1
|
Suzuki K, Okawa Y, Akter S, Ito H, Shiba Y. Arf GTPase-Activating proteins ADAP1 and ARAP1 regulate incorporation of CD63 in multivesicular bodies. Biol Open 2024; 13:bio060338. [PMID: 38682696 PMCID: PMC11103404 DOI: 10.1242/bio.060338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
Arf GTPase-activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors. ArfGAPs are critical for cargo sorting in the Golgi-to-ER traffic. However, the role of ArfGAPs in sorting into intralumenal vesicles (ILVs) in multivesicular bodies (MVBs) in post-Golgi traffic remains unclear. Exosomes are extracellular vesicles (EVs) of endosomal origin. CD63 is an EV marker. CD63 is enriched ILVs in MVBs of cells. However, the secretion of CD63 positive EVs has not been consistent with the data on CD63 localization in MVBs, and how CD63-containing EVs are formed is yet to be understood. To elucidate the mechanism of CD63 transport to ILVs, we focused on CD63 localization in MVBs and searched for the ArfGAPs involved in CD63 localization. We observed that ADAP1 and ARAP1 depletion inhibited CD63 localization to enlarged endosomes after Rab5Q79L overexpression. We tested epidermal growth factor (EGF) and CD9 localization in MVBs. We observed that ADAP1 and ARAP1 depletion inhibited CD9 localization in enlarged endosomes but not EGF. Our results indicate ADAP1 and ARAP1, regulate incorporation of CD63 and CD9, but not EGF, in overlapped and different MVBs. Our work will contribute to distinguish heterogenous ILVs and exosomes by ArfGAPs.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Yoshitaka Okawa
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Sharmin Akter
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Haruki Ito
- Biological Sciences Course, Faculty of Science and Engineering, Iwate University, 020-8551, Morioka, Japan
| | - Yoko Shiba
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
- Biological Sciences Course, Faculty of Science and Engineering, Iwate University, 020-8551, Morioka, Japan
| |
Collapse
|
2
|
Manzer KM, Fromme JC. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix. Mol Biol Cell 2023; 34:ar119. [PMID: 37672345 PMCID: PMC10846627 DOI: 10.1091/mbc.e23-07-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Arf GTPases are central regulators of the Golgi complex, which serves as the nexus of membrane-trafficking pathways in eukaryotic cells. Arf proteins recruit dozens of effectors to modify membranes, sort cargos, and create and tether transport vesicles, and are therefore essential for orchestrating Golgi trafficking. The regulation of Arf activity is controlled by the action of Arf-GEFs which activate via nucleotide exchange, and Arf-GAPs which inactivate via nucleotide hydrolysis. The localization dynamics of Arf GTPases and their Arf-GAPs during Golgi maturation have not been reported. Here we use the budding yeast model to examine the temporal localization of the Golgi Arf-GAPs. We also determine the mechanisms used by the Arf-GAP Age2 to localize to the Golgi. We find that the catalytic activity of Age2 and a conserved sequence in the unstructured C-terminal domain of Age2 are both required for Golgi localization. This sequence is predicted to form an amphipathic helix and mediates direct binding of Age2 to membranes in vitro. We also report the development of a probe for sensing active Arf1 in living cells and use this probe to characterize the temporal dynamics of Arf1 during Golgi maturation.
Collapse
Affiliation(s)
- Kaitlyn M. Manzer
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850
| |
Collapse
|
3
|
Manzer KM, Fromme JC. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550229. [PMID: 37546741 PMCID: PMC10402032 DOI: 10.1101/2023.07.23.550229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Arf GTPases are central regulators of the Golgi complex, which serves as the nexus of membrane trafficking pathways in eukaryotic cells. Arf proteins recruit dozens of effectors to modify membranes, sort cargos, and create and tether transport vesicles, and are therefore essential for orchestrating Golgi trafficking. The regulation of Arf activity is controlled by the action of Arf-GEFs, which activate via nucleotide exchange, and Arf-GAPs, which inactivate via nucleotide hydrolysis. The localization dynamics of Arf GTPases and their Arf-GAPs during Golgi maturation have not been reported. Here we use the budding yeast model to examine the temporal localization of the Golgi Arf-GAPs. We also determine the mechanisms used by the Arf-GAP Age2 to localize to the Golgi. We find that the catalytic activity of Age2 and a conserved sequence in the unstructured C-terminal domain of Age2 are both required for Golgi localization. This sequence is predicted to form an amphipathic helix and mediates direct binding of Age2 to membranes in vitro . We also report the development of a probe for sensing active Arf1 in living cells and use this probe to characterize the temporal dynamics of Arf1 during Golgi maturation.
