1
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2024:10.1007/s11302-024-10034-x. [PMID: 39046648 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Vitureira N, Rafael A, Abudara V. P2X7 receptors and pannexin1 hemichannels shape presynaptic transmission. Purinergic Signal 2024; 20:223-236. [PMID: 37713157 PMCID: PMC11189373 DOI: 10.1007/s11302-023-09965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses about the role of this interaction in physiological and pathological circumstances.
Collapse
Affiliation(s)
- Nathalia Vitureira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Alberto Rafael
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Fu GJ, Wang LD, Chi XS, Liang X, Wei JJ, Huang ZH, Shen W, Zhang YL. Research Progress on the Experimental Model and Underlying Mechanistic Studies of Tension-Type Headaches. Curr Pain Headache Rep 2024; 28:439-451. [PMID: 38502437 PMCID: PMC11126509 DOI: 10.1007/s11916-024-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Tension-type headaches (TTH) significantly diminish patients' quality of life and increase absenteeism, thereby imposing a substantial economic burden. Animal models are essential tools for studying disease mechanisms and drug development. However, until now, little focus has been placed on summarizing the animal models of TTH and associated mechanistic studies. This narrative review discusses the current animal models of TTH and related mechanistic studies to provide insights into the pathophysiological mechanisms of and treatments for TTH. RECENT FINDINGS The primary method for constructing an animal model of TTH involves injecting a solution of pain relievers, such as adenosine triphosphate, nerve growth factor, or a high concentration of salt solution, into the neck to initiate harmful cervical muscle responses. This model enables the examination of the interaction between peripheral muscles and central sensitization, which is crucial for understanding the pathophysiology of TTH. Mechanistic studies based on this model have investigated the effect of the P2X receptor antagonist, P2X7 receptor blockade, the P2Y1 receptor agonist 2-MESADP, P2Y1 receptor antagonist MRS2179, nitric oxide synthase inhibitors, and acetylsalicylic acid. Despite notable advancements, the current model of TTH has limitations, including surgical complexity and the inability to replicate chronic tension-type headache (CTTH). To gain a more comprehensive understanding and develop more effective treatment methods, future studies should focus on simplifying surgical procedures, examining other predisposing factors, and establishing a model for chronic TTH. This will offer a deeper insight into the pathophysiological mechanism of TTH and pave the way for improved treatment approaches.
Collapse
Affiliation(s)
- Guo-Jing Fu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Liu-Ding Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Xian-Su Chi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Xiao Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Jing-Jing Wei
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Zhi-Hong Huang
- Yidu Central Hospital of Weifang, Weifang, 262,550, China
| | - Wei Shen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China.
| | - Yun-Ling Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China.
| |
Collapse
|
4
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
5
|
Iring-Varga B, Baranyi M, Gölöncsér F, Tod P, Sperlágh B. The antidepressant effect of short- and long-term zinc exposition is partly mediated by P2X7 receptors in male mice. Front Pharmacol 2023; 14:1241406. [PMID: 37908978 PMCID: PMC10613712 DOI: 10.3389/fphar.2023.1241406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Background: As a member of the purinergic receptor family, divalent cation-regulated ionotropic P2X7 (P2rx7) plays a role in the pathophysiology of psychiatric disorders. This study aimed to investigate whether the effects of acute zinc administration and long-term zinc deprivation on depression-like behaviors in mice are mediated by P2X7 receptors. Methods: The antidepressant-like effect of elevated zinc level was studied using a single acute intraperitoneal injection in C57BL6/J wild-type and P2rx7 gene-deficient (P2rx7 -/-) young adult and elderly animals in the tail suspension test (TST) and the forced swim test (FST). In the long-term experiments, depression-like behavior caused by zinc deficiency was investigated with the continuous administration of zinc-reduced and control diets for 8 weeks, followed by the same behavioral tests. The actual change in zinc levels owing to the treatments was examined by assaying serum zinc levels. Changes in monoamine and brain-derived neurotrophic factor (BDNF) levels were measured from the hippocampus and prefrontal cortex brain areas by enzyme-linked immunosorbent assay and high-performance liquid chromatography, respectively. Results: A single acute zinc treatment increased the serum zinc level evoked antidepressant-like effect in both genotypes and age groups, except TST in elderly P2rx7 -/- animals, where no significant effect was detected. Likewise, the pro-depressant effect of zinc deprivation was observed in young adult mice in the FST and TST, which was alleviated in the case of the TST in the absence of functional P2X7 receptors. Among elderly mice, no pro-depressant effect was observed in P2rx7 -/- mice in either tests. Treatment and genotype changes in monoamine and BDNF levels were also detected in the hippocampi. Conclusion: Changes in zinc intake were associated with age-related changes in behavior in the TST and FST. The antidepressant-like effect of zinc is partially mediated by the P2X7 receptor.
Collapse
Affiliation(s)
- Bernadett Iring-Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Roggeri A, Olivero G, Usai C, Vanmierlo T, Pittaluga A. Presynaptic Release-Regulating Sphingosine 1-Phosphate 1/3 Receptors in Cortical Glutamatergic Terminals: Adaptations in EAE Mice and Impact of Therapeutic FTY720. Cells 2023; 12:2343. [PMID: 37830557 PMCID: PMC10571862 DOI: 10.3390/cells12192343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
This study provides evidence of the existence of presynaptic inhibitory sphingosine-1-phosphate receptor 1 (S1P1R) and facilitatory S1P3R in cortical nerve endings (synaptosomes) of healthy mice. The conclusion relies on the findings that (i) the S1P1R agonist CS-2100 (0.1-30 nM) inhibits the 12 mM KCl-evoked glutamate exocytosis (quantified as the release of [3H]D-aspartate) while the S1P3R allosteric agonist CYM-5541 potentiates it and (ii) these effects are inhibited by the S1P1R antagonist Ex 26 (30-300 nM) and the S1P3R antagonist TY-52156 (100-1000 nM), respectively. Confocal microscopy and western blot analysis confirmed the presence of S1P1R and S1P3R proteins in cortical glutamatergic synaptosomes, which were scarcely accessible to biotin in a biotinylation study. Then, we demonstrated that S1P1R and S1P3R densities and their release activity are amplified in cortical synaptosomes of mice suffering from experimental autoimmune encephalomyelitis (EAE), despite receptors maintain their preferential internal distribution. Receptor changes recover following chronic oral therapeutic FTY720 (0.03 mg/Kg/day). These results improve our knowledge of the role of presynaptic release-regulating S1P1Rs and S1P3Rs controlling glutamate transmission in the CNS also unravelling functional adaptations during EAE that recover following chronic FTY720. In a whole, these findings provide new information on the central neuroprotectant activities of FTY720.
Collapse
Affiliation(s)
- Alessandra Roggeri
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.R.); (G.O.)
| | - Guendalina Olivero
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.R.); (G.O.)
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy;
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Anna Pittaluga
- Department of Pharmacy (DiFar), Center of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16145 Genoa, Italy
| |
Collapse
|
7
|
Li T, Gao Y, He M, Gui Z, Zhao B, Cao Y, Chen T, Zhu J, Wang J, Zhong Q, Zhang Z. P2X7 receptor-activated microglia in cortex is critical for sleep disorder under neuropathic pain. Front Neurosci 2023; 17:1095718. [PMID: 36816134 PMCID: PMC9936193 DOI: 10.3389/fnins.2023.1095718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain (NP) is associated with sleep disturbances, which may substantially influence the quality of life. Clinical and animal studies demonstrated that neurotransmitter is one of the main contributors to cause sleep disturbances induced by NP. Recently, it was reported that P2X7 receptors (P2X7R) are widely expressed in microglia, which serves crucial role in neuronal activity in the pain and sleep-awake cycle. In this study, we adopted the chronic constriction injury (CCI) model to establish the progress of chronic pain and investigated whether P2X7R of microglia in cortex played a critical role in sleep disturbance induced by NP. At electroencephalogram (EEG) level, sleep disturbance was observed in mice treated with CCI as they exhibited mechanical and thermal hypersensitivity, and inhibition of P2X7R ameliorated these changes. We showed a dramatic high level of P2X7R and Iba-1 co-expression in the cortical region, and the inhibition of P2X7R also adversely affected it. Furthermore, the power of LFPs in ventral posterior nucleus (VP) and primary somatosensory cortex (S1) which changed in the CCI group was adverse after the inhibition of P2X7R. Furthermore, inhibition of P2X7R also decreased the VP-S1 coherence which increased in CCI group. Nuclear magnetic resonance demonstrated inhibition of P2X7R decreased glutamate (Glu) levels in thalamic and cortical regions which were significantly increased in the CCI mice. Our findings provide evidence that NP has a critical effect on neuronal activity linked to sleep and may built up a new target for the development of sleep disturbances under chronic pain conditions.
