1
|
Abdalla MMI. Therapeutic potential of adiponectin in prediabetes: strategies, challenges, and future directions. Ther Adv Endocrinol Metab 2024; 15:20420188231222371. [PMID: 38250316 PMCID: PMC10798122 DOI: 10.1177/20420188231222371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Adiponectin, an adipose-derived hormone, plays a pivotal role in glucose regulation and lipid metabolism, with a decrease in circulating adiponectin levels being linked to insulin resistance and prediabetes. This review examines the therapeutic potential of adiponectin in managing prediabetes, elucidating on multiple aspects including its role in glucose and lipid metabolism, influence on insulin sensitivity, and anti-inflammatory properties. Moreover, the paper highlights the latest strategies to augment adiponectin levels, such as gene therapy, pharmacological interventions, dietary modifications, and lifestyle changes. It also addresses the challenges encountered in translating preclinical findings into clinical practice, primarily related to drug delivery, safety, and efficacy. Lastly, the review proposes future directions, underlining the need for large-scale human trials, novel adiponectin analogs, and personalized treatment strategies to harness adiponectin's full therapeutic potential in preventing the transition from prediabetes to diabetes.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Human Biology Department, School of Medicine, International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur, Federal Territory of Kuala Lumpur 57000, Malaysia
| |
Collapse
|
2
|
Hong J, Raza SHA, Ma H, Cao W, Chong Y, Wu J, Xi D, Deng W. Multiple omics analysis reveals the regulation of SIRT5 on mitochondrial function and lipid metabolism during the differentiation of bovine preadipocytes. Genomics 2024; 116:110773. [PMID: 38158141 DOI: 10.1016/j.ygeno.2023.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Preadipocyte differentiation represents a critical stage in adipogenesis, with mitochondria playing an undeniable pivotal role. Given the intricate interplay between transcription and metabolic signaling during adipogenesis, the regulation of sirtuin 5 (SIRT5) on mitochondrial function and lipid metabolism was revealed via multiple omics analysis. The findings suggest that SIRT5 plays a crucial role in promoting mitochondrial biosynthesis and maintaining mitochondrial function during preadipocyte differentiation. Moreover, SIRT5 modulates the metabolic levels of numerous bioactive substances by extensively regulating genes expression associated with differentiation, energy metabolism, lipid synthesis, and mitochondrial function. Finally, SIRT5 was found to suppress triacylglycerols (TAG) accumulation while enhancing the proportion and diversity of unsaturated fatty acids, and providing conditions for the expansion and stability of membrane structure during mitochondrial biosynthesis through numerous gene regulations. Our findings provide a foundation for the identification of crucial functional genes, signaling pathways, and metabolic substances associated with adipose tissue differentiation and metabolism.
Collapse
Affiliation(s)
- Jieyun Hong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Hongming Ma
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weina Cao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuqing Chong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiao Wu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongmei Xi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weidong Deng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
Ichida K. [Uric Acid Metabolism, Uric Acid Transporters and Dysuricemia]. YAKUGAKU ZASSHI 2024; 144:659-674. [PMID: 38825475 DOI: 10.1248/yakushi.23-00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.
Collapse
MESH Headings
- Humans
- Hyperuricemia/etiology
- Hyperuricemia/metabolism
- Hyperuricemia/genetics
- Uric Acid/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Organic Anion Transporters/metabolism
- Organic Anion Transporters/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glucose Transport Proteins, Facilitative/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Xanthine Dehydrogenase/metabolism
- Xanthine Dehydrogenase/genetics
- Xanthine Dehydrogenase/deficiency
- Animals
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Renal Tubular Transport, Inborn Errors/genetics
- Renal Tubular Transport, Inborn Errors/etiology
- Renal Tubular Transport, Inborn Errors/metabolism
- Urinary Calculi/etiology
- Urinary Calculi/metabolism
- Urinary Calculi/genetics
- Metabolism, Inborn Errors
Collapse
Affiliation(s)
- Kimiyoshi Ichida
- Department of Pathophysiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
- Division of Kidney and Hypertension, The Jikei University School of Medicine
| |
Collapse
|
4
|
Li X, Sun M, Qi H, Ju C, Chen Z, Gao X, Lin Z. Identification of a Chromosome 1 Substitution Line B6-Chr1BLD as a Novel Hyperlipidemia Model via Phenotyping Screening. Metabolites 2022; 12:metabo12121276. [PMID: 36557314 PMCID: PMC9781061 DOI: 10.3390/metabo12121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperlipidemia is a chronic disease that seriously affects human health. Due to the fact that traditional animal models cannot fully mimic hyperlipidemia in humans, new animal models are urgently needed for basic drug research on hyperlipidemia. Previous studies have demonstrated that the genomic diversity of the wild mice chromosome 1 substitution lines was significantly different from that of laboratory mice, suggesting that it might be accompanied by phenotypic diversity. We first screened the blood lipid-related phenotype of chromosome 1 substitution lines. We found that the male HFD-fed B6-Chr1BLD mice showed more severe hyperlipidemia-related phenotypes in body weight, lipid metabolism and liver lesions. By RNA sequencing and whole-genome sequencing results of B6-Chr1BLD, we found that several differentially expressed single nucleotide polymorphism enriched genes were associated with lipid metabolism-related pathways. Lipid metabolism-related genes, mainly including Aida, Soat1, Scly and Ildr2, might play an initial and upstream role in the abnormal metabolic phenotype of male B6-Chr1BLD mice. Taken together, male B6-Chr1BLD mice could serve as a novel, polygenic interaction-based hyperlipidemia model. This study could provide a novel animal model for accurate clinical diagnosis and precise medicine of hyperlipidemia.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Minli Sun
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Hao Qi
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
- Correspondence: (H.Q.); (Z.L.)
| | - Cunxiang Ju
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
| | - Zhong Chen
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
- Correspondence: (H.Q.); (Z.L.)
