1
|
Xiang H, Wang Y, Yang L, Liu M, Sun C, Gu Y, Yao J. Novel MAGL Inhibitors Alleviate LPS-Induced Acute Kidney Injury by Inhibiting NLRP3 Inflammatory Vesicles, Modulating Intestinal Flora, Repairing the Intestinal Barrier, and Interfering with Serum Metabolism. Molecules 2023; 28:7245. [PMID: 37959665 PMCID: PMC10648159 DOI: 10.3390/molecules28217245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a complication of a wide range of serious illnesses for which there is still no better therapeutic agent. We demonstrated that M-18C has a favorable inhibitory effect on monoacylglycerol lipase (MAGL), and several studies have demonstrated that nerve inflammation could be effectively alleviated by inhibiting MAGL, suggesting that M-18C has good anti-inflammatory activity. In this study, we investigated the effect of M-18C on LPS-induced acute kidney injury (AKI), both in vivo and in vitro, by using liquid chromatography-mass spectrometry (LC-MS), 16S rRNA gene sequencing, Western blot, and immunohistochemistry. The results showed that both in vivo and in vitro M-18C reduced the release of TNF-α and IL-1β by inhibiting the expression of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) protein; in addition, M-18C was able to intervene in LPS-induced AKI by ameliorating renal pathological injury, repairing the intestinal barrier, and regulating gut bacterial flora and serum metabolism. In conclusion, this study suggests that M-18C has the potential to be a new drug for the treatment of AKI.
Collapse
Affiliation(s)
- Haixin Xiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.X.)
| | - Yangui Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.X.)
| | - Lan Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi 276005, China;
| | - Yuchao Gu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.X.)
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi 276005, China;
| |
Collapse
|
2
|
Nathani S, Das N, Katiyar P, Waghmode B, Sircar D, Roy P. Consumption of honey ameliorates lipopolysaccharide-induced intestinal barrier dysfunction via upregulation of tight junction proteins. Eur J Nutr 2023; 62:3033-3054. [PMID: 37493680 DOI: 10.1007/s00394-023-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE The leaky gut barrier is an important factor leading to various inflammatory gastrointestinal disorders. The nutritional value of honey and variety of its health benefits have long been recognized. This study was undertaken to assess the role of Indian mustard honey in preventing lipopolysaccharide (LPS)-induced intestinal barrier dysfunction using a combination of in vitro and in vivo experimental model systems. METHODS LPS was used to induce intestinal barrier damage in a trans-well model of Caco-2 cells (1 µg/ml) and in Swiss albino mice (5 mg/kg body weight). Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to analyse sugar and phenolic components in honey samples. The Caco-2 cell monolayer integrity was evaluated by transepithelial electrical resistance (TEER) and paracellular permeability assays. The histopathology of intestinal tissue was analysed by haematoxylin and eosin dual staining. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to quantify the transcription of genes. The protein expression was analysed by immunofluorescence, western blot and ELISA-based techniques. RESULTS The in vitro data showed that honey prevented LPS-induced intestinal barrier dysfunction dose dependently as was measured by TEER and paracellular flux of FITC-dextran dye. Further, the in vivo data showed a prophylactic effect of orally administered honey as it prevented the loss of intestinal barrier integrity and villus structure. The cellular localization and expression of tight junction (TJ) proteins were upregulated along with downregulation of pro-inflammatory cytokines in response to the administration of honey with LPS. CONCLUSIONS The findings of this study suggest a propitious role of honey in the maintenance of TJ protein integrity, thereby preventing LPS-induced intestinal barrier disintegration.
Collapse
Affiliation(s)
- Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Bhairavnath Waghmode
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
3
|
Kazmi I, Al-Abbasi FA, Afzal M, Nadeem MS, Altayb HN, Gupta G. Phosphodiesterase-4 Inhibitor Roflumilast-Mediated Protective Effect in Sepsis-Induced Late-Phase Event of Acute Kidney Injury: A Narrative Review. Pharmaceuticals (Basel) 2022; 15:ph15070899. [PMID: 35890197 PMCID: PMC9315747 DOI: 10.3390/ph15070899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Severe infections such as viral, bacterial, or fungal sepsis can cause an inflammatory response in the host, leading to organ failure and septic shock—phosphodiesterase-4 (PDE-4) inhibiting related agents from suppressing cyclic adenosine monophosphate (cAMP) degradation. Regulatory organisations have approved some substances in this category to reduce the risk of chronic obstructive pulmonary disease (COPD) exacerbations in patients with chronic bronchitis and a history of COPD exacerbations. Roflumilast has been shown to alleviate inflammatory responses, thus regulating airway inflammation. Additionally, roflumilast therapy dramatically enhanced B-cell lymphoma 2 (Bcl-2) expression, an anti-apoptotic marker lowered in septic animals. Previous research has indicated that roflumilast may help reverse sepsis-induced liver and lung harm, but whether it is also effective in reversing sepsis-induced renal impairment remains unknown. Therefore, this review determines whether roflumilast protects against renal dysfunction, inflammatory response, and apoptosis in sepsis-induced kidney damage. Additionally, we discussed the molecular mechanism through which roflumilast exerts its protective effect to uncover a possible treatment agent for sepsis-induced renal impairment.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
- Correspondence:
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
4
|
Senousy SR, El-Daly M, Ibrahim ARN, Khalifa MMA, Ahmed ASF. Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study. Biomedicines 2022; 10:biomedicines10071613. [PMID: 35884918 PMCID: PMC9312943 DOI: 10.3390/biomedicines10071613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
In cases of sepsis, the immune system responds with an uncontrolled release of proinflammatory cytokines and reactive oxygen species. The lungs, kidneys, and liver are among the early impacted organs during sepsis and are a direct cause of mortality. The aim of this study was to compare the effects of infliximab (IFX) and celecoxib (CLX) on septic rats that went through a cecal ligation and puncture (CLP) surgery to induce sepsis. This study included four groups: sham, CLP (untreated), and CLP-treated with CLX or IFX. The administration of “low dose” CLX or IFX was performed after 2 h following the induction of sepsis. Twenty-four hours following the induction of sepsis, the rats were sacrificed and blood samples were collected to evaluate kidney, liver, and lung injuries. MDA and NOx content, in addition to SOD activity and GSH levels, were evaluated in the tissue homogenates of each group. Tissue samples were also investigated histopathologically. In a separate experiment, the same groups were employed to evaluate the survival of septic rats in a 7-day observation period. The results of this study showed that treatment with either CLX or IFX ameliorated the three organs’ damage compared to septic-untreated rats, decreased oxidative stress, enhanced the antioxidant defense, and reduced serum cytokines. As a result, a higher survival rate resulted: 62.5% and 37.5% after the administration of CLX and IFX, respectively, compared to 0% in the CLP group after 7 days. No significant differences were observed between the two agents in all measured parameters. Histopathological examination confirmed the observed results. In conclusion, CLX and IFX ameliorated lung, kidney, and liver injuries associated with sepsis through anti-inflammatory and antioxidant actions, which correlated to the increase in survival observed with both of them.
Collapse
Affiliation(s)
- Shaymaa Ramzy Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
- Correspondence: ; Tel.: +96-65-5408-8979
| | - Mohamed Montaser A. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| |
Collapse
|
5
|
Zhan L, Pu J, Zheng J, Hang S, Pang L, Dai M, Ji C. Tetrastigma hemsleyanum Diels et Gilg ameliorates lipopolysaccharide induced sepsis via repairing the intestinal mucosal barrier. Biomed Pharmacother 2022; 148:112741. [PMID: 35217279 DOI: 10.1016/j.biopha.2022.112741] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE Sepsis causes excessive systemic inflammation and leads to multiple organ dysfunction syndrome (MODS). The intestine plays a key role in the occurrence and development of sepsis. Tetrastigma hemsleyanum Diels et Gilg (San ye qing, SYQ), a precious Chinese medicine, has been widely used for centuries due to its high traditional value, such as a remarkable anti-inflammatory effect. However, the role of SYQ in intestinal permeability during the development of sepsis needs to be discovered. METHODS Mice were intraperitoneally injected with lipopolysaccharide (LPS) to simulate intestinal mucosal barrier function damage in sepsis. Pathological section, inflammatory cytokines, tight junctions, cell apoptosis, and intestinal flora were detected to evaluate the protective effect of SYQ on intestinal mucosal barrier injury in LPS-induced septic mice. RESULTS The results showed that SYQ treatment obviously attenuated LPS-induced intestinal injury and reduced the production of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6). Besides, SYQ also up-regulated the expressions of tight junctions, including Zonula occludens 1 (ZO-1), Claudin-5, and Occludin along with a decreased in the levels of myosin light chain kinase (MLCK) and myosin light chain (MLC). In addition, SYQ down-regulated the expression of Bax/Bcl2 as well as that of cleaved caspase-3 to prevent the cells from undergoing apoptosis. Further, SYQ restored the diversity of the intestinal flora, increased the abundance of Firmicutes, and decreased the abundance of Bacteroidota. CONCLUSIONS The study indicated that SYQ exerted its protective effect on intestinal mucosal barrier injury in LPS-induced septic mice by reducing inflammatory response, improving the tight junction protein expression, inhibiting cell apoptosis, and adjusting the intestinal flora structure.
Collapse
Affiliation(s)
- Lianghui Zhan
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310014, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, China
| | - Jinbao Pu
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310014, China; Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, China
| | - Jingru Zheng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Suni Hang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Lisha Pang
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Muhua Dai
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Chunlian Ji
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
6
|
Sun Q, Wang B, Li M. MicroRNA‑23a‑3p targeting of HMGB1 inhibits LPS‑induced inflammation in murine macrophages in vitro. Exp Ther Med 2022; 23:322. [PMID: 35386623 PMCID: PMC8972841 DOI: 10.3892/etm.2022.11251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/04/2021] [Indexed: 11/30/2022] Open
Abstract
Inflammatory cytokines, including high mobility group box 1 (HMGB1), play a key role in sepsis via various mechanisms, some of which remain unknown. Sepsis is a common cause of death in patients admitted to the intensive care unit. MicroRNAs (miRs) serve an important role in the inflammatory response. The present study aimed to investigate the role of miR-23a-3p in macrophage inflammation and the targeted regulation of HMGB1 expression. The murine macrophage cell line RAW264.7 was subjected to lipopolysaccharide (LPS) treatment to mimic the inflammation involved in sepsis in vitro. Reverse transcription-quantitative PCR was performed to measure miR-23a-3p expression and mRNA expression. Protein levels were determined using ELISA and western blotting. The target binding relationship between miR-23a-3p and the HMGB1 3'untranslated region was predicted and validated with a dual luciferase reporter assay. HMGB1 expression was increased and miR-23a-3p expression significantly reduced in patients with sepsis and in LPS-treated RAW264.7 cells in comparison with controls. Overexpression of miR-23a-3p reduced interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression in RAW264.7 cells under LPS stimulation, while silencing of miR-23a-3p elevated the expression of IL-6 and TNF-α in comparison with controls. The inhibitory effect of miR-23a-3p on LPS-induced inflammation could be abolished by HMGB1 upregulation in RAW264.7 cells. HMGB1 was targeted by miR-23a-3p. miR-23a-3p is expressed at reduced levels during inflammation in sepsis, and overexpression of miR-23a-3p inhibits LPS-induced inflammation in murine macrophages in vitro by directly downregulating HMGB1. The results of the present study provided a novel insight into the molecular mechanism underlying HMGB1 expression at the post-transcriptional level in sepsis.
