1
|
Obón-Santacana M, Moratalla-Navarro F, Guinó E, Carreras-Torres R, Díez-Obrero V, Bars-Cortina D, Ibáñez-Sanz G, Rodríguez-Alonso L, Mata A, García-Rodríguez A, Devall M, Casey G, Li L, Moreno V. Diet Impacts on Gene Expression in Healthy Colon Tissue: Insights from the BarcUVa-Seq Study. Nutrients 2024; 16:3131. [PMID: 39339731 PMCID: PMC11434945 DOI: 10.3390/nu16183131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Introduction: The global rise of gastrointestinal diseases, including colorectal cancer and inflammatory bowel diseases, highlights the need to understand their causes. Diet is a common risk factor and a crucial regulator of gene expression, with alterations observed in both conditions. This study aims to elucidate the specific biological mechanisms through which diet influences the risk of bowel diseases. (2) Methods: We analyzed data from 436 participants from the BarcUVa-Seq population-based cross-sectional study utilizing gene expression profiles (RNA-Seq) from frozen colonic mucosal biopsies and dietary information from a semi-quantitative food frequency questionnaire. Dietary variables were evaluated based on two dietary patterns and as individual variables. Differential expression gene (DEG) analysis was performed for each dietary factor using edgeR. Protein-protein interaction (PPI) analysis was conducted with STRINGdb v11 for food groups with more than 10 statistically significant DEGs, followed by Reactome-based enrichment analysis for the resulting networks. (3) Results: Our findings reveal that food intake, specifically the consumption of blue fish, alcohol, and potatoes, significantly influences gene expression in the colon of individuals without tumor pathology, particularly in pathways related to DNA repair, immune system function, and protein glycosylation. (4) Discussion: These results demonstrate how these dietary components may influence human metabolic processes and affect the risk of bowel diseases.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Department of Gastroenterology, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, 17190 Salt, Girona, Spain
| | - Virginia Díez-Obrero
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - David Bars-Cortina
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Ibáñez-Sanz
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Rodríguez-Alonso
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Alfredo Mata
- Digestive System Service, Moisés Broggi Hospital, 08970 Sant Joan Despí, Spain
| | - Ana García-Rodríguez
- Endoscopy Unit, Digestive System Service, Viladecans Hospital-IDIBELL, 08840 Viladecans, Barcelona, Spain
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Graham Casey
- Department of Genome Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
2
|
Chen B, Wang C, Li W. Serum albumin levels and risk of atrial fibrillation: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1385223. [PMID: 38655495 PMCID: PMC11035896 DOI: 10.3389/fcvm.2024.1385223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Although several observational studies have linked serum albumin to cardiovascular disease and considered it as an important biomarker, little is known about whether increasing or maintaining serum albumin levels can effectively improve the prognosis of patients with atrial fibrillation. Therefore, this study aims to further explore the causal relationship between serum albumin and atrial fibrillation and its potential mechanism. Method Using data from large-scale genome-wide association studies, we conducted a two-sample Mendelian randomization (MR) analysis and a mediation MR analysis, using serum albumin as the exposure variable and atrial fibrillation as the outcome variable. We included 486 serum metabolites as potential mediating factors. To increase the robustness of the analysis, we applied five statistical methods, including inverse variance weighted, weighted median, MR-Egger, simple mode, and weighted mode. Validate the MR results using Bayesian weighted Mendelian randomization method. Result The results of the MR analysis indicate a significant inverse association between genetically predicted serum albumin concentration (g/L) and the risk of atrial fibrillation (Beta = -0.172, OR = 0.842, 95% CI: 0.753-0.941, p = 0.002). Further mediation MR analysis revealed that serum albumin may mediate the causal relationship with atrial fibrillation by affecting two serum metabolites, docosatrienoate and oleate/vaccenate, and the mediating effect was significant. In addition, all our instrumental variables showed no heterogeneity and level-multiplicity in the MR analysis. To verify the stability of the results, we also conducted a sensitivity analysis using the leave-one-out method, and the results further confirmed that our findings were robust and reliable. Finally, we conducted a validation using the Bayesian weighted Mendelian randomization method, which demonstrated the reliability of our causal inference results. Conclusion This study strongly demonstrates the causal relationship between serum albumin and reduced risk of atrial fibrillation through genetic methods, and reveals the key mediating role of two serum metabolites in this relationship. These findings not only provide a new perspective for our understanding of the role of serum albumin in atrial fibrillation, but also provide new ideas for the prevention and treatment strategies of atrial fibrillation.
