1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Hamamura K, Nagao M, Furukawa K. Regulation of Glycosylation in Bone Metabolism. Int J Mol Sci 2024; 25:3568. [PMID: 38612379 PMCID: PMC11011486 DOI: 10.3390/ijms25073568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Glycosylation plays a crucial role in the maintenance of homeostasis in the body and at the onset of diseases such as inflammation, neurodegeneration, infection, diabetes, and cancer. It is also involved in bone metabolism. N- and O-glycans have been shown to regulate osteoblast and osteoclast differentiation. We recently demonstrated that ganglio-series and globo-series glycosphingolipids were essential for regulating the proliferation and differentiation of osteoblasts and osteoclasts in glycosyltransferase-knockout mice. Herein, we reviewed the importance of the regulation of bone metabolism by glycoconjugates, such as glycolipids and glycoproteins, including our recent results.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Mayu Nagao
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Aichi, Japan
| |
Collapse
|
3
|
Kato H, Nagao M, Furukawa K, Mishima Y, Ichikawa S, Sato T, Miyazawa K, Hamamura K. Globo-series Gb4 activates ERK and promotes the proliferation of osteoblasts. J Oral Biosci 2024; 66:41-48. [PMID: 37939880 DOI: 10.1016/j.job.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVES Globo-series Gb4 (globoside) is involved in the immune system and disease pathogenesis. We recently reported that systemic Gb4 deficiency in mice led to decreased bone formation due to a reduction in osteoblast number. However, it remains unclear whether Gb4 expressed in osteoblasts promotes their proliferation. Therefore, we investigated the role of Gb4 in osteoblast proliferation in vitro. METHODS We examined osteoblast proliferation in Gb3 synthase knockout mice lacking Gb4. We investigated the effects of Gb4 synthase knockdown in the mouse osteoblast cell line MC3T3-E1 on its proliferation. Furthermore, we administered Gb4 to MC3T3-E1 cells in which Gb4 was suppressed by a glucosylceramide synthase (GCS) inhibitor and evaluated its effects on their proliferation. To elucidate the mechanisms by which Gb4 promotes osteoblast proliferation, the phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2) levels were measured in MC3T3-E1 cells. RESULTS Osteoblast proliferation was lower in Gb3 synthase knockout mice lacking Gb4 than in wild-type mice. Proliferation was inhibited by Gb4 synthase knockdown in MC3T3-E1 cells. Furthermore, the administration of Gb4 to MC3T3-E1 cells, in which a GCS inhibitor suppressed Gb4, promoted their proliferation. Moreover, it increased the phosphorylated ERK1/2 levels in MC3T3-E1 cells. CONCLUSIONS Our results suggest that Gb4 expressed in osteoblasts promotes their proliferation through ERK1/2 activation.
Collapse
Affiliation(s)
- Hanami Kato
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mayu Nagao
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Yoshitaka Mishima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Shota Ichikawa
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
4
|
Küffer S, Müller D, Marx A, Ströbel P. Non-Mutational Key Features in the Biology of Thymomas. Cancers (Basel) 2024; 16:942. [PMID: 38473304 DOI: 10.3390/cancers16050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Thymomas (THs) are a unique group of heterogeneous tumors of the thymic epithelium. In particular, the subtypes B2 and B3 tend to be aggressive and metastatic. Radical tumor resection remains the only curative option for localized tumors, while more advanced THs require multimodal treatment. Deep sequencing analyses have failed to identify known oncogenic driver mutations in TH, with the notable exception of the GTF2I mutation, which occurs predominantly in type A and AB THs. However, there are multiple alternative non-mutational mechanisms (e.g., perturbed thymic developmental programs, metabolism, non-coding RNA networks) that control cellular behavior and tumorigenesis through the deregulation of critical molecular pathways. Here, we attempted to show how the results of studies investigating such alternative mechanisms could be integrated into a current model of TH biology. This model could be used to focus ongoing research and therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Lin Y, Wang J, Liu X, Hu Y, Zhang Y, Jiang F. Synthesis, biological activity evaluation and mechanism analysis of new ganglioside GM3 derivatives as potential agents for nervous functional recovery. Eur J Med Chem 2024; 266:116108. [PMID: 38218125 DOI: 10.1016/j.ejmech.2023.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neuronal regenerative ability is vital for the treatment of neurodegenerative diseases and neuronal injuries. Recent studies have revealed that Ganglioside GM3 and its derivatives may possess potential neuroprotective and neurite growth-promoting activities. Herein, six GM3 derivatives were synthesized and evaluated their potential neuroprotective effects and neurite outgrowth-promoting activities on a cellular model of Parkinson's disease and primary nerve cells. Amongst these derivatives, derivatives N-14 and 2C-12 demonstrated neuroprotective effects in the MPP + model in SH-SY5Y cells. 2C-12 combined with NGF (nerve growth factor) induced effecially neurite growth in primary nerve cells. Further action mechanism revealed that derivative 2C-12 exerts neuroprotective effects by regulating the Wnt signaling pathway, specifically involving the Wnt7b gene. Overall, this study establishes a foundation for further exploration and development of GM3 derivatives with neurotherapeutic potential.
Collapse
Affiliation(s)
- Yingjun Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangwen Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yangfan Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Zhang X, Zeng B, Zhu H, Ma R, Yuan P, Chen Z, Su C, Liu Z, Yao X, Lawrence A, Liu Z, Zou J. Role of glycosphingolipid biosynthesis coregulators in malignant progression of thymoma. Int J Biol Sci 2023; 19:4442-4456. [PMID: 37781041 PMCID: PMC10535712 DOI: 10.7150/ijbs.83468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
As the most common malignancy from mediastinum, the metabolic reprogramming of thymoma is important in its development. Nevertheless, the connection between the metabolic map and thymoma development is yet to be discovered. Thymoma was categorized into three subcategories by unsupervised clustering of molecular markers for metabolic pathway presentation in the TCGA dataset. Different genes and functions enriched were demonstrated through the utilization of metabolic Gene Ontology (GO) analysis. To identify the main contributors in the development of thymic malignancy, we utilized Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The prognosis of thymoma was evaluated by screening the essential pathways and genes using GSVA scores and machine learning classifiers. Furthermore, we integrated the transcriptomics findings with spectrum metabolomics investigation, detected through LC-MS/MS, in order to establish the essential controller network of metabolic reprogramming during thymoma progression. The thymoma prognosis is related to glycosphingolipid biosynthesis-lacto and neolacto series pathway, of what high B3GNT5 indicate poor survival. The investigation revealed that glycosphingolipid charts have a significant impact on metabolic dysfunction and could potentially serve as crucial targets in the clinical advancement of metabolic therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo Zeng
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haoshuai Zhu
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui Ma
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhenguang Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chunhua Su
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhihao Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaojing Yao
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Aurora Lawrence
- School of Medicine, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Zhenguo Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianyong Zou
- Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
7
|
Das T, Mukhopadhyay C. Comparison and Possible Binding Orientations of SARS-CoV-2 Spike N-Terminal Domain for Gangliosides GM3 and GM1. J Phys Chem B 2023; 127:6940-6948. [PMID: 37523476 DOI: 10.1021/acs.jpcb.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
SARS-CoV-2 spike glycoprotein is anchored by gangliosides. The sialic acid in the ganglioside headgroup is responsible for virus attachment and entry into host cells. We used coarse-grained (CG) molecular dynamics simulations to expand on our previous study of GM1 interaction with two different orientations of the SARS-CoV-2 S1 subunit N-terminal domain (NTD) and to confirm the role of sialic acid receptors in driving the viral receptor; GM3 was used as another ganglioside on the membrane. Because of the smaller headgroup, sialic acid is crucial in GM3 interactions, whereas GM1 interacts with NTD via both the sialic acid and external galactose. In line with our previous findings for NTD orientations in GM1 binding, we identified two orientations, "compact" and "distributed", comprising sugar receptor-interacting residues in GM3-embedded lipid bilayers. Gangliosides in closer proximity to the compact NTD orientation might cause relatively greater restrictions to penetrate the bilayer. However, the attachment of a distributed NTD orientation with more negative interaction energies appears to facilitate GM1/GM3 to move quickly across the membrane. Our findings likely shed some light on the orientations that the NTD receptor acquires during the early phases of interaction with GM1 and GM3 in a membrane environment.