Collapse
Affiliation(s)
- Qi Sun
- Department of Critical Care Medicine, The Jingzhou Central Hospital of Hubei, Jingzhou, Hubei 434000, P.R. China
| | - Bing Wang
- Department of Critical Care Medicine, The Jingzhou Central Hospital of Hubei, Jingzhou, Hubei 434000, P.R. China
| | - Mengqiu Li
- Department of Critical Care Medicine, The Jingzhou Central Hospital of Hubei, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
7
|
Gupta K, Pandey S, Singh R, Kumari A, Sen P, Singh G. Roflumilast improves resolution of sepsis-induced acute kidney injury by retarding late phase renal interstitial immune cells infiltration and leakage in urinary sediments. Fundam Clin Pharmacol 2021; 36:114-132. [PMID: 34212425 DOI: 10.1111/fcp.12711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Some evidence has demonstrated that both inflammation and immune cell dysregulation are coincident at late phase (post 24 h) of sepsis. The present study was designed to determine the pathological role of hyperinflammation and renal immune cells mobilization during late phase of sepsis induced acute kidney injury (S-AKI) and tests the pharmacological effects of PDE-4 inhibitor on these events. Sepsis was induced by cecal ligation puncture and renal function, oxidative-inflammatory stress biomarkers were assessed after 24 h. PDE-4 inhibitor was administered for 7 days prior to induction of S-AKI. Renal immune cells infiltration during sepsis was analyzed by H&E staining and papanicolaou staining method was used for detecting leukocytes and cast in urinary sediments, periodic acid schiff (PAS) staining was used for detection of brush border loss. AKI developed 24 h post sepsis insult as depicted by increase in serum creatinine, blood urea nitrogen (BUN), renal oxidative stress, and elevated inflammatory biomarkers levels. Moreover, septic rats displayed increased bacterial load, renal expression of phosphodiesterase-4B, 4D isoforms, enhanced vascular permeability, caspase-3 and myeloperoxidase activity, electrolyte imbalance, reduced Na+ K+ ATPase activity, declined cAMP levels, increased interstitial leukocyte infiltration, and leakage in urinary sediments along with histological alterations. Pre-treatment with roflumilast at high dose completely prevented the various AKI associated manifestations in septic rats. Renal hyper-inflammation and leukocyte infiltration was detected in late phase of S-AKI. Roflumilast pre-treatment resolved sepsis induced renal dysfunction and histological damage by suppressing late phase renal immune cells invasion and anti-inflammatory effects mediated by up-regulation of renal cAMP levels.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar University, Ambala, India
| | - Sneha Pandey
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Ragini Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Abha Kumari
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Pallavi Sen
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | | |
Collapse
|
8
|
Hossain MR, Ansary TM, Komine M, Ohtsuki M. Diversified Stimuli-Induced Inflammatory Pathways Cause Skin Pigmentation. Int J Mol Sci 2021; 22:3970. [PMID: 33921371 PMCID: PMC8070342 DOI: 10.3390/ijms22083970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The production of melanin pigments by melanocytes and their quantity, quality, and distribution play a decisive role in determining human skin, eye, and hair color, and protect the skin from adverse effects of ultraviolet radiation (UVR) and oxidative stress from various environmental pollutants. Melanocytes reside in the basal layer of the interfollicular epidermis and are compensated by melanocyte stem cells in the follicular bulge area. Various stimuli such as eczema, microbial infection, ultraviolet light exposure, mechanical injury, and aging provoke skin inflammation. These acute or chronic inflammatory responses cause inflammatory cytokine production from epidermal keratinocytes as well as dermal fibroblasts and other cells, which in turn stimulate melanocytes, often resulting in skin pigmentation. It is confirmed by some recent studies that several interleukins (ILs) and other inflammatory mediators modulate the proliferation and differentiation of human epidermal melanocytes and also promote or inhibit expression of melanogenesis-related gene expression directly or indirectly, thereby participating in regulation of skin pigmentation. Understanding of mechanisms of skin pigmentation due to inflammation helps to elucidate the relationship between inflammation and skin pigmentation regulation and can guide development of new therapeutic pathways for treating pigmented dermatosis. This review covers the mechanistic aspects of skin pigmentation caused by inflammation.
Collapse
Affiliation(s)
| | | | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (M.R.H.); (T.M.A.); (M.O.)
| | | |
Collapse
|
9
|
Jiménez-Fuertes M, García-Olmo DC, Puy S, Beisani M, Planells F, Boldó A, Ruiz-Tovar J, Durán M, García-Olmo D. Effects of negative-pressure therapy with and without ropivacaine instillation in the early evolution of severe peritonitis in pigs. Eur J Trauma Emerg Surg 2021; 47:597-606. [PMID: 31641785 DOI: 10.1007/s00068-019-01244-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/03/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE The abdomen is the second most common source of sepsis and secondary peritonitis, which likely lead to death. In the present study, we hypothesized that instillation of local anesthetics into the peritoneum might mitigate the systemic inflammatory response syndrome (SIRS) in the open abdomen when combined with negative-pressure therapy (NPT) to treat severe peritonitis. METHODS We performed a study in 21 pigs applying a model of sepsis based on ischemia/reperfusion and fecal spread into the peritoneum. The pigs were randomized into three groups, and treated for 6 h as follows: Group A: temporary abdominal closure with ABTHERA™ Open Abdomen Negative-Pressure Therapy; Group B: temporary abdominal closure with ABTHERA™ Open Abdomen Negative-Pressure Therapy plus abdominal instillation with physiological saline solution (PSS); and Group C: temporary abdominal closure with ABTHERA™ Open Abdomen Negative-Pressure Therapy plus peritoneal instillation with a solution of ropivacaine in PPS. RESULTS A comparison between the three groups revealed no statistically significant difference for any of the parameters registered (p > 0.05), i.e., intra-abdominal pressure, blood pressure, heart rate, O2 saturation, diuresis, body temperature, and blood levels of interleukin 6 (IL-6), tumor necrosis factor alpha (TNFα), and c-reactive protein (CRP). In addition, histological studies of the liver, ileum, kidney and lung showed no difference between groups. CONCLUSIONS The use of abdominal instillation (with or without ropivacaine) did not change the effect of 6 h of NPT after sepsis in animals with open abdomen. The absence of adverse effects suggests that longer treatments should be tested.
Collapse
Affiliation(s)
- Montiel Jiménez-Fuertes
- Fundación Jiménez Díaz (IIS-FJD), "Rey Juan Carlos" University Hospital and Instituto de Investigación Sanitaria, Madrid, Spain.
| | | | - Sara Puy
- Centre de Recerca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Marc Beisani
- Centre de Recerca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
- Department of Surgery, Hospital del Mar, Barcelona, Spain
| | - Francisca Planells
- Centre de Recerca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Alba Boldó
- Centre de Recerca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Jaime Ruiz-Tovar
- Fundación Jiménez Díaz (IIS-FJD), "Rey Juan Carlos" University Hospital and Instituto de Investigación Sanitaria, Madrid, Spain
| | - Manuel Durán
- Fundación Jiménez Díaz (IIS-FJD), "Rey Juan Carlos" University Hospital and Instituto de Investigación Sanitaria, Madrid, Spain
| | - Damián García-Olmo
- Department of general and Digestive Surgery, Fundación Jiménez-Díaz University Hospital and Instituto de Investigación Sanitaria (IIS-FJD), Madrid, Spain
| |
Collapse
|
10
|
Baris E, Simsek O, Efe H, Oncu S, Gelal A, Hamurtekin E, Tosun M, Ozbal S, Yuce Z, Arici M. Effects of CDP-Choline and Choline on COX Pathway in LPS-Induced Inflammatory Response in Rats. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.84.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Luchetti MM, Ciccia F, Avellini C, Benfaremo D, Rizzo A, Spadoni T, Svegliati S, Marzioni D, Santinelli A, Costantini A, Viola N, Berretta A, Ciferri M, Mattioli Belmonte Cima M, Mosca P, Benedetti A, Gabrielli A. Gut epithelial impairment, microbial translocation and immune system activation in inflammatory bowel disease-associated spondyloarthritis. Rheumatology (Oxford) 2021; 60:92-102. [PMID: 32442267 DOI: 10.1093/rheumatology/keaa164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Gut microbiota has been widely reported to be involved in systemic inflammation through microbial translocation and T cell activation in several diseases. In this work we aimed to investigate bacterial infiltration and epithelial impairment in the gut of patients with IBD-associated SpA (SpA-IBD), as well as the relationship of microbial translocation with immune system activation and their putative role in the pathogenesis of joint inflammation in IBD patients. METHODS Tight-junction proteins (TJPs) occludin and claudin-1/-4 and bacteria were assessed by real-time PCR analysis and immunohistochemical staining of the ileum. Intestinal fatty acid binding protein (I-FABP), lipopolysaccharides (LPS), soluble CD14 (sCD14), sclerostin and anti-sclerostin antibodies (anti-sclerostin-IgG) were assayed with ELISAs and peripheral mononuclear blood cells with flow cytometry. LPS and sCD14 were used in vitro to stimulate a human osteoblast cell line. RESULTS Compared with IBD, ileal samples from SpA-IBD patients showed bacterial infiltration, epithelial damage and downregulation of TJPs. In sera, they showed higher serum levels of I-FABP, LPS, sCD14 (the latter correlating with sclerostin and anti-sclerostin-IgG) and higher CD80+/CD163+ and lower CD14+ mononuclear cells. In vitro experiments demonstrated that only the LPS and sCD14 synergic action downregulates sclerostin expression in osteoblast cells. CONCLUSION SpA-IBD patients are characterized by gut epithelium impairment with consequent translocation of microbial products into the bloodstream, immune system activation and an increase of specific soluble biomarkers. These findings suggest that gut dysbiosis could be involved in the pathogenesis of SpA-IBD and it could hopefully prompt the use of these biomarkers in the follow-up and management of IBD patients.
Collapse
Affiliation(s)
- Michele Maria Luchetti
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Ciccia
- Dipartimento Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Chiara Avellini
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Devis Benfaremo
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Aroldo Rizzo
- Unità di Patologia, Ospedale Cervello, Palermo, Italia
| | - Tatiana Spadoni
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Svegliati
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Marzioni
- Dipartimento di Medicina Sperimentale e Clinica, Anatomia Umana, Università Politecnica delle Marche, Ancona, Italy
| | - Alfredo Santinelli
- Anatomia Patologica, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| | - Andrea Costantini
- Servizio di Immunologia Clinica, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy
| | - Nadia Viola
- Servizio di Immunologia Clinica, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy
| | - Antonella Berretta
- Servizio di Immunologia Clinica, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy
| | - Monia Ciferri
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| | | | - Piergiorgio Mosca
- IBD Unit, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy and
| | - Antonio Benedetti
- IBD Unit, Azienda Ospedaliero-Universitaria "Umberto I-G.M. Lancisi-G. Salesi", Ancona, Italy and.,Dipartimento di Scienze Cliniche e Molecolari, Clinica di Gastroenterologia, Università Politecnica delle Marche, Ancona, Italy
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
12
|
Kim DO, Byun JE, Kim WS, Kim MJ, Choi JH, Kim H, Choi E, Kim TD, Yoon SR, Noh JY, Park YJ, Lee J, Cho HJ, Lee HG, Min SH, Choi I, Jung H. TXNIP Regulates Natural Killer Cell-Mediated Innate Immunity by Inhibiting IFN-γ Production during Bacterial Infection. Int J Mol Sci 2020; 21:ijms21249499. [PMID: 33327533 PMCID: PMC7765025 DOI: 10.3390/ijms21249499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The function of natural killer (NK) cell-derived interferon-γ (IFN-γ) expands to remove pathogens by increasing the ability of innate immune cells. Here, we identified the critical role of thioredoxin-interacting protein (TXNIP) in the production of IFN-γ in NK cells during bacterial infection. TXNIP inhibited the production of IFN-γ and the activation of transforming growth factor β-activated kinase 1 (TAK1) activity in primary mouse and human NK cells. TXNIP directly interacted with TAK1 and inhibited TAK1 activity by interfering with the complex formation between TAK1 and TAK1 binding protein 1 (TAB1). Txnip−/− (KO) NK cells enhanced the activation of macrophages by inducing IFN-γ production during Pam3CSK4 stimulation or Staphylococcus aureus (S. aureus) infection and contributed to expedite the bacterial clearance. Our findings suggest that NK cell-derived IFN-γ is critical for host defense and that TXNIP plays an important role as an inhibitor of NK cell-mediated macrophage activation by inhibiting the production of IFN-γ during bacterial infection.