Collapse
Affiliation(s)
- Bohang Chen
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Chuqiao Wang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Wenjie Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Borgonovi SM, Iametti S, Di Nunzio M. Docosahexaenoic Acid as Master Regulator of Cellular Antioxidant Defenses: A Systematic Review. Antioxidants (Basel) 2023; 12:1283. [PMID: 37372014 DOI: 10.3390/antiox12061283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid that benefits the prevention of chronic diseases. Due to its high unsaturation, DHA is vulnerable to free radical oxidation, resulting in several unfavorable effects, including producing hazardous metabolites. However, in vitro and in vivo investigations suggest that the relationship between the chemical structure of DHA and its susceptibility to oxidation may not be as clear-cut as previously thought. Organisms have developed a balanced system of antioxidants to counteract the overproduction of oxidants, and the nuclear factor erythroid 2-related factor 2 (Nrf2) is the key transcription factor identified for transmitting the inducer signal to the antioxidant response element. Thus, DHA might preserve the cellular redox status promoting the transcriptional regulation of cellular antioxidants through Nrf2 activation. Here, we systematically summarize the research on the possible role of DHA in controlling cellular antioxidant enzymes. After the screening process, 43 records were selected and included in this review. Specifically, 29 studies related to the effects of DHA in cell cultures and 15 studies concerned the effects of consumption or treatment with DHA in animal. Despite DHA's promising and encouraging effects at modulating the cellular antioxidant response in vitro/in vivo, some differences observed among the reviewed studies may be accounted for by the different experimental conditions adopted, including the time of supplementation/treatment, DHA concentration, and cell culture/tissue model. Moreover, this review offers potential molecular explanations for how DHA controls cellular antioxidant defenses, including involvement of transcription factors and the redox signaling pathway.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
4
|
Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs. Nutrients 2017; 9:nu9111191. [PMID: 29084142 PMCID: PMC5707663 DOI: 10.3390/nu9111191] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/22/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. The purpose of this updated review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of cardiac arrhythmias; to provide results of the most recent studies on the omega-3 PUFA anti-arrhythmic efficacy and to discuss the lack of the benefit in relation to omega-3 PUFA status. The evidence is in the favor of omega-3 PUFA acute and long-term treatment, perhaps with mitochondria-targeted antioxidants. However, for a more objective evaluation of the anti-arrhythmic potential of omega-3 PUFAs in clinical trials, it is necessary to monitor the basal pre-interventional omega-3 status of individuals, i.e., red blood cell content, omega-3 index and free plasma levels. In the view of evidence-based medicine, it seems to be crucial to aim to establish new approaches in the prevention of cardiac arrhythmias and associated morbidity and mortality that comes with these conditions.
Collapse
|
5
|
Lee MH, Kwon N, Yoon SR, Kim OY. Serum Phospholipid Docosahexaenoic Acid Is Inversely Associated with Arterial Stiffness in Metabolically Healthy Men. Clin Nutr Res 2016; 5:190-203. [PMID: 27482523 PMCID: PMC4967722 DOI: 10.7762/cnr.2016.5.3.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/25/2023] Open
Abstract
We hypothesized that lower proportion of serum phospholipid docosahexaenoic acid (DHA) is inversely associated with increased cardiovascular risk and vascular function in metabolically healthy men. To elucidate it, we first compared serum phospholipid free fatty acid (FA) compositions and cardiovascular risk parameters between healthy men (n = 499) and male patients with coronary artery disease (CAD, n = 111) (30-69 years) without metabolic syndrome, and then further-analyzed the association of serum phospholipid DHA composition with arterial stiffness expressed by brachial-ankle pulse wave velocity (ba-PWV) in metabolically healthy men. Basic parameters, lipid profiles, fasting glycemic status, adiponectin, high sensitivity C-reactive protein (hs-CRP) and LDL particle size, and serum phospholipid FA compositions were significantly different between the two subject groups. Serum phospholipid DHA was highly correlated with most of long-chain FAs. Metabolically healthy men were subdivided into tertile groups according to serum phospholipid DHA proportion: lower (< 2.061%), middle (2.061%-3.235%) and higher (> 3.235%). Fasting glucose, insulin resistance, hs-CRP and ba-PWVs were significantly higher and adiponectin and LDL particle size were significantly lower in the lower-DHA group than the higher-DHA group after adjusted for confounding factors. In metabolically healthy men, multiple stepwise regression analysis revealed that serum phospholipid DHA mainly contributed to arterial stiffness (β'-coefficients = -0.127, p = 0.006) together with age, systolic blood pressure, triglyceride (r = 0.548, p = 0.023). Lower proportion of serum phospholipid DHA was associated with increased cardiovascular risk and arterial stiffness in metabolically healthy men. It suggests that maintaining higher proportion of serum phospholipid DHA may be beneficial for reducing cardiovascular risk including arterial stiffness in metabolically healthy men.