Collapse
Affiliation(s)
- Tanushree Das
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Chaitali Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
8
|
Miao X, Luo Q, Zhao H, Qin X. Comparison of alternative splicing (AS) events in adipose tissue of polled dorset versus small tail han sheep. Heliyon 2023; 9:e14938. [PMID: 37095997 PMCID: PMC10121611 DOI: 10.1016/j.heliyon.2023.e14938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Background During the alternative splicing (AS), the exons of primary transcripts are spliced in various arrangements, resulting in structurally and functionally distinct mRNAs and proteins. This study aimed to examine genes with AS events from Small Tail Han sheep and Dorset sheep to explore the mechanism of adipose developments. Methods This study identified the genes with AS events in adipose tissues of two different sheep with next-generation sequencing. In this paper, genes with significantly different AS events were performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Results 364 genes with 411 A S events showed significant differences in adipose tissues between the two breeds; 108 genes with 120 A S events were extremely significant differences between the two breeds. We identified several novel genes that are related with adipose growth and development. The results of KEGG and GO analysis indicated that oocyte meiosis, mitogen-activated protein kinase (Wnt), mitogen-activated protein kinase (MAPK) signaling pathway, etc. Were closely related to the adipose tissue developments. Conclusions This paper revealed that the genes with AS events are important for adipose tissues in sheep, exploring the mechanisms of AS events associated with adipose tissue developments in sheep of different breeds.
Collapse
|
9
|
Vasques J, de Jesus Gonçalves R, da Silva-Junior A, Martins R, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res 2023. [PMID: 35799513 PMCID: PMC9241395 DOI: 10.4103/1673-5374.343890] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Attenuation of Bone Formation through a Decrease in Osteoblasts in Mutant Mice Lacking the GM2/GD2 Synthase Gene. Int J Mol Sci 2022; 23:ijms23169044. [PMID: 36012308 PMCID: PMC9409452 DOI: 10.3390/ijms23169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The ganglioside GD1a has been reported to promote the differentiation of mesenchymal stem cells to osteoblasts in cell culture systems. However, the involvement of gangliosides, including GD1a, in bone formation in vivo remains unknown; therefore, we herein investigated their roles in GM2/GD2 synthase-knockout (GM2/GD2S KO) mice without GD1a. The femoral cancellous bone mass was analyzed using three-dimensional micro-computed tomography. A histomorphometric analysis of bone using hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase was performed to examine bone formation and resorption, respectively. Calcein double labeling was also conducted to evaluate bone formation. Although no significant differences were observed in bone mass or resorption between GM2/GD2S KO mice and wild-type (WT) mice, analyses of the parameters of bone formation using HE staining and calcein double labeling revealed less bone formation in GM2/GD2S KO mice than in WT mice. These results suggest that gangliosides play roles in bone formation.
Collapse
|
11
|
Miyagi T, Yamamoto K. Review sialidase NEU3 and its pathological significance. Glycoconj J 2022; 39:677-683. [PMID: 35675020 DOI: 10.1007/s10719-022-10067-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
Sialidases (EC 3.2.1.18, also called neuraminidases) catalyze the removal of α-glycosidically linked sialic acid residues from glycoproteins and glycolipids; this is the initial step in the degradation of these glycoconjugates. Sialidases of mammalian origin have been implicated in not only lysosomal catabolism but also the modulation of functional molecules involved in many biological processes. To date, four types of mammalian sialidases have been cloned and designated as Neu1, Neu2, Neu3 and Neu4. These sialidases differ in their subcellular localization and enzymatic properties, as well as their chromosomal localization, and they are expressed in a tissue-specific manner. Among the sialidases, the plasma membrane-associated sialidase Neu3 appears to play particular roles in controlling transmembrane signaling through the modulation of gangliosides, and its aberrant expression is closely related to various pathogeneses, including that of cancer. Interestingly, the human orthologue NEU3 acts in two ways, catalytic hydrolysis of gangliosides and protein interactions with other signaling molecules. Aberrant NEU3 expression can induce various pathological conditions. This review briefly summarizes recent studies, focusing on the involvement of NEU3 in various pathological phenomena.
Collapse
Affiliation(s)
- Taeko Miyagi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan.
| | - Koji Yamamoto
- Faculty of Health and Medical Care, Saitama Medical University, Moroyama, Saitama, Japan
| |
Collapse
|
12
|
Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14102380. [PMID: 35625985 PMCID: PMC9140186 DOI: 10.3390/cancers14102380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Endocrine therapy (ET) resistance is a major problem in estrogen receptor-positive breast cancer patients. Since there have been few lipidomic studies in ET resistance and sphingolipids are heavily implicated in multidrug-resistant and chemotherapy-resistant cancers, we aimed to investigate the sphingolipidome of tamoxifen-resistant breast cancer cells in search of a unique sphingolipid profile that can potentially be exploited therapeutically. We found that ET-resistant breast cancer cells maintain a lower level of ceramides for their survival. In order to achieve this, they are dependent on ceramide kinase (CERK), the activity of which helps maintain low endogenous ceramide levels, therefore promoting tamoxifen-resistant cell survival. Targeting CERK can therefore represent an opportunity to target therapy-resistant breast tumors and improve the patient outcome for women with ET-resistant disease. Abstract ET resistance is a critical problem for estrogen receptor-positive (ER+) breast cancer. In this study, we have investigated how alterations in sphingolipids promote cell survival in ET-resistant breast cancer. We have performed LC-MS-based targeted sphingolipidomics of tamoxifen-sensitive and -resistant MCF-7 breast cancer cell lines. Follow-up studies included treatments of cell lines and patient-derived xenograft organoids (PDxO) with small molecule inhibitors; cytometric analyses to measure cell death, proliferation, and apoptosis; siRNA-mediated knockdown; RT-qPCR and Western blot for gene and protein expression; targeted lipid analysis; and lipid addback experiments. We found that tamoxifen-resistant cells have lower levels of ceramides and hexosylceramides compared to their tamoxifen-sensitive counterpart. Upon perturbing the sphingolipid pathway with small molecule inhibitors of key enzymes, we identified that CERK is essential for tamoxifen-resistant breast cancer cell survival, as well as a fulvestrant-resistant PDxO. CERK inhibition induces ceramide-mediated cell death in tamoxifen-resistant cells. Ceramide-1-phosphate (C1P) partially reverses CERK inhibition-induced cell death in tamoxifen-resistant cells, likely through lowering endogenous ceramide levels. Our findings suggest that ET-resistant breast cancer cells maintain lower ceramide levels as an essential pro-survival mechanism. Consequently, ET-resistant breast cancer models have a unique dependence on CERK as its activity can inhibit de novo ceramide production.
Collapse
|
13
|
Furukawa K, Ohmi Y, Hamamura K, Kondo Y, Ohkawa Y, Kaneko K, Hashimoto N, Yesmin F, Bhuiyan RH, Tajima O, Furukawa K. Signaling domains of cancer-associated glycolipids. Glycoconj J 2022; 39:145-155. [PMID: 35315508 DOI: 10.1007/s10719-022-10051-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
Abstract
Immunotherapy of malignant cancers is now becoming one of representative approaches to overcome cancers. To construct strategies for immunotherapy, presence of tumor-specific antigens should be a major promise. A number of cancer specific- or cancer-associated antigens have been reported based on various experimental sets and various animal systems. The most reasonable strategy to define tumor-specific antigens might be "autologous typing" performed by Old's group, proposing three classes of tumor-antigens recognized by host immune systems of cancer patients. Namely, class 1, individual antigens that is present only in the patient's sample analyzed; class 2, shared antigens that can be found only in some group of cancers in some patients, but not in normal cells and tissues; class 3, universal antigens that are present in some cancers but also in normal cells and tissues with different densities. Sen Hakomori reported there were novel carbohydrates in cancers that could not be detected in normal cells mainly by biochemical approaches. Consequently, many of class 2 cancer-specific antigens have been revealed to be carbohydrate antigens, and been used for cancer diagnosis and treatment. Not only as cancer markers, but roles of those cancer-associated carbohydrates have also been recognized as functional molecules in cancer cells. In particular, roles of complex carbohydrates in the regulation of cell signaling on the cell surface microdomains, glycolipid-enriched microdomain (GEM)/rafts have been reported by Hakomori and many other researchers including us. The processes and present status of these studies on cancer-associated glycolipids were summarized.