Collapse
Affiliation(s)
- Tingting Li
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunling Gao
- Xiangyang Central Hospital, Institute of Neuroscience and Brain Diseases, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Mengying He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Bingchu Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,School of Computer Science, Wuhan University, Wuhan, Hubei, China
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jinpiao Zhu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Jie Wang
- Xiangyang Central Hospital, Institute of Neuroscience and Brain Diseases, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Qi Zhong,
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Zongze Zhang,
| |
Collapse
|
8
|
Amato S, Averna M, Guidolin D, Pedrazzi M, Pelassa S, Capraro M, Passalacqua M, Bozzo M, Gatta E, Anderlini D, Maura G, Agnati LF, Cervetto C, Marcoli M. Heterodimer of A2A and Oxytocin Receptors Regulating Glutamate Release in Adult Striatal Astrocytes. Int J Mol Sci 2022; 23:ijms23042326. [PMID: 35216441 PMCID: PMC8879615 DOI: 10.3390/ijms23042326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Roles of astrocytes in the modulatory effects of oxytocin (OT) in central nervous system are increasingly considered. Nevertheless, OT effects on gliotransmitter release have been neglected. METHODS In purified astrocyte processes from adult rat striatum, we assessed OT receptor (OTR) and adenosine A2A receptor expression by confocal analysis. The effects of receptors activation on glutamate release from the processes were evaluated; A2A-OTR heteromerization was assessed by co-immunoprecipitation and PLA. Structure of the possible heterodimer of A2A and OT receptors was estimated by a bioinformatic approach. RESULTS Both A2A and OT receptors were expressed on the same astrocyte processes. Evidence for A2A-OTR receptor-receptor interaction was obtained by measuring the release of glutamate: OT inhibited the evoked glutamate release, while activation of A2A receptors, per se ineffective, abolished the OT effect. Biochemical and biophysical evidence for A2A-OTR heterodimers on striatal astrocytes was also obtained. The residues in the transmembrane domains 4 and 5 of both receptors are predicted to be mainly involved in the heteromerization. CONCLUSIONS When considering effects of OT in striatum, modulation of glutamate release from the astrocyte processes and of glutamatergic synapse functioning, and the interaction with A2A receptors on the astrocyte processes should be taken into consideration.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy;
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Michela Capraro
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
- Italian Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy;
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy;
| | - Deanna Anderlini
- Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Blair Drive, St. Lucia, QLD 4067, Australia;
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy;
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
- Correspondence: (C.C.); (M.M.)
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
- Correspondence: (C.C.); (M.M.)
| |
Collapse
|
9
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Bhattacharya U, Jhou JF, Zou YF, Abrigo G, Lin SW, Chen YH, Chien FC, Tai HC. Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization. Sci Rep 2021; 11:18583. [PMID: 34545174 PMCID: PMC8452691 DOI: 10.1038/s41598-021-98142-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. However, conventional methods for imaging synaptosomes over glass coverslips suffer from formaldehyde-induced aggregation. Here, we developed a facile strategy to capture and image synaptosomes without aggregation artefacts. First, ethylene glycol bis(succinimidyl succinate) (EGS) is chosen as the chemical fixative to replace formaldehyde. EGS/glycine treatment makes the zeta potential of synaptosomes more negative. Second, we modified glass coverslips with 3-aminopropyltriethoxysilane (APTES) to impart positive charges. EGS-fixed synaptosomes spontaneously attach to modified glasses via electrostatic attraction while maintaining good dispersion. Individual synaptic terminals are imaged by conventional fluorescence microscopy or by super-resolution techniques such as direct stochastic optical reconstruction microscopy (dSTORM). We examined tau protein by two-color and three-color dSTORM to understand its spatial distribution within mouse cortical synapses, observing tau colocalization with synaptic vesicles as well postsynaptic densities.
Collapse
Affiliation(s)
| | - Jia-Fong Jhou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Fong Zou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Gerald Abrigo
- Department of Optics and Photonics, National Central University, Taoyuan, Taiwan
| | - Shu-Wei Lin
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Hsuan Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
11
|
Huang H, Zheng S, Chen M, Xie L, Li Z, Guo M, Wang J, Lu M, Zhu X. The potential of the P2X7 receptor as a therapeutic target in a sub-chronic PCP-induced rodent model of schizophrenia. J Chem Neuroanat 2021; 116:101993. [PMID: 34147620 DOI: 10.1016/j.jchemneu.2021.101993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We studied the role of the P2X7 receptor on cognitive dysfunction in a mouse model of schizophrenia. METHODS An adult mouse model was established by treatment with phencyclidine (PCP), an N-methyl-D-aspartate (NMDA) receptor antagonist. Young mice were divided into three groups: 1) the control (saline-injected) group; 2) experimental 5 mg/kg PCP-injected group; and 3) experimental 10 mg/kg PCP-injected group. The mice were subjected to the open-field and Morris water maze tests at 7 weeks. After intraperitoneal injection of the P2X7 receptor antagonist JNJ-47965567, the behaviour tests were performed again. Samples were taken after testing. The P2X7 receptor protein and mRNA expression levels were detected by immunohistochemistry, Western blotting and PCR. RESULTS This study revealed that the infant sub-chronic PCP mice model showed severe spatial learning and memory impairment in the Morris water maze and schizophrenia-like symptoms (hypermotor behaviour) in the open-field test. The P2X7 receptor protein was highly expressed in the sub-chronic PCP mouse model and more highly expressed in the hippocampus than the prefrontal lobe. After the P2X7 receptor was blocked with JNJ-47965567, P2X7 receptor protein and mRNA expression in the frontal lobe were significantly increased, and the spatial memory impairment and hypermotor behaviour induced by PCP were reversed. CONCLUSION PCP-induced cognitive impairment can be significantly improved by antagonizing the P2X7 receptor. Therefore, we believe that the P2X7 receptor plays an important role in the cognition of schizophrenic-like mice.
Collapse
Affiliation(s)
- Hui Huang
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Suyue Zheng
- Department of Neurosurgery, First Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Min Chen
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Liyuan Xie
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Ziyi Li
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Min Guo
- Psychosomatic Medicine, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Mingwei Lu
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
| | - Xingen Zhu
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
12
|
P2X7 receptors in the central nervous system. Biochem Pharmacol 2021; 187:114472. [PMID: 33587917 DOI: 10.1016/j.bcp.2021.114472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
For the past three decades, our laboratory has conducted pioneering research to elucidate the complexity of purinergic signaling in the CNS, alone and in collaboration with other groups, inspired by the ground-breaking efforts of Geoffrey Burnstock. This review summarizes our contribution to understand the nucleotide receptor signaling in the CNS with a special focus on the P2X7 receptor.
Collapse
|
13
|
Wan L, Li Z, Liu T, Chen X, Xu Q, Yao W, Zhang C, Zhang Y. Epoxyeicosatrienoic acids: Emerging therapeutic agents for central post-stroke pain. Pharmacol Res 2020; 159:104923. [PMID: 32461186 DOI: 10.1016/j.phrs.2020.104923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/23/2023]
Abstract
Central post-stroke pain (CPSP) is chronic neuropathic pain due to a lesion or dysfunction of the central nervous system following cerebrovascular insult. This syndrome is characterized by chronic somatosensory abnormalities including spontaneous pain, hyperalgesia and allodynia, which localize to body areas corresponding to the injured brain region. However, despite its potential to impair activities of daily life and cause mood disorders after stroke, it is probably the least recognized complication of stroke. All currently approved treatments for CPSP have limited efficacy but troublesome side effects. The detailed mechanism underlying CPSP is still under investigation; however, its diverse clinical features indicate excessive central neuronal excitability, which is attributed to loss of inhibition and excessive neuroinflammation. Recently, exogenous epoxyeicosatrienoic acids (EETs) have been used to attenuate the mechanical allodynia in CPSP rats and proven to provide a quicker onset and superior pain relief compared to the current first line drug gabapentin. This anti-nociceptive effect is mediated by reserving the normal thalamic inhibition state through neurosteroid-GABA signaling. Moreover, mounting evidence has revealed that EETs exert anti-inflammatory effects by inhibiting the expression of vascular adhesion molecules, activating NFκB, inflammatory cytokines secretion and COX-2 gene induction. The present review focuses on the extensive evidence supporting the potential of EETs to be a multi-functional therapeutic approach for CPSP. Additionally, the role of EETs in the crosstalk between anti-CPSP and the comorbid mood disorder is reviewed herein.
Collapse
Affiliation(s)
- Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zuofan Li
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuhui Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiaoqiao Xu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Kuan YH, Shih HC, Shyu BC. Involvement of P 2X 7 Receptors and BDNF in the Pathogenesis of Central Poststroke Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1099:211-227. [PMID: 30306527 DOI: 10.1007/978-981-13-1756-9_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Central pain is commonly found in patients with neurological complications that are associated with central nervous system insult, such as stroke. It can result directly from central nervous system injury. Impairments in sensory discrimination can make it challenging to differentiate central neuropathic pain from other types of pain or spasticity. Central neuropathic pain may also begin months to years after the injury, further obscuring the recognition of its association with past neurologic injury. This chapter focuses on the involvement of P2X7 receptor and brain-derived neurotrophic factor (BDNF) in central poststroke pain (CPSP). An experimental animal model is introduced that assesses the pathogenesis of central neuropathic pain, and pharmacological approaches and neuromodulatory treatments of this difficult-to-treat pain syndrome are discussed.
