize the serum adiponectin concentrations in multiparous dairy cows during the transition from pregnancy to lactation, that is, 3 wk before until 5 wk after calving. With both assays a time effect (P = 0.017, P = 0.026, respectively) with lowest values at the day of parturition was observed. We thus established 2 useful tools to validly assess bovine adiponectin at the protein level.
Collapse
Affiliation(s)
- M Mielenz
- Institute of Animal Science, Physiology and Hygiene Group, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Adiponectin is an adipocyte-secreted hormone that exists as trimers, hexamers and larger species collectively referred to as HMW (high-molecular-weight) adiponectin. Whether hexamers or HMW adiponectin serve as precursors for trimers outside the circulation is currently unknown. Here, we demonstrate that adiponectin trimers can be generated from larger oligomers secreted from primary rat adipose cells or differentiated 3T3-L1 adipocytes. Purified hexameric, but not HMW, adiponectin converted into trimers in conditioned media separated from 3T3-L1 adipocytes or, more efficiently, when enclosed in the dialysis membrane in the presence of adipocytes. Several lines of evidence indicate that the conversion is mediated by an extracellular redox system. First, N-terminal epitope-tagged hexamers converted into trimers without proteolytic removal of the tag. Secondly, appearance of trimers was associated with conversion of disulfide-bonded dimers into monomers. Thirdly, thiol-reactive agents inhibited conversion into trimers. Consistent with a redox-based mechanism, purified hexamers reductively converted into trimers in defined glutathione redox buffer with reduction potential typically found in the extracellular environment while the HMW adiponectin remained stable. In addition, conversion of hexamers into trimers was enhanced by NADPH, but not by NADP+. Collectively, these data strongly suggest the presence of an extracellular redox system capable of converting adiponectin oligomers.
Collapse
|
39
|
Finelli C, Tarantino G. What is the role of adiponectin in obesity related non-alcoholic fatty liver disease? World J Gastroenterol 2013; 19:802-812. [PMID: 23430039 PMCID: PMC3574877 DOI: 10.3748/wjg.v19.i6.802] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/03/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of chronic liver disease in Western countries. Insulin resistance is a key factor in the pathogenesis of NAFLD, the latter being considered as the hepatic component of insulin resistance or obesity. Adiponectin is the most abundant adipose-specific adipokine. There is evidence that adiponectin decreases hepatic and systematic insulin resistance, and attenuates liver inflammation and fibrosis. Adiponectin generally predicts steatosis grade and the severity of NAFLD; however, to what extent this is a direct effect or related to the presence of more severe insulin resistance or obesity remains to be addressed. Although there is no proven pharmacotherapy for the treatment of NAFLD, recent therapeutic strategies have focused on the indirect upregulation of adiponectin through the administration of various therapeutic agents and/or lifestyle modifications. In this adiponectin-focused review, the pathogenetic role and the potential therapeutic benefits of adiponectin in NAFLD are analyzed systematically.
Collapse
|
40
|
Kim J, Zheng W, Grafer C, Mann ML, Halvorson LM. GnRH decreases adiponectin expression in pituitary gonadotropes via the calcium and PKA pathways. Reprod Sci 2012; 20:937-45. [PMID: 23239819 DOI: 10.1177/1933719112468947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As endocrinologically active cells, adipocytes are capable of secreting various adipocytokines such as leptin, resistin, and adiponectin to impact metabolic function. Although adipocytes remain to be the primary site of synthesis and secretion, there is now growing evidence that supports the presence of adiponectin and its receptors within the hypothalamic-pituitary-gonadal axis, providing a possible link between obesity and abnormal reproductive physiology. It has been demonstrated that adiponectin may reduce gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus as well as modulate gonadal steroid hormone production. Furthermore, prior data indicate that adiponectin may play a role in decreasing luteinizing hormone secretion from pituitary gonadotropes. We aimed to identify the hormonal regulators of adiponectin and its receptors, AdipoR1 and AdipoR2, in pituitary gonadotropes using immortalized gonadotropic LβT2 cells and primary rat pituitary cells. Our study shows significant alterations in adiponectin expression across the estrous cycle. In addition, we present a novel finding that GnRH suppresses pituitary adiponectin expression via the calcium and protein kinase A intracellular pathways in both cultured rat primary pituitary cells and the LβT2 gonadotrope cell line. The GnRH did not alter expression of the adiponectin receptors, AdipoR1 and AdipoR2, in cultured gonadotropes. Expression of the adiponectin receptors, AdipoR1 and AdipoR2, was not altered by GnRH in cell culture but in vivo or in vitro. Our data suggest that gonadotrope function may be modulated by GnRH-mediated changes in adiponectin expression.