Collapse
Affiliation(s)
- Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan. .,Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, Aichi Gakuin University School of Dentistry, Nisshin, Japan
| | - Yuji Kondo
- Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Institute, Osaka, Japan
| | - Kei Kaneko
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Noboru Hashimoto
- Department of Tissue Regeneration, Tokushima University Graduate School Institute of Biomedical Sciences, Tokushima, Japan
| | - Farhana Yesmin
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|
14
|
Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj J 2022; 39:177-195. [PMID: 35267131 DOI: 10.1007/s10719-021-10032-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Expression profiles of glycosphingolipids (GSLs) in human embryonic stem cell (hESC) lines and their differentiated embryoid body (EB) outgrowth cells, consisting of three germ layers, were surveyed systematically. Several globo- and lacto-series GSLs were identified in undifferentiated hESCs and during differentiation of hESCs to EB outgrowth cells, and core structure switching of these GSLs to gangliosides was observed. Such switching was attributable to altered expression of key glycosyltransferases (GTs) in GSL biosynthetic pathways, reflecting the unique stage-specific transitions and mechanisms characteristic of the differentiation process. Lineage-specific differentiation of hESCs was associated with further GSL alterations. During differentiation of undifferentiated hESCs to neural progenitor cells, core structure switching from globo- and lacto-series to primarily gangliosides (particularly GD3) was again observed. During differentiation to endodermal cells, alterations of GSL profiles were distinct from those in differentiation to EB outgrowth or neural progenitor cells, with high expression of Gb4Cer and low expression of stage-specific embryonic antigen (SSEA)-3, -4, or GD3 in endodermal cells. Again, such profile changes resulted from alterations of key GTs in GSL biosynthetic pathways. Novel glycan structures identified on hESCs and their differentiated counterparts presumably play functional roles in hESCs and related cancer or cancer stem cells, and will be useful as surface biomarkers. We also examined GSL expression profiles in breast cancer stem cells (CSCs), using a model of epithelial-mesenchymal transition (EMT)-induced human breast CSCs. We found that GD2 and GD3, together with their common upstream GTs, GD3 synthase (GD3S) and GD2/GM2 synthase, maintained stem cell phenotype in breast CSCs. Subsequent studies showed that GD3 was associated with epidermal growth factor receptor (EGFR), and activated EGFR signaling in breast CSCs and breast cancer cell lines. GD3S knockdown enhanced cytotoxicity of gefitinib (an EGFR kinase inhibitor) in resistant MDA-MB468 cells, both in vitro and in vivo. Our findings indicate that GD3S contributes to gefitinib resistance in EGFR-positive breast cancer cells, and is a potentially useful therapeutic target in drug-resistant breast cancers.
Collapse
|
15
|
He X, Guan F, Lei L. Structure and function of glycosphingolipids on small extracellular vesicles. Glycoconj J 2022; 39:197-205. [PMID: 35201531 PMCID: PMC8866925 DOI: 10.1007/s10719-022-10052-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delineated particles secreted by most types of cells under both normal and pathophysiological conditions. EVs are believed to mediate intercellular communication by serving as carriers of different bioactive ingredients, including proteins, nucleic acids and lipids. Glycoconjugates are complex molecules consisting of covalently linked carbohydrate with proteins or lipids. These glycoconjugates play essential roles in the sorting of vesicular protein and the uptake of small extracellular vesicles (30–100 nm, sEVs) into recipient cells. Glycosphingolipids (GSLs), one subtype of glycolipids, which are ubiquitous membrane components in almost all living organisms, are also commonly distributed on sEVs. However, the study of functional roles of GSLs on sEVs are far behind than other functional cargos. The purpose of this review is to highlight the importance of GSLs on sEVs. Initially, we described classification and structure of GSLs. Then, we briefly introduced the essential functions of GSLs, which are able to interact with functional membrane proteins, such as growth factor receptors, integrins and tetraspanins, to modulate cell growth, adhesion and cell motility. In addition, we discussed analytical methods for studying GSLs on sEVs. Finally, we focused on the function of GSLs on sEVs, including regulating the aggregation of extracellular α-synuclein (α-syn) or extracellular amyloid-β (Aβ) and influencing tumor cell malignancy.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
16
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
17
|
Ali AH, Wei W, Wang X. A review of milk gangliosides: Occurrence, biosynthesis, identification, and nutritional and functional significance. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
18
|
Fabris D, Karmelić I, Muharemović H, Sajko T, Jurilj M, Potočki S, Novak R, Vukelić Ž. Ganglioside Composition Distinguishes Anaplastic Ganglioglioma Tumor Tissue from Peritumoral Brain Tissue: Complementary Mass Spectrometry and Thin-Layer Chromatography Evidence. Int J Mol Sci 2021; 22:ijms22168844. [PMID: 34445547 PMCID: PMC8396361 DOI: 10.3390/ijms22168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/23/2022] Open
Abstract
Gangliosides serve as antitumor therapy targets and aberrations in their composition strongly correlate with tumor growth and invasiveness. Anaplastic ganglioglioma is a rare, poorly characterized, malignant neuronal–glial tumor type. We present the first comparative characterization of ganglioside composition in anaplastic ganglioglioma vs. peritumoral and healthy brain tissues by combining mass spectrometry and thin-layer chromatography. Anaplastic ganglioglioma ganglioside composition was highly distinguishable from both peritumoral and healthy tissue despite having five to six times lower total content. Ten out of twelve MS-identified ganglioside classes, defined by unique glycan residues, were represented by a large number and considerable abundance of individual species with different fatty acid residues (C16–C24) in ceramide portions. The major structurally identified class was tumor-associated GD3 (>50%) with 11 species; GD3 (d18:1/24:0) being the most abundant. The dominant sphingoid base residue in ganglioside ceramides was sphingosine (d18:1), followed by eicosasphingosine (d20:1). The peritumoral tissue ganglioside composition was estimated as normal. Specific ganglioside composition and large variability of ganglioside ceramide structures determined in anaplastic ganglioglioma demonstrate realistic ganglioside expression patterns and correspond to the profile of high-grade malignancy brain tumors.
Collapse
Affiliation(s)
- Dragana Fabris
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
- Correspondence: (D.F.); (Ž.V.)
| | - Ivana Karmelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
| | - Hasan Muharemović
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Tomislav Sajko
- Department of Neurosurgery, University Hospital Center “Sestre Milosrdnice”, Vinogradska cesta 29, 10000 Zagreb, Croatia; (T.S.); (M.J.)
| | - Mia Jurilj
- Department of Neurosurgery, University Hospital Center “Sestre Milosrdnice”, Vinogradska cesta 29, 10000 Zagreb, Croatia; (T.S.); (M.J.)
| | - Slavica Potočki
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
| | - Ruđer Novak
- Department for Protemics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia;
| | - Željka Vukelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
- Correspondence: (D.F.); (Ž.V.)
| |
Collapse
|
19
|
Differential Regulation of Lacto-/Neolacto- Glycosphingolipid Biosynthesis Pathway Reveals Transcription Factors as Potential Candidates in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13133330. [PMID: 34283051 PMCID: PMC8268693 DOI: 10.3390/cancers13133330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer with limited treatment options. Glycosylation has been implicated in cancer development, but TNBC-specific glycosylation pathways have not been examined. Here, we applied bioinformatic analyses on public datasets to discover TNBC-specific glycogenes and pathways, as well as their upstream regulatory mechanisms. Unsupervised clustering of 345 glycogene expressions in breast cancer datasets revealed a relative homogenous expression pattern in basal-like TNBC subtype. Differential expression analyses of the 345 glycogenes between basal-like TNBC (hereafter termed TNBC) and other BC subtypes, or normal controls, revealed 84 differential glycogenes in TNBC. Pathway enrichment showed two common TNBC-enriched pathways across all three datasets, cell cycle and lacto-/neolacto- glycosphingolipid (GSL) biosynthesis, while a total of four glycosylation-related pathways were significantly enriched in TNBC. We applied a selection criterion of the top 50% differential anabolic/catabolic glycogenes in the enriched pathways to define 34 TNBC-specific glycogenes. The lacto-/neolacto- GSL biosynthesis pathway was the most highly enriched, with seven glycogenes all up-regulated in TNBC. This data led us to investigate the hypothesis that a common upstream mechanism in TNBC up-regulates the lacto-/neolacto-GSL biosynthesis pathway. Using public multi-omic datasets, we excluded the involvement of copy-number alteration and DNA methylation, but identified three transcription factors (AR, GATA3 and ZNG622) that each target three candidate genes in the lacto-/neolacto- GSL biosynthesis pathway. Interestingly, a subset of TNBC has been reported to express AR and GATA3, and AR antagonists are being trialed for TNBC. Our findings suggest that AR and GATA3 may contribute to TNBC via GSL regulation, and provide a list of candidate glycogenes for further investigation.