Collapse
Affiliation(s)
- Yung-Hui Kuan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsi-Chien Shih
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bai-Chuang Shyu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
15
|
Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018; 9:52. [PMID: 29467654 PMCID: PMC5808178 DOI: 10.3389/fphar.2018.00052] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.
Collapse
Affiliation(s)
- Luiz E B Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Department of Surgery, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci 2017; 37:7049-7062. [PMID: 28747388 DOI: 10.1523/jneurosci.3103-16.2017] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
P2X7 receptors (Rs) constitute a subclass of ATP-sensitive ionotropic receptors (P2X1-P2X7). P2X7Rs have many distinguishing features, mostly based on their long intracellular C terminus regulating trafficking to the cell membrane, protein-protein interactions, and post-translational modification. Their C-terminal tail is especially important in enabling the transition from the nonselective ion channel mode to a membrane pore allowing the passage of large molecules. There is an ongoing dispute on the existence of neuronal P2X7Rs with consequences for our knowledge on their involvement in neuroinflammation, aggravating stroke, temporal lobe epilepsy, neuropathic pain, and various neurodegenerative diseases. Whereas early results appeared to support the operation of P2X7Rs at neurons, more recently glial P2X7Rs are increasingly considered as indirect causes of neuronal effects. Specific tools for P2X7Rs are of limited value because of the poor selectivity of agonists, and the inherent failure of antibodies to differentiate between the large number of active and inactive splice variants, or gain-of-function and loss-of-function small nucleotide polymorphisms of the receptor. Unfortunately, the available P2RX7 knock-out mice generated by pharmaceutical companies possess certain splice variants, which evade inactivation. In view of the recently discovered bidirectional dialogue between astrocytes and neurons (and even microglia and neurons), we offer an alternative explanation for previous data, which assumedly support the existence of P2X7Rs at neurons. We think that the unbiased reader will follow our argumentation on astrocytic or microglial P2X7Rs being the primary targets of pathologically high extracellular ATP concentrations, although a neuronal localization of these receptors cannot be fully excluded either.
Collapse
|
17
|
Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. J Neurosci 2017; 37:7063-7072. [PMID: 28747389 DOI: 10.1523/jneurosci.3104-16.2017] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The proposed presence of P2X7 receptor (P2X7R) in neurons has been the source of some contention. Initial studies suggested an absence of P2X7R mRNA in neurons, and the apparent nonspecificity of the antibodies used to identify P2X7R raised further doubts. However, subsequent studies using new pharmacological and biomolecular tools provided conclusive evidence supporting the existence of functional P2X7Rs in neurons. The P2X7 receptor has since been shown to play a leading role in multiple aspects of neuronal physiology, including axonal elongation and branching and neurotransmitter release. P2X7R has also been implicated in neuronal pathologies, in which it may influence neuronal survival. Together, this body of research suggests that P2X7R may constitute an important therapeutic target for a variety of neurological disorders.
Collapse
|
18
|
Otrokocsi L, Kittel Á, Sperlágh B. P2X7 Receptors Drive Spine Synapse Plasticity in the Learned Helplessness Model of Depression. Int J Neuropsychopharmacol 2017; 20. [PMID: 28633291 PMCID: PMC5632310 DOI: 10.1093/ijnp/pyx046] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Major depressive disorder is characterized by structural and functional abnormalities of cortical and limbic brain areas, including a decrease in spine synapse number in the dentate gyrus of the hippocampus. Recent studies highlighted that both genetic and pharmacological invalidation of the purinergic P2X7 receptor (P2rx7) leads to antidepressant-like phenotype in animal experiments; however, the impact of P2rx7 on depression-related structural changes in the hippocampus is not clarified yet. METHODS Effects of genetic deletion of P2rx7s on depressive-like behavior and spine synapse density in the dentate gyrus were investigated using the learned helplessness mouse model of depression. RESULTS We demonstrate that in wild-type animals, inescapable footshocks lead to learned helplessness behavior reflected in increased latency and number of escape failures to subsequent escapable footshocks. This behavior is accompanied with downregulation of mRNA encoding P2rx7 and decrease of spine synapse density in the dentate gyrus as determined by electron microscopic stereology. In addition, a decrease in synaptopodin but not in PSD95 and NR2B/GluN2B protein level was also observed under these conditions. Whereas the absence of P2rx7 was characterized by escape deficit, no learned helpless behavior is observed in these animals. Likewise, no decrease in spine synapse number and synaptopodin protein levels was detected in response to inescapable footshocks in P2rx7-deficient animals. CONCLUSION Our findings suggest the endogenous activation of P2rx7s in the learned helplessness model of depression and decreased plasticity of spine synapses in P2rx7-deficient mice might explain the resistance of these animals to repeated stressful stimuli.
Collapse
MESH Headings
- Animals
- Dendritic Spines/metabolism
- Dendritic Spines/ultrastructure
- Dentate Gyrus/metabolism
- Dentate Gyrus/ultrastructure
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/pathology
- Disease Models, Animal
- Disks Large Homolog 4 Protein/metabolism
- Down-Regulation
- Electroshock
- Escape Reaction/physiology
- Helplessness, Learned
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Neuronal Plasticity/physiology
- RNA, Messenger/metabolism
- Random Allocation
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/metabolism
- Synapses/metabolism
- Synapses/ultrastructure
Collapse
Affiliation(s)
- Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary (Ms Otrokocsi, Dr Kittel, Dr Sperlágh); János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary (Ms Otrokocsi)
| | - Ágnes Kittel
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary (Ms Otrokocsi, Dr Kittel, Dr Sperlágh); János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary (Ms Otrokocsi)
- Correspondence: Ágnes Kittel, PhD, DSc, Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Szigony u. 43., Hungary ()
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary (Ms Otrokocsi, Dr Kittel, Dr Sperlágh); János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary (Ms Otrokocsi)
| |
Collapse
|
19
|
Koványi B, Csölle C, Calovi S, Hanuska A, Kató E, Köles L, Bhattacharya A, Haller J, Sperlágh B. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model. Sci Rep 2016; 6:36680. [PMID: 27824163 PMCID: PMC5099752 DOI: 10.1038/srep36680] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
P2X7 receptors (P2X7Rs) are ligand-gated ion channels sensitive to extracellular ATP. Here we examined for the first time the role of P2X7R in an animal model of schizophrenia. Using the PCP induced schizophrenia model we show that both genetic deletion and pharmacological inhibition of P2X7Rs alleviate schizophrenia-like behavioral alterations. In P2rx7+/+ mice, PCP induced hyperlocomotion, stereotype behavior, ataxia and social withdrawal. In P2X7 receptor deficient mice (P2rx7−/−), the social interactions were increased, whereas the PCP induced hyperlocomotion and stereotype behavior were alleviated. The selective P2X7 receptor antagonist JNJ-47965567 partly replicated the effect of gene deficiency on PCP-induced behavioral changes and counteracted PCP-induced social withdrawal. We also show that PCP treatment upregulates and increases the functional responsiveness of P2X7Rs in the prefrontal cortex of young adult animals. The amplitude of NMDA evoked currents recorded from layer V pyramidal neurons of cortical slices were slightly decreased by both genetic deletion of P2rx7 and by JNJ-47965567. PCP induced alterations in mRNA expression encoding schizophrenia-related genes, such as NR2A, NR2B, neuregulin 1, NR1 and GABA α1 subunit were absent in the PFC of young adult P2rx7−/− animals. Our findings point to P2X7R as a potential therapeutic target in schizophrenia.
Collapse
Affiliation(s)
- Bence Koványi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences (IEM HAS), H-1450 Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Cecilia Csölle
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences (IEM HAS), H-1450 Budapest, Hungary
| | - Stefano Calovi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences (IEM HAS), H-1450 Budapest, Hungary
| | - Adrienn Hanuska
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | | | - József Haller
- Department of Behavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences (IEM HAS), H-1450, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences (IEM HAS), H-1450 Budapest, Hungary
| |
Collapse
|
20
|
Chavda S, Luthert PJ, Salt TE. P2X 7R modulation of visually evoked synaptic responses in the retina. Purinergic Signal 2016; 12:611-625. [PMID: 27393519 PMCID: PMC5123999 DOI: 10.1007/s11302-016-9522-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/24/2016] [Indexed: 10/29/2022] Open
Abstract
P2X7Rs are distributed throughout all layers of the retina, and thus, their localisation on various cell types puts into question their specific site(s) of action. Using a dark-adapted, ex vivo mouse retinal whole mount preparation, the present study aimed to characterise the effect of P2X7R activation on light-evoked, excitatory RGC ON-field excitatory post-synaptic potentials (fEPSPs) and on outer retinal electroretinogram (ERG) responses under comparable conditions. The pharmacologically isolated NMDA receptor-mediated RGC ON-fEPSP was reduced in the presence of BzATP, an effect which was significantly attenuated by A438079 and other selective P2X7R antagonists A804598 or AF27139. In physiological Krebs medium, BzATP induced a significant potentiation of the ERG a-wave, with a concomitant reduction in the b-wave and the power of the oscillatory potentials. Conversely, in the pharmacologically modified Mg2+-free perfusate, BzATP reduced both the a-wave and b-wave. The effects of BzATP on the ERG components were suppressed by A438079. A role for P2X7R function in visual processing in both the inner and outer retina under physiological conditions remains controversial. The ON-fEPSP was significantly reduced in the presence of A804598 but not by A438079 or AF27139. Furthermore, A438079 did not have any effect on the ERG components in physiological Krebs but potentiated and reduced the a-wave and b-wave, respectively, when applied to the pharmacologically modified medium. Therefore, activation of P2X7Rs affects the function in the retinal ON pathway. The presence of a high concentration of extracellular ATP would most likely contribute to the modulation of visual transmission in the retina in the pathophysiological microenvironment.
