1
|
Cheng H, Perkins GA, Ju S, Kim K, Ellisman MH, Pamenter ME. Enhanced mitochondrial buffering prevents Ca 2+ overload in naked mole-rat brain. J Physiol 2024; 602:5685-5698. [PMID: 37668020 PMCID: PMC10912373 DOI: 10.1113/jp285002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
Deleterious Ca2+ accumulation is central to hypoxic cell death in the brain of most mammals. Conversely, hypoxia-mediated increases in cytosolic Ca2+ are retarded in hypoxia-tolerant naked mole-rat brain. We hypothesized that naked mole-rat brain mitochondria have an enhanced capacity to buffer exogenous Ca2+ and examined Ca2+ handling in naked mole-rat cortical tissue. We report that naked mole-rat brain mitochondria buffer >2-fold more exogenous Ca2+ than mouse brain mitochondria, and that the half-maximal inhibitory concentration (IC50) at which Ca2+ inhibits aerobic oxidative phosphorylation is >2-fold higher in naked mole-rat brain. The primary driving force of Ca2+ uptake is the mitochondrial membrane potential (Δψm), and the IC50 at which Ca2+ decreases Δψm is ∼4-fold higher in naked mole-rat than mouse brain. The ability of naked mole-rat brain mitochondria to safely retain large volumes of Ca2+ may be due to ultrastructural differences that support the uptake and physical storage of Ca2+ in mitochondria. Specifically, and relative to mouse brain, naked mole-rat brain mitochondria are larger and have higher crista density and increased physical interactions between adjacent mitochondrial membranes, all of which are associated with improved energetic homeostasis and Ca2+ management. We propose that excessive Ca2+ influx into naked mole-rat brain is buffered by physical storage in large mitochondria, which would reduce deleterious Ca2+ overload and may thus contribute to the hypoxia and ischaemia-tolerance of naked mole-rat brain. KEY POINTS: Unregulated Ca2+ influx is a hallmark of hypoxic brain death; however, hypoxia-mediated Ca2+ influx into naked mole-rat brain is markedly reduced relative to mice. This is important because naked mole-rat brain is robustly tolerant against in vitro hypoxia, and because Ca2+ is a key driver of hypoxic cell death in brain. We show that in hypoxic naked mole-rat brain, oxidative capacity and mitochondrial membrane integrity are better preserved following exogenous Ca2+ stress. This is due to mitochondrial buffering of exogenous Ca2+ and is driven by a mitochondrial membrane potential-dependant mechanism. The unique ultrastructure of naked mole-rat brain mitochondria, as a large physical storage space, may support increased Ca2+ buffering and thus hypoxia-tolerance.
Collapse
Affiliation(s)
- Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, CA, USA
| | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, CA, USA
| | - Keunyoung Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, CA, USA
- Department of Neurosciences, University of California at San Diego School of Medicine, San Diego, CA, USA
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Balderas E, Lee SHJ, Rai NK, Mollinedo DM, Duron HE, Chaudhuri D. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Physiology (Bethesda) 2024; 39:0. [PMID: 38713090 PMCID: PMC11460536 DOI: 10.1152/physiol.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sandra H J Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Neeraj K Rai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - David M Mollinedo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Hannah E Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Chen C, Dong X, Zhang W, Chang X, Gao W. Dialogue between mitochondria and endoplasmic reticulum-potential therapeutic targets for age-related cardiovascular diseases. Front Pharmacol 2024; 15:1389202. [PMID: 38939842 PMCID: PMC11208709 DOI: 10.3389/fphar.2024.1389202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) act as physical membrane contact sites facilitating material exchange and signal transmission between mitochondria and endoplasmic reticulum (ER), thereby regulating processes such as Ca2+/lipid transport, mitochondrial dynamics, autophagy, ER stress, inflammation, and apoptosis, among other pathological mechanisms. Emerging evidence underscores the pivotal role of MAMs in cardiovascular diseases (CVDs), particularly in aging-related pathologies. Aging significantly influences the structure and function of the heart and the arterial system, possibly due to the accumulation of reactive oxygen species (ROS) resulting from reduced antioxidant capacity and the age-related decline in organelle function, including mitochondria. Therefore, this paper begins by describing the composition, structure, and function of MAMs, followed by an exploration of the degenerative changes in MAMs and the cardiovascular system during aging. Subsequently, it discusses the regulatory pathways and approaches targeting MAMs in aging-related CVDs, to provide novel treatment strategies for managing CVDs in aging populations.
Collapse
Affiliation(s)
- Chen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueyan Dong
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wang Zhang
- Shandong Provincial Mental Health Center, Jinan, China
| | - Xing Chang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wulin Gao
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Eom Y, Kim SR, Kim YK, Lee SH. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons. Mol Neurobiol 2024; 61:3477-3489. [PMID: 37995079 DOI: 10.1007/s12035-023-03795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Mitochondria are critical to cellular Ca2+ homeostasis via the sequestering of cytosolic Ca2+ in the mitochondrial matrix. Mitochondrial Ca2+ buffering regulates neuronal activity and neuronal death by shaping cytosolic and presynaptic Ca2+ or controlling energy metabolism. Dysfunction in mitochondrial Ca2+ buffering has been implicated in psychological and neurological disorders. Ca2+ wave propagation refers to the spreading of Ca2+ for buffering and maintaining the associated rise in Ca2+ concentration. We investigated mitochondrial Ca2+ waves in hippocampal neurons using genetically encoded Ca2+ indicators. Neurons transfected with mito-GCaMP5G, mito-RCaMP1h, and CEPIA3mt exhibited evidence of mitochondrial Ca2+ waves with electrical stimulation. These waves were observed with 200 action potentials at 40 Hz or 20 Hz but not with lower frequencies or fewer action potentials. The application of inhibitors of mitochondrial calcium uniporter and oxidative phosphorylation suppressed mitochondrial Ca2+ waves. However, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptor blockade had no effect on mitochondrial Ca2+ wave were propagation. The Ca2+ waves were not observed in endoplasmic reticula, presynaptic terminals, or cytosol in association with electrical stimulation of 200 action potentials at 40 Hz. These results offer novel insights into the mechanisms underlying mitochondrial Ca2+ buffering and the molecular basis of mitochondrial Ca2+ waves in neurons in response to electrical stimulation.