Collapse
Affiliation(s)
- Kaitlyn M Manzer
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - J Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
4
|
Vitrac A, Leblond CS, Rolland T, Cliquet F, Mathieu A, Maruani A, Delorme R, Schön M, Grabrucker AM, van Ravenswaaij-Arts C, Phelan K, Tabet AC, Bourgeron T. Dissecting the 22q13 region to explore the genetic and phenotypic diversity of patients with Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104732. [PMID: 36822569 DOI: 10.1016/j.ejmg.2023.104732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
SHANK3-related Phelan-McDermid syndrome (PMS) is caused by a loss of the distal part of chromosome 22, including SHANK3, or by a pathological SHANK3 variant. There is an important genetic and phenotypic diversity among patients who can present with developmental delay, language impairments, autism, epilepsy, and other symptoms. SHANK3, encoding a synaptic scaffolding protein, is deleted in the majority of patients with PMS and is considered a major gene involved in the neurological impairments of the patients. However, differences in deletion size can influence clinical features, and in some rare cases, deletions at the 22q13 locus in individuals with SHANK3-unrelated PMS do not encompass SHANK3. These individuals with SHANK3-unrelated PMS still display a PMS-like phenotype. This suggests the participation of other 22q13 genes in the pathogenesis of PMS. Here, we review the biological function and potential implication in PMS symptoms of 110 genes located in the 22q13 region, focusing on 35 genes with evidence for association with neurodevelopmental disorders, including 13 genes for epilepsy and 11 genes for microcephaly and/or macrocephaly. Our review is restricted to the 22q13 region, but future large-scale studies using whole genome sequencing and deep-phenotyping are warranted to develop predictive models of clinical trajectories and to target specific medical and educational care for each individual with PMS.
Collapse
Affiliation(s)
- Aline Vitrac
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France.
| | - Claire S Leblond
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Thomas Rolland
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Freddy Cliquet
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Alexandre Mathieu
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Hôpital Robert Debré, APHP, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Hôpital Robert Debré, APHP, Paris, France
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, Ireland; Dept. of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute HRI, University of Limerick, Limerick, Ireland
| | - Conny van Ravenswaaij-Arts
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists & Research Institute, Fort Myers, FL, 33916, USA
| | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France.
| |
Collapse
|
5
|
Li YY, Kuroki K, Shimakami T, Murai K, Kawaguchi K, Shirasaki T, Nio K, Sugimoto S, Nishikawa T, Okada H, Orita N, Takayama H, Wang Y, Thi Bich PD, Ishida A, Iwabuchi S, Hashimoto S, Shimaoka T, Tabata N, Watanabe-Takahashi M, Nishikawa K, Yanagawa H, Seiki M, Matsushima K, Yamashita T, Kaneko S, Honda M. Hepatitis B Virus Utilizes a Retrograde Trafficking Route via the Trans-Golgi Network to Avoid Lysosomal Degradation. Cell Mol Gastroenterol Hepatol 2023; 15:533-558. [PMID: 36270602 PMCID: PMC9868690 DOI: 10.1016/j.jcmgh.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infection is difficult to cure owing to the persistence of covalently closed circular viral DNA (cccDNA). We performed single-cell transcriptome analysis of newly established HBV-positive and HBV-negative hepatocellular carcinoma cell lines and found that dedicator of cytokinesis 11 (DOCK11) was crucially involved in HBV persistence. However, the roles of DOCK11 in the HBV lifecycle have not been clarified. METHODS The cccDNA levels were measured by Southern blotting and real-time detection polymerase chain reaction in various hepatocytes including PXB cells by using an HBV-infected model. The retrograde trafficking route of HBV capsid was investigated by super-resolution microscopy, proximity ligation assay, and time-lapse analysis. The downstream molecules of DOCK11 and underlying mechanism were examined by liquid chromatography-tandem mass spectrometry, immunoblotting, and enzyme-linked immunosorbent assay. RESULTS The cccDNA levels were strongly increased by DOCK11 overexpression and repressed by DOCK11 suppression. Interestingly, DOCK11 functionally associated with retrograde trafficking proteins in the trans-Golgi network (TGN), Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with HBV capsid, to open an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. Clinically, DOCK11 levels in liver biopsies from patients with chronic hepatitis B were significantly reduced by entecavir treatment, and this reduction correlated with HBV surface antigen levels. CONCLUSIONS HBV uses a retrograde trafficking route via EEs-TGN-ER for infection that is facilitated by DOCK11 and serves to maintain cccDNA. Therefore, DOCK11 is a potential therapeutic target to prevent persistent HBV infection.
Collapse
Affiliation(s)
- Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuyuki Kuroki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Saiho Sugimoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tomoki Nishikawa
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Noriaki Orita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hideo Takayama
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Ying Wang
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Phuong Doan Thi Bich
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Astuya Ishida
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takeshi Shimaoka
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | | | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Doshisha University, Kyoto, Japan
| | | | - Motoharu Seiki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan; Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan.