Collapse
Affiliation(s)
- Seetal Chavda
- Visual Neuroscience, UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Philip J Luthert
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, EC1V 9EL, UK.,NIHR Biomedical Research Centre in Ophthalmology, London, EC1V 9EL, UK
| | - Thomas E Salt
- Visual Neuroscience, UCL Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
21
|
Cervetto C, Vergani L, Passalacqua M, Ragazzoni M, Venturini A, Cecconi F, Berretta N, Mercuri N, D'Amelio M, Maura G, Mariottini P, Voci A, Marcoli M, Cervelli M. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse. Neuromolecular Med 2016; 18:50-68. [PMID: 26530396 DOI: 10.1007/s12017-015-8377-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
Transgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device. In parallel, as the brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms, we analyzed the oxidative status of the cerebral cortex of both SMO-overexpressing and control mice by evaluating enzymatic and non-enzymatic scavengers such as metallothioneins. The main findings in the cerebral cortex of Dach-SMO mice as compared to controls are the following: astrocyte activation and neuron loss; increased oxidative stress and activation of defense mechanisms involving both neurons and astrocytes; increased susceptibility to kainate-evoked cortical epileptogenic activity, dependent on astrocyte function; appearance of a glutamate-releasing response to kainate from astrocyte processes due to activation of Ca(2+)-permeable AMPA receptors in Dach-SMO mice. We conclude that reactive astrocytosis and activation of glutamate release from astrocyte processes might contribute, together with increased reactive oxygen species production, to the vulnerability to kainate excitotoxicity in Dach-SMO mice. This mouse model with a deregulated polyamine metabolism would shed light on roles for astrocytes in increasing vulnerability to excitotoxic neuron injury.
Collapse
Affiliation(s)
- Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132, Genoa, Italy
| | - Milena Ragazzoni
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Nicola Berretta
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Nicola Mercuri
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Department of Systems Medicine, University of Rome 'Tor Vergata', Viale Oxford 81, 00133, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Medical School Campus, Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Paolo Mariottini
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy.
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy.
| | - Manuela Cervelli
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy.
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
22
|
ATPergic signalling during seizures and epilepsy. Neuropharmacology 2015; 104:140-53. [PMID: 26549853 DOI: 10.1016/j.neuropharm.2015.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Much progress has been made over the last few decades in the identification of new anti-epileptic drugs (AEDs). However, 30% of epilepsy patients suffer poor seizure control. This underscores the need to identify alternative druggable neurotransmitter systems and drugs with novel mechanisms of action. An emerging concept is that seizure generation involves a complex interplay between neurons and glial cells at the tripartite synapse and neuroinflammation has been proposed as one of the main drivers of epileptogenesis. The ATP-gated purinergic receptor family is expressed throughout the brain and is functional on neurons and glial cells. ATP is released in high amounts into the extracellular space after increased neuronal activity and during chronic inflammation and cell death to act as a neuro- and gliotransmitter. Emerging work shows pharmacological targeting of ATP-gated purinergic P2 receptors can potently modulate seizure generation, inflammatory processes and seizure-induced brain damage. To date, work showing the functional contribution of P2 receptors has been mainly performed in animal models of acute seizures, in particular, by targeting the ionotropic P2X7 receptor subtype. Other ionotropic P2X and metabotropic P2Y receptor family members have also been implicated in pathological processes following seizures such as the P2X4 receptor and the P2Y12 receptor. However, during epilepsy, the characterization of P2 receptors was mostly restricted to the study of expressional changes of the different receptor subtypes. This review summarizes the work to date on ATP-mediated signalling during seizures and the functional impact of targeting the ATP-gated purinergic receptors on seizures and seizure-induced pathology. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
23
|
Physiological Roles of Calpain 1 Associated to Multiprotein NMDA Receptor Complex. PLoS One 2015; 10:e0139750. [PMID: 26431040 PMCID: PMC4592069 DOI: 10.1371/journal.pone.0139750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 01/10/2023] Open
Abstract
We have recently demonstrated that in resting conditions calpain 1, but not calpain 2, is specifically associated to the N-Methyl-D-Aspartate receptor (NMDAR) multiprotein complex. We are here reporting that in SKNBE neuroblastoma cells or in freshly isolated nerve terminals from adult rat hippocampus, the proteolytic activity of calpain 1 resident at the NMDAR is very low under basal conditions and greatly increases following NMDAR stimulation. Since the protease resides at the NMDAR in saturating amounts, variations in Ca2+ influx promote an increase in calpain 1 activity without affecting the amount of the protease originally associated to NMDAR. In all the conditions examined, resident calpain 1 specifically cleaves NR2B at the C-terminal region, leading to its internalization together with NR1 subunit. While in basal conditions intracellular membranes include small amounts of NMDAR containing the calpain-digested NR2B, upon NMDAR stimulation nearly all the receptor molecules are internalized. We here propose that resident calpain 1 is involved in NMDAR turnover, and following an increase in Ca2+ influx, the activated protease, by promoting the removal of NMDAR from the plasma membranes, can decrease Ca2+ entrance through this channel. Due to the absence of calpastatin in such cluster, the activity of resident calpain 1 may be under the control of HSP90, whose levels are directly related to the activation of this protease. Observations of different HSP90/calpain 1 ratios in different ultrasynaptic compartments support this conclusion.
Collapse
|
24
|
Lord B, Ameriks MK, Wang Q, Fourgeaud L, Vliegen M, Verluyten W, Haspeslagh P, Carruthers NI, Lovenberg TW, Bonaventure P, Letavic MA, Bhattacharya A. A novel radioligand for the ATP-gated ion channel P2X7: [3H] JNJ-54232334. Eur J Pharmacol 2015; 765:551-9. [PMID: 26386289 DOI: 10.1016/j.ejphar.2015.09.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 10/25/2022]
Abstract
The ATP-gated ion channel P2X7 has emerged as a potential central nervous system (CNS) drug target based on the hypotheses that pro-inflammatory cytokines such as IL-1β that are released by microglia, may contribute to the etiology of various disorders of the CNS including depression. In this study, we identified two closely related P2X7 antagonists, JNJ-54232334 and JNJ-54140515, and then tritium labeled the former to produce a new radioligand for P2X7. JNJ-54232334 is a high affinity ligand for the rat P2X7 with a pKi of 9.3±0.1. In rat cortical membranes, [3H] JNJ-54232334 reached saturable binding with equilibrium dissociation (Kd) constant of 4.9±1.3 nM. The compound displayed monophasic association and dissociation kinetics with fast on and off rates. In rat brain sections, specific binding of [3H] JNJ-54232334 was markedly improved compared to the previously described P2X7 radioligand, [3H] A-804598. In P2X7 knockout mouse brain sections, [3H] A-804598 bound to non-P2X7 binding sites in contrast to [3H] JNJ-54232334. In rat or wild type mouse brain sections [3H] JNJ-54232334 bound in a more homogenous and region independent manner. The ubiquitous expression of P2X7 receptors was confirmed with immunohistochemistry in rat brain sections. The partial displacement of [3H] A-804598 binding resulted in the underestimation of the level of ex vivo P2X7 occupancy for JNJ-54140515. Higher levels of P2X7 ex vivo occupancy were measured using [3H] JNJ-54232334 due to less non-specific binding. In summary, we describe [3H] JNJ-54232334 as a novel P2X7 radioligand, with improved properties over [3H] A-804598.
Collapse
Affiliation(s)
- Brian Lord
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States.
| | - Michael K Ameriks
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States
| | - Qi Wang
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States
| | - Lawrence Fourgeaud
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States
| | - Maarten Vliegen
- Janssen Research & Development, LLC, Drug Safety Sciences, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Willy Verluyten
- Janssen Research & Development, LLC, Drug Safety Sciences, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Pieter Haspeslagh
- Janssen Research & Development, LLC, Drug Safety Sciences, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Nicholas I Carruthers
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States
| | - Timothy W Lovenberg
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States
| | - Pascal Bonaventure
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States
| | - Michael A Letavic
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States
| | - Anindya Bhattacharya
- Janssen Research & Development, LLC, Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA 92121-1126, United States
| |
Collapse
|
25
|
Barros-Barbosa AR, Lobo MG, Ferreirinha F, Correia-de-Sá P, Cordeiro JM. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes. Neuroscience 2015; 306:74-90. [PMID: 26299340 DOI: 10.1016/j.neuroscience.2015.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. Radiolabeled neurotransmitter accumulation was evaluated by liquid scintillation spectrometry. The cell-permeant sodium-selective fluorescent indicator, SBFI-AM, was used to estimate Na(+) influx across plasma membrane. 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-300 μM), a prototypic P2X7 receptor agonist, concentration-dependently decreased [(3)H]GABA (14%) and [(14)C]glutamate (24%) uptake; BzATP decreased transport maximum velocity (Vmax) without affecting the Michaelis constant (Km) values. The selective P2X7 receptor antagonist, A-438079 (3 μM), prevented inhibition of [(3)H]GABA and [(14)C]glutamate uptake by BzATP (100 μM). The inhibitory effect of BzATP coincided with its ability to increase intracellular Na(+) and was mimicked by Na(+) ionophores, like gramicidin and monensin. Increases in intracellular Na(+) (with veratridine or ouabain) or substitution of extracellular Na(+) by N-methyl-D-glucamine (NMDG)(+) all decreased [(3)H]GABA and [(14)C]glutamate uptake and attenuated BzATP effects. Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability.