Collapse
|
20
|
Nakano M, Hanashima S, Hara T, Kabayama K, Asahina Y, Hojo H, Komura N, Ando H, Nyholm TKM, Slotte JP, Murata M. FRET detects lateral interaction between transmembrane domain of EGF receptor and ganglioside GM3 in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183623. [PMID: 33933428 DOI: 10.1016/j.bbamem.2021.183623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Ganglioside GM3 in the plasma membranes suppresses cell growth by preventing the autophosphorylation of the epidermal growth factor receptor (EGFR). Biological studies have suggested that GM3 interacts with the transmembrane segment of EGFR. Further biophysical experiments are particularly important for quantitative evaluation of the peptide-glycolipid interplay in bilayer membranes using a simple reconstituted system. To examine these interactions in this way, we synthesized the transmembrane segment of EGFR bearing a nitrobenzoxadiazole fluorophore (NBD-TM) at the N-terminus. The affinity between EGFR and GM3 was evaluated based on Förster resonance energy transfer (FRET) between NBD-TM and ATTO594-labeled GM3 in bilayers where their non-specific interaction due to lateral proximity was subtracted by using NBD-labeled phospholipid. This method for selectively detecting the specific lipid-peptide interactions in model lipid bilayers disclosed that the lateral interaction between GM3 and the transmembrane segment of EGFR plays a certain role in disturbing the formation of active EGFR dimers.
Collapse
Affiliation(s)
- Mikito Nakano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Toshiaki Hara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Asahina
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| |
Collapse
|
21
|
Jiang T, Wu H, Lin M, Yin J, Tan L, Ruan Y, Feng M. B4GALNT1 promotes progression and metastasis in lung adenocarcinoma through JNK/c-Jun/Slug pathway. Carcinogenesis 2020; 42:621-630. [PMID: 33367717 DOI: 10.1093/carcin/bgaa141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common types of cancer and has a low survival rate. β-1,4-N-Acetyl galactosaminyltransferase 1 (B4GALNT1), which is involved in the synthesis of complex gangliosides, is highly expressed in the progression of various cancers. This study aimed to elucidate the biological functions of B4GALNT1 in LUAD progression and metastasis. We observed that B4GALNT1 overexpression showed enhanced cell migration and invasion in vitro, and promoted tumor metastasis, with reduced survival in mice. Mechanistically, B4GALNT1 regulated metastatic potential of LUAD through activating the JNK/c-Jun/Slug pathway, and with the form of its enzymatic activity. Clinical samples confirmed that B4GALNT1 expression was upregulated in LUAD, and B4GALNT1 was correlated with c-Jun/Slug expression, lymph node involvement, advanced clinical stage, and reduced overall survival. Collectively, our results suggest that B4GALNT1 promotes progression and metastasis of LUAD through activating JNK/c-Jun/Slug signaling, and with the form of its enzymatic activity.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Hao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Clinical Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| |
Collapse
|
22
|
Jeong HY, Park S, Kim H, Moon S, Lee S, Lee SH, Kim S. B3GNT5 is a novel marker correlated with stem-like phenotype and poor clinical outcome in human gliomas. CNS Neurosci Ther 2020; 26:1147-1154. [PMID: 32677340 PMCID: PMC7564194 DOI: 10.1111/cns.13439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Glioblastoma multiforme (GBM) is the most lethal tumor with a median patient survival of 14 to 15 months. Glioma stem cells (GSCs) play a critical role in tumor initiation and therapeutic resistance in GBM. B3GNT5 has been suggested as the key glycosyltransferase in the biosynthesis of the (neo-) lacto series of glycosphingolipid. In this study, we evaluated the B3GNT5 expression in GSCs as well as the correlation with clinical data in GBM. METHODS The mRNA levels of B3GNT5 in normal astrocytes, four glioma cell lines, and four GSCs were evaluated using real-time PCR. Small interference RNAs (siRNAs) were used to inhibit B3GNT5 expression and analyze its ability to form neurospheres. Statistical analyses were conducted to determine the association with B3GNT5 expression and tumor grade and GBM subtypes as well as patient survival using public datasets. RESULTS B3GNT5 expression was significantly elevated in GSCs compared with normal astrocytes, glioma cell lines, and their matched differentiated tumor cells. Knockdown of B3GNT5 in GSCs decreased the neurosphere formation. Patients with high B3GNT5 expression had a short overall survival. B3GNT5 is correlated with classical and mesenchymal GBM subtypes. CONCLUSION The findings suggest the central role of B3GNT5 in regulating malignancy of GBM.
Collapse
Affiliation(s)
- Hang Yeon Jeong
- Department of Animal ScienceCollege of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Seo‐Young Park
- Department of Animal ScienceCollege of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Hyun‐Jin Kim
- Department of Animal ScienceCollege of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Seungju Moon
- Department of Animal ScienceCollege of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Seongsoo Lee
- Gwangju CenterKorea Basic Science InstituteGwangjuKorea
| | - Seung Ho Lee
- Department of Nano‐BioengineeringIncheon National UniversityIncheonKorea
| | - Sung‐Hak Kim
- Department of Animal ScienceCollege of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
- Gwangju CenterKorea Basic Science InstituteGwangjuKorea
| |
Collapse
|
23
|
B3GALT5 knockout alters gycosphingolipid profile and facilitates transition to human naïve pluripotency. Proc Natl Acad Sci U S A 2020; 117:27435-27444. [PMID: 33087559 PMCID: PMC7959494 DOI: 10.1073/pnas.2003155117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
These studies provide systematically characterized glycosphingolipid (GSL) profiles and expression level of glycosyltransferase upon the conversion of human ESCs from primed to naïve state. We identify a switch of GSL profile from globo- and lacto-series to neolacto-series GSLs, accompanied by the downregulation of β-1,3-galactosyltransferase (B3GALT5) during the pluripotency transition. The CRISPR/Cas9-generated B3GALT5 knockout increases the level of intracellular Ca2+, resulting in an intermediate state of pluripotency, which facilitates the primed- to naïve-state transition in human ESCs. In addition, the altered GSL could be rescued through overexpression of B3GALT5. Thus, our results provide a new perspective in the understanding of human pluripotency transition from primed to naïve state, which can be facilitated by changing the expression of single glycosyltransferase, B3GALT5. Conversion of human pluripotent stem cells from primed to naïve state is accompanied by altered transcriptome and methylome, but glycosphingolipid (GSL) profiles in naïve human embryonic stem cells (hESCs) have not been systematically characterized. Here we showed a switch from globo-(SSEA-3, SSEA-4, and Globo H) and lacto-series (fucosyl-Lc4Cer) to neolacto-series GSLs (SSEA-1 and H type 2 antigen), along with marked down-regulation of β-1,3-galactosyltransferase (B3GALT5) upon conversion to naïve state. CRISPR/Cas9-generated B3GALT5-knockout (KO) hESCs displayed an altered GSL profile, increased cloning efficiency and intracellular Ca2+, reminiscent of the naïve state, while retaining differentiation ability. The altered GSLs could be rescued through overexpression of B3GALT5. B3GALT5-KO cells cultured with 2iLAF exhibited naïve-like transcriptome, global DNA hypomethylation, and X-chromosome reactivation. In addition, B3GALT5-KO rendered hESCs more resistant to calcium chelator in blocking entry into naïve state. Thus, loss of B3GALT5 induces a distinctive state of hESCs displaying unique GSL profiling with expression of neolacto-glycans, increased Ca2+, and conducive for transition to naïve pluripotency.
Collapse
|
24
|
Huang X, Li Y, He X, Chen Y, Wei W, Yang X, Ma K. Gangliosides and CD82 inhibit the motility of colon cancer by downregulating the phosphorylation of EGFR at different tyrosine sites and signaling pathways. Mol Med Rep 2020; 22:3994-4002. [PMID: 33000220 DOI: 10.3892/mmr.2020.11467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/15/2020] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that (GM3), a ganglioside, suppresses hepatoma cell motility and migration by inhibiting phosphorylation of EGFR and the activity of the PI3K/AKT signaling pathway. Therefore, the aim of the present study was to investigate whether the combined treatment of CD82 with gangliosides can exert a synergistic inhibitory effect on cell motility and migration. Epidermal growth factor receptor (EGFR) signaling was studied for its role in the mechanism through which CD82 and gangliosides synergistically inhibit the motility and migration of SW620 human colon adenocarcinoma cells. GM3 and/or GM2 treatment, and/or overexpression of CD82 was performed in SW620 cells. High-performance thin layer chromatography, reverse transcription-quantitative PCR, western blotting and flow cytometry assays were used to confirm the content changes of GM2, GM3 and CD82. In addition, the phosphorylation of EGFR, MAPK and Akt were evaluated by western blot analysis. SW620 cell motility was investigated using wound healing analysis and chemotaxis migration assay. The combination of GM3 and GM2 with CD82 was found to markedly suppress EGF-stimulated SW620 cell motility compared with the individual factors or combination of GM2 or GM3 with CD82 by inhibiting the phosphorylation of EGFR. The results suggested that CD82 in combination with either GM2 or GM3 can exert a synergistic inhibitory effect on cell motility and migration; however, the synergistic mechanisms elicited by GM2 or GM3 with CD82 differ.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ying Li
- Department of Clinical Laboratory, The Second Affiliated Hospital, Dalian, Liaoning 116023, P.R. China
| | - Xin He
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yang Chen
- Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wei Wei
- Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Keli Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
25
|
Jian Y, Xu Z, Xu C, Zhang L, Sun X, Yang D, Wang S. The Roles of Glycans in Bladder Cancer. Front Oncol 2020; 10:957. [PMID: 32596162 PMCID: PMC7303958 DOI: 10.3389/fonc.2020.00957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors of the urogenital system with high morbidity and mortality worldwide. Early diagnosis and personalized treatment are the keys to successful bladder cancer treatment. Due to high postoperative recurrence rates and poor prognosis, it is urgent to find suitable therapeutic targets and biomarkers. Glycans are one of the four biological macromolecules in the cells of an organism, along with proteins, nucleic acids, and lipids. Glycans play important roles in nascent peptide chain folding, protein processing, and translation, cell-to-cell adhesion, receptor-ligand recognition, and binding and cell signaling. Glycans are mainly divided into N-glycans, O-glycans, proteoglycans, and glycosphingolipids. The focus of this review is the discussion of glycans related to bladder cancer. Additionally, this review also addresses the clinical value of glycans in the diagnosis and treatment of bladder cancer. Abnormal glycans are likely to be potential biomarkers for bladder cancer.