| |
Collapse
|
6
|
Date SS, Xu P, Hepowit NL, Diab NS, Best J, Xie B, Du J, Strieter ER, Jackson LP, MacGurn JA, Graham TR. Ubiquitination drives COPI priming and Golgi SNARE localization. eLife 2022; 11:e80911. [PMID: 35904239 PMCID: PMC9374436 DOI: 10.7554/elife.80911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Deciphering mechanisms controlling SNARE localization within the Golgi complex is crucial to understanding protein trafficking patterns within the secretory pathway. SNAREs are also thought to prime coatomer protein I (COPI) assembly to ensure incorporation of these essential cargoes into vesicles, but the regulation of these events is poorly understood. Here, we report roles for ubiquitin recognition by COPI in SNARE trafficking and in stabilizing interactions between Arf, COPI, and Golgi SNAREs in Saccharomyces cerevisiae. The ability of COPI to bind ubiquitin, but not the dilysine motif, through its N-terminal WD repeat domain of β'-COP or through an unrelated ubiquitin-binding domain is essential for the proper localization of Golgi SNAREs Bet1 and Gos1. We find that COPI, the ArfGAP Glo3, and multiple Golgi SNAREs are ubiquitinated. Notably, the binding of Arf and COPI to Gos1 is markedly enhanced by ubiquitination of these components. Glo3 is proposed to prime COPI-SNARE interactions; however, Glo3 is not enriched in the ubiquitin-stabilized SNARE-Arf-COPI complex but is instead enriched with COPI complexes that lack SNAREs. These results support a new model for how posttranslational modifications drive COPI priming events crucial for Golgi SNARE localization.
Collapse
Affiliation(s)
- Swapneeta S Date
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Peng Xu
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Nathaniel L Hepowit
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Nicholas S Diab
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Jordan Best
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Jiale Du
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
7
|
Suga K, Yamamoto-Hijikata S, Terao Y, Akagawa K, Ushimaru M. Golgi stress induces upregulation of the ER-Golgi SNARE Syntaxin-5, altered βAPP processing, and Caspase-3-dependent apoptosis in NG108-15 cells. Mol Cell Neurosci 2022; 121:103754. [PMID: 35842170 DOI: 10.1016/j.mcn.2022.103754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 01/06/2023] Open
Abstract
The involvement of secretory pathways and Golgi dysfunction in neuronal cells during Alzheimer's disease progression is poorly understood. Our previous overexpression and knockdown studies revealed that the intracellular protein level of Syntaxin-5, an endoplasmic reticulum-Golgi soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE), modulates beta-amyloid precursor protein processing in neuronal cells. We recently showed that changes in endogenous Syntaxin-5 protein expression occur under stress induction. Syntaxin-5 was upregulated by endoplasmic reticulum stress but was degraded by Caspase-3 during apoptosis in neuronal cells. In addition, we showed that sustained endoplasmic reticulum stress promotes Caspase-3-dependent apoptosis during the later phase of the endoplasmic reticulum stress response in NG108-15 cells. In this study, to elucidate the consequences of secretory pathway dysfunction in beta-amyloid precursor protein processing that lead to neuronal cell death, we examined the effect of various stresses on endoplasmic reticulum-Golgi SNARE expression and beta-amyloid precursor protein processing. By using compounds to disrupt Golgi function, we show that Golgi stress promotes upregulation of the endoplasmic reticulum-Golgi SNARE Syntaxin-5, and prolonged stress causes Caspase-3-dependent apoptosis. Golgi stress induced intracellular beta-amyloid precursor protein accumulation and a concomitant decrease in total amyloid-beta production. We also examined the protective effect of the chemical chaperone 4-phenylbutylate on changes in amyloid-beta production and the activation of Caspase-3 induced by endoplasmic reticulum and Golgi stress. The compound alleviated the increase in the amyloid-beta 1-42/amyloid-beta 1-40 ratio induced by endoplasmic reticulum and Golgi stress. Furthermore, 4-phenylbutylate could rescue Caspase-3-dependent apoptosis induced by prolonged organelle stress. These results suggest that organelle stress originating from the endoplasmic reticulum and Golgi has a substantial impact on the amyloidogenic processing of beta-amyloid precursor protein and Caspase-3-dependent apoptosis, leading to neuronal cell death.
Collapse
Affiliation(s)
- Kei Suga
- Department of Chemistry, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Medical Physiology, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan.