Collapse
Affiliation(s)
- Dong Oh Kim
- Department of Innovative Toxicology Research, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, Korea;
| | - Jae-Eun Byun
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Won Sam Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Mi Jeong Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea;
| | - Jung Ha Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Hanna Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Eunji Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (Y.-J.P.); (J.L.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (Y.-J.P.); (J.L.)
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chumbokro Dong-gu, Daegu 41061, Korea;
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (I.C.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (I.C.); (H.J.)
| |
Collapse
|
13
|
Xu J, Song J, Zhang Y, Wang Y, Yang L, Sha Y, Sun B, You N, Tian X, Lin R, Wu Y. Jinzhi protects lipopolysaccharide-treated mice against mortality by repairing intestinal mucosal barrier damage and intestinal microecology. Biomed Pharmacother 2019; 123:109749. [PMID: 31846840 DOI: 10.1016/j.biopha.2019.109749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Intestinal mucosal barrier damage is an important mechanism for the development of sepsis and multiple organ dysfunction syndrome. At present, there are no satisfactory and effective methods for the protection of the intestinal mucosal barrier. Jinzhi, the first fecal microbiota transplantation worldwide, is often used to treat critically ill patients; however, the specific mechanism involved in this process remains unclear. The aim of this study was to investigate the therapeutic effect and mechanism of Jinzhi intervention on mice with sepsis induced through treatment with lipopolysaccharide (LPS). METHODS Mice were intraperitoneally injected with LPS to simulate intestinal mucosal barrier function damage in sepsis; intervention was performed through the oral administration of Jinzhi. The effect of Jinzhi on LPS-induced sepsis was analyzed by comparing the vital signs and survival rate of mice under different treatments. Pathological staining and enzyme-linked immunosorbent assay were used to identify the effects of LPS or treatment with Jinzhi on the intestinal mucosal barrier in mice. The effect of LPS or treatment with Jinzhi on the intestinal flora was analyzed via 16S rRNA gene sequencing of ileal contents. RESULTS Immunohistochemistry and enzyme-linked immunosorbent assay showed that treatment with LPS increased levels of inflammatory factors (interleukin-1α, interleukin-6, tumor necrosis factor-α), caspase-3, and caspase-8 in the serum and ileum, and destroyed the tight junction between epithelial cells. Intervention with Jinzhi reduced levels of serum LPS and tumor necrosis factor-α, and repaired the tight junction between epithelial cells. Furthermore, 16S rRNA gene sequencing analysis showed that treatment with Jinzhi improved the diversity and physiological function of the intestinal flora. CONCLUSIONS These results suggest that Jinzhi may be a promising option for the treatment of sepsis caused by LPS, and emphasize that Jinzhi exerts a recovery effect on the imbalance of intestinal flora.
Collapse
Affiliation(s)
- Jianfeng Xu
- Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China; Key Laboratory of Hui Ethnic Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Junyao Song
- Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yanming Zhang
- Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yingxu Wang
- Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Lei Yang
- Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yinyin Sha
- Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Bowen Sun
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Na You
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xinbao Tian
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Ruizhu Lin
- Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yongli Wu
- Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
14
|
Asiamah EK, Ekwemalor K, Adjei-Fremah S, Osei B, Newman R, Worku M. Natural and synthetic pathogen associated molecular patterns modulate galectin expression in cow blood. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:245-253. [PMID: 31602302 PMCID: PMC6778856 DOI: 10.5187/jast.2019.61.5.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/25/2023]
Abstract
Pathogen-associated Molecular Patterns (PAMPs) are highly conserved structural
motifs that are recognized by Pathogen Recognition receptors (PRRs) to initiate
immune responses. Infection by these pathogens and the immune response to PAMPS
such as lipopolysaccharide (LPS), Peptidoglycan (PGN), bacterial
oligodeoxynucleotides [CpG oligodeoxynucleotides 2006 (CpG ODN2006) and CpG
oligodeoxynucleotides 2216 (CpG ODN2216)], and viral RNA
Polyinosinic-Polycytidylic Acid (Poly I:C), are associated with infectious and
metabolic diseases in animals impacting health and production. It is established
that PAMPs mediate the production of cytokines by binding to PRRs such as
Toll-like receptors (TLR) on immune cells. Galectins (Gal) are
carbohydrate-binding proteins that when expressed play essential roles in the
resolution of infectious and metabolic diseases. Thus it is important to
determine if the expression of galectin gene (LGALS) and Gal secretion in blood
are affected by exposure to LPS and PGN, PolyI:C and bacterial CpG ODNs. LPS
increased transcription of LGALS4 and 12 (2.5 and 2.02 folds respectively) and
decreased secretion of Gal 4 (p < 0.05). PGN increased
transcription of LGALS-1, -2, -3, -4, -7, and -12 (3.0, 2.3, 2.0, 4.1, 3.3, and
2.4 folds respectively) and secretion of Gal-8 and Gal-9 (p
< 0.05). Poly I:C tended to increase the transcription of LGALS1, LGALS4,
and LGALS8 (1.78, 1.88, and 1.73 folds respectively). Secretion of Gal-1, -3, -8
and nine were significantly increased in treated samples compared to control
(p < 0.05). CpG ODN2006 did not cause any
significant fold changes in LGALS transcription (FC < 2) but increased
secretion of Gal-1, and-3 (p < 0.05) in plasma compared
to control. Gal-4 was however reduced in plasma (p <
0.05). CpG ODN2216 increased transcription of LGALS1 and LGALS3 (3.8 and 1.6
folds respectively), but reduced LGALS2, LGALS4, LGALS7, and LGALS12
(–1.9, –2.0, –2.0 and; –2.7 folds respectively).
Secretion of Gal-2 and -3 in plasma was increased compared to control
(p < 0.05). Gal-4 secretion was reduced in plasma
(p < 0.05). The results demonstrate that PAMPs
differentially modulate galectin transcription and translation of galectins in
cow blood.
Collapse
Affiliation(s)
- Emmanuel Kwaku Asiamah
- Department of Agriculture-Animal Science, University of Arkansas at Pine Bluff, AR 71601, USA
| | - Kingsley Ekwemalor
- Department of Animal Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Sarah Adjei-Fremah
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Bertha Osei
- Functional and Chemical Genomics, Oklahoma Medical Research Foundation, OK 73104, USA
| | - Robert Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Mulumebet Worku
- Department of Animal Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
15
|
Bukauskas T, Kairytė M, Mickus R, Puleikytė L, Macas A. Values of circulating molecular biomarkers (microRNAs) for the evaluation of renal failure during urgent abdominal sepsis anaesthesia. Acta Med Litu 2019; 26:17-24. [PMID: 31281212 DOI: 10.6001/actamedica.v26i1.3951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Micro-ribonucleic acids (miRNAs) are small non-coding molecules important for gene regulation and management of physiological processes (1). Alterations in the expression of miRNAs are potential novel biomarkers for many diseases (2). Materials and methods Random patients who underwent emergency surgery for abdominal sepsis were enrolled into the study (N = 27). Patients were divided into three groups according to the renal function and into two groups depending on the presence or the absence of lethal outcomes during the hospitalization period. Relative expression levels of circulating serum miR-30d-5p, miR-23a-3p, miR-146a-5p were assessed with real-time quantitative polymerase chain reaction using the 2-ΔΔCt method and compared between the groups. Results Expression levels of all three miRNAs did not differ significantly between patients with acute renal failure (ARF) (n = 8), chronic renal failure (CRF) (n = 8), and with a normal renal function (NRF) (n = 11). Estimated glomerular filtration rates (eGFR) were significantly lower (p = 0.016), the values of urea (p = 0.007) and red blood cell distribution width (RDW) (p = 0.001) were significantly higher in septic patients who died, but no significant correlation between RDW values and expression of miRNAs was found. Conclusions The expression levels of serum miR-30d-5p, miR-23a-3p, miR-146-5p did not significantly differ between three groups of patients who developed ARF, had CRF, or retained NRF. No significant association between the RDW value and expression of miRNAs was noted.
Collapse
Affiliation(s)
- Tomas Bukauskas
- Department of Anaesthesiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Monika Kairytė
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytis Mickus
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Loreta Puleikytė
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andrius Macas
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
16
|
Biomarker cruises in sepsis: who is the CAPTAIN? Discussion on “Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study”. Intensive Care Med 2019; 45:132-133. [DOI: 10.1007/s00134-018-5451-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
17
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9:7204-7218. [PMID: 29467962 PMCID: PMC5805548 DOI: 10.18632/oncotarget.23208] [Citation(s) in RCA: 2645] [Impact Index Per Article: 377.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
18
|
Xavier-Elsas P, Ferreira RN, Gaspar-Elsas MIC. Surgical and immune reconstitution murine models in bone marrow research: Potential for exploring mechanisms in sepsis, trauma and allergy. World J Exp Med 2017; 7:58-77. [PMID: 28890868 PMCID: PMC5571450 DOI: 10.5493/wjem.v7.i3.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/11/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow, the vital organ which maintains lifelong hemopoiesis, currently receives considerable attention, as a source of multiple cell types which may play important roles in repair at distant sites. This emerging function, distinct from, but closely related to, bone marrow roles in innate immunity and inflammation, has been characterized through a number of strategies. However, the use of surgical models in this endeavour has hitherto been limited. Surgical strategies allow the experimenter to predetermine the site, timing, severity and invasiveness of injury; to add or remove aggravating factors (such as infection and defects in immunity) in controlled ways; and to manipulate the context of repair, including reconstitution with selected immune cell subpopulations. This endows surgical models overall with great potential for exploring bone marrow responses to injury, inflammation and infection, and its roles in repair and regeneration. We review three different murine surgical models, which variously combine trauma with infection, antigenic stimulation, or immune reconstitution, thereby illuminating different aspects of the bone marrow response to systemic injury in sepsis, trauma and allergy. They are: (1) cecal ligation and puncture, a versatile model of polymicrobial sepsis; (2) egg white implant, an intriguing model of eosinophilia induced by a combination of trauma and sensitization to insoluble allergen; and (3) ectopic lung tissue transplantation, which allows us to dissect afferent and efferent mechanisms leading to accumulation of hemopoietic cells in the lungs. These models highlight the gain in analytical power provided by the association of surgical and immunological strategies.