Collapse
Affiliation(s)
- Mi-Hyang Lee
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon 34337, Korea.; Human Life Research Center, Dong-A University, Busan 49201, Korea
| | - Nayeon Kwon
- Department of Food and Nutrition, Yonsei University, Seoul 03722, Korea
| | - So Ra Yoon
- Department of Food Science and Nutrition, Brain Busan 21, Dong-A University, Busan 49201, Korea
| | - Oh Yoen Kim
- Human Life Research Center, Dong-A University, Busan 49201, Korea.; Department of Food Science and Nutrition, Brain Busan 21, Dong-A University, Busan 49201, Korea
| |
Collapse
|
6
|
Di Nunzio M, Valli V, Bordoni A. PUFA and oxidative stress. Differential modulation of the cell response by DHA. Int J Food Sci Nutr 2016; 67:834-43. [PMID: 27353954 DOI: 10.1080/09637486.2016.1201790] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although an increased dietary intake of long-chain n-3 PUFA is considered an effective preventive strategy, a theoretical concern related to the possible increase of lipid peroxidation induced by a PUFA-rich diet still remains a problem. In this study, the effects of different PUFA (linoleic, α-linolenic, arachidonic, eicosapentaenoic and docosahexaenoic acid) on cytotoxicity, lipid oxidation, and modulation of antioxidant defenses were evaluated in HepG2 cells submitted to an oxidative stress (H2O2). Results clearly evidenced that all supplemented PUFA, but DHA, enhanced cell susceptibility to H2O2. Overall, our results underline that PUFA cannot be considered as a single category but as individual compounds, and research on mechanisms of action and preventive effects should deal with the individual fatty acids, particularly in the case of DHA.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- a Interdepartmental Centre for Industrial Agri-Food Research , University of Bologna , Cesena (FC), Italy
| | - Veronica Valli
- b Department of Agri-Food Science and Technology , University of Bologna , Cesena (FC), Italy
| | - Alessandra Bordoni
- a Interdepartmental Centre for Industrial Agri-Food Research , University of Bologna , Cesena (FC), Italy ;,b Department of Agri-Food Science and Technology , University of Bologna , Cesena (FC), Italy
| |
Collapse
|
7
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Jeckel KM, Bouma GJ, Hess AM, Petrilli EB, Frye MA. Dietary fatty acids alter left ventricular myocardial gene expression in Wistar rats. Nutr Res 2014; 34:694-706. [PMID: 25172377 DOI: 10.1016/j.nutres.2014.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/05/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022]
Abstract
Obesity increases the risk for cardiomyopathy in the absence of comorbidities. Myocardial structure is modified by dietary fatty acids. Left ventricular hypertrophy is associated with Western (WES) diet consumption, whereas intake of n-3 polyunsaturated fatty acids is associated with antihypertrophic effects. We previously observed no attenuation of left ventricular thickening after 3 months of docosahexaenoic acid (DHA) supplementation of a WES diet, compared with WES diet intake alone, in rats that had similar weight, adiposity, and insulin sensitivity to control animals. The objective of this study was to define left ventricular gene expression in these animals to determine whether diet alone was associated with a physiologic or pathologic hypertrophic response. We hypothesized that WES diet consumption would favor a pathologic or maladaptive myocardial gene expression pattern and that DHA supplementation would favor a physiologic or adaptive response. Microarray analysis identified 64 transcripts that were differentially expressed (P ≤ .001) within one or more treatment comparisons. Using quantitative real-time polymerase chain reaction, 29 genes with fold change at least 1.74 were successfully validated; all but 3 had similar directionality to that observed using microarray, and 2 genes, connective tissue growth factor and cathepsin M, were differentially expressed according to diet. WES blot analysis was performed on 4 proteins relevant to myocardial hypertrophy and metabolism. Acyl-CoA thioesterase 1, B-cell translocation gene 2, and carbonic anhydrase III showed directional change consistent with gene expression. Retinol saturase (all-trans-retinol 13,14-reductase), although not consistent with gene expression, was different according to diet, with increased concentrations in WES-fed rats compared with control and DHA-supplemented animals. Diet did not distinguish a transcriptome reflecting physiologic or pathologic myocardial hypertrophy; furthermore, the modest changes observed suggest that obesity and associated comorbidities may play a larger role than mere dietary fatty acid composition in development of cardiomyopathy.
Collapse
Affiliation(s)
- Kimberly M Jeckel
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.