| | | | - Yasuo Terao
- Department of Medical Physiology, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Kimio Akagawa
- Department of Medical Physiology, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Makoto Ushimaru
- Department of Chemistry, Kyorin University, Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
8
|
Hong G, Su X, Xu K, Liu B, Wang G, Li J, Wang R, Zhu M, Li G. Salt stress downregulates 2-hydroxybutyrylation in Arabidopsis siliques. J Proteomics 2022; 250:104383. [PMID: 34562664 DOI: 10.1016/j.jprot.2021.104383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is one of the newly discovered post-translational modifications (PTMs) through protein acylation. It has been reported to be widely distributed in both eukaryotes and prokaryotes, and plays an important role in chromatin conformation change, gene transcription, protein subcellular localization, protein-protein interaction, signal transduction, and cellular proliferation. In this study, the Khib modification proteome of siliques from A. thaliana under salt stress (Ss) and those in the control (Cs) were compared. The results showed that Khib modification was abundant in siliques. Totally 3810 normalized Khib sites on 1254 proteins were identified, and the Khib modification showed a downregulation trend dramatically: it was down-regulated at 282 sites on 205 proteins while was up-regulated at 96 sites on 78 proteins in Ss siliques (Data are available via ProteomeXchange with identifier PXD028116 and PXD026643). Among them, 13 proteins, including F4IVN6, Q9M1P5, and Q9LF33, had sites with the most significant regulation of Khib modification. Bioinformatics analysis suggested that the differentially Khib-regulated proteins mainly participated in glycolysis/gluconeogenesis and endocytosis. In particular, there were differentially117 Khib-regulated proteins that were mapped to the protein-protein interaction database. In the KEGG pathway enrichment analysis, Khib-modified proteins were enriched in several pathways related to energy metabolism, including gluconeogenesis pathway, pentose phosphate pathway, and pyruvate metabolism. Overall, our work reveals the first systematic analysis of Khib proteome in Arabidopsis siliques under salt stress, and sheds a light on the future studies on the regulatory mechanisms of Khib during the salt stress response of plants. SIGNIFICANCE: In this study, we found the Khib-modified proteins in silique under salt stress and described the enrichment of Khib-modified proteins involved in the biological processes and cellular localization. Proteins undergoing 2-hydroxyisobutylation were mainly involved in the gluconeogenesis pathway, pentose phosphate pathway, and pyruvate metabolism, suggesting that 2-hydroxyisobutylation affects the energy metabolic pathway, and thus the development of the plant. In addition, specific candidate proteins that may affect plant development under salt stress were selected. This study will provide a theoretical basis for revealing the function and mechanism of these proteins and their 2-hydroxyisobutyryl modifications during the development of silique under salt stress.
Collapse
Affiliation(s)
- Geriqiqige Hong
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyi Su
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ke Xu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Liu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China; CAS Center of Excellence in Molecular Plant Science, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai 201602, China
| | - Guangxia Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Li
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.
| | - Mulan Zhu
- CAS Center of Excellence in Molecular Plant Science, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai 201602, China.
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
9
|
Watanabe A, Hataida H, Inoue N, Kamon K, Baba K, Sasaki K, Kimura R, Sasaki H, Eura Y, Ni WF, Shibasaki Y, Waguri S, Kokame K, Shiba Y. Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor. Biol Open 2021; 10:271213. [PMID: 34369554 PMCID: PMC8430232 DOI: 10.1242/bio.058789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Arf GTPase-Activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors (Arfs), which are critical to form transport intermediates. ArfGAPs have been thought to be negative regulators of Arfs; however, accumulating evidence indicates that ArfGAPs are important for cargo sorting and promote membrane traffic. Weibel-Palade bodies (WPBs) are cigar-shaped secretory granules in endothelial cells that contain von Willebrand factor (vWF) as their main cargo. WPB biogenesis at the Golgi was reported to be regulated by Arf and their regulators, but the role of ArfGAPs has been unknown. In this study, we performed siRNA screening of ArfGAPs to investigate the role of ArfGAPs in the biogenesis of WPBs. We found two ArfGAPs, SMAP1 and AGFG2, to be involved in WPB size and vWF exocytosis, respectively. SMAP1 depletion resulted in small-sized WPBs, and the lysosomal inhibitor leupeptin recovered the size of WPBs. The results indicate that SMAP1 functions in preventing the degradation of cigar-shaped WPBs. On the other hand, AGFG2 downregulation resulted in the inhibition of vWF secretion upon Phorbol 12-myristate 13-acetate (PMA) or histamine stimulation, suggesting that AGFG2 plays a role in vWF exocytosis. Our study revealed unexpected roles of ArfGAPs in vWF transport. Summary: The Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor.
Collapse
Affiliation(s)
- Asano Watanabe
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Hikari Hataida
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Naoya Inoue
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Kosuke Kamon
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Keigo Baba
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Kuniaki Sasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Rika Kimura
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Honoka Sasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Wei-Fen Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 80201, Taiwan
| | - Yuji Shibasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| |
Collapse
|
10
|
Meng D, Yang Q, Melick CH, Park BC, Hsieh T, Curukovic A, Jeong M, Zhang J, James NG, Jewell JL. ArfGAP1 inhibits mTORC1 lysosomal localization and activation. EMBO J 2021; 40:e106412. [PMID: 33988249 PMCID: PMC8204869 DOI: 10.15252/embj.2020106412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid-deficient conditions is not completely understood. Here, we identify ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature-sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.