Collapse
Affiliation(s)
- Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Yeong-Kyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
5
|
Song J, Ham J, Song G, Lim W. Osthole Suppresses Cell Growth of Prostate Cancer by Disrupting Redox Homeostasis, Mitochondrial Function, and Regulation of tiRNA HisGTG. Antioxidants (Basel) 2024; 13:669. [PMID: 38929108 PMCID: PMC11201130 DOI: 10.3390/antiox13060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Prostate cancer remains a significant global health concern, posing a substantial threat to men's well-being. Despite advancements in treatment modalities, the progression of prostate cancer still presents challenges, warranting further exploration of novel therapeutic strategies. In this study, osthole, a natural coumarin derivative, inhibited cell viability in cancer cells but not in the normal prostate cell line. Moreover, osthole disrupted cell cycle progression. Furthermore, osthole reduces mitochondrial respiration with mitochondrial membrane potential (ΔΨm) depolarization and reactive oxygen species (ROS) generation, indicating mitochondrial dysfunction. In particular, osthole-induced ROS generation was reduced by N-acetyl-L-cysteine (NAC) in prostate cancer. In addition, using calcium inhibitors (2-APB and ruthenium red) and endoplasmic reticulum (ER) stress inhibitor (4-PBA), we confirmed that ER stress-induced calcium overload by osthole causes mitochondrial dysfunction. Moreover, we verified that the osthole-induced upregulation of tiRNAHisGTG expression is related to mechanisms that induce permeabilization of the mitochondrial membrane and calcium accumulation. Regarding intracellular signaling, osthole inactivated the PI3K and ERK pathways while activating the expression of the P38, JNK, ER stress, and autophagy-related proteins. In conclusion, the results suggest that osthole can be used as a therapeutic or adjuvant treatment for the management of prostate cancer.
Collapse
Affiliation(s)
- Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jiyeon Ham
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
6
|
Lu B, Chen X, Ma Y, Gui M, Yao L, Li J, Wang M, Zhou X, Fu D. So close, yet so far away: the relationship between MAM and cardiac disease. Front Cardiovasc Med 2024; 11:1353533. [PMID: 38374992 PMCID: PMC10875081 DOI: 10.3389/fcvm.2024.1353533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria-associated membrane (MAM) serve as crucial contact sites between mitochondria and the endoplasmic reticulum (ER). Recent research has highlighted the significance of MAM, which serve as a platform for various protein molecules, in processes such as calcium signaling, ATP production, mitochondrial structure and function, and autophagy. Cardiac diseases caused by any reason can lead to changes in myocardial structure and function, significantly impacting human health. Notably, MAM exhibits various regulatory effects to maintain cellular balance in several cardiac diseases conditions, such as obesity, diabetes mellitus, and cardiotoxicity. MAM proteins independently or interact with their counterparts, forming essential tethers between the ER and mitochondria in cardiomyocytes. This review provides an overview of key MAM regulators, detailing their structure and functions. Additionally, it explores the connection between MAM and various cardiac injuries, suggesting that precise genetic, pharmacological, and physical regulation of MAM may be a promising strategy for preventing and treating heart failure.
Collapse
Affiliation(s)
- Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulong Ma
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingzhu Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Petersen CE, Sun J, Silva K, Kosmach A, Balaban RS, Murphy E. Increased mitochondrial free Ca 2+ during ischemia is suppressed, but not eliminated by, germline deletion of the mitochondrial Ca 2+ uniporter. Cell Rep 2023; 42:112735. [PMID: 37421627 PMCID: PMC10529381 DOI: 10.1016/j.celrep.2023.112735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/20/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023] Open
Abstract
Mitochondrial Ca2+ overload is proposed to regulate cell death via opening of the mitochondrial permeability transition pore. It is hypothesized that inhibition of the mitochondrial Ca2+ uniporter (MCU) will prevent Ca2+ accumulation during ischemia/reperfusion and thereby reduce cell death. To address this, we evaluate mitochondrial Ca2+ in ex-vivo-perfused hearts from germline MCU-knockout (KO) and wild-type (WT) mice using transmural spectroscopy. Matrix Ca2+ levels are measured with a genetically encoded, red fluorescent Ca2+ indicator (R-GECO1) using an adeno-associated viral vector (AAV9) for delivery. Due to the pH sensitivity of R-GECO1 and the known fall in pH during ischemia, hearts are glycogen depleted to decrease the ischemic fall in pH. At 20 min of ischemia, there is significantly less mitochondrial Ca2+ in MCU-KO hearts compared with MCU-WT controls. However, an increase in mitochondrial Ca2+ is present in MCU-KO hearts, suggesting that mitochondrial Ca2+ overload during ischemia is not solely dependent on MCU.
Collapse
Affiliation(s)
- Courtney E Petersen
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junhui Sun
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kavisha Silva
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Kosmach
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert S Balaban
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Zhou Q, Wang Y, Lu Z, He C, Li L, You M, Wang L, Cao T, Zhao Y, Li Q, Mou A, Shu W, He H, Zhao Z, Liu D, Zhu Z, Gao P, Yan Z. Cx43 acts as a mitochondrial calcium regulator that promotes obesity by inducing the polarization of macrophages in adipose tissue. Cell Signal 2023; 105:110606. [PMID: 36681290 DOI: 10.1016/j.cellsig.2023.110606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Metabolic reprogramming of macrophages initiates the polarization of pro-inflammatory macrophages that exacerbates adipocyte dysfunction and obesity. The imbalance of mitochondrial Ca2+ homeostasis impairs mitochondrial function and promotes inflammation. Connexin 43 (Cx43), a ubiquitous gap junction protein, has been demonstrated to regulate intracellular Ca2+ homeostasis. Here we explored whether macrophage Cx43 affects the obesity process by regulating the polarization of macrophage. HFD treatment induced obesity and exacerbated macrophages infiltration with upregulation of macrophages Cx43. Macrophage-specific knockout of Cx43 reduced HFD-induced obesity by alleviating inflammation in adipose tissue, with less pro-inflammatory M1 macrophage infiltration. Consistently, inhibition or knockdown of Cx43 improved palmitic acid (PA) induced mitochondrial dysfunction, as indicated by improved oxidative phosphorylation (OXPHOS), reduced formation of mitochondria-associated membranes (MAM) and mitochondrial Ca2+ overload. Mechanistically, Cx43 interacted with the mitochondrial Ca2+ uniporter (MCU) and knockdown of Cx43 alleviated PA-induced succinate dehydrogenase (SDH) oxidation by lowering MCU-mediated mitochondrial Ca2+ uptake, which then, promoting the polarization of pro-inflammatory M1 macrophages. Thus, this study identified Cx43 as a mitochondrial Ca2+ regulator that aggravates obesity via promoting macrophages polarized to M1 pro-inflammatory phenotype and suggests that Cx43 might be a promising therapeutic target antagonizing obesity.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Yuyan Wang
- School of Medicine, Chongqing University, Chongqing, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Wentao Shu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Hongbo He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Zhigang Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China.
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China.