| | - Gerrit J Bouma
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Ann M Hess
- Department of Statistics, College of Natural Sciences, Colorado State University, Fort Collins, CO 80523
| | - Erin B Petrilli
- Infectious Disease Research Center, Colorado State University, Fort Collins, CO 80523
| | - Melinda A Frye
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
9
|
Influence of genotype on the modulation of gene and protein expression by n-3 LC-PUFA in rats. GENES AND NUTRITION 2013; 8:589-600. [PMID: 23744008 DOI: 10.1007/s12263-013-0349-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/22/2013] [Indexed: 01/22/2023]
Abstract
It is becoming increasingly apparent that responsiveness to dietary fat composition is heterogeneous and dependent on the genetic make-up of the individual. The aim of this study was to evidence a genotype-related differential effect of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on the modulation of hepatic genes involved in cholesterol metabolism. Fourteen spontaneously hypertensive (SH) rats, which present a naturally occurring variation in the gene encoding for sterol responsive element binding protein 1 (SREBP-1), contributing to their inherited variation in lipid metabolism, and 14 Wistar-Kyoto (WK) rats were fed a control diet or an n-3 LC-PUFA enriched diet for 90 days. Plasma lipid profile, total lipid fatty acid composition in plasma and liver, and the expression of SREBP-1 and 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase, low-density lipoprotein receptor, and acyl-CoA:cholesterol acyltransferase 2 encoding genes and proteins were determined. The positive effect of the enriched diet on the serum lipid profile, particularly on total cholesterol and triglyceride level, was clearly evidenced in both WK and SH rats, but n-3 LC-PUFA acted through a different modulation of gene and protein expression that appeared related to the genetic background. Our study evidences a different transcriptional effect of specific nutrients related to genetic variants.
Collapse
|
10
|
Capozzi F, Bordoni A. Foodomics: a new comprehensive approach to food and nutrition. GENES & NUTRITION 2013; 8:1-4. [PMID: 22933238 PMCID: PMC3535000 DOI: 10.1007/s12263-012-0310-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/26/2022]
Abstract
In the past 20 years, the scientific community has faced a great development in different fields due to the development of high-throughput, omics technologies. Starting from the four major types of omics measurements (genomics, transcriptomics, proteomics, and metabolomics), a variety of omics subdisciplines (epigenomics, lipidomics, interactomics, metallomics, diseasomics, etc.) has emerged. Thanks to the omics approach, researchers are now facing the possibility of connecting food components, foods, the diet, the individual, the health, and the diseases, but this broad vision needs not only the application of advanced technologies, but mainly the ability of looking at the problem with a different approach, a "foodomics approach". Foodomics is the comprehensive, high-throughput approach for the exploitation of food science in the light of an improvement of human nutrition. Foodomics is a new approach to food and nutrition that studies the food domain as a whole with the nutrition domain to reach the main objective, the optimization of human health and well-being.
Collapse
Affiliation(s)
- Francesco Capozzi
- Department of Food Sciences, University of Bologna, Piazza Goidanich, 60, 47521 Cesena, FC Italy
| | - Alessandra Bordoni
- Department of Food Sciences, University of Bologna, Piazza Goidanich, 60, 47521 Cesena, FC Italy
| |
Collapse
|
11
|
Jeckel KM, Veeramachaneni DNR, Chicco AJ, Chapman PL, Mulligan CM, Hegarty JR, Pagliassotti MJ, Ferguson LA, Bouma GJ, Frye MA. Docosahexaenoic acid supplementation does not improve Western diet-induced cardiomyopathy in rats. PLoS One 2012; 7:e51994. [PMID: 23300587 PMCID: PMC3530602 DOI: 10.1371/journal.pone.0051994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 11/13/2012] [Indexed: 12/28/2022] Open
Abstract
Obesity increases risk for cardiomyopathy in the absence of hypertension, diabetes or ischemia. The fatty acid milieu, modulated by diet, may modify myocardial structure and function, lending partial explanation for the array of cardiomyopathic phenotypy. We sought to identify gross, cellular and ultrastructural myocardial changes associated with Western diet intake, and subsequent modification with docosahexaenoic acid (DHA) supplementation. Wistar and Sprague-Dawley (SD) rats received 1 of 3 diets: control (CON); Western (WES); Western + DHA (WES+DHA). After 12 weeks of treatment, echocardiography was performed and myocardial adiponectin, fatty acids, collagen, area occupied by lipid and myocytes, and ultrastructure were determined. Strain effects included higher serum adiponectin in Wistar rats, and differences in myocardial fatty acid composition. Diet effects were evident in that both WES and WES+DHA feeding were associated with similarly increased left ventricular (LV) diastolic cranial wall thickness (LVW(cr/d)) and decreased diastolic internal diameter (LVID(d)), compared to CON. Unexpectedly, WES+DHA feeding was associated additionally with increased thickness of the LV cranial wall during systole (LVW(cr/s)) and the caudal wall during diastole (LVW(ca/d)) compared to CON; this was observed concomitantly with increased serum and myocardial adiponectin. Diastolic dysfunction was present in WES+DHA rats compared to both WES and CON. Myocyte cross sectional area (CSA) was greater in WES compared to CON rats. In both fat-fed groups, transmission electron microscopy (TEM) revealed myofibril degeneration, disorganized mitochondrial cristae, lipid inclusions and vacuolation. In the absence of hypertension and whole body insulin resistance, WES+DHA intake was associated with more global LV thickening and with diastolic dysfunction, compared to WES feeding alone. Myocyte hypertrophy, possibly related to subcellular injury, is an early change that may contribute to gross hypertrophy. Strain differences in adipokines and myocardial fatty acid accretion may underlie heterogeneous data from rodent studies.