| |
Collapse
|
5
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
6
|
Narci K, Kahraman DC, Koyas A, Ersahin T, Tuncbag N, Atalay RC. Context dependent isoform specific PI3K inhibition confers drug resistance in hepatocellular carcinoma cells. BMC Cancer 2022; 22:320. [PMID: 35331184 PMCID: PMC8953069 DOI: 10.1186/s12885-022-09357-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Targeted therapies for Primary liver cancer (HCC) is limited to the multi-kinase inhibitors, and not fully effective due to the resistance to these agents because of the heterogeneous molecular nature of HCC developed during chronic liver disease stages and cirrhosis. Although combinatorial therapy can increase the efficiency of targeted therapies through synergistic activities, isoform specific effects of the inhibitors are usually ignored. This study concentrated on PI3K/Akt/mTOR pathway and the differential combinatory bioactivities of isoform specific PI3K-α inhibitor (PIK-75) or PI3K-β inhibitor (TGX-221) with Sorafenib dependent on PTEN context. METHODS The bioactivities of inhibitors on PTEN adequate Huh7 and deficient Mahlavu cells were investigated with real time cell growth, cell cycle and cell migration assays. Differentially expressed genes from RNA-Seq were identified by edgeR tool. Systems level network analysis of treatment specific pathways were performed with Prize Collecting Steiner Tree (PCST) on human interactome and enriched networks were visualized with Cytoscape platform. RESULTS Our data from combinatory treatment of Sorafenib and PIK-75 and TGX-221 showed opposite effects; while PIK-75 displays synergistic effects on Huh7 cells leading to apoptotic cell death, Sorafenib with TGX-221 display antagonistic effects and significantly promotes cell growth in PTEN deficient Mahlavu cells. Signaling pathways were reconstructed and analyzed in-depth from RNA-Seq data to understand mechanism of differential synergistic or antagonistic effects of PI3K-α (PIK-75) and PI3K-β (TGX-221) inhibitors with Sorafenib. PCST allowed as to identify AOX1 and AGER as targets in PI3K/Akt/mTOR pathway for this combinatory effect. The siRNA knockdown of AOX1 and AGER significantly reduced cell proliferation in HCC cells. CONCLUSIONS Simultaneously constructed and analyzed differentially expressed cellular networks presented in this study, revealed distinct consequences of isoform specific PI3K inhibition in PTEN adequate and deficient liver cancer cells. We demonstrated the importance of context dependent and isoform specific PI3K/Akt/mTOR signaling inhibition in drug resistance during combination therapies. ( https://github.com/cansyl/Isoform-spesific-PI3K-inhibitor-analysis ).
Collapse
Affiliation(s)
- Kubra Narci
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Deniz Cansen Kahraman
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Altay Koyas
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Tulin Ersahin
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Nurcan Tuncbag
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Rengul Cetin Atalay
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey.
- Present Address: Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
Yu Y, Wang S, Zhang X, Xu S, Li Y, Liu Q, Yang Y, Sun N, Liu Y, Zhang J, Guo Y, Ni X. Clinical implications of TPO and AOX1 in pediatric papillary thyroid carcinoma. Transl Pediatr 2021; 10:723-732. [PMID: 34012822 PMCID: PMC8107839 DOI: 10.21037/tp-20-301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Thyroid carcinoma is a common pediatric head and neck cancer, of which papillary thyroid cancer (PTC) is the most common type. Previously, we found that thyroid peroxidase (TPO) and aldehyde oxidase 1 (AOX1) were differentially expressed in PTC. This study explored the clinical importance of TPO and AOX1 in the diagnosis and prognosis of PTC in children. METHODS Both TPO and AOX1 expression in PTC were analyzed using datasets from Gene Expression Omnibus (GEO). TPO and AOX1 protein levels in plasma from patients with PTC and non-tumor controls were detected via enzyme-linked immunosorbent assay (ELISA). The diagnostic accuracy of TPO and AOX1 was assessed using receiver operating characteristic (ROC) curve analysis. The association between gene expression levels and patient survival was explored using the Kaplan-Meier plotter online database. RESULTS The results revealed that TPO and AOX1 expression was significantly downregulated in four independent datasets (GSE33630, GSE27155, GSE3678, and GSE3467). TPO and AOX1 protein levels in blood plasma were significantly decreased in patients with PTC. Quantitative analysis demonstrated that TPO and AOX1 levels in plasma had satisfactory predictive performance and the ability to discriminate PTC from healthy samples. Prognostic analysis demonstrated that low levels of TPO and AOX1 were markedly associated with poor survival in patients with PTC. CONCLUSIONS In summary, these results implied that TPO and AOX1 could serve as novel biomarkers for the diagnosis and prognosis of pediatric PTC.
Collapse
Affiliation(s)
- Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Shuai Xu
- Department of Urology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Yanzhen Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Qiaoyin Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Nian Sun
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Yuanhu Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| |
Collapse
|
8
|
Terao M, Garattini E, Romão MJ, Leimkühler S. Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J Biol Chem 2020; 295:5377-5389. [PMID: 32144208 PMCID: PMC7170512 DOI: 10.1074/jbc.rev119.007741] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Maria João Romão
- UCIBIO-Applied Biomolecular Sciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
9
|
Manevski N, King L, Pitt WR, Lecomte F, Toselli F. Metabolism by Aldehyde Oxidase: Drug Design and Complementary Approaches to Challenges in Drug Discovery. J Med Chem 2019; 62:10955-10994. [PMID: 31385704 DOI: 10.1021/acs.jmedchem.9b00875] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldehyde oxidase (AO) catalyzes oxidations of azaheterocycles and aldehydes, amide hydrolysis, and diverse reductions. AO substrates are rare among marketed drugs, and many candidates failed due to poor pharmacokinetics, interspecies differences, and adverse effects. As most issues arise from complex and poorly understood AO biology, an effective solution is to stop or decrease AO metabolism. This perspective focuses on rational drug design approaches to modulate AO-mediated metabolism in drug discovery. AO biological aspects are also covered, as they are complementary to chemical design and important when selecting the experimental system for risk assessment. The authors' recommendation is an early consideration of AO-mediated metabolism supported by computational and in vitro experimental methods but not an automatic avoidance of AO structural flags, many of which are versatile and valuable building blocks. Preferably, consideration of AO-mediated metabolism should be part of the multiparametric drug optimization process, with the goal to improve overall drug-like properties.
Collapse
Affiliation(s)
- Nenad Manevski
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Lloyd King
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - William R Pitt
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Fabien Lecomte
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Francesca Toselli
- UCB BioPharma , Chemin du Foriest 1 , 1420 Braine-l'Alleud , Belgium
| |
Collapse
|
10
|
Formation and degradation of lipid droplets in human adipocytes and the expression of aldehyde oxidase (AOX). Cell Tissue Res 2019; 379:45-62. [DOI: 10.1007/s00441-019-03152-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractLipid droplet (LD) binding proteins in mammary glands and in adipocytes were previously compared and striking similar sets of these specific proteins demonstrated. Xanthine oxidoreductase (XOR) together with perilipins and the lactating mammary gland protein butyrophilin play an important role in the secretion process of LDs into milk ducts. In contrast, in adipose tissue and in adipocytes, mainly perilipins have been described. Moreover, XOR was reported in mouse adipose tissue and adipocyte culture cells as “novel regulator of adipogenesis”. This obvious coincidence of protein sets prompted us to revisit the formation of LDs in human-cultured adipocytes in more detail with special emphasis on the possibility of a LD association of XOR. We demonstrate by electron and immunoelectron microscopy new structural details on LD formation in adipocytes. Surprisingly, by immunological and proteomic analysis, we identify in contrast to previous data showing the enzyme XOR, predominantly the expression of aldehyde oxidase (AOX). AOX could be detected tightly linked to LDs when adipocytes were treated with starvation medium. In addition, the majority of cells show an enormous interconnected, tubulated mitochondria network. Here, we discuss that (1) XOR is involved—together with perilipins—in the secretion of LDs in alveolar epithelial cells of the lactating mammary gland and is important in the transcytosis pathway of capillary endothelial cells. (2) In cells, where LDs are not secreted, XOR cannot be detected at the protein level, whereas in contrast in these cases, AOX is often present. We detect AOX in adipocytes together with perilipins and find evidence that these proteins might direct LDs to mitochondria. Finally, we here report for the first time the exclusive and complementary localization of XOR and AOX in diverse cell types.