Collapse
Affiliation(s)
- Delong Meng
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Qianmei Yang
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Chase H Melick
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Brenden C Park
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Ting‐Sung Hsieh
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Adna Curukovic
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Mi‐Hyeon Jeong
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Junmei Zhang
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Nicholas G James
- Department of Cell and Molecular BiologyJohn A. Burns School of MedicineUniversity of HawaiiHonoluluHIUSA
| | - Jenna L Jewell
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
11
|
Small GTPases of the Rab and Arf Families: Key Regulators of Intracellular Trafficking in Neurodegeneration. Int J Mol Sci 2021; 22:ijms22094425. [PMID: 33922618 PMCID: PMC8122874 DOI: 10.3390/ijms22094425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Rab and Arf families are key regulators of vesicle formation and membrane trafficking. Membrane transport plays an important role in the central nervous system. In this regard, neurons require a constant flow of membranes for the correct distribution of receptors, for the precise composition of proteins and organelles in dendrites and axons, for the continuous exocytosis/endocytosis of synaptic vesicles and for the elimination of dysfunctional proteins. Thus, it is not surprising that Rab and Arf GTPases have been associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Both pathologies share characteristics such as the presence of protein aggregates and/or the fragmentation of the Golgi apparatus, hallmarks that have been related to both Rab and Arf GTPases functions. Despite their relationship with neurodegenerative disorders, very few studies have focused on the role of these GTPases in the pathogenesis of neurodegeneration. In this review, we summarize their importance in the onset and progression of Alzheimer’s and Parkinson’s diseases, as well as their emergence as potential therapeutical targets for neurodegeneration.
Collapse
|
12
|
Pipaliya SV, Thompson LA, Dacks JB. The reduced ARF regulatory system in Giardia intestinalis pre-dates the transition to parasitism in the lineage Fornicata. Int J Parasitol 2021; 51:825-839. [PMID: 33848497 DOI: 10.1016/j.ijpara.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
Giardia intestinalis is an enteric pathogen with an extremely modified membrane trafficking system, lacking canonical compartments such as the Golgi, endosomes, and intermediate vesicle carriers. By comparison the fornicate relatives of Giardia possess greater endomembrane system complexity. In eukaryotes, the ADP ribosylation factor (ARF) GTPase regulatory system proteins, which consist of the small GTPase ARF1, and its guanine exchange nucleotide factors (GEFs) and GTPase activating proteins (GAPs), coordinate temporal and directional trafficking of cargo vesicles by recognizing and interacting with heterotetrameric coat complexes at pre-Golgi and post-Golgi interfaces. To understand the evolution of this regulatory system across the fornicate lineage, we have performed comparative genomic and phylogenetic analyses of the ARF GTPases, and their regulatory GAPs and GEFs in fornicate genomes and transcriptomes. Prior to our analysis of the fornicates, we first establish that the ARF GAP sub-family ArfGAP with dual PH domains (ADAP) is sparsely distributed but present in at least four eukaryotic supergroups and thus was likely present in the Last Eukaryotic Common Ancestor (LECA). Next, our collective comparative genomic and phylogenetic investigations into the ARF regulatory proteins in fornicates identify a duplication of ARF1 GTPase yielding two paralogues of ARF1F proteins, ancestral to all fornicates and present in all examined isolates of Giardia. However, the ARF GEF and ARF GAP complement is reduced compared with the LECA. This investigation shows that the system was significantly streamlined prior to the fornicate ancestor but was not further reduced concurrent with a transition into a parasitic lifestyle.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - L Alexa Thompson
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Institute of Parasitology Biology Centre, CAS v.v.i. Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
13
|
Evans AS, Lennemann NJ, Coyne CB. BPIFB3 interacts with ARFGAP1 and TMED9 to regulate non-canonical autophagy and RNA virus infection. J Cell Sci 2021; 134:jcs251835. [PMID: 33277377 PMCID: PMC7929927 DOI: 10.1242/jcs.251835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Autophagy is a degradative cellular pathway that targets cytoplasmic contents and organelles for turnover by the lysosome. Various autophagy pathways play key roles in the clearance of viral infections, and many families of viruses have developed unique methods for avoiding degradation. Some positive-stranded RNA viruses, such as enteroviruses and flaviviruses, usurp the autophagic pathway to promote their own replication. We previously identified the endoplasmic reticulum (ER)-localized protein BPIFB3 as an important negative regulator of non-canonical autophagy that uniquely impacts the replication of enteroviruses and flaviviruses. Here, we find that many components of the canonical autophagy machinery are not required for BPIFB3 depletion-induced autophagy and identify the host factors that facilitate its role in the replication of enteroviruses and flaviviruses. Using proximity-dependent biotinylation (BioID) followed by mass spectrometry, we identify ARFGAP1 and TMED9 as two cellular components that interact with BPIFB3 to regulate autophagy and viral replication. Importantly, our data demonstrate that non-canonical autophagy in mammalian cells can be controlled outside of the traditional pathway regulators and define the role of two proteins in BPIFB3 depletion mediated non-canonical autophagy.