Collapse
|
19
|
Chen H, Wang W, Hong C, Zhang M, Hong Y, Wang S, Zhang H. Omega-3 Fish Oil Reduces Mortality Due to Severe Sepsis with Acute Gastrointestinal Injury Grade III. Pharmacogn Mag 2017; 13:407-412. [PMID: 28839364 PMCID: PMC5551357 DOI: 10.4103/pm.pm_418_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Sepsis plays an important role in acute gastrointestinal injury (AGI). Our research was designed to determine the effects of omega-3 fish oil (FO) in patients suffering from severe sepsis combined with AGI III, and the ability of FO to modulate immune function. Methods: Seventy-eight patients diagnosed with severe sepsis with AGI III and a need for mechanical ventilation were randomized to two groups. In the FO group, 50 g of long chain fatty acid soybean oil (n = 6) and 10 g of FO (n = 3) were administered as total parenteral nutrition (TPN). The control group was treated with 50 g of long chain fatty acid soybean oil without addition of FO to TPN. Results: At baseline, there were no significant differences between the two groups. The 60-day mortality was lower in the FO group. Multiple factor logistic regression analysis revealed that intra-abdominal pressure (IAP) and abdominal infection were correlated with the FO intervention. The patients with abdominal infection demonstrated a lower mortality rate, fewer CD3 T lymphocytes, and fewer helper/inducer T lymphocytes in the FO group compared with the control group. After 7 days, the Marshall Score was lower in the FO group than in the control group. Conclusion: FO has positive effects in terms of improving the long-term prognosis of patients with severe sepsis with AGI III. Patients with a high IAP and abdominal infection might experience greater benefit from FO. This effect might be due, in part, to immunomodulation. SUMMARY Fish oil (FO) has positive effects in terms of improving the long-term prognosis of patients with severe sepsis with acute gastrointestinal injury Grade III Patients with a high intra-abdominal pressure and abdominal infection might experience greater benefit from FO This effect might be due, in part, to immunomodulation.
Abbreviations used: AGI: Acute gastrointestinal injury; FO: Fish oil; TPN: Total parenteral nutrition; IAP: Intra-abdominal pressure; ICU: Intensive Care Unit; MODS: Multiple organ dysfunction syndrome; TLR4: Toll-like receptor 4; DNR: Do Not Resuscitate; WGAP: Working Group of Abdominal Problem; EN: Enteral nutrition; BP: Low blood pressure; CRI: Catheter-related infection; PBS: Phosphate-buffered saline; ELFA: Enzyme-linked fluorescent assay; SD: Standard deviation; PUFAs: Polyunsaturated fatty acids; EPA: Eicosapentenoic acid; DHA: Docosahexaenoic acid.
Collapse
Affiliation(s)
- Huaisheng Chen
- Department of Intensive Care Unit, Shenzhen People's Hospital, The Second Clinical Hospital of Jinan University, Dong Men North Road, Luohu District, Shenzhen, China
| | - Wei Wang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Hospital of Jinan University, Dong Men North Road, Luohu District, Shenzhen, Guangdong, China
| | - Chengying Hong
- Department of Intensive Care Unit, Shenzhen People's Hospital, The Second Clinical Hospital of Jinan University, Dong Men North Road, Luohu District, Shenzhen, China
| | - Ming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingcai Hong
- The Chest Department of Shenzhen People's Hospital, The Second Clinical Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Su Wang
- The Cardiovascular and thoracic surgery ICU, PLA 305 Hospital, Beijing, China
| | - Huadong Zhang
- Department of Intensive Care Unit, Shenzhen People's Hospital, The Second Clinical Hospital of Jinan University, Dong Men North Road, Luohu District, Shenzhen, China
| |
Collapse
|
20
|
Li CY, Suzuki K, Hung YL, Yang MS, Yu CP, Lin SP, Hou YC, Fang SH. Aloe Metabolites Prevent LPS-Induced Sepsis and Inflammatory Response by Inhibiting Mitogen-Activated Protein Kinase Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:847-861. [DOI: 10.1142/s0192415x17500458] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aloe, a polyphenolic anthranoid-containing Aloe vera leaves, is a Chinese medicine and a popular dietary supplement worldwide. In in vivo situations, polyphenolic anthranoids are extensively broken down into glucuronides and sulfate metabolites by the gut and the liver. The anti-inflammatory potential of aloe metabolites has not been examined. The aim of this study was to investigate the anti-inflammatory effects of aloe metabolites from in vitro (lipopolysaccharides (LPS)-activated RAW264.7 macrophages) and ex vivo (LPS-activated peritoneal macrophages) to in vivo (LPS-induced septic mice). The production of proinflammatory cytokines (TNF-[Formula: see text] and IL-12) and NO was determined by ELISA and Griess reagents, respectively. The expression levels of iNOS and MAPKs were analyzed by Western blot. Our results showed that aloe metabolites inhibited the expression of iNOS, decreased the production of TNF-[Formula: see text], IL-12, and NO, and suppressed the phosphorylation of MAPKs by LPS-activated RAW264.7 macrophages. In addition, aloe metabolites reduced the production of NO, TNF-[Formula: see text] and IL-12 by murine peritoneal macrophages. Furthermore, aloe administration significantly reduced the NO level and exhibited protective effects against sepsis-related death in LPS-induced septic mice. These results suggest that aloe metabolites exerted anti-inflammatory effects in vivo, and that these effects were associated with the inhibition of inflammatory mediators. Therefore, aloe could be considered an effective therapeutic agent for the treatment of sepsis.
Collapse
Affiliation(s)
- Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine and Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Yung-Li Hung
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Meng-Syuan Yang
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Chung-Ping Yu
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shiuan-Pey Lin
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Yu-Chi Hou
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Department of Pharmacy, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shih-Hua Fang
- Institute of Athletics, National Taiwan University of Sport, Taichung 40404, Taiwan
| |
Collapse
|
21
|
van Balkom BW, Gremmels H, Ooms LS, Toorop RJ, Dor FJ, de Jong OG, Michielsen LA, de Borst GJ, de Jager W, Abrahams AC, van Zuilen AD, Verhaar MC. Proteins in Preservation Fluid as Predictors of Delayed Graft Function in Kidneys from Donors after Circulatory Death. Clin J Am Soc Nephrol 2017; 12:817-824. [PMID: 28476951 PMCID: PMC5477220 DOI: 10.2215/cjn.10701016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Kidney transplantation is the preferred treatment for ESRD, and donor kidney shortage urges proper donor-recipient matching. Zero-hour biopsies provide predictive values for short- and long-term transplantation outcomes, but are invasive and may not reflect the entire organ. Alternative, more representative methods to predict transplantation outcome are required. We hypothesized that proteins accumulating in preservation fluid during cold ischemic storage can serve as biomarkers to predict post-transplantation graft function. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Levels of 158 proteins were measured in preservation fluids from kidneys donated after circulatory death (Maastricht category III) collected in two Dutch centers (University Medical Center Utrecht and Erasmus Medical Center Rotterdam) between 2013 and 2015. Five candidate biomarkers identified in a discovery set of eight kidneys with immediate function (IF) versus eight with delayed graft function (DGF) were subsequently analyzed in a verification set of 40 additional preservation fluids to establish a prediction model. RESULTS Variables tested for their contribution to a prediction model included five proteins (leptin, periostin, GM-CSF, plasminogen activator inhibitor-1, and osteopontin) and two clinical parameters (recipient body mass index [BMI] and dialysis duration) that distinguished between IF and DGF in the discovery set. Stepwise multivariable logistic regression provided a prediction model on the basis of leptin and GM-CSF. Receiver operating characteristic analysis showed an area under the curve (AUC) of 0.87, and addition of recipient BMI generated a model with an AUC of 0.89, outperforming the Kidney Donor Risk Index and the DGF risk calculator, showing AUCs of 0.55 and 0.59, respectively. CONCLUSIONS We demonstrate that donor kidney preservation fluid harbors biomarkers that, together with information on recipient BMI, predict short-term post-transplantation kidney function. Our approach is safe, easy, and performs better than current prediction algorithms, which are only on the basis of clinical parameters.
Collapse
Affiliation(s)
| | | | - Liselotte S.S. Ooms
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | | | - Frank J.M.F. Dor
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
- Directorate of Renal and Transplant Services, Imperial College Healthcare National Health Service Trust, London, United Kingdom; and
| | - Olivier G. de Jong
- Departments of Nephrology and Hypertension and
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Wilco de Jager
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
22
|
Li GC, Zhang L, Yu M, Jia H, Tian T, Wang J, Wang F, Zhou L. Identification of novel biomarker and therapeutic target candidates for acute intracerebral hemorrhage by quantitative plasma proteomics. Clin Proteomics 2017; 14:14. [PMID: 28450824 PMCID: PMC5406897 DOI: 10.1186/s12014-017-9149-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background The systematic mechanisms of acute intracerebral hemorrhage are still unknown and unverified, although many recent researches have indicated the secondary insults. This study was aimed to disclose the pathological mechanism and identify novel biomarker and therapeutic target candidates by plasma proteome. Methods Patients with AICH (n = 8) who demographically matched healthy controls (n = 4) were prospectively enrolled, and their plasma samples were obtained. The TMT-LC–MS/MS-based proteomics approach was used to quantify the differential proteome across plasma samples, and the results were analyzed by Ingenuity Pathway Analysis to explore canonical pathways and the relationship involved in the uploaded data. Results Compared with healthy controls, there were 31 differentially expressed proteins in the ICH group (P < 0.05), of which 21 proteins increased while 10 proteins decreased in abundance. These proteins are involved in 21 canonical pathways. One network with high confidence level was selected by the function network analysis, in which 23 proteins, P38MAPK and NFκB signaling pathways participated. Upstream regulator analysis found two regulators, IL6 and TNF, with an activation z-score. Seven biomarker candidates: APCS, FGB, LBP, MGMT, IGFBP2, LYZ, and APOA4 were found. Six candidate proteins were selected to assess the validity of the results by subsequent Western blotting analysis. Conclusion Our analysis provided several intriguing pathways involved in ICH, like LXR/RXR activation, acute phase response signaling, and production of NO and ROS in macrophages pathways. The three upstream regulators: IL-6, TNF, LPS, and seven biomarker candidates: APCS, APOA4, FGB, IGFBP2, LBP, LYZ, and MGMT were uncovered. LPS, APOA4, IGFBP2, LBP, LYZ, and MGMT are novel potential biomarkers in ICH development. The identified proteins and pathways provide new perspectives to the potential pathological mechanism and therapeutic targets underlying ICH. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Chun Li
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Lina Zhang
- The Third Hospital of Zhangzhou, Zhangzhou, 363005 People's Republic of China
| | - Ming Yu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| | - Haiyu Jia
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| | - Ting Tian
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Junqin Wang
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Fuqiang Wang
- School of Public Health, Nanjing Medical University, Nanjing, 211166 People's Republic of China
| | - Ling Zhou
- School of Public Health, Nanjing Medical University, Nanjing, 211166 People's Republic of China
| |
Collapse
|
23
|
Kawai T, Kuwano Y, Masuda K, Fujita K, Tanaka H, Nishikawa T, Rokutan K, Nishida K. Adverse parenting is associated with blunted salivary cortisol awakening response and altered expression of glucocorticoid receptor β and β2-adrenergic receptor mRNAs in leukocytes in Japanese medical students. Stress 2017; 20:159-166. [PMID: 28285561 DOI: 10.1080/10253890.2017.1297415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adverse parenting is associated with an increased risk for the development of mood and behavioral disorders. In this study, we assessed the perceived parental bonding of 232 medical students using the parental bonding instrument (PBI) and extracted 22 students who reported their parents' rearing attitudes as affectionless control (LOW; low care, high overprotection). Using the 28-item general health questionnaire, the Zung self-rating depression scale (Zung-SDS), the hospital anxiety and depression scale (HADS), and the Spielberger state-trait-anxiety-inventory (STAI), physical and mental state of the LOW students were compared with those of 30 students who reported their parental bonding as optimal (OPT; high care and low overprotection). These questionnaire measurements demonstrated significantly higher anxiety and depressive mood in the LOW students versus the OPT students. Compared with the OPT students, the LOW students also exhibited a significantly reduced salivary cortisol awakening response (CAR) without changes across the rest of the diurnal salivary cortisol profile. Among glucocorticoid-related genes examined (GR, ADRB2, IκBα, IL10, IL1R2, IL1RN, MR, MC2R, TGFB1, TGFB2 and FASLG), real-time reverse transcription-PCR showed that the LOW students significantly increased expression of a dominant negative glucocorticoid receptor β (GRβ) mRNA and decreased β2-adrenergic receptor (ADRB2) mRNA levels in circulating leukocytes. These results suggest that negative perception of parents' child-rearing attitudes may be associated with anxiety and depressive mood and altered glucocorticoid signaling even in healthy young adults.