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China.
| |
Collapse
|
9
|
Kovacs G, Reimer L, Jensen PH. Endoplasmic Reticulum-Based Calcium Dysfunctions in Synucleinopathies. Front Neurol 2021; 12:742625. [PMID: 34744980 PMCID: PMC8563702 DOI: 10.3389/fneur.2021.742625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Neuronal calcium dyshomeostasis has been associated to Parkinson's disease (PD) development based on epidemiological studies on users of calcium channel antagonists and clinical trials are currently conducted exploring the hypothesis of increased calcium influx into neuronal cytosol as basic premise. We reported in 2018 an opposite hypothesis based on the demonstration that α-synuclein aggregates stimulate the endoplasmic reticulum (ER) calcium pump SERCA and demonstrated in cell models the existence of an α-synuclein-aggregate dependent neuronal state wherein cytosolic calcium is decreased due to an increased pumping of calcium into the ER. Inhibiting the SERCA pump protected both neurons and an α-synuclein transgenic C. elegans model. This models two cellular states that could contribute to development of PD. First the prolonged state with reduced cytosolic calcium that could deregulate multiple signaling pathways. Second the disease ER state with increased calcium concentration. We will discuss our hypothesis in the light of recent papers. First, a mechanistic study describing how variation in the Inositol-1,4,5-triphosphate (IP3) kinase B (ITPKB) may explain GWAS studies identifying the ITPKB gene as a protective factor toward PD. Here it was demonstrated that how increased ITPKB activity reduces influx of ER calcium to mitochondria via contact between IP3-receptors and the mitochondrial calcium uniporter complex in ER-mitochondria contact, known as mitochondria-associated membranes (MAMs). Secondly, it was demonstrated that astrocytes derived from PD patients contain α-synuclein accumulations. A recent study has demonstrated how human astrocytes derived from a few PD patients carrying the LRRK2-2019S mutation express more α-synuclein than control astrocytes, release more calcium from ER upon ryanodine receptor (RyR) stimulation, show changes in ER calcium channels and exhibit a decreased maximal and spare respiration indicating altered mitochondrial function in PD astrocytes. Here, we summarize the previous findings focusing the effect of α-synuclein to SERCA, RyR, IP3R, MCU subunits and other MAM-related channels. We also consider how the SOCE-related events could contribute to the development of PD.
Collapse
Affiliation(s)
- Gergo Kovacs
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
11
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
12
|
Pedersen SF, Flinck M, Pardo LA. The Interplay between Dysregulated Ion Transport and Mitochondrial Architecture as a Dangerous Liaison in Cancer. Int J Mol Sci 2021; 22:ijms22105209. [PMID: 34069047 PMCID: PMC8156689 DOI: 10.3390/ijms22105209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Transport of ions and nutrients is a core mitochondrial function, without which there would be no mitochondrial metabolism and ATP production. Both ion homeostasis and mitochondrial phenotype undergo pervasive changes during cancer development, and both play key roles in driving the malignancy. However, the link between these events has been largely ignored. This review comprehensively summarizes and critically discusses the role of the reciprocal relationship between ion transport and mitochondria in crucial cellular functions, including metabolism, signaling, and cell fate decisions. We focus on Ca2+, H+, and K+, which play essential and highly interconnected roles in mitochondrial function and are profoundly dysregulated in cancer. We describe the transport and roles of these ions in normal mitochondria, summarize the changes occurring during cancer development, and discuss how they might impact tumorigenesis.
Collapse
Affiliation(s)
- Stine F. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: (S.F.P.); (L.A.P.)
| | - Mette Flinck
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Correspondence: (S.F.P.); (L.A.P.)
| |
Collapse
|
13
|
Nakamura T, Ogawa M, Kojima K, Takayanagi S, Ishihara S, Hattori K, Naguro I, Ichijo H. The mitochondrial Ca 2+ uptake regulator, MICU1, is involved in cold stress-induced ferroptosis. EMBO Rep 2021; 22:e51532. [PMID: 33822458 PMCID: PMC8097382 DOI: 10.15252/embr.202051532] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia-reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation-dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome-wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress-induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1-dependent mitochondrial Ca2+ homeostasis-MMP hyperpolarization axis is involved in cold stress-induced lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Motoyuki Ogawa
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kazuki Kojima
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Saki Takayanagi
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Shunya Ishihara
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kazuki Hattori
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Isao Naguro
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
14
|
Abstract
One of the most fascinating aspects of mitochondria is their remarkable ability to accumulate and store large amounts of calcium in the presence of phosphate leading to mitochondrial calcification. In this paper, we briefly address the mechanisms that regulate mitochondrial calcium homeostasis followed by the extensive review on the formation and characterization of intramitochondrial calcium phosphate granules leading to mitochondrial calcification and its relevance to physiological and pathological calcifications of body tissues.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Sepúlveda M, Burgos JI, Ciocci Pardo A, González Arbelaez L, Mosca S, Vila Petroff M. CaMKII-dependent ryanodine receptor phosphorylation mediates sepsis-induced cardiomyocyte apoptosis. J Cell Mol Med 2021; 24:9627-9637. [PMID: 33460250 PMCID: PMC7520277 DOI: 10.1111/jcmm.15470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 11/27/2022] Open
Abstract
Sepsis is associated with cardiac dysfunction, which is at least in part due to cardiomyocyte apoptosis. However, the underlying mechanisms are far from being understood. Using the colon ascendens stent peritonitis mouse model of sepsis (CASP), we examined the subcellular mechanisms that mediate sepsis‐induced apoptosis. Wild‐type (WT) CASP mice hearts showed an increase in apoptosis respect to WT‐Sham. CASP transgenic mice expressing a CaMKII inhibitory peptide (AC3‐I) were protected against sepsis‐induced apoptosis. Dantrolene, used to reduce ryanodine receptor (RyR) diastolic sarcoplasmic reticulum (SR) Ca2+ release, prevented apoptosis in WT‐CASP. To examine whether CaMKII‐dependent RyR2 phosphorylation mediates diastolic Ca2+ release and apoptosis in sepsis, we evaluated apoptosis in mutant mice hearts that have the CaMKII phosphorylation site of RyR2 (Serine 2814) mutated to Alanine (S2814A). S2814A CASP mice did not show increased apoptosis. Consistent with RyR2 phosphorylation‐dependent enhancement in diastolic SR Ca2+ release leading to mitochondrial Ca2+ overload, mitochondrial Ca2+ retention capacity was reduced in mitochondria isolated from WT‐CASP compared to Sham and this reduction was absent in mitochondria from CASP S2814A or dantrolene‐treated mice. We conclude that in sepsis, CaMKII‐dependent RyR2 phosphorylation results in diastolic Ca2+ release from SR which leads to mitochondrial Ca2+ overload and apoptosis.
Collapse
Affiliation(s)
- Marisa Sepúlveda
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luisa González Arbelaez
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana Mosca
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
16
|
Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J Mol Med (Berl) 2020; 99:161-178. [PMID: 33340060 PMCID: PMC7819932 DOI: 10.1007/s00109-020-02018-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition primarily characterized by an impairment of social interaction combined with the occurrence of repetitive behaviors. ASD starts in childhood and prevails across the lifespan. The variability of its clinical presentation renders early diagnosis difficult. Mutations in synaptic genes and alterations of mitochondrial functions are considered important underlying pathogenic factors, but it is obvious that we are far from a comprehensive understanding of ASD pathophysiology. At the synapse, mitochondria perform diverse functions, which are clearly not limited to their classical role as energy providers. Here, we review the current knowledge about mitochondria at the synapse and summarize the mitochondrial disturbances found in mouse models of ASD and other ASD-related neurodevelopmental disorders, like DiGeorge syndrome, Rett syndrome, Tuberous sclerosis complex, and Down syndrome.