Collapse
|
11
|
Inhibition of vertebrate aldehyde oxidase as a therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis. Eur J Med Chem 2019; 187:111948. [PMID: 31877540 DOI: 10.1016/j.ejmech.2019.111948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The aldehyde oxidases (AOXs) are a small sub-family of cytosolic molybdo-flavoenzymes, which are structurally conserved proteins and broadly distributed from plants to animals. AOXs play multiple roles in both physiological and pathological processes and AOX inhibition is of increasing significance in the development of novel drugs and therapeutic strategies. This review provides an overview of the evolution and the action mechanism of AOX and the role of each domain. The review provides an update of the polymorphisms in the human AOX. This review also summarises the physiology of AOX in different organs and its role in drug metabolism. The inhibition of AOX is a promising therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis.
Collapse
|
12
|
Lee JS, Tabata K, Twu WI, Rahman MS, Kim HS, Yu JB, Jee MH, Bartenschlager R, Jang SK. RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection. PLoS Pathog 2019; 15:e1008021. [PMID: 31525236 PMCID: PMC6762199 DOI: 10.1371/journal.ppat.1008021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus replicating in a membranous replication organelle composed primarily of double-membrane vesicles (DMVs) having morphological resemblance to autophagosomes. To define the mechanism of DMV formation and the possible link to autophagy, we conducted a yeast two-hybrid screening revealing 32 cellular proteins potentially interacting with HCV proteins. Among these was the Receptor for Activated Protein C Kinase 1 (RACK1), a scaffolding protein involved in many cellular processes, including autophagy. Depletion of RACK1 strongly inhibits HCV RNA replication without affecting HCV internal ribosome entry site (IRES) activity. RACK1 is required for the rewiring of subcellular membranous structures and for the induction of autophagy. RACK1 binds to HCV nonstructural protein 5A (NS5A), which induces DMV formation. NS5A interacts with ATG14L in a RACK1 dependent manner, and with the ATG14L-Beclin1-Vps34-Vps15 complex that is required for autophagosome formation. Both RACK1 and ATG14L are required for HCV DMV formation and viral RNA replication. These results indicate that NS5A participates in the formation of the HCV replication organelle through interactions with RACK1 and ATG14L. All positive-strand RNA viruses replicate their genomes in distinct membrane-associated compartments designated replication organelles. The compartmentalization of viral replication machinery allows the enrichment and coordination of cellular and viral factors required for RNA replication and the evasion from innate host defense systems. Hepatitis C virus (HCV), a prototype member of the Flaviviridae family, rearranges intracellular membranes to construct replication organelles composed primarily of double-membrane vesicles (DMVs) which are morphologically similar to autophagosomes. Nonstructural protein 5A (NS5A), which is essential for HCV replication, induces DMV formation. Here, we report that NS5A triggers DMV formation through interactions with RACK1 and components of the vesicle nucleation complex acting at the early stage of autophagy. These results illustrate how a virus skews cellular machineries to utilize them for its replication by hijacking cellular proteins through protein-protein interactions. This research sheds light on the molecular basis of replication organelle formation by HCV and possibly other viruses employing organelles with DMV morphology.
Collapse
Affiliation(s)
- Jae Seung Lee
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Md Shafiqur Rahman
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Hee Sun Kim
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Jin Bae Yu
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Min Hyeok Jee
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Sung Key Jang
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
- * E-mail:
| |
Collapse
|
13
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
14
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
15
|
Leal-Gutiérrez JD, Rezende FM, Elzo MA, Johnson D, Peñagaricano F, Mateescu RG. Structural Equation Modeling and Whole-Genome Scans Uncover Chromosome Regions and Enriched Pathways for Carcass and Meat Quality in Beef. Front Genet 2018; 9:532. [PMID: 30555508 PMCID: PMC6282042 DOI: 10.3389/fgene.2018.00532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Structural equation models involving latent variables are useful tools for formulating hypothesized models defined by theoretical variables and causal links between these variables. The objectives of this study were: (1) to identify latent variables underlying carcass and meat quality traits and (2) to perform whole-genome scans for these latent variables in order to identify genomic regions and individual genes with both direct and indirect effects. A total of 726 steers from an Angus-Brahman multibreed population with records for 22 phenotypes were used. A total of 480 animals were genotyped with the GGP Bovine F-250. The single-step genomic best linear unbiased prediction method was used to estimate the amount of genetic variance explained for each latent variable by chromosome regions of 20 adjacent SNP-windows across the genome. Three types of genetic effects were considered: (1) direct effects on a single latent phenotype; (2) direct effects on two latent phenotypes simultaneously; and (3) indirect effects. The final structural model included carcass quality as an independent latent variable and meat quality as a dependent latent variable. Carcass quality was defined by quality grade, fat over the ribeye and marbling, while the meat quality was described by juiciness, tenderness and connective tissue, all of them measured through a taste panel. From 571 associated genomic regions (643 genes), each one explaining at least 0.05% of the additive variance, 159 regions (179 genes) were associated with carcass quality, 106 regions (114 genes) were associated with both carcass and meat quality, 242 regions (266 genes) were associated with meat quality, and 64 regions (84 genes) were associated with carcass quality, having an indirect effect on meat quality. Three biological mechanisms emerged from these findings: postmortem proteolysis of structural proteins and cellular compartmentalization, cellular proliferation and differentiation of adipocytes, and fat deposition.