Collapse
Affiliation(s)
- A R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - M G Lobo
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| | - J M Cordeiro
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
26
|
Cervetto C, Frattaroli D, Venturini A, Passalacqua M, Nobile M, Alloisio S, Tacchetti C, Maura G, Agnati LF, Marcoli M. Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes. Neuropharmacology 2015; 99:396-407. [PMID: 26260232 DOI: 10.1016/j.neuropharm.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
The Bergmann glia is equipped with Ca2+-permeable AMPA receptors for glutamate, indispensable for structural and functional relations between the Bergmann glia and parallel/climbing fibers-Purkinje cell synapses. To better understand roles for the Bergmann AMPA receptors, herein we investigate on gliotransmitter release and Ca2+ signals in isolated Bergmann glia processes obtained from adult rat cerebellum. We found that: 1) the rat cerebellar purified astrocyte processes (gliosomes) expressed astrocytic and Bergmann markers and exhibited negligible contamination by nerve terminals, microglia, or oligodendrocytes; 2) activation of Ca2+-permeable AMPA receptors caused Ca2+ signals in the processes, and the release of glutamate from the processes; 3) effectiveness of rose bengal, trypan blue or bafilomycin A1, indicated that activation of the AMPA receptors evoked vesicular glutamate release. Cerebellar purified nerve terminals appeared devoid of glutamate-releasing Ca2+-permeable AMPA receptors, indicating that neuronal contamination may not be the source of the signals detected. Ultrastructural analysis indicated the presence of vesicles in the cytoplasm of the processes; confocal imaging confirmed the presence of vesicular glutamate transporters in Bergmann glia processes. We conclude that: a vesicular mechanism for release of the gliotransmitter glutamate is present in mature Bergmann processes; entry of Ca2+ through the AMPA receptors located on Bergmann processes is coupled with vesicular glutamate release. The findings would add a new role for a well-known Bergmann target for glutamate (the Ca2+-permeable AMPA receptors) and a new actor (the gliotransmitter glutamate) at the cerebellar excitatory synapses onto Purkinje cells.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Daniela Frattaroli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, Italian Institute of Biostructures and Biosystems, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Mario Nobile
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Susanna Alloisio
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132 Genova, Italy; Experimental Imaging Center, Scientific Institute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
27
|
Di Cesare Mannelli L, Marcoli M, Micheli L, Zanardelli M, Maura G, Ghelardini C, Cervetto C. Oxaliplatin evokes P2X7-dependent glutamate release in the cerebral cortex: A pain mechanism mediated by Pannexin 1. Neuropharmacology 2015; 97:133-41. [PMID: 26071109 DOI: 10.1016/j.neuropharm.2015.05.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 01/29/2023]
Abstract
Anticancer therapy based on the repeated administration of oxaliplatin is limited by the development of a neuropathic syndrome difficult to treat. Oxaliplatin neurotoxicity is based on complex nervous mechanisms, the comprehension of the role of single neurotransmitters and the knowledge of the signal flow among cells is matter of importance to improve therapeutic chances. In a rat model of oxaliplatin-induced neuropathy, we report increased P2X7-evoked glutamate release from cerebrocortical synaptosomes. The release was abolished by the P2X7 receptor (P2X7R) antagonists Brilliant-Blue-G (BBG) and A-438079, and significantly reduced by Carbenoxolone and the Pannexin 1 (Panx1) selective inhibitors Erioglaucine and (10)Panx suggesting the recruitment of Panx1. Aimed to evaluate the significance of P2X7R-Panx1 system activation in pain generated by oxaliplatin, pharmacological modulators were spinally infused by intrathecal catheter in oxaliplatin-treated animals. BBG, Erioglaucine and (10)Panx reverted oxaliplatin-dependent pain. Finally, the influence of the P2X7R-Panx1 system blockade on oxaliplatin anticancer activity was evaluated on the human colon cancer cell line HT-29. Prevention of HT-29 apoptosis and mortality was dependent by kind and concentration of P2X7R antagonists. On the contrary, the inhibition of Panx1 did not alter oxaliplatin lethality in tumor cells. It is concluded that glutamate release dependent on P2X7R is increased in cerebrocortical nerve terminals from oxaliplatin-treated rats; the increase is mediated by functional recruitment of Panx1; P2X7R antagonists and Panx1 inhibitors revert oxaliplatin-induced neuropathic pain; Panx1 inhibitors do not alter the oxaliplatin-induced mortality of cancer cells HT-29. The inhibition of Panx1 channel is suggested as a new and safe pharmacological target.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genova, Genova, Italy.
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Guido Maura
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genova, Genova, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genova, Genova, Italy
| |
Collapse
|
28
|
Kuan YH, Shih HC, Tang SC, Jeng JS, Shyu BC. Targeting P(2)X(7) receptor for the treatment of central post-stroke pain in a rodent model. Neurobiol Dis 2015; 78:134-45. [PMID: 25836422 DOI: 10.1016/j.nbd.2015.02.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/26/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
Stroke is a leading cause of death and disability in industrialized countries. Approximately 8-14% of stroke survivors suffer from central post-stroke pain (CPSP) when hemorrhagic stroke occurs in lateral thalamic regions, which severely affects their quality of life. Because the mechanisms of CPSP are not well understood, effective treatments have not been developed. In the present study, we tested the hypothesis that persistent CPSP is caused by P(2)X(7)receptor activation after brain tissue damage and subsequent elevations in inflammatory cytokines. A thalamic hemorrhagic rat model was used, characterized by thermal and mechanical allodynia that develops in the subacute to chronic phases upon CPSP onset. We found a significant increase in P(2)X(7) expression in reactive microglia/macrophages in thalamic peri-lesion tissues at 5 weeks post-hemorrhage. Thalamic P(2)X(7) receptors were directly involved in pain transmission and hypersensitivity. The systemic targeting of P(2)X(7) receptors during the acute stage of hemorrhage rescued abnormal pain behaviors and neuronal activity in the thalamocingulate pathway by reducing reactive microglia/macrophage aggregation and associated inflammatory cytokines. After CPSP onset, the targeting of interleukin-1β reversed abnormal pain sensitivity. The aberrant spontaneous thalamocortical oscillations in rats with CPSP were modulated by blocking P(2)X(7) receptors. Taken together, our results suggest that targeting P(2)X(7) may be bi-effective in the treatment of CPSP, as both a pain blocker and immunosuppressant that inhibits inflammatory damage to brain tissue. P(2)X(7)receptors may serve as a potential target to prevent the occurrence of CPSP and may be beneficial for the recovery of patients from stroke.
Collapse
Affiliation(s)
- Yung-Hui Kuan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Hsi-Chien Shih
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Sung-Chun Tang
- Department of Neurology and Stroke Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan, ROC
| | - Jiann-Shing Jeng
- Department of Neurology and Stroke Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan, ROC
| | - Bai-Chuang Shyu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC.
| |
Collapse
|
29
|
Liang X, Samways DSK, Wolf K, Bowles EA, Richards JP, Bruno J, Dutertre S, DiPaolo RJ, Egan TM. Quantifying Ca2+ current and permeability in ATP-gated P2X7 receptors. J Biol Chem 2015; 290:7930-42. [PMID: 25645917 DOI: 10.1074/jbc.m114.627810] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-gated P2X7 receptors are prominently expressed in inflammatory cells and play a key role in the immune response. A major consequence of receptor activation is the regulated influx of Ca(2+) through the self-contained cation non-selective channel. Although the physiological importance of the resulting rise in intracellular Ca(2+) is universally acknowledged, the biophysics of the Ca(2+) flux responsible for the effects are poorly understood, largely because traditional methods of measuring Ca(2+) permeability are difficult to apply to P2X7 receptors. Here we use an alternative approach, called dye-overload patch-clamp photometry, to quantify the agonist-gated Ca(2+) flux of recombinant P2X7 receptors of dog, guinea pig, human, monkey, mouse, rat, and zebrafish. We find that the magnitude of the Ca(2+) component of the ATP-gated current depends on the species of origin, the splice variant, and the concentration of the purinergic agonist. We also measured a significant contribution of Ca(2+) to the agonist-gated current of the native P2X7Rs of mouse and human immune cells. Our results provide cross-species quantitative measures of the Ca(2+) current of the P2X7 receptor for the first time, and suggest that the cytoplasmic N terminus plays a meaningful role in regulating the flow of Ca(2+) through the channel.