Collapse
Affiliation(s)
- Kimberly M. Jeckel
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - D. N. Rao Veeramachaneni
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam J. Chicco
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Health and Exercise Science, College of Applied Human Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Food Science and Human Nutrition, College of Applied Human Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Phillip L. Chapman
- Department of Statistics, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Christopher M. Mulligan
- Department of Food Science and Human Nutrition, College of Applied Human Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jennifer R. Hegarty
- Department of Chemical and Biological Engineering, College of Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael J. Pagliassotti
- Department of Food Science and Human Nutrition, College of Applied Human Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lindsay A. Ferguson
- Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Gerrit J. Bouma
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Melinda A. Frye
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
12
|
Øie E, Berge RK, Ueland T, Dahl CP, Edvardsen T, Beitnes JO, Bohov P, Aukrust P, Yndestad A. Tetradecylthioacetic acid increases fat metabolism and improves cardiac function in experimental heart failure. Lipids 2012; 48:139-54. [PMID: 23266898 DOI: 10.1007/s11745-012-3749-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
Changes in myocardial metabolism, including a shift from fatty acid to glucose utilization and changes in fatty acid availability and composition are characteristics of heart failure development. Tetradecylthioacetic acid (TTA) is a fatty acid analogue lacking the ability to undergo mitochondrial β-oxidation. TTA promotes hepatic proliferation of mitochondria and peroxisomes and also decreases serum triglycerides and cholesterol in animals. We investigated the effect of TTA, in combination with a high-fat or regular diet, in a rat model of post-myocardial infarction heart failure. TTA had a beneficial effect on cardiac function in post-myocardial infarction heart failure without affecting myocardial remodeling. These effects of TTA on myocardial function were accompanied by decreased free fatty acids in plasma, increased myocardial proportion of n-3 polyunsaturated fatty acids (PUFA) and a decreased proportion of n-6 PUFA. Myocardial enzyme gene expression during TTA treatment suggested that the increase in n-3 PUFA could reflect increased n-3 PUFA synthesis and inadequately increased n-3 PUFA β-oxidation. Based on our data, it is unlikely that the changes are secondary to alterations in other tissues as plasma and liver showed an opposite pattern with decreased n-3 PUFA during TTA treatment. The present study suggests that TTA may improve myocardial function in heart failure, potentially involving its ability to decrease the availability of FFA and increase the myocardial proportion of n-3 PUFA.
Collapse
Affiliation(s)
- Erik Øie
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mehlman E, Bright J, Jeckel K, Porsche C, Veeramachaneni D, Frye M. Echocardiographic Evidence of Left Ventricular Hypertrophy in Obese Dogs. J Vet Intern Med 2012. [DOI: 10.1111/jvim.12018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- E. Mehlman
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; Fort Collins CO
| | - J.M. Bright
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; Fort Collins CO
| | - K. Jeckel
- Department of Biomedical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; Fort Collins CO
| | - C. Porsche
- Department of Biomedical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; Fort Collins CO
| | - D.N.R. Veeramachaneni
- Department of Biomedical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; Fort Collins CO
| | - M. Frye
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; Fort Collins CO
- Department of Biomedical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; Fort Collins CO
| |
Collapse
|
14
|
Different effects of omega-3 fatty acids on the cell cycle in C2C12 myoblast proliferation. Mol Cell Biochem 2012; 367:165-73. [PMID: 22610825 DOI: 10.1007/s11010-012-1329-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 05/03/2012] [Indexed: 01/08/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are important molecules for human health. We investigated the effects of three major omega-3 PUFAs on C2C12 myoblast proliferation. Both docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids decreased cell growth, whereas linolenic (ALA) acid did not, compared with the control. Cell cycle analysis showed that G(1) phase duration was increased markedly and S-phase duration was decreased by DHA and EPA. In contrast, there was no change in the G(1) or S-phase duration when the cells were treated with linolenic acid. To determine how DHA and EPA affected the cell cycle, cyclins and MAPK proteins were investigated. Western blotting and real-time quantitative PCR showed that DHA and EPA decreased cyclin E and CDK2 levels at both the protein and mRNA level. Also, MAPK phosphorylation levels were decreased by treatment with DHA and EPA. Our results indicated that different kinds of n-3 PUFA differentially affected myoblast cell proliferation. DHA and EPA decreased skeletal muscle cell proliferation through a mechanism involving MAPK-ERK.