Collapse
Affiliation(s)
| | - Fernanda M. Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Dwain Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Eisinger K, Rein-Fischboeck L, Neumeier M, Schmidhofer S, Pohl R, Haberl EM, Liebisch G, Kopp A, Schmid A, Krautbauer S, Buechler C. Alpha-syntrophin deficient mice are protected from adipocyte hypertrophy and ectopic triglyceride deposition in obesity. Exp Mol Pathol 2018; 104:212-221. [DOI: 10.1016/j.yexmp.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
|
17
|
Dias S, Paredes S, Ribeiro L. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue. Int J Endocrinol 2018; 2018:2637418. [PMID: 29593789 PMCID: PMC5822899 DOI: 10.1155/2018/2637418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome can be defined as a state of disturbed metabolic homeostasis characterized by visceral obesity, atherogenic dyslipidemia, arterial hypertension, and insulin resistance. The growing prevalence of metabolic syndrome will certainly contribute to the burden of cardiovascular disease. Obesity and dyslipidemia are main features of metabolic syndrome, and both can present with adipose tissue dysfunction, involved in the pathogenic mechanisms underlying this syndrome. We revised the effects, and underlying mechanisms, of the current approved drugs for dyslipidemia and obesity (fibrates, statins, niacin, resins, ezetimibe, and orlistat; sibutramine; and diethylpropion, phentermine/topiramate, bupropion and naltrexone, and liraglutide) on adipose tissue. Specifically, we explored how these drugs can modulate the complex pathways involved in metabolism, inflammation, atherogenesis, insulin sensitivity, and adipogenesis. The clinical outcomes of adipose tissue modulation by these drugs, as well as differences of major importance for clinical practice between drugs of the same class, were identified. Whether solutions to these issues will be found in further adjustments and combinations between drugs already in use or necessarily in new advances in pharmacology is not known. To better understand the effect of drugs used in dyslipidemia and obesity on adipose tissue not only is challenging for physicians but could also be the next step to tackle cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Dias
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sílvia Paredes
- Department of Endocrinology, Hospital de Braga, 4710-243 Braga, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Laura Ribeiro
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Krautbauer S, Haberl EM, Eisinger K, Pohl R, Rein-Fischboeck L, Rentero C, Alvarez-Guaita A, Enrich C, Grewal T, Buechler C, Neumeier M. Annexin A6 regulates adipocyte lipid storage and adiponectin release. Mol Cell Endocrinol 2017; 439:419-430. [PMID: 27702590 DOI: 10.1016/j.mce.2016.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/28/2022]
Abstract
Lipid storage and adipokine secretion are critical features of adipocytes. Annexin A6 (AnxA6) is a lipid-binding protein regulating secretory pathways and its role in adiponectin release was examined. The siRNA-mediated AnxA6 knock-down in 3T3-L1 preadipocytes impaired proliferation, and differentiation of AnxA6-depleted cells to mature adipocytes was associated with higher soluble adiponectin and increased triglyceride storage. The latter was partly attributed to reduced lipolysis. Accordingly, AnxA6 overexpression in 3T3-L1 adipocytes lowered cellular triglycerides and adiponectin secretion. Indeed, serum adiponectin was increased in AnxA6 deficient mice. Expression analysis identified AnxA6 protein to be more abundant in intra-abdominal compared to subcutaneous adipose tissues of mice and men. AnxA6 protein levels increased in white adipose tissues of obese mice and here, levels were highest in subcutaneous fat. AnxA6 protein in adipocytes was upregulated by oxidative stress which might trigger AnxA6 induction in adipose tissues and contribute to impaired fat storage and adiponectin release.
Collapse
Affiliation(s)
- Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Carles Rentero
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany.
| | - Markus Neumeier
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| |
Collapse
|
19
|
Terao M, Barzago MM, Kurosaki M, Fratelli M, Bolis M, Borsotti A, Bigini P, Micotti E, Carli M, Invernizzi RW, Bagnati R, Passoni A, Pastorelli R, Brunelli L, Toschi I, Cesari V, Sanoh S, Garattini E. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity. Sci Rep 2016; 6:30343. [PMID: 27456060 PMCID: PMC4960552 DOI: 10.1038/srep30343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Andrea Borsotti
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Paolo Bigini
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Edoardo Micotti
- Laboratory of Neurodegenerative diseases, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mirjana Carli
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberto William Invernizzi
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Renzo Bagnati
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Alice Passoni
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Seigo Sanoh
- Graduate School of Biochemical and Health Sciences, Hiroshima University, Hiroshima Japan
| | - Enrico Garattini
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| |
Collapse
|
20
|
Methylation of a panel of genes in peripheral blood leukocytes is associated with colorectal cancer. Sci Rep 2016; 6:29922. [PMID: 27453436 PMCID: PMC4958953 DOI: 10.1038/srep29922] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/23/2016] [Indexed: 12/25/2022] Open
Abstract
The relationship between the DNA methylation status of the CpG islands of multiple genes in blood leukocytes in CRC susceptibility and prognosis, as well as possible interactions with dietary factors on CRC risk are unclear. We carried out a case-control study including 421 CRC patients and 506 controls to examine the associations between six genes (AOX-1, RARB2, RERG, ADAMTS9, IRF4, and FOXE-1), multiple CpG site methylation (MCSM) and susceptibility to CRC. High-level MCSM (MCSM-H) was defined as methylation of greater than or equal to 2 of 5 candidate genes (except for RARB2); low-level MCSM (MCSM-L) was when 1 candidate gene was methylated; non-MCSM was when none of the candidate genes were methylated. Blood cell-derived DNA methylation status was detected using methylation-sensitive high-resolution melting analysis. The hypermethylation status of each individual gene was statistically significantly associated with CRC. MCSM status was also associated with CRC (OR = 1.54, 95% CI: 1.15–2.05, P = 0.004). We observed interactions between a high level of dietary intake of cereals, pungent food, and stewed fish with brown sauce, age (older than 60 yrs), smoking and hypermethylation on risk of CRC. MCSM in peripheral blood DNA may be an important biomarker for susceptibility to CRC.
Collapse
|
21
|
Casado-Díaz A, Anter J, Müller S, Winter P, Quesada-Gómez JM, Dorado G. Transcriptomic Analyses of Adipocyte Differentiation From Human Mesenchymal Stromal-Cells (MSC). J Cell Physiol 2016; 232:771-784. [PMID: 27349923 DOI: 10.1002/jcp.25472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022]
Abstract
Adipogenesis is a physiological process required for fat-tissue development, mainly involved in regulating the organism energetic-state. Abnormal distribution-changes and dysfunctions in such tissue are associated to different pathologies. Adipocytes are generated from progenitor cells, via a complex differentiating process not yet well understood. Therefore, we investigated differential mRNA and miRNA expression patterns of human mesenchymal stromal-cells (MSC) induced and not induced to differentiate into adipocytes by next (second)-generation sequencing. A total of 2,866 differentially expressed genes (101 encoding miRNA) were identified, with 705 (46 encoding miRNA) being upregulated in adipogenesis. They were related to different pathways, including PPARG, lipid, carbohydrate and energy metabolism, redox, membrane-organelle biosynthesis, and endocrine system. Downregulated genes were related to extracellular matrix and cell migration, proliferation, and differentiation. Analyses of mRNA-miRNA interaction showed that repressed miRNA-encoding genes can act downregulating PPARG-related genes; mostly the PPARG activator (PPARGC1A). Induced miRNA-encoding genes regulate downregulated genes related to TGFB1. These results shed new light to understand adipose-tissue differentiation and physiology, increasing our knowledge about pathologies like obesity, type-2 diabetes and osteoporosis. J. Cell. Physiol. 232: 771-784, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Jaouad Anter
- Dep. Genética, Universidad de Córdoba, Córdoba, Spain
| | | | | | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus de Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
22
|
The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth. Exp Cell Res 2016; 345:100-7. [DOI: 10.1016/j.yexcr.2016.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/04/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
|
23
|
Meier EM, Rein-Fischboeck L, Pohl R, Wanninger J, Hoy AJ, Grewal T, Eisinger K, Krautbauer S, Liebisch G, Weiss TS, Buechler C. Annexin A6 protein is downregulated in human hepatocellular carcinoma. Mol Cell Biochem 2016; 418:81-90. [PMID: 27334756 DOI: 10.1007/s11010-016-2735-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Annexin A6 (AnxA6) is a lipid-binding protein highly expressed in the liver, regulating cholesterol homeostasis and signaling pathways with a role in liver physiology. Here, we analyzed whether hepatic AnxA6 levels are affected by pathological conditions that are associated with liver dysfunction and liver injury. AnxA6 levels in the fatty liver of mice fed a high-fat diet, in ob/ob and db/db animals and in human fatty liver are comparable to controls. Similarly, AnxA6 levels appear unaffected in murine nonalcoholic steatohepatitis and human liver fibrosis. Accordingly, adiponectin, lysophosphatidylcholine, palmitate, and TGFbeta, all of which have a role in liver injury, do not affect AnxA6 expression in human hepatocytes. Likewise, adiponectin and IL8 do not alter AnxA6 levels in primary human hepatic stellate cells. However, in hepatic tumors of 18 patients, AnxA6 protein levels are substantially reduced compared to nontumorous tissues. AnxA6 mRNA is even increased in the tumors suggesting that posttranscriptional mechanisms are involved herein. Lipidomic analysis shows trends toward elevated cholesteryl ester and sphingomyelin in the tumor samples, yet the ratio of tumor to nontumorous AnxA6 does not correlate with these lipids. The current study shows that AnxA6 is specifically reduced in human hepatocellular carcinoma suggesting a role of this protein in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Elisabeth M Meier
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Andrew J Hoy
- Department of Physiology, School of Medical Sciences and Bosch Institute, Sydney Medical School, Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Thomas S Weiss
- Regensburg University Hospital, University Children Hospital (KUNO), Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany.