Collapse
Affiliation(s)
- Azia S Evans
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA
- Center for Microbial Pathogenesis, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Nicholas J Lennemann
- Department of Microbiology, University of Alabama at Birmingham, 845, 19th St S, Birmingham, AL 35222, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA
- Center for Microbial Pathogenesis, 4401 Penn Ave, Pittsburgh, PA 15224, USA
- Richard K. Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| |
Collapse
|
14
|
Cross-Kingdom Activation of Vibrio Toxins by ADP-Ribosylation Factor Family GTPases. J Bacteriol 2020; 202:JB.00278-20. [PMID: 32900828 DOI: 10.1128/jb.00278-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Vibrio species use many different approaches to subvert, attack, and undermine the host response. The toxins they produce are often responsible for the devastating effects associated with their diseases. These toxins target a variety of host proteins, which leads to deleterious effects, including dissolution of cell organelle integrity and inhibition of protein secretion. Becoming increasingly prevalent as cofactors for Vibrio toxins are proteins of the small GTPase families. ADP-ribosylation factor small GTPases (ARFs) in particular are emerging as a common host cofactor necessary for full activation of Vibrio toxins. While ARFs are not the direct target of Vibrio cholerae cholera toxin (CT), ARF binding is required for its optimal activity as an ADP-ribosyltransferase. The makes caterpillars floppy (MCF)-like and the domain X (DmX) effectors of the Vibrio vulnificus multifunctional autoprocessing repeats-in-toxin (MARTX) toxin also both require ARFs to initiate autoprocessing and activation as independent effectors. ARFs are ubiquitously expressed in eukaryotes and are key regulators of many cellular processes, and as such they are ideal cofactors for Vibrio pathogens that infect many host species. In this review, we cover in detail the known Vibrio toxins that use ARFs as cross-kingdom activators to both stimulate and optimize their activity. We further discuss how these contrast to toxins and effectors from other bacterial species that coactivate, stimulate, or directly modify host ARFs as their mechanisms of action.
Collapse
|
15
|
Zeledon C, Sun X, Plutoni C, Emery G. The ArfGAP Drongo Promotes Actomyosin Contractility during Collective Cell Migration by Releasing Myosin Phosphatase from the Trailing Edge. Cell Rep 2020; 28:3238-3248.e3. [PMID: 31533044 DOI: 10.1016/j.celrep.2019.08.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Collective cell migration is involved in various developmental and pathological processes, including the dissemination of various cancer cells. During Drosophila melanogaster oogenesis, a group of cells called border cells migrate collectively toward the oocyte. Herein, we show that members of the Arf family of small GTPases and some of their regulators are required for normal border cell migration. Notably, we found that the ArfGAP Drongo and its GTPase-activating function are essential for the initial detachment of the border cell cluster from the basal lamina. We demonstrate through protein localization and genetic interactions that Drongo controls the localization of the myosin phosphatase in order to regulate myosin II activity at the back of the cluster. Moreover, we show that toward the class III Arf, Drongo acts antagonistically to the guanine exchange factor Steppke. Overall, our work describes a mechanistic pathway that promotes the local actomyosin contractility necessary for border cell detachment.
Collapse
Affiliation(s)
- Carlos Zeledon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Xiaojuan Sun
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
16
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
17
|
Detection of the in vitro modulation of Plasmodium falciparum Arf1 by Sec7 and ArfGAP domains using a colorimetric plate-based assay. Sci Rep 2020; 10:4193. [PMID: 32144363 PMCID: PMC7061341 DOI: 10.1038/s41598-020-61101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated. In this study, we established an in vitro colorimetric microtiter plate-based assay to detect the activation status of truncated human and P. falciparum Arf1 and used it to demonstrate the activation of both proteins by the Sec7 domain of ARNO, their deactivation by the GAP domain of human ArfGAP1 and the inhibition of the respective reactions by the compounds SecinH3 and QS11. In addition, we found that the GAP domains of both P. falciparum ArfGAPs have activities equivalent to that of human ArfGAP1, but are insensitive to QS11. Library screening identified a novel inhibitor which selectively inhibits one of the P. falciparum GAP domains (IC50 4.7 µM), suggesting that the assay format is suitable for screening compound collections for inhibitors of Arf1 regulatory proteins.
Collapse
|
18
|
AGAP2: Modulating TGFβ1-Signaling in the Regulation of Liver Fibrosis. Int J Mol Sci 2020; 21:ijms21041400. [PMID: 32092977 PMCID: PMC7073092 DOI: 10.3390/ijms21041400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is a protein that belongs to the Arf GAP (GTPase activating protein) protein family. These proteins act as GTPase switches for Arfs, which are Ras superfamily members, being therefore involved in signaling regulation. Arf GAP proteins have been shown to participate in several cellular functions including membrane trafficking and actin cytoskeleton remodeling. AGAP2 is a multi-tasking Arf GAP that also presents GTPase activity and is involved in several signaling pathways related with apoptosis, cell survival, migration, and receptor trafficking. The increase of AGAP2 levels is associated with pathologies as cancer and fibrosis. Transforming growth factor beta-1 (TGF-β1) is the most potent pro-fibrotic cytokine identified to date, currently accepted as the principal mediator of the fibrotic response in liver, lung, and kidney. Recent literature has described that the expression of AGAP2 modulates some of the pro-fibrotic effects described for TGF-β1 in the liver. The present review is focused on the interrelated molecular effects between AGAP2 and TGFβ1 expression, presenting AGAP2 as a new player in the signaling of this pro-fibrotic cytokine, thereby contributing to the progression of hepatic fibrosis.