Collapse
Affiliation(s)
- Tomoko Kawai
- a Department of Pathophysiology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Yuki Kuwano
- a Department of Pathophysiology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kiyoshi Masuda
- a Department of Pathophysiology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kinuyo Fujita
- a Department of Pathophysiology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Hiroki Tanaka
- a Department of Pathophysiology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Tatsuya Nishikawa
- a Department of Pathophysiology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kazuhito Rokutan
- a Department of Pathophysiology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kensei Nishida
- a Department of Pathophysiology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| |
Collapse
|
24
|
Li W, Wang X, Niu X, Zhang H, He Z, Wang Y, Zhi W, Liu F. Protective Effects of Nobiletin Against Endotoxic Shock in Mice Through Inhibiting TNF-α, IL-6, and HMGB1 and Regulating NF-κB Pathway. Inflammation 2017; 39:786-97. [PMID: 26846885 DOI: 10.1007/s10753-016-0307-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nobiletin (NOB), the major bioactive component of polymethoxyflavones in citrus fruits, has been reported possessing significant biological properties. The purpose of the present study was to investigate the protective role of NOB on lipopolysaccharide (LPS)-induced endotoxic shock in mice. We found pretreatment with NOB increases the survival rate of mice after endotoxin injection. The present study clearly demonstrates that pretreatment with NOB decreases the production of early pro-inflammatory cytokines TNF-α, IL-6, and late-phase mediator HMGB1 in serum and tissues of kidney, lung, and liver. The histopathological study indicates that NOB administration significantly attenuate tissues injury induced by LPS. Moreover, NOB suppresses the activity of nuclear factor-kappa B (NF-κB). These results suggest that NOB protects mice against LPS-induced endotoxic shock through inhibiting the production of TNF-α, IL-6, and HMGB1 and the activation of NF-κB, which elucidate that NOB may be a promising drug candidate for the treatment of septic shock.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province, 710061, People's Republic of China
| | - Xiumei Wang
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province, 710061, People's Republic of China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
| | - Hailin Zhang
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province, 710061, People's Republic of China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province, 710061, People's Republic of China
| | - Yu Wang
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province, 710061, People's Republic of China
| | - Wenbing Zhi
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province, 710061, People's Republic of China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province, 710061, People's Republic of China
| |
Collapse
|
25
|
|
26
|
Ozer EK, Goktas MT, Kilinc I, Bariskaner H, Ugurluoglu C, Iskit AB. Celecoxib administration reduced mortality, mesenteric hypoperfusion, aortic dysfunction and multiple organ injury in septic rats. Biomed Pharmacother 2016; 86:583-589. [PMID: 28024294 DOI: 10.1016/j.biopha.2016.11.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cyclooxygenase (COX)-2 overexpression is associated with vascular injury and multiple organ failure in sepsis. However, constitutive COX-1 and basal COX-2 expressions have physiological effects. We aimed to investigate the effects of partial and selective COX-2 inhibition without affecting constitutive COX-1 and basal COX-2 activities by celecoxib on mesenteric artery blood flow (MABF), vascular reactivity, oxidative and inflammatory injuries, and survival in septic rats accomplished by cecal ligation and puncture (CLP). METHODS Wistar rats were allocated into Sham, CLP, Sham+celecoxib, CLP+celecoxib subgroups. 2h after Sham and CLP operations, celecoxib (0.5mg/kg) or vehicle (saline; 1mL/kg) was administered orally to rats. 18h after drug administrations, MABF and responses of isolated aortic rings to phenylephrine were measured. Tissue samples were obtained for biochemical and histopathological examinations. Furthermore, survival rate was monitored throughout 96h. RESULTS Celecoxib ameliorated mesenteric hypoperfusion and partially improved aortic dysfunction induced by CLP. Survival rate was%0 at 49th h in CLP group, but in CLP+celecoxib group it was 42.8% at the end of 96h. Serum AST, ALT, LDH, BUN, Cr and inflammatory cytokine (tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6) levels were increased in CLP group that were prevented by celecoxib. The decreases in liver and spleen glutathione levels and the increases in liver, lung, spleen and kidney malondialdehyde levels in CLP group were blocked by celecoxib. The histopathological protective effects of celecoxib on organ injury due to CLP were also observed. CONCLUSIONS Celecoxib has protective effects on sepsis due to its preservative effects on mesenteric perfusion, aortic function and its anti-inflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Erdem Kamil Ozer
- Department of Pharmacology, Faculty of Medicine, Selcuk University, Konya, Turkey.
| | - Mustafa Tugrul Goktas
- Department of Pharmacology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Ibrahim Kilinc
- Department of Biochemistry, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hulagu Bariskaner
- Department of Pharmacology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ceyhan Ugurluoglu
- Department of Pathology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Alper Bektas Iskit
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
27
|
Xie L, Zhou F, Liu X, Fang Y, Yu Z, Song N, Kong F. Serum microRNA181a: Correlates with the intracellular cytokine levels and a potential biomarker for acute graft-versus-host disease. Cytokine 2016; 85:37-44. [DOI: 10.1016/j.cyto.2016.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 11/24/2022]
|
28
|
Gligorijevic D, Stojanovic J, Obradovic Z. Disease types discovery from a large database of inpatient records: A sepsis study. Methods 2016; 111:45-55. [PMID: 27477211 DOI: 10.1016/j.ymeth.2016.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/29/2023] Open
Abstract
Data-driven phenotype discoveries on Electronic Health Records (EHR) data have recently drawn benefits across many aspects of clinical practice. In the method described in this paper, we map a very large EHR database containing more than a million inpatient cases into a low dimensional space where diseases with similar phenotypes have similar representation. This embedding allows for an effective segmentation of diseases into more homogeneous categories, an important task of discovering disease types for precision medicine. In particular, many diseases have heterogeneous nature. For instance, sepsis, a systemic and progressive inflammation, can be caused by many factors, and can have multiple manifestations on different human organs. Understanding such heterogeneity of the disease can help in addressing many important issues regarding sepsis, including early diagnosis and treatment, which is of huge importance as sepsis is one of the main causes of in-hospital deaths in the United States. This study analyzes state of the art embedding models that have had huge success in various fields, applying them to disease embedding from EHR databases. Particular interest is given to learning multi-type representation of heterogeneous diseases, which leads to more homogeneous groups. Our results show evidence that such representations have phenotypes of higher quality and also provide benefit when predicting mortality of inpatient visits.
Collapse
Affiliation(s)
- Djordje Gligorijevic
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, PA 19122, USA
| | - Jelena Stojanovic
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, PA 19122, USA
| | - Zoran Obradovic
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
29
|
Conway Morris A, Datta D, Shankar-Hari M, Weir CJ, Rennie J, Antonelli J, Rossi AG, Warner N, Keenan J, Wang A, Brown KA, Lewis S, Mare T, Simpson AJ, Hulme G, Dimmick I, Walsh TS. Predictive value of cell-surface markers in infections in critically ill patients: protocol for an observational study (ImmuNe FailurE in Critical Therapy (INFECT) Study). BMJ Open 2016; 6:e011326. [PMID: 27431901 PMCID: PMC4964235 DOI: 10.1136/bmjopen-2016-011326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Critically ill patients are at high risk of nosocomial infections, with between 20% and 40% of patients admitted to the intensive care unit (ICU) acquiring infections. These infections result in increased antibiotic use, and are associated with morbidity and mortality. Although critical illness is classically associated with hyperinflammation, the high rates of nosocomial infection argue for an importance of effect of impaired immunity. Our group recently demonstrated that a combination of 3 measures of immune cell function (namely neutrophil CD88, monocyte HLA-DR and % regulatory T cells) identified a patient population with a 2.4-5-fold greater risk for susceptibility to nosocomial infections. METHODS AND ANALYSIS This is a prospective, observational study to determine whether previously identified markers of susceptibility to nosocomial infection can be validated in a multicentre population, as well as testing several novel markers which may improve the risk of nosocomial infection prediction. Blood samples from critically ill patients (those admitted to the ICU for at least 48 hours and requiring mechanical ventilation alone or support of 2 or more organ systems) are taken and undergo whole blood staining for a range of immune cell surface markers. These samples undergo analysis on a standardised flow cytometry platform. Patients are followed up to determine whether they develop nosocomial infection. Infections need to meet strict prespecified criteria based on international guidelines; where these criteria are not met, an adjudication panel of experienced intensivists is asked to rule on the presence of infection. Secondary outcomes will be death from severe infection (sepsis) and change in organ failure. ETHICS AND DISSEMINATION Ethical approval including the involvement of adults lacking capacity has been obtained from respective English and Scottish Ethics Committees. Results will be disseminated through presentations at scientific meetings and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT02186522; Pre-results.