Collapse
|
17
|
Mitochondria-lysosome contacts regulate mitochondrial Ca 2+ dynamics via lysosomal TRPML1. Proc Natl Acad Sci U S A 2020; 117:19266-19275. [PMID: 32703809 DOI: 10.1073/pnas.2003236117] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria and lysosomes are critical for cellular homeostasis, and dysfunction of both organelles has been implicated in numerous diseases. Recently, interorganelle contacts between mitochondria and lysosomes were identified and found to regulate mitochondrial dynamics. However, whether mitochondria-lysosome contacts serve additional functions by facilitating the direct transfer of metabolites or ions between the two organelles has not been elucidated. Here, using high spatial and temporal resolution live-cell microscopy, we identified a role for mitochondria-lysosome contacts in regulating mitochondrial calcium dynamics through the lysosomal calcium efflux channel, transient receptor potential mucolipin 1 (TRPML1). Lysosomal calcium release by TRPML1 promotes calcium transfer to mitochondria, which was mediated by tethering of mitochondria-lysosome contact sites. Moreover, mitochondrial calcium uptake at mitochondria-lysosome contact sites was modulated by the outer and inner mitochondrial membrane channels, voltage-dependent anion channel 1 and the mitochondrial calcium uniporter, respectively. Since loss of TRPML1 function results in the lysosomal storage disorder mucolipidosis type IV (MLIV), we examined MLIV patient fibroblasts and found both altered mitochondria-lysosome contact dynamics and defective contact-dependent mitochondrial calcium uptake. Thus, our work highlights mitochondria-lysosome contacts as key contributors to interorganelle calcium dynamics and their potential role in the pathophysiology of disorders characterized by dysfunctional mitochondria or lysosomes.
Collapse
|
18
|
Nguyen BY, Ruiz‐Velasco A, Bui T, Collins L, Wang X, Liu W. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol 2019; 176:4302-4318. [PMID: 29968316 PMCID: PMC6887906 DOI: 10.1111/bph.14431] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction is considered as a crucial contributory factor in cardiac pathology. This has highlighted the therapeutic potential of targeting mitochondria to prevent or treat cardiac disease. Mitochondrial dysfunction is associated with aberrant electron transport chain activity, reduced ATP production, an abnormal shift in metabolic substrates, ROS overproduction and impaired mitochondrial dynamics. This review will cover the mitochondrial functions and how they are altered in various disease conditions. Furthermore, the mechanisms that lead to mitochondrial defects and the protective mechanisms that prevent mitochondrial damage will be discussed. Finally, potential mitochondrial targets for novel therapeutic intervention will be explored. We will highlight the development of small molecules that target mitochondria from different perspectives and their current progress in clinical trials. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Binh Yen Nguyen
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Andrea Ruiz‐Velasco
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Thuy Bui
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Lucy Collins
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Wei Liu
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
19
|
Tian CJ, Zhen Z. Reactive Carbonyl Species: Diabetic Complication in the Heart and Lungs. Trends Endocrinol Metab 2019; 30:546-556. [PMID: 31253519 DOI: 10.1016/j.tem.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Abnormal chemical reactions in hyperglycemia alter normal metabolic processes in diabetes, which is a key process in the production of reactive carbonyls species (RCS). Increasing the concentration of RCS may result in carbonyl/oxidative stress in both the diabetic heart and lung. Ryanodine receptors (RyRs) not only play a key role in heart contraction, including rhythmic contraction and relaxation of the heart, but they are also important for controlling the airway smooth muscle. RCS modifies RyRs, resulting in RyRs dysfunction, which is involved in important mechanisms in diabetic complications. Very little is known about the mechanistic relationship between the heart and lung in diabetes. This review highlights new findings on the pathophysiological mechanisms and discusses potential approaches to treatment for these complications.
Collapse
Affiliation(s)
- Cheng-Ju Tian
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
20
|
Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018; 19:713-730. [PMID: 30143745 DOI: 10.1038/s41580-018-0052-8] [Citation(s) in RCA: 533] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium ions (Ca2+) are some of the most versatile signalling molecules, and they have many physiological functions, prominently including muscle contraction, neuronal excitability, cell migration and cell growth. By sequestering and releasing Ca2+, mitochondria serve as important regulators of cellular Ca2+. Mitochondrial Ca2+ also has other important functions, such as regulation of mitochondrial metabolism, ATP production and cell death. In recent years, identification of the molecular machinery regulating mitochondrial Ca2+ accumulation and efflux has expanded the number of (patho)physiological conditions that rely on mitochondrial Ca2+ homeostasis. Thus, expanding the understanding of the mechanisms of mitochondrial Ca2+ regulation and function in different cell types is an important task in biomedical research, which offers the possibility of targeting mitochondrial Ca2+ machinery for the treatment of several disorders.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care and Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
21
|
The Involvement of Mg 2+ in Regulation of Cellular and Mitochondrial Functions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6797460. [PMID: 28757913 PMCID: PMC5516748 DOI: 10.1155/2017/6797460] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022]
Abstract
Mg2+ is an essential mineral with pleotropic impacts on cellular physiology and functions. It acts as a cofactor of several important enzymes, as a regulator of ion channels such as voltage-dependent Ca2+ channels and K+ channels and on Ca2+-binding proteins. In general, Mg2+ is considered as the main intracellular antagonist of Ca2+, which is an essential secondary messenger initiating or regulating a great number of cellular functions. This review examines the effects of Mg2+ on mitochondrial functions with a particular focus on energy metabolism, mitochondrial Ca2+ handling, and apoptosis.
Collapse
|
22
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A. VDAC1 functions in Ca 2+ homeostasis and cell life and death in health and disease. Cell Calcium 2017; 69:81-100. [PMID: 28712506 DOI: 10.1016/j.ceca.2017.06.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
23
|
Kwong JQ. The mitochondrial calcium uniporter in the heart: energetics and beyond. J Physiol 2017; 595:3743-3751. [PMID: 27991671 DOI: 10.1113/jp273059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 01/11/2023] Open
Abstract
Ca2+ and mitochondria are inextricably linked to cardiac function and dysfunction. Ca2+ is central to cardiac excitation-contraction coupling and stimulates mitochondrial energy production to fuel contraction. Under pathological conditions of dysregulated Ca2+ cycling, mitochondrial Ca2+ overload activates cellular death pathways. Thus, in the cardiomyocyte, the mitochondrial Ca2+ microdomain is where contraction, energy and death collide. A key component of mitochondrial Ca2+ signalling is the mitochondrial Ca2+ uniporter complex (uniplex), an inner membrane Ca2+ transporter and major pathway of mitochondrial Ca2+ entry. Once known only as the unidentified target for ruthenium red and related compounds, in recent years, the uniplex has evolved into a complex multiprotein assembly. The identification of the molecular constituents of the uniplex has made possible the generation of targeted genetic models to interrogate uniplex function in vivo. This review will summarize our current understanding of the molecular structure of the uniplex, its impact on mitochondrial energetics and cardiac physiology, its contribution to cardiomyocyte death, and its expanding roles in cardiac biology.