Collapse
Affiliation(s)
- Jonathan Kim
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | | | | | | | |
Collapse
|
41
|
Raffelsieper M, Mielenz B, Häußler S, Sauerwein H, Mielenz M, Illges H. A Monoclonal Antibody Against Bovine Adiponectin. Hybridoma (Larchmt) 2012; 31:465-8. [DOI: 10.1089/hyb.2012.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael Raffelsieper
- University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Birgit Mielenz
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Susanne Häußler
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Manfred Mielenz
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Harald Illges
- University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany
| |
Collapse
|
42
|
Giesy SL, Yoon B, Currie WB, Kim JW, Boisclair YR. Adiponectin deficit during the precarious glucose economy of early lactation in dairy cows. Endocrinology 2012; 153:5834-44. [PMID: 23077076 DOI: 10.1210/en.2012-1765] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In rodents and primates, insulin resistance develops during pregnancy and fades after parturition. In contrast, dairy cows and other ruminants maintain insulin resistance in early lactation (EL). This adaptation favors mammary glucose uptake, an insulin-independent process, at a time when the glucose supply is scarce. Reduction in circulating levels of the insulin-sensitizing hormone adiponectin promotes insulin resistance in other species, but whether it contributes to insulin resistance in EL dairy cows is unknown. To address this question, plasma adiponectin was measured in high-yielding dairy cows during the transition from late pregnancy (LP) to EL. Plasma adiponectin varied in quadratic fashion with the highest levels in LP, a maximal reduction of 45% on the day after parturition and a progressive return to LP values over the next 8 wk. Adiponectin circulated nearly exclusively in high molecular weight complexes in LP, and this distribution remained unaffected in EL. The reduction of plasma adiponectin in EL occurred without changes in adiponectin mRNA in adipose tissue but was associated with repression of the expression of proteins associated with the endoplasmic reticulum and involved in assembly of adiponectin oligomers. Finally, EL increased the expression of the adiponectin receptor 1 in muscle and adiponectin receptor 2 in liver but had no effect on the expression of these receptors in adipose tissue and in the mammary gland. These data suggest that reduced plasma adiponectin belongs to the subset of hormonal adaptations in EL dairy cows facilitating mammary glucose uptake via promotion of insulin resistance.
Collapse
|
43
|
Tvarijonaviciute A, Cerón J, Tecles F. Serum adiponectin concentration in dogs - absence of diurnal variation and lack of effect of feeding and methylprednisolone administration. Acta Vet Hung 2012; 60:489-500. [PMID: 23160031 DOI: 10.1556/avet.2012.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the study was to determine the magnitude of diurnal variability of serum adiponectin in healthy beagle dogs, and the possible roles of feeding and glucocorticoids on adiponectin concentrations. For this, adiponectin was measured at 8:00, 10:00, 12:00, 16:00, 20:00, 24:00 and at 4:00 h in 4 beagle dogs that were fasted on the day of the experiment and in 4 dogs that were fed as usual at 9:00 h. Diurnal variability in serum adiponectin concentrations was negligible in both the fed and the fasted dogs. To study the possible effect of glucocorticoids on adiponectin, beagle dogs (n = 14) were assigned to one of three experimental groups. Dogs of the control group were injected with 0.1 ml/kg 0.9% NaCl subcutaneously, while dogs of Groups 1 and 2 were injected with 1 mg/kg and 5 mg/kg of methylprednisolone, respectively, and adiponectin was measured at 8:00, 10:00, 12:00, 16:00 and 20:00 h. Average serum adiponectin levels were not significantly different before and after methylprednisolone exposure at different time-points in the two treated groups. In conclusion, no evidence of postprandial changes in adiponectin level or effects of single-dose glucocorticoid administration on adiponectin were observed in the present study.