Collapse
Affiliation(s)
- Andrew Conway Morris
- University Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, Cambridge, UK
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Deepankar Datta
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- University of Edinburgh School of Clinical Sciences, Edinburgh Critical Care Research Group, Edinburgh, UK
| | - Manu Shankar-Hari
- Intensive Care Unit, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, UK
| | - Christopher J Weir
- Edinburgh Health Services Research Unit, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Jillian Rennie
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jean Antonelli
- Edinburgh Clinical Trials Unit, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Noel Warner
- Becton Dickinson Bioscience, Franklin Lakes, New Jersey, USA
| | - Jim Keenan
- Becton Dickinson Bioscience, Franklin Lakes, New Jersey, USA
| | - Alice Wang
- Becton Dickinson Bioscience, Franklin Lakes, New Jersey, USA
| | - K Alun Brown
- Vascular Immunology Research Laboratory, Rayne Institute (King's College London), St Thomas’ Hospital, London, UK
| | - Sion Lewis
- Vascular Immunology Research Laboratory, Rayne Institute (King's College London), St Thomas’ Hospital, London, UK
| | - Tracey Mare
- Vascular Immunology Research Laboratory, Rayne Institute (King's College London), St Thomas’ Hospital, London, UK
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Gillian Hulme
- Flow Cytometry Core Facility Laboratory, Faculty of Medical Sciences, Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Ian Dimmick
- Flow Cytometry Core Facility Laboratory, Faculty of Medical Sciences, Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy S Walsh
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- University of Edinburgh School of Clinical Sciences, Edinburgh Critical Care Research Group, Edinburgh, UK
| |
Collapse
|
30
|
Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS). Sci Rep 2016; 6:28006. [PMID: 27320175 PMCID: PMC4913253 DOI: 10.1038/srep28006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/18/2016] [Indexed: 01/09/2023] Open
Abstract
Systemic inflammation in humans may be triggered by infection, termed sepsis, or non-infective processes, termed non-infective systemic inflammatory response syndrome (SIRS). MicroRNAs regulate cellular processes including inflammation and may be detected in blood. We aimed to establish definitive proof-of-principle that circulating microRNAs are differentially affected during sepsis and non-infective SIRS. Critically ill patients with severe (n = 21) or non-severe (n = 8) intra-abdominal sepsis; severe (n = 23) or non-severe (n = 21) non-infective SIRS; or no SIRS (n = 16) were studied. Next-generation sequencing and qRT-PCR were used to measure plasma microRNAs. Detectable blood miRNAs (n = 116) were generally up-regulated in SIRS compared to no-SIRS patients. Levels of these 'circulating inflammation-related microRNAs' (CIR-miRNAs) were 2.64 (IQR: 2.10-3.29) and 1.52 (IQR: 1.15-1.92) fold higher for non-infective SIRS and sepsis respectively (p < 0.0001), hence CIR-miRNAs appeared less abundant in sepsis than in SIRS. Six CIR-miRNAs (miR-30d-5p, miR-30a-5p, miR-192-5p, miR-26a-5p, miR-23a-5p, miR-191-5p) provided good-to-excellent discrimination of severe sepsis from severe SIRS (0.742-0.917 AUC of ROC curves). CIR-miRNA levels inversely correlated with pro-inflammatory cytokines (IL-1, IL-6 and others). Thus, among critically ill patients, sepsis and non-infective SIRS are associated with substantial, differential changes in CIR-miRNAs. CIR-miRNAs may be regulators of inflammation and warrant thorough evaluation as diagnostic and therapeutic targets.
Collapse
|
31
|
Martin LM, Johnson PJ, Amorim JR, Honaker AR, Donaldson RS, DeClue AE. Investigation of the potential immunomodulatory effects of resveratrol on equine whole blood: An in vitro investigation. Res Vet Sci 2016; 106:97-9. [DOI: 10.1016/j.rvsc.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/05/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023]
|
32
|
Chen KF, Chaou CH, Jiang JY, Yu HW, Meng YH, Tang WC, Wu CC. Diagnostic Accuracy of Lipopolysaccharide-Binding Protein as Biomarker for Sepsis in Adult Patients: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0153188. [PMID: 27055115 PMCID: PMC4824361 DOI: 10.1371/journal.pone.0153188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Lipopolysaccharide-binding protein (LBP) is widely reported as a biomarker to differentiate infected from non-infected patients. The diagnostic use of LBP for sepsis remains a matter of debate. We aimed to perform a systematic review and meta-analysis to assess the diagnostic accuracy of serum LBP for sepsis in adult patients. METHODS We performed a systematic review and meta-analysis to assess the accuracy of LBP for sepsis diagnosis. A systematic search in PubMed and EMBASE for studies that evaluated the diagnostic role of LBP for sepsis through December 2015 was conducted. We searched these databases for original, English language, research articles that studied the diagnostic accuracy between septic and non-septic adult patients. Sensitivity, specificity, and other measures of accuracy, such as diagnostic odds ratio (DOR) and area under the receiver operating characteristic curve (AUC) of LBP were pooled using the Hierarchical Summary Receiver Operating Characteristic (HSROC) method. RESULTS Our search returned 53 reports, of which 8 fulfilled the inclusion criteria, accounting for 1684 patients. The pooled sensitivity and specificity of LBP for diagnosis of sepsis by the HSROC method were 0.64 (95% CI: 0.56-0.72) and 0.63 (95% CI: 0.53-0.73), respectively. The value of the DOR was 3.0 (95% CI: 2.0-4.0) and the AUC was 0.68 (95% CI: 0.64-0.72). Meta-regression analysis revealed that cut-off values accounted for the heterogeneity of sensitivity and sample size (> = 150) accounted for the heterogeneity of specificity. CONCLUSIONS Based on the results of our meta-analysis, LBP had weak sensitivity and specificity in the detection of sepsis. LBP may not be practically recommended for clinical utilization as a single biomarker.
Collapse
Affiliation(s)
- Kuan-Fu Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chung-Hsien Chaou
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jing-Yi Jiang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsueh-Wen Yu
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Meng
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chen Tang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chieh Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Fontaine M, Lepape A, Piriou V, Venet F, Friggeri A. Innate danger signals in acute injury: From bench to bedside. Anaesth Crit Care Pain Med 2016; 35:283-92. [PMID: 26987739 DOI: 10.1016/j.accpm.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/24/2022]
Abstract
The description of the systemic inflammatory response syndrome (SIRS) as a reaction to numerous insults marked a turning point in the understanding of acute critical states, which are intensive care basic cases. This concept highlighted the final inflammatory response features whichever the injury mechanism is: infectious, or non-infectious such as extensive burns, traumas, major surgery or acute pancreatitis. In these cases of severe non-infectious insult, many endogenous mediators are released. Like infectious agents components, they can activate the immune system (via common signaling pathways) and initiate an inflammatory response. They are danger signals or alarmins. These molecules generally play an intracellular physiological role and acquire new functions when released in extracellular space. Many progresses brought new information on these molecules and on their function in infectious and non-infectious inflammation. These danger signals can be used as biomarkers and provide new pathophysiological and therapeutic approaches, particularly for immune dysfunctions occurring after an acute injury. We present herein the danger model, the main danger signals and the clinical consequences.
Collapse
Affiliation(s)
- Mathieu Fontaine
- Burn Intensive Care Unit, centre hospitalier Saint-Joseph-Saint-Luc, 20, quai Claude-Bernard, 69007 Lyon, France; EAM 4174 « Hemostasis, inflammation and sepsis », hospices civils de Lyon, université Claude-Bernard Lyon I, 69008 Lyon, France.
| | - Alain Lepape
- EAM 4174 « Hemostasis, inflammation and sepsis », hospices civils de Lyon, université Claude-Bernard Lyon I, 69008 Lyon, France; Intensive Care Unit, centre hospitalier Lyon Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| | - Vincent Piriou
- EAM 4174 « Hemostasis, inflammation and sepsis », hospices civils de Lyon, université Claude-Bernard Lyon I, 69008 Lyon, France; Intensive Care Unit, centre hospitalier Lyon Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| | - Fabienne Venet
- EAM 4174 « Hemostasis, inflammation and sepsis », hospices civils de Lyon, université Claude-Bernard Lyon I, 69008 Lyon, France; Immunology Laboratory, hôpital Édouard-Herriot, hospices civils de Lyon, 5, place d'Arsonval, 69437 Lyon cedex 03, France
| | - Arnaud Friggeri
- Intensive Care Unit, centre hospitalier Lyon Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| |
Collapse
|
34
|
Rasid O, Cavaillon JM. Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiol 2016; 11:293-314. [PMID: 26849633 DOI: 10.2217/fmb.15.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe sepsis remains a worldwide threat, not only in industrialized countries, due to their aging population, but also in developing countries where there still are numerous cases of neonatal and puerperal sepsis. Tools for early diagnosis, a prerequisite for rapid and appropriate antibiotic therapy, are still required. In this review, we highlight some recent developments in our understanding of the associated systemic inflammatory response that help deciphering pathophysiology (e.g., epigenetic, miRNA, regulatory loops, compartmentalization, apoptosis and synergy) and discuss some of the consequences of sepsis (e.g., immune status, neurological and muscular alterations). We also emphasize the challenge to better define animal models and discuss past failures in clinical investigations in order to define new efficient therapies.
Collapse
Affiliation(s)
- Orhan Rasid
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| | - Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| |
Collapse
|
35
|
Innate immunity gene expression changes in critically ill patients with sepsis and disease-related malnutrition. Cent Eur J Immunol 2015; 40:311-24. [PMID: 26648775 PMCID: PMC4655381 DOI: 10.5114/ceji.2015.54593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was an attempt to determine whether the expression of genes involved in innate antibacterial response (TL R2, NOD 1, TRAF6, HMGB 1 and Hsp70) in peripheral blood leukocytes in critically ill patients, may undergo significant changes depending on the severity of the infection and the degree of malnutrition. The study was performed in a group of 128 patients with infections treated in the intensive care and surgical ward. In 103/80.5% of patients, infections had a severe course (sepsis, severe sepsis, septic shock, mechanical ventilation of the lungs). Clinical monitoring included diagnosis of severe infection (according to the criteria of the ACC P/SCC M), assessment of severity of the patient condition and risk of death (APACHE II and SAPS II), nutritional assessment (NRS 2002 and SGA scales) and the observation of the early results of treatment. Gene expression at the mRNA level was analyzed by real-time PCR. The results of the present study indicate that in critically ill patients treated in the IC U there are significant disturbances in the expression of genes associated with innate antimicrobial immunity, which may have a significant impact on the clinical outcome. The expression of these genes varies depending on the severity of the patient condition, severity of infection and nutritional status. Expression disorders of genes belonging to innate antimicrobial immunity should be diagnosed as early as possible, monitored during the treatment and taken into account during early therapeutic treatment (including early nutrition to support the functions of immune cells).
Collapse
|
36
|
Schmidt T, Brodesser A, Schnitzler N, Grüger T, Brandenburg K, Zinserling J, Zündorf J. CD66b Overexpression and Loss of C5a Receptors as Surface Markers for Staphylococcus aureus-Induced Neutrophil Dysfunction. PLoS One 2015; 10:e0132703. [PMID: 26176669 PMCID: PMC4503562 DOI: 10.1371/journal.pone.0132703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022] Open
Abstract
Neutrophil granulocytes constitute the main component of innate immunity in the clearance of bacterial infections. However, during systemic inflammation, immunoparalysis may occur resulting in neutrophil dysfunction. This study presents a new in vitro model for analyzing the dysfunction of human peripheral blood neutrophils resulting from the interaction with Staphylococcus aureus components in whole blood. After induction of a massive complement activation by S. aureus supernatant, the neutrophils exhibit a reduced phagocytic capacity resulting in a dramatic reduction of the antibacterial activity similar to that of neutrophils isolated from septic patients. The number of phagocytozing neutrophils is drastically reduced as well as the phagocytic capacity designated by a significantly lower number of ingested microbes. This dysfunction correlates with the loss of complement component 5a receptor 1 from the neutrophil cell surface and can be further characterized by a C5a-induced CD66b overexpression. The presented in vitro model offers a new platform for preclinical testing of immunosuppressive drugs and delivers new information for the understanding of neutrophil dysfunctions under the conditions described.