Collapse
Affiliation(s)
- Jennifer Q Kwong
- Department of Pediatrics, Division of Cardiovascular Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
24
|
Shoshan-Barmatz V, De S. Mitochondrial VDAC, the Na +/Ca 2+ Exchanger, and the Ca 2+ Uniporter in Ca 2+ Dynamics and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:323-347. [PMID: 29594867 DOI: 10.1007/978-3-319-55858-5_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca2+ uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca2+ signaling, energy metabolism, and cell death. Ca2+ transport across the inner and outer mitochondrial membranes (IMM, OMM, respectively), is mediated by several proteins, including the voltage-dependent anion channel 1 (VDAC1) in the OMM, and the mitochondrial Ca2+ uniporter (MCU) and Na+-dependent mitochondrial Ca2+ efflux transporter, (the NCLX), both in the IMM. By transporting Ca2+ across the OMM to the mitochondrial inner-membrane space (IMS), VDAC1 allows Ca2+ access to the MCU, facilitating transport of Ca2+ to the matrix, and also from the IMS to the cytosol. Intra-mitochondrial Ca2+ controls energy production and metabolism by modulating critical enzymes in the tricarboxylic acid (TCA) cycle and fatty acid oxidation. Thus, by transporting Ca2+, VDAC1 plays a fundamental role in regulating mitochondrial Ca2+ homeostasis, oxidative phosphorylation, and Ca2+ crosstalk among mitochondria, cytoplasm, and the endoplasmic reticulum (ER). VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, and apoptosis stimuli induce overexpression of the protein in a Ca2+-dependent manner. The overexpressed VDAC1 undergoes oligomerization leading to the formation of a channel, through which apoptogenic agents can be released. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis, in apoptosis, and in diseases associated with mitochondria dysfunction.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Soumasree De
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
25
|
Elustondo PA, Nichols M, Robertson GS, Pavlov EV. Mitochondrial Ca2+ uptake pathways. J Bioenerg Biomembr 2016; 49:113-119. [DOI: 10.1007/s10863-016-9676-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
|
26
|
Abstract
Ca
2+ oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca
2+ exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca
2+ changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca
2+ are controlled not only by the frequency of Ca
2+ oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca
2+ stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca
2+ oscillations. The main characteristics of the Ca
2+ exchange fluxes with these compartments are also reviewed.
Collapse
Affiliation(s)
- Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Combettes
- Interactions Cellulaires et Physiopathologie Hépatique, UMR-S 1174, Université Paris Sud, Orsay, France
| |
Collapse
|
27
|
Seidlmayer LK, Kuhn J, Berbner A, Arias-Loza PA, Williams T, Kaspar M, Czolbe M, Kwong JQ, Molkentin JD, Heinze KG, Dedkova EN, Ritter O. Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulum-mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca2+ uptake through the mitochondrial ryanodine receptor in cardiac myocytes. Cardiovasc Res 2016; 112:491-501. [PMID: 27496868 DOI: 10.1093/cvr/cvw185] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
AIMS Elevated levels of inositol 1,4,5-trisphosphate (IP3) in adult cardiac myocytes are typically associated with the development of cardiac hypertrophy, arrhythmias, and heart failure. IP3 enhances intracellular Ca(2+ )release via IP3 receptors (IP3Rs) located at the sarcoplasmic reticulum (SR). We aimed to determine whether IP3-induced Ca(2+ )release affects mitochondrial function and determine the underlying mechanisms. METHODS AND RESULTS We compared the effects of IP3Rs- and ryanodine receptors (RyRs)-mediated cytosolic Ca(2+ )elevation achieved by endothelin-1 (ET-1) and isoproterenol (ISO) stimulation, respectively, on mitochondrial Ca(2+ )uptake and adenosine triphosphate (ATP) generation. Both ET-1 and isoproterenol induced an increase in mitochondrial Ca(2+ )(Ca(2 +) m) but only ET-1 led to an increase in ATP concentration. ET-1-induced effects were prevented by cell treatment with the IP3 antagonist 2-aminoethoxydiphenyl borate and absent in myocytes from transgenic mice expressing an IP3 chelating protein (IP3 sponge). Furthermore, ET-1-induced mitochondrial Ca(2+) uptake was insensitive to the mitochondrial Ca(2+ )uniporter inhibitor Ru360, however was attenuated by RyRs type 1 inhibitor dantrolene. Using real-time polymerase chain reaction, we detected the presence of all three isoforms of IP3Rs and RyRs in murine ventricular myocytes with a dominant presence of type 2 isoform for both receptors. CONCLUSIONS Stimulation of IP3Rs with ET-1 induces Ca(2+ )release from the SR which is tunnelled to mitochondria via mitochondrial RyR leading to stimulation of mitochondrial ATP production.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany Comprehensive Heart Failure Center, University of Würzburg, Straubmühlweg 2a, 97078 Würzburg, Germany
| | - Johannes Kuhn
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Annette Berbner
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Paula-Anahi Arias-Loza
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Tatjana Williams
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Mathias Kaspar
- Comprehensive Heart Failure Center, University of Würzburg, Straubmühlweg 2a, 97078 Würzburg, Germany
| | - Martin Czolbe
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | - Jennifer Q Kwong
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020 Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020 Cincinnati, OH 45229, USA
| | - Katrin Gertrud Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Elena N Dedkova
- Department of Pharmacology, School of Medicine, University of California Davis, 451 E. Health Sciences Drive, Genome and Biomedical Sciences Facility, Davis, CA 95616, USA
| | - Oliver Ritter
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg, Germany Comprehensive Heart Failure Center, University of Würzburg, Straubmühlweg 2a, 97078 Würzburg, Germany Medizinische Hochschule Brandenburg, Campus Klinikum Brandenburg/Havel, Abteilung für Kardiologie und Pneumologie, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
| |
Collapse
|
28
|
Danylovych YV, Chunikhin AY, Danylovych GV, Kolomiets OV. The use of the Petri net method in the simulation modeling of mitochondrial swelling. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:66-74. [PMID: 29235789 DOI: 10.15407/ubj88.04.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Using photon correlation spectroscopy, which allows investigating changes in the hydrodynamic diameter of the particles in suspension, it was shown that ultrahigh concentrations of Ca2+ (over 10 mM) induce swelling of isolated mitochondria. An increase in hydrodynamic diameter was caused by an increase of non-specific mitochondrial membrane permeability to Ca ions, matrix Ca2+ overload, activation of ATP- and Ca2+-sensitive K+-channels, as well as activation of cyclosporin-sensitive permeability transition pore. To formalize the experimental data and to assess conformity of experimental results with theoretical predictions we developed a simulation model using the hybrid functional Petri net method.