Collapse
Affiliation(s)
- Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Chunyan Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Barrionuevo E, Cayrol F, Cremaschi GA, Cornier PG, Boggián DB, Delpiccolo CML, Mata EG, Roguin LP, Blank VC. A Penicillin Derivative Exerts an Anti-Metastatic Activity in Melanoma Cells Through the Downregulation of Integrin αvβ3 and Wnt/β-Catenin Pathway. Front Pharmacol 2020; 11:127. [PMID: 32158394 PMCID: PMC7052307 DOI: 10.3389/fphar.2020.00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
The synthetic triazolylpeptidyl penicillin derivative, named TAP7f, has been previously characterized as an effective antitumor agent in vitro and in vivo against B16-F0 melanoma cells. In this study, we investigated the anti-metastatic potential of this compound on highly metastatic murine B16-F10 and human A375 melanoma cells. We found that TAP7f inhibited cell adhesion, migration and invasion in a dose-dependent manner. Additionally, we demonstrated that TAP7f downregulated integrin αvβ3 expression and Wnt/β-catenin pathway, a signaling cascade commonly related to tumor invasion and metastasis. Thus, TAP7f reduced both the enzymatic activity and the expression levels of matrix-metalloproteinases-2 and -9 in a time dependent manner. Moreover, TAP7f inhibited the expression of the transcription factor Snail and the mesenchymal markers vimentin, and N-cadherin, and up-regulated the expression of the epithelial marker E-cadherin, suggesting that the penicillin derivative affects epithelial-mesenchymal transition. Results obtained in vitro were supported by those obtained in a B16-F10-bearing mice metastatic model, that showed a significant TAP7f inhibition of lung metastasis. These findings suggest the potential of TAP7f as a chemotherapeutic agent for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Elizabeth Barrionuevo
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Florencia Cayrol
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), CONICET, Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), CONICET, Buenos Aires, Argentina
| | - Patricia G Cornier
- Laboratorio de Química Orgánica, Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Dora B Boggián
- Laboratorio de Química Orgánica, Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina M L Delpiccolo
- Laboratorio de Química Orgánica, Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ernesto G Mata
- Laboratorio de Química Orgánica, Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Leonor P Roguin
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Viviana C Blank
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
27
|
Takahashi M, Shirasaki J, Komura N, Sasaki K, Tanaka HN, Imamura A, Ishida H, Hanashima S, Murata M, Ando H. Efficient diversification of GM3 gangliosides via late-stage sialylation and dynamic glycan structural studies with 19F solid-state NMR. Org Biomol Chem 2020; 18:2902-2913. [DOI: 10.1039/d0ob00437e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GM3 gangliosides have been synthesized via late-stage α-sialylation using a macro-bicyclic sialyl donor. 19F solid-state NMR analysis of the C5-NHTFAc GM3 analog on a model membrane revealed the influence of cholesterol on glycan dynamics.
Collapse
Affiliation(s)
- Maina Takahashi
- Department of Applied Bioorganic Chemistry
- Gifu University
- Gifu 501-1193
- Japan
| | - Junya Shirasaki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
- Gifu University
- Gifu 501-1193
- Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
- Gifu University
- Gifu 501-1193
- Japan
| | - Katsuaki Sasaki
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Hide-Nori Tanaka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
- Gifu University
- Gifu 501-1193
- Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry
- Gifu University
- Gifu 501-1193
- Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry
- Gifu University
- Gifu 501-1193
- Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
| | - Shinya Hanashima
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Michio Murata
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|
28
|
Samaha D, Hamdo HH, Wilde M, Prause K, Arenz C. Sphingolipid-Transporting Proteins as Cancer Therapeutic Targets. Int J Mol Sci 2019; 20:ijms20143554. [PMID: 31330821 PMCID: PMC6678544 DOI: 10.3390/ijms20143554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023] Open
Abstract
The understanding of the role of sphingolipid metabolism in cancer has tremendously increased in the past ten years. Many tumors are characterized by imbalances in sphingolipid metabolism. In many cases, disorders of sphingolipid metabolism are also likely to cause or at least promote cancer. In this review, sphingolipid transport proteins and the processes catalyzed by them are regarded as essential components of sphingolipid metabolism. There is much to suggest that these processes are often rate-limiting steps for metabolism of individual sphingolipid species and thus represent potential target structures for pharmaceutical anticancer research. Here, we summarize empirical and biochemical data on different proteins with key roles in sphingolipid transport and their potential role in cancer.
Collapse
Affiliation(s)
- Doaa Samaha
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
- Depatment of Pharmaceutical Chemistry, College of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Housam H Hamdo
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Max Wilde
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
| |
Collapse
|
29
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
30
|
Epigenetic silencing of the synthesis of immunosuppressive Siglec ligand glycans by NF-κB/EZH2/YY1 axis in early-stage colon cancers. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:173-183. [PMID: 30716533 DOI: 10.1016/j.bbagrm.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Normal colonic epithelial cells express sialyl 6-sulfo Lewisx and disialyl Lewisa on their cell surface, which are ligands for the immunosuppressive molecule Siglec-7. Expression of these normal glycans is frequently lost upon malignant transformation by silencing DTDST and ST6GalNAc6 at the early stage of colorectal carcinogenesis, and leads to production of inflammatory mediators that facilitate carcinogenesis. Indeed, by querying The Cancer Genome Atlas datasets, we confirmed that the level of DTDST or ST6GalNAc6 mRNA is substantially decreased at the early stage of colorectal carcinogenesis. Cultured colon cancer cell lines were used in this study including DLD-1, HT-29, LS174T and SW620. Their promoter regions were strongly marked by repressive mark H3K27me3, catalyzed by EZH2 that was markedly upregulated in early stage of colorectal carcinogenesis. Suppression of EZH2 substantially downregulated H3K27me3 mark and upregulated DTDST and ST6GalNAc6 as well as expression of normal glycans and Siglec-binding activities. Transcription factor YY1 was vital for the recruitment of PRC2-containing EZH2 to both promoters. Inhibition of NF-κB substantially reduced EZH2 transcription and restored their mRNAs as well as the production of normal Siglec ligand glycans in the results obtained from in vitro studies on cultured colon cancer cell lines. These findings provide a putative mechanism for promotion of carcinogenesis by loss of immunosuppressive molecules by epigenetic silencing through NF-κB-mediated EZH2/YY1 axis.