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of Dermatology, Philipps-Universität of Marburg, Marburg, Germany
| | - Alva Brodesser
- Federal Institute for Drugs and Medical Devices, L2 Biosafety Laboratory, Bonn, Germany
| | | | - Thomas Grüger
- Federal Institute for Drugs and Medical Devices, L2 Biosafety Laboratory, Bonn, Germany
| | - Kerstin Brandenburg
- Federal Institute for Drugs and Medical Devices, L2 Biosafety Laboratory, Bonn, Germany
| | - Jörg Zinserling
- Federal Institute for Drugs and Medical Devices, Biostatistics Unit, Bonn, Germany
| | - Josef Zündorf
- Federal Institute for Drugs and Medical Devices, L2 Biosafety Laboratory, Bonn, Germany
- * E-mail:
| |
Collapse
|
37
|
Antagonistic effects of acetylshikonin on LPS-induced NO and PGE2 production in BV2 microglial cells via inhibition of ROS/PI3K/Akt-mediated NF-κB signaling and activation of Nrf2-dependent HO-1. In Vitro Cell Dev Biol Anim 2015; 51:975-86. [PMID: 26091627 DOI: 10.1007/s11626-015-9922-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022]
Abstract
Although acetylshikonin (ACS) is known to have antioxidant and antitumor activities, whether ACS regulates the expression of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated microglial cells remains unclear. In this study, it was found that ACS isolated from Lithospermum erythrorhizon inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) release by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in BV2 microglial cells. Furthermore, ACS reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) and subsequently suppressed iNOS and COX-2 expression. Consistent with these data, ACS attenuated the phosphorylation of PI3K and Akt and suppressed the DNA-binding activity of NF-κB by inducing the generation of reactive oxygen species (ROS) in LPS-stimulated cells. In addition, ACS enhanced heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. Zinc protoporphyrin, a specific HO-1 inhibitor, partially attenuated the antagonistic effects of ACS on LPS-induced NO and PGE2 production. By contrast, the presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO and PGE2 production. These data indicate that ACS downregulates proinflammatory mediators such as NO and PGE2 by suppressing PI3K/Akt-dependent NF-κB activity induced by ROS as well as inducing Nrf2-dependent HO-1 activity. Taken together, ACS might be a good candidate to regulate LPS-mediated inflammatory diseases.
Collapse
|
38
|
Parlato M, Cavaillon JM. Host response biomarkers in the diagnosis of sepsis: a general overview. Methods Mol Biol 2015; 1237:149-211. [PMID: 25319788 DOI: 10.1007/978-1-4939-1776-1_15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Critically ill patients who display a systemic inflammatory response syndrome (SIRS) are prone to develop nosocomial infections. The challenge remains to distinguish as early as possible among SIRS patients those who are developing sepsis. Following a sterile insult, damage-associated molecular patterns (DAMPs) released by damaged tissues and necrotic cells initiate an inflammatory response close to that observed during sepsis. During sepsis, pathogen-associated molecular patterns (PAMPs) trigger the release of host mediators involved in innate immunity and inflammation through identical receptors as DAMPs. In both clinical settings, a compensatory anti-inflammatory response syndrome (CARS) is concomitantly initiated. The exacerbated production of pro- or anti-inflammatory mediators allows their detection in biological fluids and particularly within the bloodstream. Some of these mediators can be used as biomarkers to decipher among the patients those who developed sepsis, and eventually they can be used as prognosis markers. In addition to plasma biomarkers, the analysis of some surface markers on circulating leukocytes or the study of mRNA and miRNA can be helpful. While there is no magic marker, a combination of few biomarkers might offer a high accuracy for diagnosis.
Collapse
Affiliation(s)
- Marianna Parlato
- Unit of Cytokines and Inflammation, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | | |
Collapse
|
39
|
Wang X, Li ZY, Zeng L, Zhang AQ, Pan W, Gu W, Jiang JX. Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: a meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:245. [PMID: 26059345 PMCID: PMC4490738 DOI: 10.1186/s13054-015-0972-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 06/01/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Neutrophil CD64 (nCD64) expression appears to be a promising marker of bacterial infections. The aim of this meta-analysis was to assess the accuracy of nCD64 expression for the diagnosis of sepsis in critically ill adult patients. METHODS We systematically searched PubMed, Embase, ISI Web of Knowledge, and the Cochrane Library for literature published between database inception and 19 May 2014, as well as reference lists of identified primary studies. Studies were included if they included assessment of the accuracy of nCD64 expression for sepsis diagnosis in adult patients and provided sufficient information to construct a 2×2 contingency table. RESULTS A total of 8 studies comprising 1986 patients fulfilled the inclusion criteria for the final analysis. The pooled sensitivity and specificity were 0.76 (95 % confidence interval [CI], 0.73-0.78) and 0.85 (95 % CI, 0.82-0.87), respectively. The positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio were 8.15 (95 % CI, 3.82-17.36), 0.16 (95 % CI, 0.09-0.30), and 60.41 (95 % CI, 15.87-229.90), respectively. The area under the summary receiver operating characteristic curve of nCD64 expression with Q* value were 0.95 (Q* =0.89). CONCLUSIONS On the basis of our meta-analysis, nCD64 expression is a helpful marker for early diagnosis of sepsis in critically ill patients. The results of the test should not be used alone to diagnose sepsis, but instead should be interpreted in combination with medical history, physical examination, and other test results.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China.
| | - Zhong-Yun Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China.
| | - An-Qiang Zhang
- The 153 Central Hospital of PLA Jinan Military Region, Zhengzhou, Henan Province, China.
| | - Wei Pan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China.
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China.
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China.
| |
Collapse
|
40
|
The Effect of Continuous Sedation Therapy on Immunomodulation, Plasma Levels of Antioxidants, and Indicators of Tissue Repair in Post-Burn Sepsis Patients. Cell Biochem Biophys 2015; 73:473-478. [DOI: 10.1007/s12013-015-0681-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Lee SC, Hsu JS, Li CC, Chen KM, Liu CT. Protective effect of leaf essential oil from Cinnamomum osmophloeum Kanehira on endotoxin-induced intestinal injury in mice associated with suppressed local expression of molecules in the signaling pathways of TLR4 and NLRP3. PLoS One 2015; 10:e0120700. [PMID: 25794175 PMCID: PMC4368640 DOI: 10.1371/journal.pone.0120700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
Endotoxin is a potent microbial mediator implicated in sepsis. We investigated the anti-inflammatory effect of leaf essential oil from Cinnamomum osmophloeum Kanehira (CO) of the linalool chemotype on endotoxin-injected mice. Mice were administered CO or vehicle by gavage before endotoxin injection and were killed 12 h after injection. Neither growth nor the organ weight or tissue weight to body weight ratio was affected by CO treatment. CO significantly lowered peripheral levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-18, interferon-γ, and nitric oxide and inhibited the expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response gene (88), myeloid differentiation factor 2, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), caspase-1, and Nod-like receptor family, pyrin domain containing 3 (NLRP3). CO also inhibited the activation of nuclear factor-ĸB, inhibited the activity of caspase-1 in small intestine, and ameliorated intestinal edema. Our data provide strong evidence for a protective effect of CO of the linalool chemotype in the endotoxin-induced systemic inflammatory response in close association with suppression of the TLR4 and NLRP3 signaling pathways in intestine.
Collapse
Affiliation(s)
- Shih-Chieh Lee
- Department of BioIndustry Technology, Da-Yeh University, No. 168, University Rd., Dacun, Changhua, Taiwan, Republic of China
| | - Jie-Sheng Hsu
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
| | - Chien-Chun Li
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
| | - Ke-Ming Chen
- Department of Parasitology, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
| | - Cheng-Tzu Liu
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
- Department of Nutrition, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
42
|
Tulapurkar ME, Ramarathnam A, Hasday JD, Singh IS. Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells. PLoS One 2015; 10:e0118010. [PMID: 25659128 PMCID: PMC4320107 DOI: 10.1371/journal.pone.0118010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/06/2015] [Indexed: 01/17/2023] Open
Abstract
Sepsis, a devastating and often lethal complication of severe infection, is characterized by fever and dysregulated inflammation. While infections activate the inflammatory response in part through Toll-like receptors (TLRs), fever can partially activate the heat shock response with generation of heat shock proteins (HSPs). Since extracellular HSPs, especially HSP70 (eHSP70), are proinflammatory TLR agonists, we investigated how exposure to the TLR4 agonist, bacterial lipopolysaccharide (LPS) and febrile range hyperthermia (FRH; 39.5°C) modify HSP70 expression and extracellular release. Using differentiated THP1 cells, we found that concurrent exposure to FRH and LPS as well as TLR2 and TLR3 agonists synergized to activate expression of inducible HSP72 (HSPA1A) mRNA and protein via a p38 MAP kinase-requiring mechanism. Treatment with LPS for 6 h stimulated eHSP70 release; levels of eHSP70 released at 39.5°C were higher than at 37°C roughly paralleling the increase in intracellular HSP72 in the 39.5°C cells. By contrast, 6 h exposure to FRH in the absence of LPS failed to promote eHSP70 release. Release of eHSP70 by LPS-treated THP1 cells was inhibited by glibenclamide, but not brefeldin, indicating that eHSP70 secretion occurred via a non-classical protein secretory mechanism. Analysis of eHSP70 levels in exosomes and exosome-depleted culture supernatants from LPS-treated THP1 cells using ELISA demonstrated similar eHSP70 levels in unfractionated and exosome-depleted culture supernatants, indicating that LPS-stimulated eHSP70 release did not occur via the exosome pathway. Immunoblot analysis of the exosome fraction of culture supernatants from these cells showed constitutive HSC70 (HSPA8) to be the predominant HSP70 family member present in exosomes. In summary, we have shown that LPS stimulates macrophages to secrete inducible HSP72 via a non-classical non-exosomal pathway while synergizing with FRH exposure to increase both intracellular and secreted levels of inducible HSP72. The impact of increased macrophage intracellular HSP70 levels and augmented secretion of proinflammatory eHSP70 in the febrile, infected patient remains to be elucidated.
Collapse
Affiliation(s)
- Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aparna Ramarathnam
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey D. Hasday
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Cytokine Core Laboratory, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research Services of the Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Ishwar S. Singh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research Services of the Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Singla S, Harjai K, Katare OP, Chhibber S. Bacteriophage-Loaded Nanostructured Lipid Carrier: Improved Pharmacokinetics Mediates Effective Resolution ofKlebsiella pneumoniae–Induced Lobar Pneumonia. J Infect Dis 2015; 212:325-34. [DOI: 10.1093/infdis/jiv029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/06/2015] [Indexed: 11/14/2022] Open
|
44
|
Thomas R, Stover C, Lambert DG, Thompson JP. Nociceptin system as a target in sepsis? J Anesth 2014; 28:759-67. [PMID: 24728719 DOI: 10.1007/s00540-014-1818-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
Abstract
The nociceptin system comprises the nociceptin receptor (NOP) and the ligand nociceptin/orphanin FQ (N/OFQ) that binds to the receptor. The archetypal role of the system is in pain processing but the NOP receptor is also expressed on immune cells. Activation of the NOP receptor is known to modulate inflammatory responses, such as mast-cell degranulation, neutrophil rolling, vasodilation, increased vascular permeability, adhesion molecule regulation and leucocyte recruitment. As there is a loss of regulation of inflammatory responses during sepsis, the nociceptin system could be a target for therapies aimed at modulating sepsis. This review details the known effects of NOP activation on leucocytes and the vascular endothelium and discusses the most recent human and animal data on the role of the nociceptin system in sepsis.