| |
Collapse
|
24
|
Shui IM, Wong CJ, Zhao S, Kolb S, Ebot EM, Geybels MS, Rubicz R, Wright JL, Lin DW, Klotzle B, Bibikova M, Fan JB, Ostrander EA, Feng Z, Stanford JL. Prostate tumor DNA methylation is associated with cigarette smoking and adverse prostate cancer outcomes. Cancer 2016; 122:2168-77. [PMID: 27142338 DOI: 10.1002/cncr.30045] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND DNA methylation has been hypothesized as a mechanism for explaining the association between smoking and adverse prostate cancer (PCa) outcomes. This study was aimed at assessing whether smoking is associated with prostate tumor DNA methylation and whether these alterations may explain in part the association of smoking with PCa recurrence and mortality. METHODS A total of 523 men had radical prostatectomy as their primary treatment, detailed smoking history data, long-term follow-up for PCa outcomes, and tumor tissue profiled for DNA methylation. Ninety percent of the men also had matched tumor gene expression data. A methylome-wide analysis was conducted to identify differentially methylated regions (DMRs) by smoking status. To select potential functionally relevant DMRs, their correlation with the messenger RNA (mRNA) expression of corresponding genes was evaluated. Finally, a smoking-related methylation score based on the top-ranked DMRs was created to assess its association with PCa outcomes. RESULTS Forty DMRs were associated with smoking status, and 10 of these were strongly correlated with mRNA expression (aldehyde oxidase 1 [AOX1], claudin 5 [CLDN5], early B-cell factor 1 [EBF1], homeobox A7 [HOXA7], lectin galactoside-binding soluble 3 [LGALS3], microtubule-associated protein τ [MAPT], protocadherin γ A [PCDHGA]/protocadherin γ B [PCDHGB], paraoxonase 3 [PON3], synaptonemal complex protein 2 like [SYCP2L], and zinc finger and SCAN domain containing 12 [ZSCAN12]). Men who were in the highest tertile for the smoking-methylation score derived from these DMRs had a higher risk of recurrence (odds ratio [OR], 2.29; 95% confidence interval [CI], 1.42-3.72) and lethal disease (OR, 4.21; 95% CI, 1.65-11.78) in comparison with men in the lower 2 tertiles. CONCLUSIONS This integrative molecular epidemiology study supports the hypothesis that smoking-associated tumor DNA methylation changes may explain at least part of the association between smoking and adverse PCa outcomes. Future studies are warranted to confirm these findings and understand the implications for improving patient outcomes. Cancer 2016;122:2168-77. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Irene M Shui
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Chao-Jen Wong
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Milan S Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rohina Rubicz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jonathan L Wright
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | - Daniel W Lin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | | | | | | | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ziding Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| |
Collapse
|
25
|
Structure and function of mammalian aldehyde oxidases. Arch Toxicol 2016; 90:753-80. [DOI: 10.1007/s00204-016-1683-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
|
26
|
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30:52-63. [DOI: 10.1016/j.dmpk.2014.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
|
27
|
Manevski N, Balavenkatraman KK, Bertschi B, Swart P, Walles M, Camenisch G, Schiller H, Kretz O, Ling B, Wettstein R, Schaefer DJ, Pognan F, Wolf A, Litherland K. Aldehyde Oxidase Activity in Fresh Human Skin. Drug Metab Dispos 2014; 42:2049-57. [DOI: 10.1124/dmd.114.060368] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Xavier DJ, Takahashi P, Manoel-Caetano FS, Foss-Freitas MC, Foss MC, Donadi EA, Passos GA, Sakamoto-Hojo ET. One-week intervention period led to improvements in glycemic control and reduction in DNA damage levels in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2014; 105:356-63. [PMID: 25043705 DOI: 10.1016/j.diabres.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/01/2014] [Accepted: 06/13/2014] [Indexed: 01/09/2023]
Abstract
AIMS Hyperglycemia leads to increased production of reactive oxygen species (ROS), which reduces cellular antioxidant defenses and induces several DNA lesions. We investigated the effects on DNA damage of a seven-day hospitalization period in patients with type 2 diabetes mellitus (T2DM) to achieve adequate blood glucose levels through dietary intervention and medication treatment, compared with non-diabetic individuals. METHODS DNA damage levels were evaluated by the alkaline comet assay (with modified and without conventional use of hOGG1 enzyme, which detects oxidized DNA bases) for 10 patients and 16 controls. Real time PCR array method was performed to analyze the transcriptional expression of a set of 84 genes implicated in antioxidant defense and response to oxidative stress in blood samples from T2DM patients (n=6) collected before and after the hospitalization period. RESULTS The seven-day period was sufficient to improve glycemic control and to significantly decrease (p<0.05) DNA damage levels in T2DM patients, although those levels were slightly higher than those in control subjects. We also found a tendency towards a decrease in the levels of oxidative DNA damage in T2DM patients after the hospitalization period. However, for all genes analyzed, a statistically significant difference in the transcriptional expression levels was not observed. CONCLUSIONS The study demonstrated that although the transcriptional expression of the genes studied did not show significant alterations, one-week of glycemic control in hospital resulted in a significant reduction in DNA damage levels detected in T2DM patients, highlighting the importance of an adequate glycemic control.