Collapse
|
19
|
Arakel EC, Huranova M, Estrada AF, Rau EM, Spang A, Schwappach B. Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast. J Cell Sci 2019; 132:jcs.232124. [PMID: 31331965 PMCID: PMC6737914 DOI: 10.1242/jcs.232124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The Arf GTPase controls formation of the COPI vesicle coat. Recent structural models of COPI revealed the positioning of two Arf1 molecules in contrasting molecular environments. Each of these pockets for Arf1 is expected to also accommodate an Arf GTPase-activating protein (ArfGAP). Structural evidence and protein interactions observed between isolated domains indirectly suggest that each niche preferentially recruits one of the two ArfGAPs known to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although only partial structures are available. The functional role of the unique non-catalytic domain of either ArfGAP has not been integrated into the current COPI structural model. Here, we delineate key differences in the consequences of triggering GTP hydrolysis through the activity of one versus the other ArfGAP. We demonstrate that Glo3/ArfGAP2/3 specifically triggers Arf1 GTP hydrolysis impinging on the stability of the COPI coat. We show that the Snf1 kinase complex, the yeast homologue of AMP-activated protein kinase (AMPK), phosphorylates the region of Glo3 that is crucial for this effect and, thereby, regulates its function in the COPI-vesicle cycle. Our results revise the model of ArfGAP function in the molecular context of COPI. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The regulatory domain of the COPI-associated ArfGAP Glo3 can stabilize the COPI coat. GTP hydrolysis is necessary to resolve the stabilised state. This mechanism is regulated by phosphorylation.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Martina Huranova
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alejandro F Estrada
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - E-Ming Rau
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Anne Spang
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Pipaliya SV, Schlacht A, Klinger CM, Kahn RA, Dacks J. Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol Biol Cell 2019; 30:1846-1863. [PMID: 31141460 PMCID: PMC6727740 DOI: 10.1091/mbc.e19-01-0073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase--activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Alexander Schlacht
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Christen M Klinger
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Joel Dacks
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
21
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
22
|
Witzel K, Matros A, Møller ALB, Ramireddy E, Finnie C, Peukert M, Rutten T, Herzog A, Kunze G, Melzer M, Kaspar-Schoenefeld S, Schmülling T, Svensson B, Mock HP. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. PLANT, CELL & ENVIRONMENT 2018; 41:1311-1330. [PMID: 29385242 DOI: 10.1111/pce.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 05/19/2023]
Abstract
Although the physiological consequences of plant growth under saline conditions have been well described, understanding the core mechanisms conferring plant salt adaptation has only started. We target the root plasma membrane proteomes of two barley varieties, cvs. Steptoe and Morex, with contrasting salinity tolerance. In total, 588 plasma membrane proteins were identified by mass spectrometry, of which 182 were either cultivar or salinity stress responsive. Three candidate proteins with increased abundance in the tolerant cv. Morex were involved either in sterol binding (a GTPase-activating protein for the adenosine diphosphate ribosylation factor [ZIGA2], and a membrane steroid binding protein [MSBP]) or in phospholipid synthesis (phosphoethanolamine methyltransferase [PEAMT]). Overexpression of barley MSBP conferred salinity tolerance to yeast cells, whereas the knock-out of the heterologous AtMSBP1 increased salt sensitivity in Arabidopsis. Atmsbp1 plants showed a reduced number of lateral roots under salinity, and root-tip-specific expression of barley MSBP in Atmsbp1 complemented this phenotype. In barley, an increased abundance of MSBP correlates with reduced root length and lateral root formation as well as increased levels of auxin under salinity being stronger in the tolerant cv. Morex. Hence, we concluded the involvement of MSBP in phytohormone-directed adaptation of root architecture in response to salinity.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Anders L B Møller
- Technical University of Denmark, Søltofts Plads, Building 224, 2800, Kongens Lyngby, Denmark
| | - Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Free University of Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Christine Finnie
- Technical University of Denmark, Søltofts Plads, Building 224, 2800, Kongens Lyngby, Denmark
| | - Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Andreas Herzog
- Biosystems Engineering, Fraunhofer Institute for Factory Operation and Automation, Joseph-von-Fraunhofer-Straße 1, 39106, Magdeburg, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Stephanie Kaspar-Schoenefeld
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Free University of Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Birte Svensson
- Technical University of Denmark, Søltofts Plads, Building 224, 2800, Kongens Lyngby, Denmark
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| |
Collapse
|
23
|
Abstract