Collapse
|
29
|
Xu Z, Zhang D, He X, Huang Y, Shao H. Transport of Calcium Ions into Mitochondria. Curr Genomics 2016; 17:215-9. [PMID: 27252588 PMCID: PMC4869008 DOI: 10.2174/1389202917666160202215748] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/09/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023] Open
Abstract
To uptake calcium ions of mitochondria is of significant functional connotation for cells, because calcium ions in mitochondria are involved in energy production, regulatory signals transfer, and mitochondrial permeability transition pore opening and even programmed cell death of apoptosis, further playing more roles in plant productivity and quality. Cytoplasmic calcium ions access into outer mitochondrial membrane (OMM) from voltage dependent anion-selective channel (VDAC) and were absorbed into inner mitochondrial membrane (IMM) by mitochondrial calcium uniporter (MCU), rapid mitochondrial calcium uptake (RaM) or mitochondrial ryanodine receptor (mRyR). Although both mitochondria and the mechanisms of calcium transport have been extensively studied, but there are still long-standing or even new challenges. Here we review the history and recent discoveries of the mitochondria calcium ions channel complex involved calcium assimilation, and discuss the role of calcium ions into mitochondria.
Collapse
Affiliation(s)
- Zhaolong Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dayong Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaolan He
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yihong Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| |
Collapse
|
30
|
Llorente-Folch I, Rueda CB, Pardo B, Szabadkai G, Duchen MR, Satrustegui J. The regulation of neuronal mitochondrial metabolism by calcium. J Physiol 2016; 593:3447-62. [PMID: 25809592 DOI: 10.1113/jp270254] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 12/24/2022] Open
Abstract
Calcium signalling is fundamental to the function of the nervous system, in association with changes in ionic gradients across the membrane. Although restoring ionic gradients is energetically costly, a rise in intracellular Ca(2+) acts through multiple pathways to increase ATP synthesis, matching energy supply to demand. Increasing cytosolic Ca(2+) stimulates metabolite transfer across the inner mitochondrial membrane through activation of Ca(2+) -regulated mitochondrial carriers, whereas an increase in matrix Ca(2+) stimulates the citric acid cycle and ATP synthase. The aspartate-glutamate exchanger Aralar/AGC1 (Slc25a12), a component of the malate-aspartate shuttle (MAS), is stimulated by modest increases in cytosolic Ca(2+) and upregulates respiration in cortical neurons by enhancing pyruvate supply into mitochondria. Failure to increase respiration in response to small (carbachol) and moderate (K(+) -depolarization) workloads and blunted stimulation of respiration in response to high workloads (veratridine) in Aralar/AGC1 knockout neurons reflect impaired MAS activity and limited mitochondrial pyruvate supply. In response to large workloads (veratridine), acute stimulation of respiration occurs in the absence of MAS through Ca(2+) influx through the mitochondrial calcium uniporter (MCU) and a rise in matrix [Ca(2+) ]. Although the physiological importance of the MCU complex in work-induced stimulation of respiration of CNS neurons is not yet clarified, abnormal mitochondrial Ca(2+) signalling causes pathology. Indeed, loss of function mutations in MICU1, a regulator of MCU complex, are associated with neuromuscular disease. In patient-derived MICU1 deficient fibroblasts, resting matrix Ca(2+) is increased and mitochondria fragmented. Thus, the fine tuning of Ca(2+) signals plays a key role in shaping mitochondrial bioenergetics.
Collapse
Affiliation(s)
- I Llorente-Folch
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, Madrid, Spain
| | - C B Rueda
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, Madrid, Spain
| | - B Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, Madrid, Spain
| | - G Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK.,Department of Biomedical Sciences, University of Padua and Consiglio Nazionale delle Ricerche Neuroscience Institute, Padua, Italy
| | - M R Duchen
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - J Satrustegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, Madrid, Spain
| |
Collapse
|
31
|
UCP2 modulates single-channel properties of a MCU-dependent Ca(2+) inward current in mitochondria. Pflugers Arch 2015; 467:2509-18. [PMID: 26275882 PMCID: PMC4646917 DOI: 10.1007/s00424-015-1727-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/14/2023]
Abstract
The mitochondrial Ca(2+) uniporter is a highly Ca(2+)-selective protein complex that consists of the pore-forming mitochondrial Ca(2+) uniporter protein (MCU), the scaffolding essential MCU regulator (EMRE), and mitochondrial calcium uptake 1 and 2 (MICU1/2), which negatively regulate mitochondrial Ca(2+) uptake. We have previously reported that uncoupling proteins 2 and 3 (UCP2/3) are also engaged in the activity of mitochondrial Ca(2+) uptake under certain conditions, while the mechanism by which UCP2/3 facilitates mitochondrial Ca(2+) uniport remains elusive. This work was designed to investigate the impact of UCP2 on the three distinct mitochondrial Ca(2+) currents found in mitoplasts isolated from HeLa cells, the intermediate- (i-), burst- (b-) and extra-large (xl-) mitochondrial/mitoplast Ca(2+) currents (MCC). Using the patch clamp technique on mitoplasts from cells with reduced MCU and EMRE unveiled a very high affinity of MCU for xl-MCC that succeeds that for i-MCC, indicating the coexistence of at least two MCU/EMRE-dependent Ca(2+) currents. The manipulation of the expression level of UCP2 by either siRNA-mediated knockdown or overexpression changed exclusively the open probability (NPo) of xl-MCC by approx. 38% decrease or nearly a 3-fold increase, respectively. These findings confirm a regulatory role of UCP2 in mitochondrial Ca(2+) uptake and identify UCP2 as a selective modulator of just one distinct MCU/EMRE-dependent mitochondrial Ca(2+) inward current.
Collapse
|
32
|
Madamba SM, Damri KN, Dejean LM, Peixoto PM. Mitochondrial Ion Channels in Cancer Transformation. Front Oncol 2015; 5:120. [PMID: 26090338 PMCID: PMC4455240 DOI: 10.3389/fonc.2015.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process.
Collapse
Affiliation(s)
- Stephen M. Madamba
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
| | - Kevin N. Damri
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Laurent M. Dejean
- Department of Chemistry, College of Science and Mathematics, California State University Fresno, Fresno, CA, USA
| | - Pablo M. Peixoto
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
- Department of Basic Sciences, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
33
|
Wang L, Yang X, Shen Y. Molecular mechanism of mitochondrial calcium uptake. Cell Mol Life Sci 2015; 72:1489-98. [PMID: 25548802 PMCID: PMC11113575 DOI: 10.1007/s00018-014-1810-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Mitochondrial calcium uptake plays a critical role in various cellular functions. After half a century of extensive studies, the molecular components and important regulators of the mitochondrial calcium uptake complex have been identified. However, the mechanism by which these protein molecules interact with one another and coordinate to regulate calcium passage through mitochondrial membranes remains elusive. Here, we summarize recent progress in the structural and functional characterization of these important protein molecules, which are involved in mitochondrial calcium uptake. In particular, we focus on the current understanding of the molecular mechanism underlying calcium through two mitochondrial membranes. Additionally, we provide a new perspective for future directions in investigation and molecular intervention.