Collapse
|
15
|
Antiapoptotic and antiautophagic effects of eicosapentaenoic acid in cardiac myoblasts exposed to palmitic acid. Nutrients 2012; 4:78-90. [PMID: 22413063 PMCID: PMC3296992 DOI: 10.3390/nu4020078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 01/23/2023] Open
Abstract
Apoptosis is a programmed cell death that plays a critical role in cell homeostasis. In particular, apoptosis in cardiomyocytes is involved in several cardiovascular diseases including heart failure. Recently autophagy has emerged as an important modulator of programmed cell death pathway. Recent evidence indicates that saturated fatty acids induce cell death through apoptosis and this effect is specific for palmitate. On the other hand, n-3 polyunsaturated fatty acids (PUFAs) have been implicated in the protection against cardiovascular diseases, cardiac ischemic damage and myocardial dysfunction. In the present study we show that n-3 PUFA eicosapentaenoic acid (EPA) treatment to culture medium of H9c2 rat cardiomyoblasts protects cells against palmitate-induced apoptosis, as well as counteracts palmitate-mediated increase of autophagy. Further investigation is required to establish whether the antiautophagic effect of EPA may be involved in its cytoprotective outcome and to explore the underlying biochemical mechanisms through which palmitate and EPA control the fate of cardiac cells.
Collapse
|
16
|
Rodriguez-Leyva D, Malik A, Tappia PS. Gender-related gene expression in response to dietary fatty acids and predisposition to atherosclerosis and cardiovascular disease. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Di Nunzio M, Valli V, Bordoni A. Pro- and anti-oxidant effects of polyunsaturated fatty acid supplementation in HepG2 cells. Prostaglandins Leukot Essent Fatty Acids 2011; 85:121-7. [PMID: 21820297 DOI: 10.1016/j.plefa.2011.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022]
Abstract
PUFA are bioactive nutrients thought to be effective in the prevention of many chronic diseases. PUFA susceptibility to free radical oxidation represents the other side of the coin, and the role of PUFA as pro- or anti-oxidants is still an unanswered question. In this study we supplemented HepG2 cells with different PUFA, and observed different effects on cytotoxicity, oxidation and modulation of antioxidant defenses. These were not simply related to the length of carbon chain, or to the number and position of double bonds. ARA supply evidenced the induction of oxidative damage, while DHA supplemented cells appeared richer in antioxidant defenses. To our knowledge, our study is the first evidencing the different pro- or anti-oxidant effect of different fatty acids when supplemented to cells. Overall, this points out the importance of not generalizing dietary recommendations considering PUFA as one category, but to extend them to the individual fatty acids.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- Department of Food Sciences, Campus di Scienze degli Alimenti, Università di Bologna, Piazza Goidanich, 60 47521 Cesena (FC), Italy.
| | | | | |
Collapse
|
18
|
Jeckel KM, Miller KE, Chicco AJ, Chapman PL, Mulligan CM, Falcone PH, Miller ML, Pagliassotti MJ, Frye MA. The role of dietary fatty acids in predicting myocardial structure in fat-fed rats. Lipids Health Dis 2011; 10:92. [PMID: 21649916 PMCID: PMC3127789 DOI: 10.1186/1476-511x-10-92] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/07/2011] [Indexed: 12/27/2022] Open
Abstract
Background Obesity increases the risk for development of cardiomyopathy in the absence of hypertension, diabetes or myocardial ischemia. Not all obese individuals, however, progress to heart failure. Indeed, obesity may provide protection from cardiovascular mortality in some populations. The fatty acid milieu, modulated by diet, may modify obesity-induced myocardial structure and function, lending partial explanation for the array of cardiomyopathic phenotypy in obese individuals. Methods Adult male Sprague-Dawley rats were fed 1 of the following 4 diets for 32 weeks: control (CON); 50% saturated fat (SAT); 40% saturated fat + 10% linoleic acid (SAT+LA); 40% saturated fat + 10% α-linolenic acid (SAT+ALA). Serum leptin, insulin, glucose, free fatty acids and triglycerides were quantitated. In vivo cardiovascular outcomes included blood pressure, heart rate and echocardiographic measurements of structure and function. The rats were sacrificed and myocardium was processed for fatty acid analysis (TLC-GC), and evaluation of potential modifiers of myocardial structure including collagen (Masson's trichrome, hydroxyproline quantitation), lipid (Oil Red O, triglyceride quantitation) and myocyte cross sectional area. Results Rats fed SAT+LA and SAT+ALA diets had greater cranial LV wall thickness compared to rats fed CON and SAT diets, in the absence of hypertension or apparent insulin resistance. Treatment was not associated with changes in myocardial function. Myocardial collagen and triglycerides were similar among treatment groups; however, rats fed the high-fat diets, regardless of composition, demonstrated increased myocyte cross sectional area. Conclusions Under conditions of high-fat feeding, replacement of 10% saturated fat with either LA or ALA is associated with thickening of the cranial LV wall, but without concomitant functional changes. Increased myocyte size appears to be a more likely contributor to early LV thickening in response to high-fat feeding. These findings suggest that myocyte hypertrophy may be an early change leading to gross LV hypertrophy in the hearts of "healthy" obese rats, in the absence of hypertension, diabetes and myocardial ischemia.