Collapse
Affiliation(s)
- Xin Liang
- From the Department of Pharmacological and Physiological Science and Center for Neuroscience, and
| | - Damien S K Samways
- the Department of Biology, Clarkson University, Potsdam, New York 13699, and
| | - Kyle Wolf
- the Departments of Molecular Microbiology and Immunology and
| | - Elizabeth A Bowles
- From the Department of Pharmacological and Physiological Science and Center for Neuroscience, and
| | - Jennifer P Richards
- From the Department of Pharmacological and Physiological Science and Center for Neuroscience, and
| | - Jonathan Bruno
- Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Sébastien Dutertre
- the Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier 2, CNRS, Montpellier, France
| | | | - Terrance M Egan
- From the Department of Pharmacological and Physiological Science and Center for Neuroscience, and
| |
Collapse
|
30
|
Subcellular distribution and early signalling events of P2X7 receptors from mouse cerebellar granule neurons. Eur J Pharmacol 2014; 744:190-202. [PMID: 25446427 DOI: 10.1016/j.ejphar.2014.10.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022]
Abstract
The subcellular distribution and early signalling events of P2X7 receptors were studied in mouse cerebellar granule neurons. Whole-cell patch-clamp recordings evidenced inwardly directed non-desensitizing currents following adenosine 5'-triphosphate (ATP; 600 µM) or 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 µM) administration to cells bathed in a medium with no-added divalent cations (Ca(2+) and Mg(2+)). Nucleotide-activated currents were inhibited by superfusion of 2.5 mM Ca(2+), 1.2 mM Mg(2+) or 100 nM Brilliant Blue G (BBG), hence indicating the expression of ionotropic P2X7 receptors. Fura-2 calcium imaging showed [Ca(2+)]i elevations in response to ATP or BzATP at the somas and at a small number of axodendritic regions of granule neurons. Differential sensitivity of these [Ca(2+)]i increases to three different P2X7 receptor antagonists (100 nM BBG, 10 μM 4-[(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinolinesulfonic acid ester, KN-62, and 1 μM 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine hydrochloride hydrate, A-438079) revealed that P2X7 receptors are co-expressed with different P2Y receptors along the plasmalemma of granule neurons. Finally, experiments with the fluorescent dye YO-PRO-1 indicated that prolonged stimulation of P2X7 receptors does not lead to the opening of a membrane pore permeable to large cations. Altogether, our results emphasise the expression of functional P2X7 receptors at both the axodendritic and somatic levels in mouse cerebellar granule neurons, and favour the notion that P2X7 receptors might function in a subcellular localisation-specific manner: presynaptically, by controlling glutamate release, and on the cell somas, by supporting granule neuron survival against glutamate excytotoxicity.
Collapse
|
31
|
Carmo MR, Menezes APF, Nunes ACL, Pliássova A, Rolo AP, Palmeira CM, Cunha RA, Canas PM, Andrade GM. The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology 2014; 81:142-52. [DOI: 10.1016/j.neuropharm.2014.01.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 01/11/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
32
|
Battilocchio C, Guetzoyan L, Cervetto C, Di Cesare Mannelli L, Frattaroli D, Baxendale IR, Maura G, Rossi A, Sautebin L, Biava M, Ghelardini C, Marcoli M, Ley SV. Flow Synthesis and Biological Studies of an Analgesic Adamantane Derivative That Inhibits P2X7-Evoked Glutamate Release. ACS Med Chem Lett 2013; 4:704-9. [PMID: 24900736 DOI: 10.1021/ml400079h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022] Open
Abstract
We report the biological evaluation of a class of adamantane derivatives, which were achieved via modified telescoped machine-assisted flow procedure. Among the series of compounds tested in this work, 5 demonstrated outstanding analgesic properties. This compound showed that its action was not mediated through direct interaction with opioid and/or cannabinoid receptors. Moreover, it did not display any significant anti-inflammatory properties. Experiments carried out on rat cerebrocortical purified synaptosomes indicated that 5 inhibits the P2X7-evoked glutamate release, which may contribute to its antinociceptive properties. Nevertheless, further experiments are ongoing to characterize the pharmacological properties and mechanism of action of this molecule.
Collapse
Affiliation(s)
- Claudio Battilocchio
- Innovative
Technology Centre,
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, United Kingdom
| | - Lucie Guetzoyan
- Innovative
Technology Centre,
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, United Kingdom
| | - Chiara Cervetto
- Dipartimento di Farmacia, Sezione
di Farmacologia e Tossicologia, Universita’di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento di Neuroscienze,
Psicologia Area del Farmaco e Salute del Bambino, Universita’ di Firenze, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Daniela Frattaroli
- Dipartimento di Farmacia, Sezione
di Farmacologia e Tossicologia, Universita’di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Ian R. Baxendale
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United
Kingdom
| | - Guido Maura
- Dipartimento di Farmacia, Sezione
di Farmacologia e Tossicologia, Universita’di Genova, Viale Cembrano 4, 16148 Genova, Italy
- Center of Excellence
for Biomedical
Research, Universita’ di Genova,
Viale Benedetto XV 5, 16132 Genova, Italy
| | - Antonietta Rossi
- Dipartimento di Farmacologia Sperimentale, Universita’ di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Lidia Sautebin
- Dipartimento di Farmacologia Sperimentale, Universita’ di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Mariangela Biava
- Dipartmento di Chimica e Tecnologie
del Farmaco, Sapienza Universita’ di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze,
Psicologia Area del Farmaco e Salute del Bambino, Universita’ di Firenze, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Manuela Marcoli
- Dipartimento di Farmacia, Sezione
di Farmacologia e Tossicologia, Universita’di Genova, Viale Cembrano 4, 16148 Genova, Italy
- Center of Excellence
for Biomedical
Research, Universita’ di Genova,
Viale Benedetto XV 5, 16132 Genova, Italy
| | - Steven V. Ley
- Innovative
Technology Centre,
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, United Kingdom
| |
Collapse
|
33
|
Csölle C, Baranyi M, Zsilla G, Kittel A, Gölöncsér F, Illes P, Papp E, Vizi ES, Sperlágh B. Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors. PLoS One 2013; 8:e66547. [PMID: 23805233 PMCID: PMC3689833 DOI: 10.1371/journal.pone.0066547] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 05/13/2013] [Indexed: 12/17/2022] Open
Abstract
Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7−/−) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7−/− mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7−/− mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7−/− mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7−/− mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7−/− mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7−/− mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7−/− mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus.
Collapse
Affiliation(s)
- Cecilia Csölle
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alberto AVP, Faria RX, Couto CGC, Ferreira LGB, Souza CAM, Teixeira PCN, Fróes MM, Alves LA. Is pannexin the pore associated with the P2X7 receptor? Naunyn Schmiedebergs Arch Pharmacol 2013; 386:775-87. [PMID: 23657251 DOI: 10.1007/s00210-013-0868-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/02/2013] [Indexed: 01/05/2023]
Abstract
The P2X7 receptor (P2X7R), an ATP-gated cation channel, is expressed predominantly in leukocytes. Activation of P2X7R has been implicated in the formation of a cytolytic pore (i.e., a large conductance channel) that allows the passage of molecules up to 900 Da in macrophages. At least two hypotheses have been presented to explain the conversion of a nonselective cation channel to a cytolytic pore. One hypothesis suggests that the pore is a separate molecular structure activated by P2X7R, and the second asserts that this is an intrinsic property of P2X7R (pore dilation). Based on connexin knockout and hemichannel antagonist studies, some groups have concluded that connexins and pannexins, the hemichannel-forming proteins in vertebrates, are fundamental components of the large conductance channel associated with P2X7R. Dye uptake and electrophysiology experiments were used to evaluate the efficacy and specificity of some hemichannel antagonists under conditions known to open the large conductance channel associated with P2X7R. Hemichannel antagonists and interference RNA (RNAi) targeting pannexin-1 did not affect P2X7R macroscopic currents [ATP, 1,570±189 pA; ATP+100 μM carbenoxolone (CBX), 1,498±100 pA; ATP+1 mM probenecid (Prob), 1,522±9 pA] or dye uptake in a FACS assay (ATP, 63±5%; ATP+100 μM CBX, 51.51±8.4%; ATP+1 mM Prob, 57.7±4.3%) in mouse macrophages. These findings strongly suggest that the high-permeability pore evident after prolonged P2X7R activation does not occur through connexin or pannexin hemichannels in murine macrophages. Another membrane protein may be involved in P2X7R pore formation.