Collapse
Affiliation(s)
- Lele Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
| |
Collapse
|
34
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
35
|
Calderón JC, Bolaños P, Caputo C. Tetanic Ca2+ transient differences between slow- and fast-twitch mouse skeletal muscle fibres: a comprehensive experimental approach. J Muscle Res Cell Motil 2014; 35:279-93. [DOI: 10.1007/s10974-014-9388-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
|
36
|
Docampo R, Vercesi AE, Huang G. Mitochondrial calcium transport in trypanosomes. Mol Biochem Parasitol 2014; 196:108-16. [PMID: 25218432 DOI: 10.1016/j.molbiopara.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
The biochemical peculiarities of trypanosomes were fundamental for the recent molecular identification of the long-sought channel involved in mitochondrial Ca(2+) uptake, the mitochondrial Ca(2+) uniporter or MCU. This discovery led to the finding of numerous regulators of the channel, which form a high molecular weight complex with MCU. Some of these regulators have been bioinformatically identified in trypanosomes, which are the first eukaryotic organisms described for which MCU is essential. In trypanosomes MCU is important for buffering cytosolic Ca(2+) changes and for activation of the bioenergetics of the cells. Future work on this pathway in trypanosomes promises further insight into the biology of these fascinating eukaryotes, as well as the potential for novel target discovery.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; Departamento de Patologia Clínica, State University of Campinas, Campinas 13083, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, State University of Campinas, Campinas 13083, SP, Brazil
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
37
|
Modelling mechanism of calcium oscillations in pancreatic acinar cells. J Bioenerg Biomembr 2014; 46:403-20. [DOI: 10.1007/s10863-014-9561-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/24/2014] [Indexed: 01/18/2023]
|
38
|
Jain SS, Paglialunga S, Vigna C, Ludzki A, Herbst EA, Lally JS, Schrauwen P, Hoeks J, Tupling AR, Bonen A, Holloway GP. High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes 2014; 63:1907-13. [PMID: 24520120 DOI: 10.2337/db13-0816] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Calcium/calmodulin-dependent protein kinase (CaMK) activation induces mitochondrial biogenesis in response to increasing cytosolic calcium concentrations. Calcium leak from the ryanodine receptor (RyR) is regulated by reactive oxygen species (ROS), which is increased with high-fat feeding. We examined whether ROS-induced CaMKII-mediated signaling induced skeletal muscle mitochondrial biogenesis in selected models of lipid oversupply. In obese Zucker rats and high-fat-fed rodents, in which muscle mitochondrial content was upregulated, CaMKII phosphorylation was increased independent of changes in calcium uptake because sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) protein expression or activity was not altered, implicating altered sarcoplasmic reticulum (SR) calcium leak in the activation of CaMKII. In support of this, we found that high-fat feeding increased mitochondrial ROS emission and S-nitrosylation of the RyR, whereas hydrogen peroxide induced SR calcium leak from the RyR and activation of CaMKII. Moreover, administration of a mitochondrial-specific antioxidant, SkQ, prevented high-fat diet-induced phosphorylation of CaMKII and the induction of mitochondrial biogenesis. Altogether, these data suggest that increased mitochondrial ROS emission is required for the induction of SR calcium leak, activation of CaMKII, and induction of mitochondrial biogenesis in response to excess lipid availability.
Collapse
Affiliation(s)
- Swati S Jain
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Alison Ludzki
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Eric A Herbst
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - James S Lally
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Patrick Schrauwen
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - A Russ Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Arend Bonen
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
39
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
40
|
Jakob R, Beutner G, Sharma VK, Duan Y, Gross RA, Hurst S, Jhun BS, O-Uchi J, Sheu SS. Molecular and functional identification of a mitochondrial ryanodine receptor in neurons. Neurosci Lett 2014; 575:7-12. [PMID: 24861510 DOI: 10.1016/j.neulet.2014.05.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial Ca(2+) controls numerous cell functions, such as energy metabolism, reactive oxygen species generation, spatiotemporal dynamics of Ca(2+) signaling, cell growth and death in various cell types including neurons. Mitochondrial Ca(2+) accumulation is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU), but recent reports also indicate that mitochondrial Ca(2+)-influx mechanisms are regulated not only by MCU, but also by multiple channels/transporters. We previously reported that ryanodine receptor (RyR), which is a one of the main Ca(2+)-release channels at endoplasmic/sarcoplasmic reticulum (SR/ER) in excitable cells, is expressed at the mitochondrial inner membrane (IMM) and serves as a part of the Ca(2+) uptake mechanism in cardiomyocytes. Although RyR is also expressed in neuronal cells and works as a Ca(2+)-release channel at ER, it has not been well investigated whether neuronal mitochondria possess RyR and, if so, whether this mitochondrial RyR has physiological functions in neuronal cells. Here we show that neuronal mitochondria express RyR at IMM and accumulate Ca(2+) through this channel in response to cytosolic Ca(2+) elevation, which is similar to what we observed in another excitable cell-type, cardiomyocytes. In addition, the RyR blockers dantrolene or ryanodine significantly inhibits mitochondrial Ca(2+) uptake in permeabilized striatal neurons. Taken together, we identify RyR as an additional mitochondrial Ca(2+) uptake mechanism in response to the elevation of [Ca(2+)]c in neurons, suggesting that this channel may play a critical role in mitochondrial Ca(2+)-mediated functions such as energy metabolism.
Collapse
Affiliation(s)
- Regina Jakob
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Gisela Beutner
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Virendra K Sharma
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Yuntao Duan
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Robert A Gross
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Neurology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Bong Sook Jhun
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jin O-Uchi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Shey-Shing Sheu
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States; Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
41
|
Joiner MLA, Koval OM. CaMKII and stress mix it up in mitochondria. Front Pharmacol 2014; 5:67. [PMID: 24822046 PMCID: PMC4013469 DOI: 10.3389/fphar.2014.00067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022] Open
Abstract
CaMKII is a newly discovered resident of mitochondria in the heart. Mitochondrial CaMKII promotes poor outcomes after heart injury from a number of pathological conditions, including myocardial infarction (MI), ischemia reperfusion (IR), and stress from catecholamine stimulation. A study using the inhibitor of CaMKII, CaMKIIN, with expression delimited to myocardial mitochondria, indicates that an underlying cause of heart disease results from the opening of the mitochondrial permeability transition pore (mPTP). Evidence from electrophysiological and other experiments show that CaMKII inhibition likely suppresses mPTP opening by reducing Ca2+ entry into mitochondria. However, we expect other proteins involved in Ca2+ signaling in the mitochondria are affected with CaMKII inhibition. Several outstanding questions remain for CaMKII signaling in heart mitochondria. Most importantly, how does CaMKII, without the recognized N-terminal mitochondrial targeting sequence transfer to mitochondria?
Collapse
Affiliation(s)
| | - Olha M Koval
- Internal Medicine/Cardiology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
42
|
Calderón JC, Bolaños P, Caputo C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 2014; 6:133-160. [PMID: 28509964 PMCID: PMC5425715 DOI: 10.1007/s12551-013-0135-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.
Collapse
Affiliation(s)
- Juan C Calderón
- Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
- Departamento de Fisiología y Bioquímica, Grupo de Investigación en Fisiología y Bioquímica-Physis, Facultad de Medicina, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Carlo Caputo
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| |
Collapse
|
43
|
Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter. Cold Spring Harb Protoc 2014; 2014:161-6. [PMID: 24492769 DOI: 10.1101/pdb.top066241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.