Collapse
Affiliation(s)
- Kimberly M Jeckel
- Department of Biomedical Sciences, Campus delivery #1680, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Righi V, Di Nunzio M, Danesi F, Schenetti L, Mucci A, Boschetti E, Biagi P, Bonora S, Tugnoli V, Bordoni A. EPA or DHA Supplementation Increases Triacylglycerol, but not Phospholipid, Levels in Isolated Rat Cardiomyocytes. Lipids 2011; 46:627-36. [DOI: 10.1007/s11745-011-3562-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/16/2011] [Indexed: 12/15/2022]
|
20
|
Di Nunzio M, Danesi F, Bordoni A. n-3 PUFA as regulators of cardiac gene transcription: a new link between PPAR activation and fatty acid composition. Lipids 2009; 44:1073-9. [PMID: 19859757 DOI: 10.1007/s11745-009-3362-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/05/2009] [Indexed: 02/04/2023]
Abstract
The fatty acids regulate gene expression directly binding to nuclear receptors or affecting the protein content of transcription factors. In this work, supplementing primary cultures of neonatal rat cardiomyocytes with 60 microM EPA or DHA, we demonstrated by an ELISA assay an increased PPAR beta/delta binding to DNA. n-3 PUFA supplementation deeply changed the acyl composition of both cytosolic and nuclear fractions. The high content of total fatty acids, particularly EPA and DHA, and its increase following supplementation suggested a selective accumulation of n-3 PUFAs in the nucleus, supporting the direct interaction of n-3 PUFA with PPAR. The activity of acyl-CoA thioesterase (ACOT), catalyzing the reaction leading to NEFA from acyl-CoA, increased in n-3 PUFA supplemented cells. The NEFA/acyl-CoA ratio is an important regulator of the fatty acid transport to the nucleus and consequent modulation of gene transcription, and although ACOT activity is not the only parameter of this ratio, it is important for the control of the NEFA pool composition. Our data further clarify what happens in cardiomyocytes following n-3 PUFA supplementation, linking the modification of acyl composition to ACOT activity and PPAR activation.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- Department of Biochemistry G. Moruzzi, Alma Mater Studiorum, University of Bologna, 40126, Bologna (BO), Italy
| | | | | |
Collapse
|
21
|
Hurst S, Rees SG, Randerson PF, Caterson B, Harwood JL. Contrasting Effects of n-3 and n-6 Fatty Acids on Cyclooxygenase-2 in Model Systems for Arthritis. Lipids 2009; 44:889-96. [DOI: 10.1007/s11745-009-3347-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/24/2009] [Indexed: 01/26/2023]
|
22
|
Zainal Z, Longman AJ, Hurst S, Duggan K, Hughes CE, Caterson B, Harwood JL. Modification of Palm Oil for Anti-Inflammatory Nutraceutical Properties. Lipids 2009; 44:581-92. [DOI: 10.1007/s11745-009-3304-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
|
23
|
Gohlke JM, Thomas R, Zhang Y, Rosenstein MC, Davis AP, Murphy C, Becker KG, Mattingly CJ, Portier CJ. Genetic and environmental pathways to complex diseases. BMC SYSTEMS BIOLOGY 2009; 3:46. [PMID: 19416532 PMCID: PMC2680807 DOI: 10.1186/1752-0509-3-46] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/05/2009] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. RESULTS Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. CONCLUSION Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.
Collapse
Affiliation(s)
- Julia M Gohlke
- Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Reuben Thomas
- Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yonqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael C Rosenstein
- Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Allan P Davis
- Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Cynthia Murphy
- Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carolyn J Mattingly
- Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Christopher J Portier
- Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
24
|
Mancardi D, Tullio F, Crisafulli A, Rastaldo R, Folino A, Penna C, Pagliaro P. Omega 3 has a beneficial effect on ischemia/reperfusion injury, but cannot reverse the effect of stressful forced exercise. Nutr Metab Cardiovasc Dis 2009; 19:20-26. [PMID: 18455377 DOI: 10.1016/j.numecd.2008.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/05/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM The beneficial effects of exercise in reducing the incidence of cardiovascular diseases are well known. Several studies have demonstrated that forced exercise (FE) could activate a stress response similar to a restrain stress. Previous studies suggest that heart protection to ischemic events would be improved by an omega 3 free fatty acid (omega3-FFA)-enriched diet. Here, we investigate the impact of stressful FE and an omega 3-FFA-enriched diet on cardiac tolerance to ischemic events over one month. METHODS AND RESULTS Twenty-four Wistar rats were randomly assigned to one of the following protocols: 1) Sedentary (SED) animals who were regularly fed; 2) sedentary animals who were given 1ml/day of fish oil for one month; 3) FE+omega3-FFA rats who were given 1ml/day of fish oil and forced to run on a motorized wheel for 30min every day, both for one month; and 4) FE animals were forced to exercise as group 3 and fed with a regular diet. At the end of the treatments an isolated heart preparation was performed. After a 30min global ischemic event and 2h reperfusion, hearts of sedentary-omega3 animals recovered about 37% of left ventricular developed pressure, whereas FE, omega3+FE and CTRL-SED animals recovered only about 15%, 5% and 8% respectively. Similarly, heart infarct size was significantly lower in sedentary-omega3 animals compared to animals in the three other groups. CONCLUSIONS Results indicate that one month of treatment with an omega3-FFA-enriched diet improves cardioprotection upon ischemic events, whereas FE leads to a reduced heart tolerance to ischemic events, which cannot be reversed by an omega3-FFA diet.