Collapse
Affiliation(s)
- A V P Alberto
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365 Manguinhos, CEP: 21045-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu H, Han X, Li Y, Zou H, Xie A. Association of P2X7 receptor gene polymorphisms with sporadic Parkinson's disease in a Han Chinese population. Neurosci Lett 2013; 546:42-5. [PMID: 23648388 DOI: 10.1016/j.neulet.2013.04.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
Previous studies have indicated that genetic polymorphisms in the P2X7 receptors may influence the occurrence and development of sporadic Parkinson's diseases (PD). In our study, two DNA polymorphisms at P2X7 receptor gene: 1513A>C (rs3751143) and 1729T>A (rs1653624) were examined by PCR-RFLP analysis in 285 sporadic patients and 285 healthy controls in Han Chinese population. For 1513A>C polymorphism, there were significant differences in genotype distribution in PD group and late-onset PD (LOPD) group relative to the control groups respectively (P=0.015 and P=0.032, respectively), as well as between male PD and the controls subgroup (P=0.031). However, there were no significant differences in the genotype and allele frequencies of 1729T>A polymorphism between groups. Our study revealed that the P2X7 receptors 1513A>C polymorphism is a risk factor for sporadic PD, LOPD and male PD in Han Chinese population, while 1729T>A polymorphism is not significantly associated with Parkinson's disease.
Collapse
Affiliation(s)
- Hongxin Liu
- Department of Neurology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | | | | | | | | |
Collapse
|
36
|
Bai HY, Li AP. P2X(7) receptors in cerebral ischemia. Neurosci Bull 2013; 29:390-8. [PMID: 23640286 DOI: 10.1007/s12264-013-1338-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/16/2012] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia is one of the most common diseases resulting in death and disability in aged people. It leads immediately to rapid energy failure, ATP depletion, and ionic imbalance, which increase extracellular ATP levels and accordingly activate P2X7 receptors. These receptors are ATP-gated cation channels and widely distributed in nerve cells, especially in the immunocompetent cells of the brain. Currently, interest in the roles of P2X7 receptors in ischemic brain injury is growing. In this review, we discuss recent research progress on the actions of P2X7 receptors, their possible mechanisms in cerebral ischemia, and the potential therapeutic value of P2X7 receptor antagonists which may provide a new target both for clinical and for research purposes.
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | | |
Collapse
|
37
|
Heinrich A, Andó RD, Túri G, Rózsa B, Sperlágh B. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study. Br J Pharmacol 2013; 167:1003-20. [PMID: 22394324 DOI: 10.1111/j.1476-5381.2012.01932.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K(+) concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K(+) , with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca(2+) -free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K(+) -evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels.
Collapse
Affiliation(s)
- A Heinrich
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary Femtonics Ltd, Budapest, Hungary
| | | | | | | | | |
Collapse
|
38
|
Cervetto C, Alloisio S, Frattaroli D, Mazzotta MC, Milanese M, Gavazzo P, Passalacqua M, Nobile M, Maura G, Marcoli M. The P2X7 receptor as a route for non-exocytotic glutamate release: dependence on the carboxyl tail. J Neurochem 2013; 124:821-31. [PMID: 23293841 DOI: 10.1111/jnc.12143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/24/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
P2X7 receptors trigger Ca(2+) -dependent exocytotic glutamate release, but also function as a route for non-exocytotic glutamate release from neurons or astrocytes. To gain an insight into the mechanisms involving the P2X7 receptor as a direct pathway for glutamate release, we compared the behavior of a full-length rat P2X7 receptor, a truncated rat P2X7 receptor in which the carboxyl tail had been deleted, a rat P2X7 receptor with the 18-amino acid cysteine-rich motif of the carboxyl tail deleted, and a rat P2X2 receptor, all of which are expressed in HEK293 cells. We found that the P2X7 receptor function as a route for glutamate release was antagonized in a non-competitive way by extracellular Mg(2+) , did not require the recruitment of pore-forming molecules, and was dependent on the carboxyl tail. Indeed, the truncated P2X7 receptor and the P2X7 receptor with the deleted cysteine-rich motif both lost their function as a pathway for glutamate release, while still evoking intracellular Ca(2+) elevation. No glutamate efflux was observed through the P2X2 receptor. Notably, HEK293 cells (lacking the machinery for Ca(2+) -dependent exocytosis), when transfected with P2X7 receptors, appear to be a suitable model for investigating the P2X7 receptor as a route for non-exocytotic glutamate efflux.
Collapse
|
39
|
The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. Int J Neuropsychopharmacol 2013; 16:213-33. [PMID: 22243662 PMCID: PMC3666310 DOI: 10.1017/s1461145711001933] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to explore how genetic deletion and pharmacological antagonism of the P2X7 receptor (P2rx7) alter mood-related behaviour, gene expression and stress reactivity in the brain. The forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperlocomotion (AH) tests were used in wild-type (P2rx7(+/+)) and P2rx7-deficient (P2rx7(-/-)) mice. Biogenic amine levels were analysed in the amygdala and striatum, adrenocorticotropic hormone (ACTH) and corticosterone levels were measured in the plasma and pituitary after restraint stress. Chimeric mice were generated by bone marrow transplantation. A whole genome microarray analysis with real-time polymerase chain reaction validation was performed on the amygdala. In the absence of P2rx7s decreased behavioural despair in the FST, reduced immobility in the TST and attenuated amphetamine-induced hyperactivity were detected. Basal norepinephrine levels were elevated in the amygdala, whereas stress-induced ACTH and corticosterone responses were alleviated in P2rx7(-/-) mice. Sub-acute treatment with the selective P2rx7 antagonist, Brilliant Blue G, reproduced the effect of genetic deletion in the TST and AH test in P2rx7(+/+) but not P2rx7(-/-) mice. No change in behavioural phenotype was observed in chimeras lacking the P2rx7 in their haematopoietic compartment. Whole genome microarray analysis indicated a widespread up- and down-regulation of genes crucial for synaptic function and neuroplasticity by genetic deletion. Here, we present evidence that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and suggest a therapeutic potential of P2rx7 antagonists for the treatment of mood disorders.
Collapse
|
40
|
Andó RD, Sperlágh B. The role of glutamate release mediated by extrasynaptic P2X7 receptors in animal models of neuropathic pain. Brain Res Bull 2012; 93:80-5. [PMID: 23047057 DOI: 10.1016/j.brainresbull.2012.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 12/12/2022]
Abstract
Purinergic signaling represents a major non-synaptic signaling mechanism in the normal and pathological nervous system. The expression of the purinergic ligand gated ion channel P2X7 receptor (P2rx7) has been described on nerve terminals as well as in non-neuronal cells, such as astrocytes and microglia. The activation of P2rx7s results in Ca(2+) influx and increased transmitter release in the brain. P2rx7s previously suggested having a pivotal role in different pain modalities, including neuropathic pain. Here we investigated whether the activation of P2rx7 leads to increased glutamate release from the spinal cord in an experimental model of neuropathic pain (partial nerve ligation of the sciatic nerve, PNL). One week after surgery, we studied the effects of PNL on tactile allodynia using aesthesiometry, in parallel with the in vitro release of [(3)H]glutamate from lumbar spinal cord slices. The observed allodynia in wild-type (P2rx7+/+) mice one week after PNL surgery was lower that was observed in P2rx7 deficient (P2rx7-/-) animals. Perfusion of spinal cord slices with ATP (10mM) elicited [(3)H]glutamate release in both sham operated and neuropathic P2rx7+/+ animals. The ATP-induced [(3)H]glutamate release was absent in P2rx7-/- mice. Electrically evoked release of [(3)H]glutamate from spinal cord slices was not significantly altered in PNL animals and in P2rx7-/- mice. The results suggest that activation of P2rx7 by ATP releases glutamate in the spinal cord, which might contribute to mechanical allodynia following PNL. On the other hand, this release does not contribute to glutamate efflux evoked by conventional neuronal activity, which is consistent with the idea that P2X7 receptors are either extrasynaptic or expressed on non-neuronal cells. This article is part of a Special Issue entitled 'Extrasynaptic ionotropic receptors'.
Collapse
Affiliation(s)
- Rómeó D Andó
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Szigony u. 43, Hungary
| | | |
Collapse
|
41
|
Ristić D, Ellrich J. P2X7 receptor blockade reverses purinergic facilitation of neck muscle nociception in mice. Cephalalgia 2012; 32:544-53. [PMID: 22529194 DOI: 10.1177/0333102412444013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Facilitation of neck muscle nociception mediated via purinergic signalling may play a role in the pathophysiology of tension-type headache (TTH). The present study addressed reversal of purinergic facilitation of brainstem nociception via P2X7 antagonist action in anaesthetized mice. METHODS Following administration of α,β-meATP (i.m. 20 µL/min, 20 µL each) into semispinal neck muscles, the impact of neck muscle nociceptive input on brainstem processing was monitored by the jaw-opening reflex in anaesthetized mice (n = 20). The hypothesized involvement of the P2X7 receptor in the α,β-meATP effect was addressed with i.p. (systemic) and i.m. (semispinalis, 20 µL/min, 20 µL each) administration of P2X7 inhibitor A438079 during established facilitation; i.p. saline served as control. RESULTS α,β-meATP reliably induced jaw-opening reflex facilitation (256 ± 48% (mean ± SEM), n = 20). I.p. A438079 (150, 300 µmol/kg) completely reversed this α,β-meATP effect dose-dependently. Neither saline nor intramuscular A438079 (100 µM) altered facilitated brainstem nociceptive processing. DISCUSSION These data suggest that muscular structures are not directly involved in the P2X7 antagonist-mediated reversal of purinergic facilitation. Instead, involvement of neuronal structures, particularly of the central nervous system, seems more probable. The results from this animal experimental model may point to involvement of purinergic P2X7 receptors in TTH pathophysiology and may suggest potential future targets for its pharmacological treatment.