Collapse
Affiliation(s)
- Asta Tvarijonaviciute
- 1 University of Murcia Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine 30100 Espinardo, Murcia Spain
| | - José Cerón
- 1 University of Murcia Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine 30100 Espinardo, Murcia Spain
| | - Fernando Tecles
- 1 University of Murcia Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine 30100 Espinardo, Murcia Spain
| |
Collapse
|
44
|
Radjainia M, Huang B, Bai B, Schmitz M, Yang SH, Harris PWR, Griffin MDW, Brimble MA, Wang Y, Mitra AK. A highly conserved tryptophan in the N-terminal variable domain regulates disulfide bond formation and oligomeric assembly of adiponectin. FEBS J 2012; 279:2495-507. [DOI: 10.1111/j.1742-4658.2012.08630.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Briggs DB, Giron RM, Schnittker K, Hart MV, Park CK, Hausrath AC, Tsao TS. Zinc enhances adiponectin oligomerization to octadecamers but decreases the rate of disulfide bond formation. Biometals 2012; 25:469-86. [PMID: 22234497 DOI: 10.1007/s10534-012-9519-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/30/2011] [Indexed: 12/31/2022]
Abstract
Adiponectin, a hormone secreted from adipocytes, has been shown to protect against development of insulin resistance, ischemia-reperfusion injury, and inflammation. Adiponectin assembles into multiple oligomeric isoforms: trimers, hexamers and several higher molecular weight (HMW) species. Of these, the HMW species are selectively decreased during the onset of type 2 diabetes. Despite the critical role of HMW adiponectin in insulin responsiveness, its assembly process is poorly understood. In this report, we investigated the role of divalent cations in adiponectin assembly. Purified adiponectin 18mers, the largest HMW species, did not collapse to smaller oligomers after treatment with high concentrations of EDTA. However, treatment with EDTA or another chelator DTPA inhibited the oligomerization of 18mers from trimers in vitro. Zn(2+) specifically increased the formation of 18mers when compared with Cu(2+), Mg(2+), and Ca(2+). Distribution of adiponectin oligomers secreted from zinc chelator TPEN-treated rat adipocytes skewed toward increased proportions of hexamers and trimers. While we observed presence of zinc in adiponectin purified from calf serum, the role of zinc in disulfide bonding between oligomers was examined because the process is critical for 18mer assembly. Surprisingly, Zn(2+) inhibited disulfide bond formation early in the oligomerization process. We hypothesize that initial decreases in disulfide formation rates could allow adiponectin subunits to associate before becoming locked in fully oxidized conformations incapable of further oligomerization. These data demonstrate that zinc stimulates oligomerization of HMW adiponectin and possibly other disulfide-dependent protein assembly processes.
Collapse
Affiliation(s)
- David B Briggs
- Department of Chemistry and Biochemistry, University of Arizona, MRB Diabetes Research, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Briggs DB, Giron RM, Malinowski PR, Nuñez M, Tsao TS. Role of redox environment on the oligomerization of higher molecular weight adiponectin. BMC BIOCHEMISTRY 2011; 12:24. [PMID: 21600065 PMCID: PMC3117782 DOI: 10.1186/1471-2091-12-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/23/2011] [Indexed: 02/07/2023]
Abstract
Background Adiponectin is an adipocyte-secreted hormone with insulin-sensitizing and anti-inflammatory actions. The assembly of trimeric, hexameric, and higher molecular weight (HMW) species of adiponectin is a topic of significant interest because physiological actions of adiponectin are oligomer-specific. In addition, adiponectin assembly is an example of oxidative oligomerization of multi-subunit protein complexes in endoplasmic reticulum (ER). Results We previously reported that trimers assemble into HMW adiponectin via intermediates stabilized by disulfide bonds, and complete oxidation of available cysteines locks adiponectin in hexameric conformation. In this study, we examined the effects of redox environment on the rate of oligomer formation and the distribution of oligomers. Reassembly of adiponectin under oxidizing conditions accelerated disulfide bonding but favored formation of hexamers over the HMW species. Increased ratios of HMW to hexameric adiponectin could be achieved rapidly under oxidizing conditions by promoting disulfide rearrangement. Conclusions Based upon these observations, we propose oxidative assembly of multi-subunit adiponectin complexes in a defined and stable redox environment is favored under oxidizing conditions coupled with high rates of disulfide rearrangement.