Collapse
Affiliation(s)
- Daniele Mancardi
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Orbassano, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Leroy C, Tricot S, Lacour B, Grynberg A. Protective effect of eicosapentaenoic acid on palmitate-induced apoptosis in neonatal cardiomyocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:685-93. [DOI: 10.1016/j.bbalip.2008.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/07/2008] [Accepted: 07/23/2008] [Indexed: 11/29/2022]
|
26
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, Nishida M, Hiuge A, Kurata A, Kihara S, Shimomura I, Funahashi T. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol 2008; 28:863-70. [PMID: 18309113 DOI: 10.1161/atvbaha.107.156687] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Adiponectin is recognized as an antidiabetic, antiatherosclerotic, and anti-inflammatory protein derived from adipocytes. However, the role of adiponectin in cardiac fibrosis remains uncertain. We herein explore the effects of adiponectin on cardiac fibrosis induced by angiotensin II (Ang II). METHODS AND RESULTS Wild-type (WT), adiponectin knockout (Adipo-KO), and PPAR-alpha knockout (PPAR-alpha-KO) mice were infused with Ang II at 1.2 mg/kg/d. Severe cardiac fibrosis and left ventricular dysfunction were observed in Ang II-infused Adipo-KO mice compared to WT mice. Adenovirus-mediated adiponectin treatment improved the above phenotypes and the dysregulation of reactive oxygen species (ROS)-related mRNAs in Adipo-KO mice, whereas such amelioration was not observed in PPAR-alpha-KO mice despite adiponectin accumulation in heart tissue. In cultured cardiac fibroblasts, adiponectin improved the reduction of AMP-activated protein kinase (AMPK) activity and elevation of extracellular signal-regulated kinase 1/2 (ERK1/2) activity induced by Ang II. Adiponectin significantly enhanced PPAR-alpha activity, whereas the adiponectin-dependent PPAR-alpha activation was diminished by Compound C, an inhibitor of AMPK. CONCLUSIONS The present study suggests that adiponectin protects against Ang II-induced cardiac fibrosis possibly through AMPK-dependent PPAR-alpha activation.
Collapse
Affiliation(s)
- Koichi Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rodrigo R, Cereceda M, Castillo R, Asenjo R, Zamorano J, Araya J, Castillo-Koch R, Espinoza J, Larraín E. Prevention of atrial fibrillation following cardiac surgery: basis for a novel therapeutic strategy based on non-hypoxic myocardial preconditioning. Pharmacol Ther 2008; 118:104-27. [PMID: 18346791 DOI: 10.1016/j.pharmthera.2008.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is the most common complication of cardiac surgical procedures performed with cardiopulmonary bypass. It contributes to increased hospital length of stay and treatment costs. At present, preventive strategies offer only suboptimal benefits, despite improvements in anesthesia, surgical technique, and medical therapy. The pathogenesis of postoperative atrial fibrillation is considered to be multifactorial. However oxidative stress is a major contributory factor representing the unavoidable consequences of ischemia/reperfusion cycle occurring in this setting. Considerable evidence suggests the involvement of reactive oxygen species (ROS) in the pathogenic mechanism of this arrhythmia. Interestingly, the deleterious consequences of high ROS exposure, such as inflammation, cell death (apoptosis/necrosis) or fibrosis, may be abrogated by a myocardial preconditioning process caused by previous exposure to moderate ROS concentration known to trigger survival response mechanisms. The latter condition may be created by n-3 PUFA supplementation that could give rise to an adaptive response characterized by increased expression of myocardial antioxidant enzymes and/or anti-apoptotic pathways. In addition, a further reinforcement of myocardial antioxidant defenses could be obtained through vitamins C and E supplementation, an intervention also known to diminish enzymatic ROS production. Based on this paradigm, this review presents clinical and experimental evidence supporting the pathophysiological and molecular basis for a novel therapeutic approach aimed to diminish the incidence of postoperative atrial fibrillation through a non-hypoxic preconditioning plus a reinforcement of the antioxidant defense system in the myocardial tissue.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|