Collapse
|
31
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|
32
|
Liang YJ, Wang CY, Wang IA, Chen YW, Li LT, Lin CY, Ho MY, Chou TL, Wang YH, Chiou SP, Lin YJ, Yu J. Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget 2018; 8:47454-47473. [PMID: 28537895 PMCID: PMC5564578 DOI: 10.18632/oncotarget.17665] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023] Open
Abstract
Many studies have suggested that disialogangliosides, GD2 and GD3, are involved in the development of various tumor types. However, the functional relationships between ganglioside expression and cancer development or aggressiveness are not fully described. GD3 is upregulated in approximately half of all invasive ductal breast carcinoma cases, and enhanced expression of GD3 synthase (GD3S, alpha-N-acetylneuraminide alpha-2,8-sialyltransferase) in estrogen receptor-negative breast tumors, was shown to correlate with reduced overall patient survival. We previously found that GD2 and GD3, together with their common upstream glycosyltransferases, GD3S and GD2/GM2 synthase, maintain a stem cell phenotype in breast cancer stem cells (CSCs). In the current study, we demonstrate that GD3S alone can sustain CSC properties and also promote malignant cancer properties. Using MALDI-MS and flow cytometry, we found that breast cancer cell lines, of various subtypes with or without ectopic GD3S-expression, exhibited distinct GD2/GD3 expression profiles. Furthermore, we found that GD3 was associated with EGFR and activated EGFR signaling in both breast CSCs and breast cancer cell lines. In addition, GD3S knockdown enhanced cytotoxicity of the EGFR-inhibitor gefitinib in resistant MDA-MB468 cells, both in vitro and in vivo. Based on this evidence, we propose that GD3S contributes to gefitinib-resistance in EGFR-positive breast cancer cells and may be an effective therapeutic target in drug-resistant breast cancers.
Collapse
Affiliation(s)
- Yuh-Jin Liang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-An Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Wen Chen
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Li-Tzu Li
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chuang-Yu Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsung-Lung Chou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Ju Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
33
|
Gangliosides in Inflammation and Neurodegeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:265-287. [PMID: 29747817 DOI: 10.1016/bs.pmbts.2018.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gangliosides play roles in the regulation of cell signaling that are mediated via membrane microdomains, lipid rafts. In this review, functions of gangliosides in the maintenance of nervous systems with a focus on regulation of inflammation and neurodegeneration are addressed. During analyses of various ganglioside-lacking mutant mice, we demonstrated that nervous tissues exhibited inflammatory reactions and subsequent neurodegeneration. Among inflammation-related genes, factors of the complement system showed up-regulation with aging. Analyses of architectures and compositions of lipid rafts in nervous tissues from these mutant mice revealed that dysfunctions of complement regulatory proteins based on disrupted lipid rafts were main factors to induce the inflammatory reactions resulting in neurodegeneration. Ganglioside changes in development and senescence, and implication of them in the integrity of cell membranes and cellular phenotypes in physiological and pathological conditions including Alzheimer disease have been summarized. Novel directions to further analyze mechanisms for ganglioside functions in membrane microdomains have been also addressed.
Collapse
|
34
|
Arosio P, Comito G, Orsini F, Lascialfari A, Chiarugi P, Ménard-Moyon C, Nativi C, Richichi B. Conjugation of a GM3 lactone mimetic on carbon nanotubes enhances the related inhibition of melanoma-associated metastatic events. Org Biomol Chem 2018; 16:6086-6095. [DOI: 10.1039/c8ob01817k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes conjugated to a mimetic of a melanoma-associated antigen interfere with adhesion, motility, and invasiveness of human melanoma cells.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Physics and INSTM
- University of Milano
- 20133 Milan
- Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences
- Biochemistry
- Human Health Medical School
- University of Florence
- 50134 Firenze
| | - Francesco Orsini
- Department of Physics and INSTM
- University of Milano
- 20133 Milan
- Italy
| | | | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences
- Biochemistry
- Human Health Medical School
- University of Florence
- 50134 Firenze
| | - Cécilia Ménard-Moyon
- University of Strasbourg
- CNRS
- Immunology
- Immunopathology and Therapeutic Chemistry
- 67000 Strasbourg
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto F.no
- Italy
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto F.no
- Italy
| |
Collapse
|
35
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
36
|
Vantaku V, Donepudi SR, Ambati CR, Jin F, Putluri V, Nguyen K, Rajapakshe K, Coarfa C, Battula VL, Lotan Y, Putluri N. Expression of ganglioside GD2, reprogram the lipid metabolism and EMT phenotype in bladder cancer. Oncotarget 2017; 8:95620-95631. [PMID: 29221154 PMCID: PMC5707048 DOI: 10.18632/oncotarget.21038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
High-grade Bladder Cancer (BLCA) represents the most aggressive and treatment-resistant cancer that renders the patients with poor survival. However, only a few biomarkers have been identified for the detection and treatment of BLCA. Recent studies show that ganglioside GD2 can be used as cancer biomarker and/or therapeutic target for various cancers. Despite its potential relevance in cancer diagnosis and therapeutics, the role of GD2 is unknown in BLCA. Here, we report for the first time that high-grade BLCA tissues and cell lines have higher expression of GD2 compared to low-grade by high-resolution Mass Spectrometry. The muscle invasive UMUC3 cell line showed high GD2, mesenchymal phenotype, and cell proliferation. Besides, we have shown the cancer stem cells (CSC) property (CD44hiCD24lo) of GD2+ UMUC3 and J82 cells. Also, the evaluation of lipid metabolism in GD2+ BLCA cell lines revealed higher levels of Phosphatidylinositol (PI), Phosphatidic acid (PA), Cardiolipin (CL) and lower levels of Phosphatidylserine (PS), plasmenyl-phosphatidylethanolamines (pPE), plasmenyl-phosphocholines (pPC), sphingomyelins (SM), triglycerides (TGs) and N-Acetylneuraminic acid. These findings are significantly correlated with the tissues of BLCA patients. Based on this evidence, we propose that GD2 may be used as an effective diagnostic and therapeutic target for aggressive BLCA.
Collapse
Affiliation(s)
- Venkatrao Vantaku
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sri Ramya Donepudi
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Chandrashekar R Ambati
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Khoa Nguyen
- Section of Molecular Hematology and Therapy, Department of Leukemia, and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
37
|
Shishido F, Uemura S, Kashimura M, Inokuchi JI. Identification of a new B4GalNAcT1 (GM2/GD2/GA2 synthase) isoform, and regulation of enzyme stability and intracellular transport by arginine-based motif. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2001-2011. [PMID: 28709807 DOI: 10.1016/j.bbamem.2017.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/17/2017] [Accepted: 07/10/2017] [Indexed: 11/26/2022]
Abstract
Glycosphingolipids (GSLs) are abundant in plasma membranes of mammalian cells, and their synthesis is strictly regulated in the Golgi apparatus. Disruption of GSL homeostasis is the cause of numerous diseases. Hundreds of molecular species of GSLs exist, and the detailed mechanisms underlying their homeostasis remain unclear. We investigated the physiological significance of isoform production for β1,4-N-acetyl-galactosaminyl transferase 1/B4GALNT1 (B4GN1), an enzyme involved in synthesis of ganglio-series GSLs GM2/GD2/GA2. We discovered a new mRNA variant (termed variant 2) of B4GN1 through EST clone search. A new isoform, M1-B4GN1, which has an NH2-terminal cytoplasmic tail longer than that of previously-known isoform M2-B4GN1, is translated from variant 2. M1-B4GN1 has R-based motif (a retrograde transport signal) in the cytoplasmic tail. M1-B4GN1 is partially localized in the endoplasmic reticulum (ER) depending on the R-based motif, whereas M2-B4GN1 is localized in the Golgi. Stability of M1-B4GN1 is higher than that of M2-B4GN1 because of the R-based motif. M2-B4GN1 forms a homodimer via disulfide bonding. When M1-B4GN1 and M2-B4GN1 were co-expressed in CHO-K1 cells, the two isoforms formed a heterodimer. The M1/M2-B4GN1 heterodimer was more stable than the M2-B4GN1 homodimer, but the heterodimer was not transported from the Golgi to the ER. Our findings indicate that stabilization of M1-B4GN1 homodimer and M1/M2-B4GN1 heterodimer by R-based motif is related to prolongation of Golgi retention, but not to retrograde transport from the Golgi to the ER. Coexistence of several B4GN1 isoforms having distinctive characteristics presumably helps maintain overall enzyme stability and GSL homeostasis.