Collapse
Affiliation(s)
- David B Briggs
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
47
|
Wei Z, Peterson JM, Wong GW. Metabolic regulation by C1q/TNF-related protein-13 (CTRP13): activation OF AMP-activated protein kinase and suppression of fatty acid-induced JNK signaling. J Biol Chem 2011; 286:15652-65. [PMID: 21378161 DOI: 10.1074/jbc.m110.201087] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Members of the C1q/TNF family play important and diverse roles in the immune, endocrine, skeletal, vascular, and sensory systems. Here, we identify and characterize CTRP13, a new and extremely conserved member of the C1q/TNF family. CTRP13 is preferentially expressed by adipose tissue and the brain in mice and predominantly by adipose tissue in humans. Within mouse adipose tissue, CTRP13 is largely expressed by cells of the stromal vascular compartment. Due to sexually dimorphic expression patterns, female mice have higher transcript and circulating CTRP13 levels than males. CTRP13 transcript and circulating levels are elevated in obese male mice, suggesting a potential role in energy metabolism. The insulin-sensitizing drug rosiglitazone also increases the expression of CTRP13 in adipocytes, which correlates with the insulin-sensitizing action of CTRP13. In a heterologous expression system, CTRP13 is secreted as a disulfide-linked oligomeric protein. When co-expressed, CTRP13 forms heteromeric complexes with a closely related family member, CTRP10. This heteromeric association does not involve conserved N-terminal Cys residues. Functional studies using purified recombinant protein demonstrated that CTRP13 is an adipokine that promotes glucose uptake in adipocytes, myotubes, and hepatocytes via activation of the AMPK signaling pathway. CTRP13 also ameliorates lipid-induced insulin resistance in hepatocytes through suppression of the SAPK/JNK stress signaling that impairs the insulin signaling pathway. Further, CTRP13 reduces glucose output in hepatocytes by inhibiting the mRNA expression of gluconeogenic enzymes, glucose-6-phosphatase and the cytosolic form of phosphoenolpyruvate carboxykinase. These results provide the first functional characterization of CTRP13 and establish its importance in glucose homeostasis.
Collapse
Affiliation(s)
- Zhikui Wei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
48
|
Hayama S, Higuchi T, Miyakoshi H, Nakano Y. Analytical evaluation of a high-molecular-weight (HMW) adiponectin chemiluminescent enzyme immunoassay. Clin Chim Acta 2010; 411:2073-8. [DOI: 10.1016/j.cca.2010.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 11/26/2022]
|
49
|
Parker J, Menn-Josephy H, Laskow B, Takemura Y, Aprahamian T. Modulation of lupus phenotype by adiponectin deficiency in autoimmune mouse models. J Clin Immunol 2010; 31:167-73. [PMID: 21063900 DOI: 10.1007/s10875-010-9486-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
Adiponectin is an adipocyte-derived cytokine with anti-inflammatory properties. Paradoxically, circulating adiponectin levels are increased in a number of inflammatory diseases. Thus, we sought to define the role of adiponectin deficiency in mouse models of autoimmunity. Adiponectin-deficient mice on a C57BL/6 background do not develop an autoimmune phenotype. Autoimmunity was also not observed in adiponectin-deficient mice generated on the permissive MRL background. However, adiponectin deficiency exacerbated the autoimmune phenotype of MRL-lpr mice. Compared with MRL-lpr mice, MRL-lpr.apn(-/-) mice displayed greater lymphadenopathy and splenomegaly, as well as increased anti-nuclear antibody and anti-dsDNA production. In addition, evaluation of the kidney revealed larger glomerular tuft size, crescent formation, increased IgG and C3 deposits, and mesangial expansion in the MRL-lpr.apn(-/-) mice. The effects of adiponectin deficiency on the autoimmune phenotypes were more pronounced in female versus male mice. These data show that, while adiponectin deficiency is not sufficient to confer autoimmunity, adiponectin acts as a negative modulator of the autoimmune phenotype in a murine model of lupus.
Collapse
Affiliation(s)
- Jennifer Parker
- Molecular Cardiology, Whitaker Cardiovascular Institute, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
50
|
Reid IR. Fat and bone. Arch Biochem Biophys 2010; 503:20-7. [DOI: 10.1016/j.abb.2010.06.027] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/23/2010] [Accepted: 06/26/2010] [Indexed: 12/13/2022]
|