Collapse
Affiliation(s)
- Danilo J Xavier
- Department of Genetics, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo-USP, Ribeirão Preto, SP, Brazil
| | - Paula Takahashi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo-USP, Ribeirão Preto, SP, Brazil
| | - Fernanda S Manoel-Caetano
- Department of Genetics, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo-USP, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), University of São Paulo-USP, Ribeirão Preto, SP, Brazil
| | - Maria C Foss-Freitas
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, SP, Brazil
| | - Milton C Foss
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo-USP, Ribeirão Preto, SP, Brazil; Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Department of Genetics, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo-USP, Ribeirão Preto, SP, Brazil; Disciplines of Genetics and Molecular Biology, Department of Morphology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo-USP, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), University of São Paulo-USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
29
|
Krautbauer S, Eisinger K, Hader Y, Neumeier M, Buechler C. Manganese superoxide dismutase knock-down in 3T3-L1 preadipocytes impairs subsequent adipogenesis. Mol Cell Biochem 2014; 393:69-76. [PMID: 24740755 DOI: 10.1007/s11010-014-2047-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/02/2014] [Indexed: 12/28/2022]
Abstract
Adipogenesis is associated with the upregulation of the antioxidative enzyme manganese superoxide dismutase (MnSOD) suggesting a vital function of this enzyme in adipocyte maturation. In the current work, MnSOD was knocked-down with small-interference RNA in preadipocytes to study its role in adipocyte differentiation. In mature adipocytes differentiated from these cells, proteins characteristic for mature adipocytes, which are strongly induced in late adipogenesis like adiponectin and fatty acid-binding protein 4, are markedly reduced. Triglycerides begin to accumulate after about 6 days of the induction of adipogenesis, and are strongly diminished in cells with low MnSOD. Proteins upregulated early during differentiation, like fatty acid synthase and cytochrome C oxidase-4, are not altered. Cell viability, insulin-mediated phosphorylation of Akt, antioxidative capacity (AOC), superoxide levels, and heme oxygenase 1 with the latter being induced upon oxidative stress are not affected. L-Buthionine-(S,R)-sulfoximine (BSO) depletes glutathione and modestly lowers AOC of mature adipocytes. Addition of BSO to 3T3-L1 cells 3 days after the initiation of differentiation impairs triglyceride accumulation and expression of proteins induced in late adipogenesis. Of note, proteins that increased early during adipogenesis are also diminished, suggesting that BSO causes de-differentiation of these cells. Preadipocyte proliferation is not considerably affected by low MnSOD and BSO. These data suggest that glutathione and MnSOD are essential for adipogenesis.
Collapse
Affiliation(s)
- Sabrina Krautbauer
- Department of Internal Medicine I, University Hospital of Regensburg, 93042, Regensburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Krautbauer S, Eisinger K, Neumeier M, Hader Y, Buettner R, Schmid PM, Aslanidis C, Buechler C. Free fatty acids, lipopolysaccharide and IL-1α induce adipocyte manganese superoxide dismutase which is increased in visceral adipose tissues of obese rodents. PLoS One 2014; 9:e86866. [PMID: 24475187 PMCID: PMC3901719 DOI: 10.1371/journal.pone.0086866] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/17/2013] [Indexed: 12/21/2022] Open
Abstract
Excess fat storage in adipocytes is associated with increased generation of reactive oxygen species (ROS) and impaired activity of antioxidant mechanisms. Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme involved in detoxification of ROS, and objective of the current study is to analyze expression and regulation of MnSOD in obesity. MnSOD is increased in visceral but not subcutaneous fat depots of rodents kept on high fat diets (HFD) and ob/ob mice. MnSOD is elevated in visceral adipocytes of fat fed mice and exposure of differentiating 3T3-L1 cells to lipopolysaccharide, IL-1α, saturated, monounsaturated and polyunsaturated free fatty acids (FFA) upregulates its level. FFA do not alter cytochrome oxidase 4 arguing against overall induction of mitochondrial enzymes. Upregulation of MnSOD in fat loaded cells is not mediated by IL-6, TNF or sterol regulatory element binding protein 2 which are induced in these cells. MnSOD is similarly abundant in perirenal fat of Zucker diabetic rats and non-diabetic animals with similar body weight and glucose has no effect on MnSOD in 3T3-L1 cells. To evaluate whether MnSOD affects adipocyte fat storage, MnSOD was knocked-down in adipocytes for the last three days of differentiation and in mature adipocytes. Knock-down of MnSOD does neither alter lipid storage nor viability of these cells. Heme oxygenase-1 which is induced upon oxidative stress is not altered while antioxidative capacity of the cells is modestly reduced. Current data show that inflammation and excess triglyceride storage raise adipocyte MnSOD which is induced in epididymal adipocytes in obesity.
Collapse
Affiliation(s)
- Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Markus Neumeier
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Yvonne Hader
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Roland Buettner
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Peter M. Schmid
- Department of Internal Medicine II, Regensburg University Hospital, Regensburg, Germany
| | - Charalampos Aslanidis
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
- * E-mail:
| |
Collapse
|
31
|
Mahro M, Brás NF, Cerqueira NMFSA, Teutloff C, Coelho C, Romão MJ, Leimkühler S. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity. PLoS One 2013; 8:e82285. [PMID: 24358164 PMCID: PMC3864932 DOI: 10.1371/journal.pone.0082285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/01/2013] [Indexed: 01/23/2023] Open
Abstract
In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3). The sequence alignment of different aldehyde oxidase (AOX) isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR). Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD) was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.
Collapse
Affiliation(s)
- Martin Mahro
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Natércia F. Brás
- REQUIMTE, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
| | | | - Christian Teutloff
- Institute for Experimentalphysics, Free University of Berlin, Berlin, Germany
| | - Catarina Coelho
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria João Romão
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
32
|
Barr JT, Jones JP, Joswig-Jones CA, Rock DA. Absolute quantification of aldehyde oxidase protein in human liver using liquid chromatography-tandem mass spectrometry. Mol Pharm 2013; 10:3842-9. [PMID: 24006961 DOI: 10.1021/mp4003046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The function of the enzyme human aldehyde oxidase (AOX1) is uncertain; however, recent studies have implicated significant biochemical involvement in humans. AOX1 has also rapidly become an important drug-metabolizing enzyme. Until now, quantitation of AOX1 in complex matrices such as tissue has not been achieved. Herein, we developed and employed a trypsin digest and subsequent liquid chromatography-tandem mass spectrometry analysis to determine absolute amounts of AOX1 in human liver. E. coli expressed human purified AOX1 was used to validate the linearity, sensitivity, and selectivity of the method. Overall, the method is highly efficient and sensitive for determination of AOX1 in cytosolic liver fractions. Using this method, we observed substantial batch-to-batch variation in AOX1 content (21-40 pmol AOX1/mg total protein) between various pooled human liver cytosol preparations. We also observed interbatch variation in Vmax (3.3-4.9 nmol min(-1) mg(-1)) and a modest correlation between enzyme concentration and activity. In addition, we measured a large difference in kcat/Km, between purified (kcat/Km of 1.4) and human liver cytosol (kcat/Km of 15-20) indicating cytosol to be 11-14 times more efficient in the turnover of DACA than the E. coli expressed purified enzyme. Finally, we discussed the future impact of this method for the development of drug metabolism models and understanding the biochemical role of this enzyme.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | | | | | | |
Collapse
|
33
|
Fu C, Di L, Han X, Soderstrom C, Snyder M, Troutman MD, Obach RS, Zhang H. Aldehyde Oxidase 1 (AOX1) in Human Liver Cytosols: Quantitative Characterization of AOX1 Expression Level and Activity Relationship. Drug Metab Dispos 2013; 41:1797-804. [DOI: 10.1124/dmd.113.053082] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Garattini E, Terao M. Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opin Drug Discov 2013; 8:641-54. [DOI: 10.1517/17460441.2013.788497] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF, Henry H, Schoonjans K, Williams RW, Auwerx J. Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 2012; 150:1287-99. [PMID: 22939713 DOI: 10.1016/j.cell.2012.08.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/06/2012] [Accepted: 08/03/2012] [Indexed: 01/22/2023]
Abstract
Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.