Collapse
Affiliation(s)
- Fumi Shishido
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan; Division of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Madoka Kashimura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
38
|
Huang X, Schurman N, Handa K, Hakomori S. Functional role of glycosphingolipids in contact inhibition of growth in a human mammary epithelial cell line. FEBS Lett 2017; 591:1918-1928. [DOI: 10.1002/1873-3468.12709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohua Huang
- Division of Biomembrane Research; Pacific Northwest Research Institute; Seattle WA USA
| | - Nathan Schurman
- Division of Biomembrane Research; Pacific Northwest Research Institute; Seattle WA USA
| | - Kazuko Handa
- Division of Biomembrane Research; Pacific Northwest Research Institute; Seattle WA USA
| | - Senitiroh Hakomori
- Division of Biomembrane Research; Pacific Northwest Research Institute; Seattle WA USA
- Department of Pathobiology and Global Health; University of Washington; Seattle WA USA
| |
Collapse
|
39
|
Liu Q, Lyu Z, Yu Y, Zhao ZA, Hu S, Yuan L, Chen G, Chen H. Synthetic Glycopolymers for Highly Efficient Differentiation of Embryonic Stem Cells into Neurons: Lipo- or Not? ACS APPLIED MATERIALS & INTERFACES 2017; 9:11518-11527. [PMID: 28287262 DOI: 10.1021/acsami.7b01397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To realize the potential application of embryonic stem cells (ESCs) for the treatment of neurodegenerative diseases, it is a prerequisite to develop an effective strategy for the neural differentiation of ESCs so as to obtain adequate amount of neurons. Considering the efficacy of glycosaminoglycans (GAG) and their disadvantages (e.g., structure heterogeneity and impurity), GAG-mimicking glycopolymers (designed polymers containing functional units similar to natural GAG) with or without phospholipid groups were synthesized in the present work and their ability to promote neural differentiation of mouse ESCs (mESCs) was investigated. It was found that the lipid-anchored GAG-mimicking glycopolymers (lipo-pSGF) retained on the membrane of mESCs rather than being internalized by cells after 1 h of incubation. Besides, lipo-pSGF showed better activity in promoting neural differentiation. The expression of the neural-specific maker β3-tubulin in lipo-pSGF-treated cells was ∼3.8- and ∼1.9-fold higher compared to natural heparin- and pSGF-treated cells at day 14. The likely mechanism involved in lipo-pSGF-mediated neural differentiation was further investigated by analyzing its effect on fibroblast growth factor 2 (FGF2)-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway which is important for neural differentiation of ESCs. Lipo-pSGF was found to efficiently bind FGF2 and enhance the phosphorylation of ERK1/2, thus promoting neural differentiation. These findings demonstrated that engineering of cell surface glycan using our synthetic lipo-glycopolymer is a highly efficient approach for neural differentiation of ESCs and this strategy can be applied for the regulation of other cellular activities mediated by cell membrane receptors.
Collapse
Affiliation(s)
- Qi Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University , Suzhou 215006, P.R. China
| | - Zhonglin Lyu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - You Yu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University , Suzhou 215000, P.R. China
| | - Zhen-Ao Zhao
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University , Suzhou 215000, P.R. China
| | - Shijun Hu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University , Suzhou 215000, P.R. China
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University , Suzhou 215006, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
40
|
Yu AL, Hung JT, Ho MY, Yu J. Alterations of Glycosphingolipids in Embryonic Stem Cell Differentiation and Development of Glycan-Targeting Cancer Immunotherapy. Stem Cells Dev 2016; 25:1532-1548. [DOI: 10.1089/scd.2016.0138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
41
|
Gu RX, Ingólfsson HI, de Vries AH, Marrink SJ, Tieleman DP. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations. J Phys Chem B 2016; 121:3262-3275. [PMID: 27610460 PMCID: PMC5402298 DOI: 10.1021/acs.jpcb.6b07142] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, on the basis of the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations, GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar, but ganglioside aggregation and protein-ganglioside interactions are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results were closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
42
|
Jung YR, Park JJ, Jin YB, Cao YJ, Park MJ, Kim EJ, Lee M. Silencing of ST6Gal I enhances colorectal cancer metastasis by down-regulating KAI1 via exosome-mediated exportation and thereby rescues integrin signaling. Carcinogenesis 2016; 37:1089-1097. [PMID: 27559112 DOI: 10.1093/carcin/bgw091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/31/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022] Open
Abstract
Aberrant sialylation has long been correlated with human cancer. Increased ST6 Gal I (β-galactoside α 2, 6 sialyltransferase) and consequently higher levels of cell-surface α 2, 6 sialylation has been associated with human colorectal cancer (CRC) metastasis. We have extensive circumstantial data that sialylation is connected to cancer metastasis, but we do not understand in detail how sialylation can switch on/off multiple steps in cancer metastasis. To investigate the molecular mechanism underlying the ST6Gal I-mediated metastasis of CRC, we silenced the ST6Gal I gene in a metastatic SW620 CRC cell line (SW620-shST6Gal I) and examined the metastatic behavior of the cells. We found that various hallmarks of metastatic ability were considerably enhanced in ST6Gal 1-depleted SW620 clones, as assessed both in vitro and in vivo . In particular, the metastasis suppressor, KAI1, was down-regulated in ST6Gal I-deficient SW620 clones. This reflected the increased exosome-mediated exportation of KAI1, and was associated with a decrease in the KAI1-mediated inhibition of integrin. These findings indicate that gene silencing of ST6Gal I could enhance metastasis of CRC by down-regulating KAI1 activity and rescuing its negative effects on integrin signaling.
Collapse
Affiliation(s)
| | - Jung-Jin Park
- Department of Biochemistry and Medical Research Center , College of Medicine , Chungbuk National University , Cheongju 28644 , Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center , Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116 , Republic of Korea
| | - Yuan Jie Cao
- Department of Radiation Oncology , Tianjin Medical University Cancer Institute and Hospital , National Clinical Research Center for Cancer and Tianjin Key laboratory of Cancer Prevention and Therapy , Huan-Hu-Xi Road , Ti-Yuan-Bei , He Xi District , Tianjin 300060 , P.R. China and
| | - Myung-Jin Park
- Division of Radiation Cancer Research , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | | | | |
Collapse
|
43
|
Glycosphingolipid dynamics in human embryonic stem cell and cancer: their characterization and biomedical implications. Glycoconj J 2016; 34:765-777. [PMID: 27549315 DOI: 10.1007/s10719-016-9715-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 01/16/2023]
Abstract
Glycosphingolipids (GSLs) are composed of complex glycans linked to sphingosines and various fatty acid chains. Antibodies against several GSLs designated as stage-specific embryonic antigens (SSEAs), have been widely used to characterize differentiation of embryonic stem (ES) cells. In view of the cross-reactivities of these antibodies with multiple glycans, a few laboratories have employed advanced mass spectrometry (MS) technologies to define the dynamic changes of surface GSLs upon ES differentiation. However, the amphiphilic nature and heterogeneity of GSLs make them difficult to decipher. In our studies, systematic survey of GSL expression profiles in human ES cells and differentiated derivatives was conducted, primarily with matrix-assisted laser desorption/ionization MS (MALDI-MS) and MS/MS analyses. In addition to the well-known ES-specific markers, SSEA-3 and SSEA-4, several previously undisclosed globo- and lacto-series GSLs, including Gb4Cer, Lc4Cer, fucosyl Lc4Cer, Globo H, and disialyl Gb5Cer were identified in the undifferentiated human ES and induced pluripotent stem cells. Furthermore, during differentiation to embryoid body outgrowth, the core structures of GSLs switched from globo- and lacto- to ganglio-series. Lineage-specific differentiation was also marked by alterations of specific GSLs. During differentiation into neural progenitors, core structures shifted to primarily ganglio-series dominated by GD3. GSL patterns shifted to prominent expression of Gb4Cer with little SSEA-3 and- 4 or GD3 during endodermal differentiation. Several issues relevant to MS analysis and novel GSLs in ES cells were discussed. Finally, unique GSL signatures in ES and cancer cells are exploited in glycan-targeted anti-cancer immunotherapy and their mechanistic investigations were discussed using anti-GD2 mAb and Globo H as examples.