Collapse
|
42
|
Cervetto C, Mazzotta MC, Frattaroli D, Alloisio S, Nobile M, Maura G, Marcoli M. Calmidazolium selectively inhibits exocytotic glutamate release evoked by P2X7 receptor activation. Neurochem Int 2012; 60:768-72. [PMID: 22417724 DOI: 10.1016/j.neuint.2012.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 11/18/2022]
Abstract
We previously observed that activation of presynaptic P2X7 receptors located on rat cerebrocortical nerve terminals induced the release of glutamate through different modes: the channel conformation allowing Ca(2+) entry triggered exocytotic release, while the receptor itself functioned as a permeation pathway for the non-exocytotic glutamate release. Considering that exocytotic and non-exocytotic glutamate release evoked by the activation of P2X7 receptors might play a role in the control of glutamatergic synapses, we investigated whether calmidazolium (which has been found to inhibit small cation currents through recombinant P2X7 receptors, but not organic molecule permeation) could distinguish between P2X7-related exocytotic and non-exocytotic modes of glutamate release. We found that calmidazolium inhibited the intrasynaptosomal Ca(2+) response to P2X7 receptor activation and the Ca(2+)-dependent exocytotic glutamate release from rat cerebrocortical nerve terminals, but was ineffective against the Ca(2+)-independent glutamate release. The P2X7 competitive antagonist A-438079 eliminated both exocytotic and non-exocytotic P2X7 receptor-evoked glutamate release. Selective inhibition of exocytotic glutamate release indicates that calmidazolium inhibits events dependent on the function of native rat P2X7 receptors as Ca(2+) channels, and suggests that it can be used as a tool to dissociate P2X7-evoked exocytotic from non-exocytotic glutamate release.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Hracskó Z, Baranyi M, Csölle C, Gölöncsér F, Madarász E, Kittel A, Sperlágh B. Lack of neuroprotection in the absence of P2X7 receptors in toxin-induced animal models of Parkinson's disease. Mol Neurodegener 2011; 6:28. [PMID: 21542899 PMCID: PMC3113297 DOI: 10.1186/1750-1326-6-28] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 05/04/2011] [Indexed: 01/06/2023] Open
Abstract
Background Previous studies indicate a role of P2X7 receptors in processes that lead to neuronal death. The main objective of our study was to examine whether genetic deletion or pharmacological blockade of P2X7 receptors influenced dopaminergic cell death in various models of Parkinson's disease (PD). Results mRNA encoding P2X7 and P2X4 receptors was up-regulated after treatment of PC12 cells with 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). P2X7 antagonists protected against MPTP and rotenone induced toxicity in the LDH assay, but failed to protect after rotenone treatment in the MTT assay in PC12 cells and in primary midbrain culture. In vivo MPTP and in vitro rotenone pretreatments increased the mRNA expression of P2X7 receptors in the striatum and substantia nigra of wild-type mice. Basal mRNA expression of P2X4 receptors was higher in P2X7 knockout mice and was further up-regulated by MPTP treatment. Genetic deletion or pharmacological inhibition of P2X7 receptors did not change survival rate or depletion of striatal endogenous dopamine (DA) content after in vivo MPTP or in vitro rotenone treatment. However, depletion of norepinephrine was significant after MPTP treatment only in P2X7 knockout mice. The basal ATP content was higher in the substantia nigra of wild-type mice, but the ADP level was lower. Rotenone treatment elicited a similar reduction in ATP content in the substantia nigra of both genotypes, whereas reduction of ATP was more pronounced after rotenone treatment in striatal slices of P2X7 deficient mice. Although the endogenous amino acid content remained unchanged, the level of the endocannabinoid, 2-AG, was elevated by rotenone in the striatum of wild-type mice, an effect that was absent in mice deficient in P2X7 receptors. Conclusions We conclude that P2X7 receptor deficiency or inhibition does not support the survival of dopaminergic neurons in an in vivo or in vitro models of PD.
Collapse
Affiliation(s)
- Zsuzsanna Hracskó
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Szigony u, 43, Hungary.
| | | | | | | | | | | | | |
Collapse
|
44
|
Fischer W, Nörenberg W, Franke H, Schaefer M, Illes P. Increase of intracellular Ca2+ by P2Y but not P2X receptors in cultured cortical multipolar neurons of the rat. J Comp Neurol 2009; 516:343-59. [PMID: 19655384 DOI: 10.1002/cne.22079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The expression and functionality of P2X/P2Y receptor subtypes in multipolar nonpyramidal neurons of mixed cortical cell cultures were investigated by means of immunocytochemistry and fura-2 microfluorimetry. The morphological studies revealed that most of the neurons are immunoreactive for GABA and express a range of P2X/P2Y receptors, predominantly of the P2X(2,4,6) and P2Y(1,2) subtypes. P2X(1) and P2X(7) receptor immunoreactivity (IR) was found on thin axon-like processes and presynaptic structures, respectively. Application of ATP caused a small concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in most investigated neurons, whereas only about the half of these cells responded to 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP), ADPbetaS, 2MeSADP, or 2MeSATP and even fewer cells to UTP. In contrast, alpha,beta-meATP, UDP, and UDP-glucose failed to produce any [Ca2+]i signaling. The response to ATP itself was inhibited by pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Reactive Blue 2, 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179), and suramin (300 microM) as well as by a cyclopiazonic acid-induced depletion of intracellular Ca2+ stores. A Ca2+-free external medium tended to decrease the ATP-induced [Ca2+]i transients, although this action did not reach statistical significance. Various blockers of voltage-sensitive Ca2+ channels and the gap junction inhibitor carbenoxolone did not interfere with the effect of ATP, whereas a combination of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased it. Cross-desensitization experiments between ADPbetaS or UTP and ATP suggested that ATP acts on the one hand via P2Y(1,2) receptors and on the other hand by additional signaling mechanisms. These mechanisms may involve the release of glutamate (which in consequence activates ionotropic glutamate receptors) and the entry of Ca2+ via store-operated Ca2+ channels. Evidence for the presence of functional P2X receptors, in particular P2X(7), remains elusive.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, Leipzig D-04107, Germany.
| | | | | | | | | |
Collapse
|
45
|
P2X7 regenerative-loop potentiation of glutamate synaptic transmission by microglia and astrocytes. J Theor Biol 2009; 261:1-16. [PMID: 19643112 DOI: 10.1016/j.jtbi.2009.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 06/03/2009] [Accepted: 07/20/2009] [Indexed: 11/24/2022]
Abstract
P2X7 purinergic receptors have been implicated in chronic neuropathic and neuroinflammatory pain as well as in depression. These receptors are predominantly found in the central nervous system on microglial cells and on glutamatergic nerve terminals. Here, we develop hypotheses concerning mechanisms by which transient high-frequency impulse firing in glutamatergic terminals, such as occurs in nociceptor terminals accompanying neuropathic/neuroinflammatory pain, can lead to long-lasting changes in neural network function that is mediated by surrounding glial cells. The hypothesis consists of two parts. In the first, glutamate released by low-frequency (2Hz) terminal action potentials is insufficient to generate postsynaptic action potentials, but these are generated by brief high-frequency input bursts. Glutamate released by these bursts is partly removed by transporters on the enveloping astrocyte processes and also excites AMPA receptors on these processes, which then release ATP. This ATP is partly metabolised to adenosine, which acts on presynaptic A1 receptors to inhibit glutamate release. The remaining ATP acts on the presynaptic P2X7 receptors to facilitate glutamate release by both the high-frequency burst of action potentials as well as by a continuous low-frequency (2Hz) action potential firing that occurs in the absence of a neuropathic/neuroinflammatory insult. The positive feedback of terminal glutamate release, triggering astrocyte ATP release and leading to further glutamate release through activation of P2X7 receptors, is then sufficient to allow the normal low-frequency (2Hz) action potentials to now elicit postsynaptic action potentials after the insult is removed. In the second part of this model, the high concentration of ATP derived from astrocytes at the terminal attracts microglia by chemotaxis. The P2X7 receptors on these microglia are then engaged, resulting in microglia secreting the cytokine TNFalpha. This acts on postsynaptic TNF-R1 receptors to increase the number of AMPA receptors there, thus enhancing the efficacy of synaptic transmission. The TNFalpha also acts on presynaptic TNF-R1 to increase the amount of glutamate released by each nerve terminal impulse. Experimental tests can be made of this hypothesis that P2X7 receptors on the presynaptic terminal and those on the microglia synergistically act to ensure feedback pathways that reset to a high level the efficacy of synaptic transmission, thus ensuring chronic neuropathic/neuroinflammatory pain even when the initial insult has subsided.
Collapse
|