Collapse
Affiliation(s)
- Róisín Thomas
- University Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | | | | | | |
Collapse
|
45
|
Li Z, Li W, Li N, Jiao Y, Chen D, Cui L, Hu Y, Wu H, He W. γδ T cells are involved in acute HIV infection and associated with AIDS progression. PLoS One 2014; 9:e106064. [PMID: 25188438 PMCID: PMC4154895 DOI: 10.1371/journal.pone.0106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/31/2014] [Indexed: 11/21/2022] Open
Abstract
Background Early diagnosis is vital to HIV control. γδ T cells play critical roles in viral infections, but their activation in acute HIV infected patients and follow up to 18 months has not been described. Methods Changes in γδ T cells, including subsets, function and activation, in treated and untreated acutely HIV-infected patients (n = 79) were compared by cytotoxicity assay and flow cytometry with healthy controls (n = 21) at month 0, 6, 12 and 18. Results In acutely HIV-infected patients, Vδ1 cell proportion was elevated (P = 0.027) with Vδ2 population reduced (P = 0.002). Effector and central memory γδ T cell factions were decreased (P = 0.006 and P = 0.001, respectively), while proportion of terminal γδ T cells increased (P = 0.002). γδ T cell cytotoxicity was compromised over time. Fraction of IL-17-producing cells increased (P = 0.008), and IFN-γ-producing cells were unaffected (P = 0.115). Elevation of a microbial translocation marker, sCD14, was associated with γδ T cell activation (P = 0.001), which increased in a time-dependent manner, correlating with CD4/CD8 T cell activation set-points and CD4 counts. Antiretroviral therapy did not affect these changes. Conclusions γδ T cell subpopulation and functions change significantly in acute HIV infection and over time. Early γδ T cell activation was associated with CD4/CD8 T cell activation set-points, which predict AIDS progression. Therefore, γδ T cell activation represents a potential surrogate marker of AIDS progression.
Collapse
Affiliation(s)
- Zhen Li
- Department of Immunology, School of Basic Medicine, Peking Union Medical College; National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Li
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yanmei Jiao
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Lianxian Cui
- Department of Immunology, School of Basic Medicine, Peking Union Medical College; National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Hu
- Department of Immunology, School of Basic Medicine, Peking Union Medical College; National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- * E-mail: (HW); (WH)
| | - Wei He
- Department of Immunology, School of Basic Medicine, Peking Union Medical College; National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail: (HW); (WH)
| |
Collapse
|
46
|
Pashmakova MB, Bishop MA, Steiner JM, Suchodolski JS, Barr JW. Evaluation of serum thyroid hormones in dogs with systemic inflammatory response syndrome or sepsis. J Vet Emerg Crit Care (San Antonio) 2014; 24:264-71. [PMID: 24698053 DOI: 10.1111/vec.12172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/11/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine whether dogs with systemic inflammatory response syndrome (SIRS) or sepsis have derangements in serum thyroid hormone concentrations and to evaluate whether such derangements relate to illness severity or outcome. DESIGN Prospective observational study. Dogs hospitalized with SIRS or sepsis between May and December 2010 were included. Serum thyroid hormone concentrations were measured in all dogs. Data obtained on admission were used to calculate the Acute Patient Physiologic and Laboratory Evaluation (APPLE) scores. SETTING University teaching hospital. ANIMALS Twenty-two consecutive client-owned dogs hospitalized with SIRS or sepsis were enrolled; 18 dogs completed the study and 4 dogs were excluded for incomplete data. Forty-nine healthy dogs owned by volunteers were used as controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Decreased total thyroxine (TT4) concentrations were documented in all septic and 7/9 dogs with SIRS. Free T4 concentrations were decreased, but were within the reference interval in 12/18 dogs with SIRS or sepsis compared to control dogs (P < 0.001). Dogs with increased APPLE(fast) scores were less likely to survive (P = 0.017). CONCLUSIONS Dogs with SIRS or sepsis have derangements in measured serum thyroid hormones. No relationships were identified between thyroid hormone concentrations and survival. The APPLE(fast) score was the only variable predictive of poor outcome.
Collapse
Affiliation(s)
- Medora B Pashmakova
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | | | | | | | | |
Collapse
|
47
|
Blanchet C, Jouvion G, Fitting C, Cavaillon JM, Adib-Conquy M. Protective or deleterious role of scavenger receptors SR-A and CD36 on host resistance to Staphylococcus aureus depends on the site of infection. PLoS One 2014; 9:e87927. [PMID: 24498223 PMCID: PMC3909292 DOI: 10.1371/journal.pone.0087927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/01/2014] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a major human opportunistic pathogen responsible for a broad spectrum of infections ranging from benign skin infection to more severe life threatening disorders (e.g. pneumonia, sepsis), particularly in intensive care patients. Scavenger receptors (SR-A and CD36) are known to be involved in S. aureus recognition by immune cells in addition to MARCO, TLR2, NOD2 and α5β1 integrin. In the present study, we further deciphered the contribution of SR-A and CD36 scavenger receptors in the control of infection of mice by S. aureus. Using double SR-A/CD36 knockout mice (S/C-KO) and S. aureus strain HG001, a clinically relevant non-mutagenized strain, we showed that the absence of these two scavenger receptors was protective in peritoneal infection. In contrast, the deletion of these two receptors was detrimental in pulmonary infection following intranasal instillation. For pulmonary infection, susceptible mice (S/C-KO) had more colony-forming units (CFU) in their broncho-alveolar lavages fluids, associated with increased recruitment of macrophages and neutrophils. For peritoneal infection, susceptible mice (wild-type) had more CFU in their blood, but recruited less macrophages and neutrophils in the peritoneal cavity than resistant mice. Exacerbated cytokine levels were often observed in the susceptible mice in the infected compartment as well as in the plasma. The exception was the enhanced compartmentalized expression of IL-1β for the resistant mice (S/C-KO) after peritoneal infection. A similar mirrored susceptibility to S. aureus infection was also observed for MARCO and TLR2. Marco and tlr2 -/- mice were more resistant to peritoneal infection but more susceptible to pulmonary infection than wild type mice. In conclusion, our results show that innate immune receptors can play distinct and opposite roles depending on the site of infection. Their presence is protective for local pulmonary infection, whereas it becomes detrimental in the peritoneal infection.
Collapse
Affiliation(s)
- Charlène Blanchet
- Institut Pasteur, Cytokines & Inflammation, Département Infection et Epidemiologie, Paris, France
| | - Gregory Jouvion
- Institut Pasteur, Unité d'Histopathologie humaine et modèles animaux, Département Infection et Epidemiologie, Paris, France
| | - Catherine Fitting
- Institut Pasteur, Cytokines & Inflammation, Département Infection et Epidemiologie, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Cytokines & Inflammation, Département Infection et Epidemiologie, Paris, France
- * E-mail:
| | - Minou Adib-Conquy
- Institut Pasteur, Cytokines & Inflammation, Département Infection et Epidemiologie, Paris, France
| |
Collapse
|
48
|
TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 2013; 92:256-62. [PMID: 24366517 DOI: 10.1038/icb.2013.99] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are important in innate immunity, first described as guardians for the detection and clearance of transformed or virus-infected cells. Later, this cell type was revealed to be also able to recognize and respond to bacteria-infected cells. NK cells possess receptors allowing them to sense and respond to viral and bacterial patterns, including Toll-like receptors (TLRs). Initially described in other innate immune cells, particularly monocytes/macrophages, TLRs have more recently been characterized in NK cells. Controversies remain regarding the TLR expression in NK cells and their responsiveness to agonists, specifically the requirement for the presence of accessory cells, such as dendritic cells, or of accessory cytokines (IL-2, IL-12, IL-15 and IL-18) to respond to TLR agonists. Upon TLR activation, NK cells are an important source of IFN-γ and granulocyte macrophage colony-stimulating factor, cytokines necessary to fight infection but that can also contribute to deleterious inflammation if produced in excessive amounts. Here, we review the current knowledge concerning the expression of TLRs in and on NK cells and the responsiveness to their agonists and review the literature on the role of NK cells in the sensing of bacterial or viral patterns and in combatting infection.
Collapse
|
49
|
Thorgersen EB, Pischke SE, Barratt-Due A, Fure H, Lindstad JK, Pharo A, Hellerud BC, Mollnes TE. Systemic CD14 inhibition attenuates organ inflammation in porcine Escherichia coli sepsis. Infect Immun 2013; 81:3173-81. [PMID: 23774598 PMCID: PMC3754210 DOI: 10.1128/iai.00390-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/10/2013] [Indexed: 12/30/2022] Open
Abstract
Sepsis is an infection-induced systemic inflammatory response syndrome. Upstream recognition molecules, like CD14, play key roles in the pathogenesis. The aim of the present study was to investigate the effect of systemic CD14 inhibition on local inflammatory responses in organs from septic pigs. Pigs (n = 34) receiving Escherichia coli-bacteria or E. coli-lipopolysaccharide (LPS) were treated with an anti-CD14 monoclonal antibody or an isotype-matched control. Lungs, liver, spleen, and kidneys were examined for bacteria and inflammatory biomarkers. E. coli and LPS were found in large amounts in the lungs compared to the liver, spleen, and kidneys. Notably, the bacterial load did not predict the respective organ inflammatory response. There was a marked variation in biomarker induction in the organs and in the effect of anti-CD14. Generally, the spleen produced the most cytokines per weight unit, whereas the liver contributed the most to the total load. All cytokines were significantly inhibited in the spleen. Interleukin-6 (IL-6) was significantly inhibited in all organs, IL-1β and IP-10 were significantly inhibited in liver, spleen, and kidneys, and tumor necrosis factor, IL-8, and PAI-1 were inhibited only in the spleen. ICAM-1 and VCAM-1 was significantly inhibited in the kidneys. Systemic CD14-inhibition efficiently, though organ dependent, attenuated local inflammatory responses. Detailed knowledge on how the different organs respond to systemic inflammation in vivo, beyond the information gained by blood examination, is important for our understanding of the nature of systemic inflammation and is required for future mediator-directed therapy in sepsis. Inhibition of CD14 seems to be a good candidate for such treatment.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Institute of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Souza-Fonseca-Guimaraes F, Cavaillon JM, Adib-Conquy M. Bench-to-bedside review: Natural killer cells in sepsis - guilty or not guilty? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:235. [PMID: 23998530 PMCID: PMC4057064 DOI: 10.1186/cc12700] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial sepsis and septic shock are complex inflammatory disorders associated with a systemic inflammatory response syndrome. In the most severe cases of infection, an overzealous release of pro-inflammatory cytokines and inflammatory mediators by activated leukocytes, epithelial cells and endothelial cells, known as a 'cytokine storm', leads to deleterious effects such as organ dysfunction and even death. By the end of the 20th century, natural killer (NK) cells were for the first time identified as important players during sepsis. The role of this cell type was, however, double-edged, either 'angel' or 'devil' depending upon the bacterial infection model under study. Bacterial sensors (such as Toll-like receptors) have recently been shown to be expressed at the protein level in these cells. In addition, NK cells are important sources of interferon-γ and granulocyte-macrophage colony-stimulating factor, which are pro-inflammatory cytokines necessary to fight infection but can contribute to deleterious inflammation as well. Interestingly, an adaptative response occurs aimed to silence them, similar to the well-known phenomenon of endotoxin reprogramming.
Collapse
|