Collapse
Affiliation(s)
- Pénélope A Andreux
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chazenbalk G, Chen YH, Heneidi S, Lee JM, Pall M, Chen YDI, Azziz R. Abnormal expression of genes involved in inflammation, lipid metabolism, and Wnt signaling in the adipose tissue of polycystic ovary syndrome. J Clin Endocrinol Metab 2012; 97:E765-70. [PMID: 22344199 PMCID: PMC3339894 DOI: 10.1210/jc.2011-2377] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. OBJECTIVE Our objective was to compare gene expression pattern in sc abdominal adipose tissue in nonobese PCOS patients vs. body mass index-matched controls. RESEARCH DESIGN AND METHODS Eleven PCOS subjects and 12 controls (body mass index 20-28 kg/m(2)) were recruited. Total RNA was isolated, and gene expression profiling was performed using Affymetrix Human Genome U133 arrays. Differentially expressed genes were classified by gene ontology. Microarray results for selected genes were confirmed by quantitative real-time PCR (RT-qPCR). Frequently sampled iv glucose tolerance tests were used to assess dynamic insulin sensitivity. RESULTS Ninety-six genes were identified with altered expression of at least 2-fold in nonobese PCOS adipose tissues. Inflammatory response genes were significantly down-regulated. RT-qPCR confirmed decreases in expression of IL6 (12.3-fold), CXCL2 (18.3-fold), and SOCS3 (22.6-fold). Lipid metabolism genes associated with insulin resistance were significantly up-regulated, with confirmed increases in DHRS9 (2.5-fold), UCLH1 (2.6-fold), and FADS1 (2.8-fold) expression. Wnt signaling genes (DKK2, JUN, and FOSB) were differentially expressed. RT-qPCR confirmed significant expression changes in DKK2 (1.9-fold increase), JUN (4.1-fold decrease), and FOSB (60-fold decrease). CONCLUSIONS Genes involved in inflammation, lipid metabolism, and Wnt signaling are differentially expressed in nonobese PCOS adipose tissue. Because these genes are known to affect adipogenesis and insulin resistance, we hypothesize that their dysregulation may contribute to the metabolic abnormalities observed in women with PCOS.
Collapse
Affiliation(s)
- Gregorio Chazenbalk
- Department of Obstetrics/Gynecology, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Garattini E, Terao M. The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 2012; 8:487-503. [DOI: 10.1517/17425255.2012.663352] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Abstract
Adipokines (adipose tissue cytokines) are polypeptide factors secreted by adipose tissue in a highly regulated manner. The 'classical' adipokines (leptin, adiponectin, and resistin) are expressed only by adipocytes, but other adipokines have been shown to be released by resident and infiltrating macrophages, as well as by components of the vascular stroma. Indeed, adipose tissue inflammation is known to be associated with a modification in the pattern of adipokine secretion. Several studies indicate that adipokines can interfere with hepatic injury associated with fatty infiltration, differentially modulating steatosis, inflammation, and fibrosis. Moreover, plasma levels of adipokines have been investigated in patients with nonalcoholic fatty liver disease in order to establish correlations with the underlying state of insulin resistance and with the type and severity of hepatic damage. In this Forum article, we provide a review of recent data that suggest a significant role for oxidative stress, reactive oxygen species, and redox signaling in mediating actions of adipokines that are relevant in the pathogenesis of nonalcoholic fatty liver disease, including hepatic insulin resistance, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Maurizio Parola
- Dipartimento di Medicina e Oncologia Sperimentale and Centro Interuniversitario di Fisiopatologia Epatica Università degli Studi di Torino, Turin, Italy
| | | |
Collapse
|
39
|
Wanninger J, Weigert J, Wiest R, Bauer S, Karrasch T, Farkas S, Scherer MN, Walter R, Weiss TS, Hellerbrand C, Neumeier M, Schäffler A, Buechler C. Systemic and hepatic vein galectin-3 are increased in patients with alcoholic liver cirrhosis and negatively correlate with liver function. Cytokine 2011; 55:435-40. [PMID: 21715185 DOI: 10.1016/j.cyto.2011.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/02/2011] [Accepted: 06/01/2011] [Indexed: 12/15/2022]
Abstract
Recently we demonstrated higher galectin-3 in portal venous serum (PVS) compared to hepatic venous serum (HVS) in a small cohort of patients with normal liver function suggesting hepatic removal of galectin-3. Here, galectin-3 was measured by ELISA in PVS, HVS and systemic venous blood (SVS) of 33 patients with alcoholic liver cirrhosis and a larger cohort of 11 patients with normal liver function. Galectin-3 was cleared by the healthy but not the cirrhotic liver, and subsequently HVS and SVS galectin-3 levels were significantly increased in the patients with liver cirrhosis compared to controls. In healthy liver galectin-3 was produced by cholangiocytes and synthesis by hepatocytes was only observed in cirrhotic liver. Hepatic venous pressure gradient did not correlate with galectin-3 levels excluding hepatic shunting as the principal cause of higher SVS galectin-3. Galectin-3 was elevated in all blood compartments of patients with CHILD-PUGH stage C compared to patients with CHILD-PUGH stage A, and was higher in patients with ascites than patients without this complication. Galectin-3 was negatively associated with antithrombin-3 whose synthesis is reduced with worse liver function. Galectin-3 positively correlated with urea and creatinine, and PVS galectin-3 showed a negative association with creatinine clearance as an accepted measure of kidney function. To summarize in the current study systemic, portal and hepatic levels of galectin-3 were found to be negatively associated with liver function in patients with alcoholic liver cirrhosis and this may in part be related to impaired hepatic removal and/or increased synthesis in cirrhotic liver.
Collapse
Affiliation(s)
- Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Garattini E, Terao M. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 2011; 43:374-86. [DOI: 10.3109/03602532.2011.560606] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, Hellerbrand C, Zimara N, Schäffler A, Aslanidis C, Buechler C. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 2011; 152:26-35. [PMID: 21084441 DOI: 10.1210/en.2010-1157] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemerin is an adipokine whose systemic concentration and adipose tissue expression is increased in obesity. Chemerin is highly abundant in adipocytes, yet the molecular mechanisms mediating its further induction in obesity have not been clarified. Adipocyte hypertrophy contributes to dysregulated adipokine synthesis, and we hypothesized that excess loading with free fatty acids (FFA) stimulates chemerin synthesis. Chemerin was expressed in mature adipocytes, and differentiation of 3T3-L1 cells in the presence of FFA further increased its level. TNF and IL-6 were induced by FFA, but concentrations were too low to up-regulate chemerin. Sterol regulatory element-binding protein 2 (SREBP2) was activated in these cells, indicative for cholesterol shortage. Suppression of cholesterol synthesis by lovastatin led to activation of SREBP2 and increased chemerin, and supplementation with mevalonate reversed this effect. Knockdown of SREBP2 reduced basal and FFA-induced chemerin. EMSA confirmed binding of 3T3-L1 adipocyte nuclear proteins to a SREBP site in the chemerin promotor. SREBP2 was activated and chemerin was induced in adipose tissue of mice fed a high-fat diet, and higher systemic levels seem to be derived from adipocytes. Lipopolysaccharide-mediated elevation of chemerin was similarly effective as induction by FFA, indicating that both mechanisms are equally important. Chemokine-like receptor 1 was not altered by the incubations mentioned above, and higher expression in fat of mice fed a high-fat diet may reflect increased number of adipose tissue-resident macrophages in obesity. In conclusion, the current data show that adipocyte hypertrophy and chronic inflammation are equally important in inducing chemerin synthesis.