Collapse
|
44
|
Mitochondrial Ca(2+) uniporter (MCU)-dependent and MCU-independent Ca(2+) channels coexist in the inner mitochondrial membrane. Pflugers Arch 2013; 466:1411-20. [PMID: 24162235 PMCID: PMC4020763 DOI: 10.1007/s00424-013-1383-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/10/2013] [Accepted: 10/12/2013] [Indexed: 02/07/2023]
Abstract
A protein referred to as CCDC109A and then renamed to mitochondrial calcium uniporter (MCU) has recently been shown to accomplish mitochondrial Ca2+ uptake in different cell types. In this study, we investigated whole-mitoplast inward cation currents and single Ca2+ channel activities in mitoplasts prepared from stable MCU knockdown HeLa cells using the patch-clamp technique. In whole-mitoplast configuration, diminution of MCU considerably reduced inward Ca2+ and Na+ currents. This was accompanied by a decrease in occurrence of single channel activity of the intermediate conductance mitochondrial Ca2+ current (i-MCC). However, ablation of MCU yielded a compensatory 2.3-fold elevation in the occurrence of the extra large conductance mitochondrial Ca2+ current (xl-MCC), while the occurrence of bursting currents (b-MCC) remained unaltered. These data reveal i-MCC as MCU-dependent current while xl-MCC and b-MCC seem to be rather MCU-independent, thus, pointing to the engagement of at least two molecularly distinct mitochondrial Ca2+ channels.
Collapse
|
45
|
O-Uchi J, Jhun BS, Hurst S, Bisetto S, Gross P, Chen M, Kettlewell S, Park J, Oyamada H, Smith GL, Murayama T, Sheu SS. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts. Am J Physiol Heart Circ Physiol 2013; 305:H1736-51. [PMID: 24124188 DOI: 10.1152/ajpheart.00094.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca(2+) influx is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU). Growing evidence also indicates that mitochondrial Ca(2+) influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca(2+) uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca(2+) influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca(2+) transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca(2+) elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca(2+)-induced ATP production in cardiac H9c2 myoblasts.
Collapse
Affiliation(s)
- Jin O-Uchi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Waldeck-Weiermair M, Deak AT, Groschner LN, Alam MR, Jean-Quartier C, Malli R, Graier WF. Molecularly distinct routes of mitochondrial Ca2+ uptake are activated depending on the activity of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). J Biol Chem 2013; 288:15367-79. [PMID: 23592775 PMCID: PMC3663555 DOI: 10.1074/jbc.m113.462259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transfer of Ca2+ across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca2+ uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca2+ fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca2+ uptake pathway or establish distinct routes for mitochondrial Ca2+ sequestration. In this study, we show that a modulation of Ca2+ release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca2+ signals and consequently switches mitochondrial Ca2+ uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca2+ sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca2+ across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca2+ uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca2+ rises.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
47
|
Quercetin as a fluorescent probe for the ryanodine receptor activity in Jurkat cells. Pflugers Arch 2013; 465:1101-19. [DOI: 10.1007/s00424-013-1235-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 02/07/2023]
|
48
|
Bondarenko AI, Jean-Quartier C, Malli R, Graier WF. Characterization of distinct single-channel properties of Ca²⁺ inward currents in mitochondria. Pflugers Arch 2013; 465:997-1010. [PMID: 23397170 PMCID: PMC3696464 DOI: 10.1007/s00424-013-1224-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/24/2022]
Abstract
Previous studies have demonstrated several molecularly distinct players involved in mitochondrial Ca2+ uptake. In the present study, electrophysiological recordings on mitoplasts that were isolated from HeLa cells were performed in order to biophysically and pharmacologically characterize Ca2+ currents across the inner mitochondrial membrane. In mitoplast-attached configuration with 105 mM Ca2+ as a charge carrier, three distinct channel conductances of 11, 23, and 80 pS were observed. All types of mitochondrial currents were voltage-dependent and essentially depended on the presence of Ca2+ in the pipette. The 23 pS channel exhibited burst kinetics. Though all channels were sensitive to ruthenium red, their sensitivity was different. The 11 and 23 pS channels exhibited a lower sensitivity to ruthenium red than the 80 pS channel. The activities of all channels persisted in the presence of cylosporin A, CGP 37187, various K+-channel inhibitors, and Cl− channel blockers disodium 4,4′-diisothiocyanatostilbene-2,2′-disulfonate and niflumic acid. Collectively, our data identified multiple conductances of Ca2+ currents in mitoplasts isolated from HeLa cells, thus challenging the dogma of only one unique mitochondrial Ca2+ uniporter.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | | | | | | |
Collapse
|
49
|
Wei AC, Liu T, Winslow RL, O'Rourke B. Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. ACTA ACUST UNITED AC 2013; 139:465-78. [PMID: 22641641 PMCID: PMC3362519 DOI: 10.1085/jgp.201210784] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mitochondrial Ca(2+) uptake is thought to provide an important signal to increase energy production to meet demand but, in excess, can also trigger cell death. The mechanisms defining the relationship between total Ca(2+) uptake, changes in mitochondrial matrix free Ca(2+), and the activation of the mitochondrial permeability transition pore (PTP) are not well understood. We quantitatively measure changes in [Ca(2+)](out) and [Ca(2+)](mito) during Ca(2+) uptake in isolated cardiac mitochondria and identify two components of Ca(2+) influx. [Ca(2+)](mito) recordings revealed that the first, MCU(mode1), required at least 1 µM Ru360 to be completely inhibited, and responded to small Ca(2+) additions in the range of 0.1 to 2 µM with rapid and large changes in [Ca(2+)](mito). The second component, MCU(mode2), was blocked by 100 nM Ru360 and was responsible for the bulk of total Ca(2+) uptake for large Ca(2+) additions in the range of 2 to 10 µM; however, it had little effect on steady-state [Ca(2+)](mito). MCU(mode1) mediates changes in [Ca(2+)](mito) of 10s of μM, even in the presence of 100 nM Ru360, indicating that there is a finite degree of Ca(2+) buffering in the matrix associated with this pathway. In contrast, the much higher Ca(2+) loads evoked by MCU(mode2) activate a secondary dynamic Ca(2+) buffering system consistent with calcium-phosphate complex formation. Increasing P(i) potentiated [Ca(2+)](mito) increases via MCU(mode1) but suppressed [Ca(2+)](mito) changes via MCU(mode2). The results suggest that the role of MCU(mode1) might be to modulate oxidative phosphorylation in response to intracellular Ca(2+) signaling, whereas MCU(mode2) and the dynamic high-capacity Ca(2+) buffering system constitute a Ca(2+) sink function. Interestingly, the trigger for PTP activation is unlikely to be [Ca(2+)](mito) itself but rather a downstream byproduct of total mitochondrial Ca(2+) loading.
Collapse
Affiliation(s)
- An-Chi Wei
- Division of Cardiology, Department of Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
50
|
|