Collapse
|
44
|
Chiu WH, Su WC, Li CL, Chen CL, Lin CF. An increase in glucosylceramide synthase induces Bcl-xL-mediated cell survival in vinorelbine-resistant lung adenocarcinoma cells. Oncotarget 2016; 6:20513-24. [PMID: 26001295 PMCID: PMC4653022 DOI: 10.18632/oncotarget.4109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Reversing drug resistance with concurrent treatment confers anticancer benefits. In this study, we investigated the potential mechanism of glucosylceramide synthase (GCS)-mediated vinca alkaloid vinorelbine (VNR) resistance in human lung adenocarcinoma cells. Compared with PC14PE6/AS2 (AS2) and CL1-0 cells, apoptotic analysis showed that both A549 and CL1-5 cells were VNR-resistant, while these cells highly expressed GCS at the protein level. VNR treatment significantly converts ceramide to glucosylceramide in VNR-resistant cells; however, pharmacologically inhibiting GCS with (±)-threo-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride (PDMP) induced ceramide accumulation, accompanied by a decrease in glucosylceramide. Under concurrent treatment with VNR and PDMP, an increase in cell apoptosis could be identified; furthermore, genetically silencing GCS confirmed these effects. In VNR-resistant cells, Bcl-xL expression was aberrantly increased, while pharmacologically inhibiting Bcl-xL with ABT-737 sensitized cells to VNR-induced apoptosis. Conversely, enforced expression of Bcl-xL strengthened the survival response of the VNR-susceptible cells AS2 and CL1-0. Without changes in mRNA expression, Bcl-xL was overexpressed independent of β-catenin-mediated transcriptional regulation in VNR-resistant cells. Simultaneous GCS inhibition and VNR treatment caused a decrease in Bcl-xL expression. According to these findings, an increase in GCS caused Bcl-xL augmentation, facilitating VNR resistance in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Wei-Hsin Chiu
- Division of Hemato-Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wu-Chou Su
- Division of Hemato-Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chia-Ling Li
- Division of Hemato-Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chia-Ling Chen
- Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
45
|
Gabri MR, Cacciavillano W, Chantada GL, Alonso DF. Racotumomab for treating lung cancer and pediatric refractory malignancies. Expert Opin Biol Ther 2016; 16:573-8. [DOI: 10.1517/14712598.2016.1157579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Mikami J, Tobisawa Y, Yoneyama T, Hatakeyama S, Mori K, Hashimoto Y, Koie T, Ohyama C, Fukuda M. I-branching N-acetylglucosaminyltransferase regulates prostate cancer invasiveness by enhancing α5β1 integrin signaling. Cancer Sci 2016; 107:359-68. [PMID: 26678556 PMCID: PMC4814258 DOI: 10.1111/cas.12859] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/29/2015] [Accepted: 12/12/2015] [Indexed: 01/20/2023] Open
Abstract
Cell surface carbohydrates are important for cell migration and invasion of prostate cancer (PCa). Accordingly, the I‐branching N‐acetylglucosaminyltransferase (GCNT2) converts linear i‐antigen to I‐branching glycan, and its expression is associated with breast cancer progression. In the present study, we identified relationships between GCNT2 expression and clinicopathological parameters in patients with PCa. Paraffin‐embedded PCa specimens were immunohistochemically tested for GCNT2 expression, and the roles of GCNT2 in PCa progression were investigated using cell lines with high GCNT2 expression and low GCNT2 expression. GCNT2‐positive cells were significantly lesser in organ‐confined disease than in that with extra‐capsular extensions, and GCNT2‐negative tumors were associated with significantly better prostate‐specific antigen‐free survival compared with GCNT2‐positive tumors. Subsequent functional studies revealed that knockdown of GCNT2 expression in PCa cell lines significantly inhibited cell migration and invasion. GCNT2 regulated the expression of cell surface I‐antigen on the O‐glycan and glycolipid. Moreover, I‐antigen‐bearing glycolipids were subject to α5β1 integrin–fibronectin mediated protein kinase B phosphorylation. In conclusion, GCNT2 expression is closely associated with invasive potential of PCa.
Collapse
Affiliation(s)
- Jotaro Mikami
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuyuki Mori
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhiro Hashimoto
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Minoru Fukuda
- Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Sanford Burnham Prebys Medical Discovery Institute, Tumor Microenvironment and Metastasis Program, NCI-Designated Cancer Center, La Jolla, California, USA
| |
Collapse
|
47
|
Varela ARP, Couto AS, Fedorov A, Futerman AH, Prieto M, Silva LC. Glucosylceramide Reorganizes Cholesterol-Containing Domains in a Fluid Phospholipid Membrane. Biophys J 2016; 110:612-622. [PMID: 26840726 PMCID: PMC4744164 DOI: 10.1016/j.bpj.2015.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Glucosylceramide (GlcCer), one of the simplest glycosphingolipids, plays key roles in physiology and pathophysiology. It has been suggested that GlcCer modulates cellular events by forming specialized domains. In this study, we investigated the interplay between GlcCer and cholesterol (Chol), an important lipid involved in the formation of liquid-ordered (lo) phases. Using fluorescence microscopy and spectroscopy, and dynamic and electrophoretic light scattering, we characterized the interaction between these lipids in different pH environments. A quantitative description of the phase behavior of the ternary unsaturated phospholipid/Chol/GlcCer mixture is presented. The results demonstrate coexistence between lo and liquid-disordered (ld) phases. However, the extent of lo/ld phase separation is sparse, mainly due to the ability of GlcCer to segregate into tightly packed gel domains. As a result, the phase diagram of these mixtures is characterized by an extensive three-phase coexistence region of fluid (ld-phospholipid enriched)/lo (Chol enriched)/gel (GlcCer enriched). Moreover, the results show that upon acidification, GlcCer solubility in the lo phase is increased, leading to a larger lo/ld coexistence region. Quantitative analyses allowed us to determine the differences in the composition of the phases at neutral and acidic pH. These results predict the impact of GlcCer on domain formation and membrane organization in complex biological membranes, and provide a background for unraveling the relationship between the biophysical properties of GlcCer and its biological action.
Collapse
Affiliation(s)
- Ana R P Varela
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal; Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - André Sá Couto
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Aleksander Fedorov
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Manuel Prieto
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
48
|
Richichi B, Comito G, Renaudet O, Fiore M, Marra A, Stecca B, Pasquato L, Chiarugi P, Nativi C. Role of a Preorganized Scaffold Presenting Four Residues of a GM-3 Lactone Mimetic on Melanoma Progression. ACS Med Chem Lett 2016; 7:28-33. [PMID: 26819661 DOI: 10.1021/acsmedchemlett.5b00283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022] Open
Abstract
Two tetravalent architectures, the glycocalix 7 and the RAFT 9, presenting four residues of a GM-3 ganglioside lactone mimetic, target the host compartment of melanoma and significantly abrogate the effect induced by cancer-associated fibroblasts (CAFs) contact + hypoxia in the motility and invasiveness of tumor cells. The data reported support the involvement of glycosphingolipids (GSLs) in hypoxia and show an interesting role played by compound 9 in targeting melanoma cells thereby interfering with melanoma progression. The unprecedented findings reported for the glycocluster 9 may contribute to the understanding of the critical and complex interactions between tumor cells and their local environment paving the way for new therapeutic agents.
Collapse
Affiliation(s)
- Barbara Richichi
- Department
of Chemistry “Ugo Schiff″, University of Florence, via della Lastruccia, 13 50019 Sesto F.no (FI), Italy
| | - Giuseppina Comito
- Department
of Experimental and Clinical Biomedical Sciences, Biochemistry, Human
Health Medical School, University of Florence, viale Morgagni 50, 50134 Firenze, Italy
| | - Olivier Renaudet
- Université Grenoble-Alpes, and CNRS, DCM, 38000 Grenoble, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| | - Michele Fiore
- Université Grenoble-Alpes, and CNRS, DCM, 38000 Grenoble, France
| | - A. Marra
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’Ecole Normale, 34296 Montpellier cedex 5, France
| | - B. Stecca
- Core Research
Laboratory, Istituto Toscano Tumori, viale Pieraccini, 6, 50139 Firenze, Italy
| | - L. Pasquato
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - P. Chiarugi
- Department
of Experimental and Clinical Biomedical Sciences, Biochemistry, Human
Health Medical School, University of Florence, viale Morgagni 50, 50134 Firenze, Italy
| | - C. Nativi
- Department
of Chemistry “Ugo Schiff″, University of Florence, via della Lastruccia, 13 50019 Sesto F.no (FI), Italy
- FiorGen, Polo Scientifico e Tecnologico, via Sacconi, 6 50019 Sesto F.no (FI), Italy
| |
Collapse
|
49
|
Glycolipid dynamics in generation and differentiation of induced pluripotent stem cells. Sci Rep 2015; 5:14988. [PMID: 26477663 PMCID: PMC4609952 DOI: 10.1038/srep14988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 09/07/2015] [Indexed: 12/25/2022] Open
Abstract
Glycosphingolipids (GSLs) are glycoconjugates that function as mediators of cell adhesion and modulators of signal transduction. Some well-defined markers of undifferentiated human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are glycoconjugates, such as SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. However, Comprehensive GSL profiles of hiPSCs have not yet been elucidated. The global images of GSLs from the parental cells, hiPSCs, and differentiated cells revealed that there are parental cell-independent specific glycolipids, including Globo H (fucosyl-Gb5Cer) and H type1 antigen (fucosyl-Lc4Cer) that are novel markers for undifferentiated hiPSCs. Interestingly, undifferentiated hiPSCs expressed H type 1 antigen, specific for blood type O, regardless of the cells’ genotypes. Thus, in this study, we defined the dynamics of GSL remodeling during reprogramming from parental cell sets to iPSC sets and thence to iPSC-neural cells.
Collapse
|
50
|
Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121575. [PMID: 26339586 PMCID: PMC4538314 DOI: 10.1155/2015/121575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/03/2015] [Accepted: 04/10/2015] [Indexed: 01/27/2023]
Abstract
Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.
Collapse
|