Collapse
Affiliation(s)
- Sabrina Bauer
- Department of Internal Medicine I, Regensburg University Hospital, D-93042 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bauer S, Weigert J, Neumeier M, Wanninger J, Schäffler A, Luchner A, Schnitzbauer AA, Aslanidis C, Buechler C. Low-abundant adiponectin receptors in visceral adipose tissue of humans and rats are further reduced in diabetic animals. Arch Med Res 2010; 41:75-82. [PMID: 20470935 DOI: 10.1016/j.arcmed.2010.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/12/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Adipose tissue is an endocrine organ that releases various proteins that may also exert autocrine/paracrine effects. The antidiabetic adipokine adiponectin acts through two receptors, AdipoR1 and AdipoR2, but so far mainly mRNA expression has been measured in adipocytes and adipose tissues. Therefore, we aimed to analyze AdipoR1 and AdipoR2 proteins in adipocytes and paired samples of subcutaneous and visceral adipocytes/adipose tissue. METHODS AdipoR1 and AdipoR2 mRNA and protein expression were determined in adipocytes and paired samples of subcutaneous and visceral adipose tissue of humans and rats. RESULTS AdipoR1 and AdipoR2 proteins were similarly abundant in preadipocytes and mature adipocytes despite an induction of mRNA expression during differentiation. Differentiation of 3T3-L1 cells in the presence of palmitic acid did not alter adiponectin receptor proteins but metformin and fenofibrate upregulated AdipoR2 within 24 h of incubation. AdipoR2 protein was significantly lower in human visceral compared to subcutaneous fat, and both receptors were reduced in visceral adipocytes. In rat tissues both receptors were reduced in visceral fat. In diabetic animals AdipoR2 protein, but not mRNA, was lower in both fat depots compared to similarly obese rats with normal glucose disposal. AdipoR1 was only reduced in subcutaneous adipose tissue of diabetic animals where mRNA expression was induced. CONCLUSIONS These data indicate that mRNA expression is not suitable to predict adiponectin receptor protein. Low adiponectin receptors in visceral adipocytes and adipose tissue and further suppression in adipose tissue of insulin-resistant animals indicate disturbed adiponectin bioactivity.
Collapse
Affiliation(s)
- Sabrina Bauer
- Department of Internal Medicine I, Regensburg University Hospital, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Aldehyde oxidases (EC 1.2.3.1) are a small group of structurally conserved cytosolic proteins represented in both the animal and plant kingdoms. In vertebrates, aldehyde oxidases constitute the small sub-family of molybdo-flavoenzymes, along with the evolutionarily and structurally related protein, xanthine oxidoreductase. These enzymes require a molybdo-pterin cofactor (molybdenum cofactor, MoCo) and flavin adenine dinucleotide for their catalytic activity. Aldehyde oxidases have broad substrate specificity and catalyse the hydroxylation of N-heterocycles and the oxidation of aldehydes to the corresponding acid. In humans, a single aldehyde oxidase gene (AOX1) and two pseudogenes clustering on a short stretch of chromosome 2q are known. In other mammals, a variable number of structurally conserved aldehyde oxidase genes has been described. Four genes (Aox1, Aox3, Aox4 and Aox3l1), coding for an equivalent number of catalytically active enzymes, are present in the mouse and rat genomes. Although human AOX1 and its homologous proteins are best known as drug metabolising enzymes, the physiological substrate(s) and function(s) are as yet unknown. The present paper provides an update of the available information on the evolutionary history, tissue- and cell-specific distribution and function of mammalian aldehyde oxidases.
Collapse
Affiliation(s)
- Enrico Garattini
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy.
| | | | | |
Collapse
|
44
|
Alfaro JF, Joswig-Jones CA, Ouyang W, Nichols J, Crouch GJ, Jones JP. Purification and mechanism of human aldehyde oxidase expressed in Escherichia coli. Drug Metab Dispos 2009; 37:2393-8. [PMID: 19741035 DOI: 10.1124/dmd.109.029520] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human aldehyde oxidase 1 (AOX1) has been subcloned into a vector suitable for expression in Escherichia coli, and the protein has been expressed. The resulting protein is active, with sulfur being incorporated in the molybdopterin cofactor. Expression levels are modest, but 1 liter of cells supplies enough protein for both biochemical and kinetic characterization. Partial purification is achieved by nickel affinity chromatography through the addition of six histidines to the amino-terminal end of the protein. Kinetic analysis, including kinetic isotope effects and comparison with xanthine oxidase, reveal similar mechanisms, with some subtle differences. This expression system will allow for the interrogation of human aldehyde oxidase structure/function relationships by site-directed mutagenesis and provide protein for characterizing the role of AOX1 in drug metabolism.
Collapse
Affiliation(s)
- Joshua F Alfaro
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | | | | | | | | | | |
Collapse
|
45
|
Role of the molybdoflavoenzyme aldehyde oxidase homolog 2 in the biosynthesis of retinoic acid: generation and characterization of a knockout mouse. Mol Cell Biol 2008; 29:357-77. [PMID: 18981221 DOI: 10.1128/mcb.01385-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mouse aldehyde oxidase AOH2 (aldehyde oxidase homolog 2) is a molybdoflavoenzyme. Harderian glands are the richest source of AOH2, although the protein is detectable also in sebaceous glands, epidermis, and other keratinized epithelia. The levels of AOH2 in the Harderian gland and skin are controlled by genetic background, being maximal in CD1 and C57BL/6 and minimal in DBA/2, CBA, and 129/Sv strains. Testosterone is a negative regulator of AOH2 in Harderian glands. Purified AOH2 oxidizes retinaldehyde into retinoic acid, while it is devoid of pyridoxal-oxidizing activity. Aoh2(-/-) mice, the first aldehyde oxidase knockout animals ever generated, are viable and fertile. The data obtained for this knockout model indicate a significant role of AOH2 in the local synthesis and biodisposition of endogenous retinoids in the Harderian gland and skin. The Harderian gland's transcriptome of knockout mice demonstrates overall downregulation of direct retinoid-dependent genes as well as perturbations in pathways controlling lipid homeostasis and cellular secretion, particularly in sexually immature animals. The skin of knockout mice is characterized by thickening of the epidermis in basal conditions and after UV light exposure. This has correlates in the corresponding transcriptome, which shows enrichment and overall upregulation of genes involved in hypertrophic responses.
Collapse
|