The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Tajadura-Ortega V, Garg R, Allen R, Owczarek C, Bright MD, Kean S, Mohd-Noor A, Grigoriadis A, Elston TC, Hahn KM, Ridley AJ. An RNAi screen of Rho signalling networks identifies RhoH as a regulator of Rac1 in prostate cancer cell migration. BMC Biol 2018; 16:29. [PMID: 29510700 PMCID: PMC5840776 DOI: 10.1186/s12915-018-0489-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cell migration is essential for development and tissue repair, but it also contributes to disease. Rho GTPases regulate cell migration, but a comprehensive analysis of how each Rho signalling component affects migration has not been carried out. RESULTS Through an RNA interference screen, and using a prostate cancer cell line, we find that approximately 25% of Rho network components alter migration. Some genes enhance migration while others decrease basal and/or hepatocyte growth factor-stimulated migration. Surprisingly, we identify RhoH as a screen hit. RhoH expression is normally restricted to haematopoietic cells, but we find it is expressed in multiple epithelial cancer cell lines. High RhoH expression in samples from prostate cancer patients correlates with earlier relapse. RhoH depletion reduces cell speed and persistence and decreases migratory polarity. Rac1 activity normally localizes to the front of migrating cells at areas of dynamic membrane movement, but in RhoH-depleted cells active Rac1 is localised around the whole cell periphery and associated with membrane regions that are not extending or retracting. RhoH interacts with Rac1 and with several p21-activated kinases (PAKs), which are Rac effectors. Similar to RhoH depletion, PAK2 depletion increases cell spread area and reduces cell migration. In addition, RhoH depletion reduces lamellipodium extension induced by PAK2 overexpression. CONCLUSIONS We describe a novel role for RhoH in prostate cancer cell migration. We propose that RhoH promotes cell migration by coupling Rac1 activity and PAK2 to membrane protrusion. Our results also suggest that RhoH expression levels correlate with prostate cancer progression.
Collapse
Affiliation(s)
- Virginia Tajadura-Ortega
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- School of Cardiovascular Medicine and Sciences, King's College London, London, SE1 9NH, UK
| | - Ritu Garg
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Richard Allen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Present address: Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, 02139, USA
| | - Claudia Owczarek
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Michael D Bright
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Present address: Institute for Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Samuel Kean
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Aisyah Mohd-Noor
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Anita Grigoriadis
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anne J Ridley
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
25
|
Singh MK, Jürgens G. Specificity of plant membrane trafficking - ARFs, regulators and coat proteins. Semin Cell Dev Biol 2017; 80:85-93. [PMID: 29024759 DOI: 10.1016/j.semcdb.2017.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 11/27/2022]
Abstract
Approximately one-third of all eukaryotic proteins are delivered to their destination by trafficking within the endomembrane system. Such cargo proteins are incorporated into forming membrane vesicles on donor compartments and delivered to acceptor compartments by vesicle fusion. How cargo proteins are sorted into forming vesicles is still largely unknown. Here we review the roles of small GTPases of the ARF/SAR1 family, their regulators designated ARF guanine-nucleotide exchange factors (ARF-GEFs) and ARF GTPase-activating proteins (ARF-GAPs) as well as coat protein complexes during membrane vesicle formation. Although conserved across eukaryotes, these four functional groups of proteins display plant-specific modifications in composition, structure and function.
Collapse
Affiliation(s)
- Manoj K Singh
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Gerd Jürgens
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
26
|
Brandizzi F. Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now? Semin Cell Dev Biol 2017; 80:94-105. [PMID: 28688928 DOI: 10.1016/j.semcdb.2017.06.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The biogenesis of about one third of the cellular proteome is initiated in the endoplasmic reticulum (ER), which exports proteins to the Golgi apparatus for sorting to their final destination. Notwithstanding the close proximity of the ER with other secretory membranes (e.g., endosomes, plasma membrane), the ER is also important for the homeostasis of non-secretory organelles such as mitochondria, peroxisomes, and chloroplasts. While how the plant ER interacts with most of the non-secretory membranes is largely unknown, the knowledge on the mechanisms for ER-to-Golgi transport is relatively more advanced. Indeed, over the last fifteen years or so, a large number of exciting results have contributed to draw parallels with non-plant species but also to highlight the complexity of the plant ER-Golgi interface, which bears unique features. This review reports and discusses results on plant ER-to-Golgi traffic, focusing mainly on research on COPII-mediated transport in the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
27
|
Rodrigues FF, Harris TJC. Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases 2017; 10:403-410. [PMID: 28410007 DOI: 10.1080/21541248.2017.1304854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Although biosynthetic trafficking can function constitutively, it also functions specifically for certain developmental processes. These processes require either a large increase to biosynthesis or the biosynthesis and targeted trafficking of specific players. We review the conserved molecular mechanisms that direct biosynthetic trafficking, and discuss how their genetic disruption affects animal development. Specifically, we consider Arf small G proteins, such as Arf1 and Sar1, and their coat effectors, COPI and COPII, and how these proteins promote biosynthetic trafficking for cleavage of the Drosophila embryo, the growth of neuronal dendrites and synapses, extracellular matrix secretion for bone development, lumen development in epithelial tubes, notochord and neural tube development, and ciliogenesis. Specific need for the biosynthetic trafficking system is also evident from conserved CrebA/Creb3-like transcription factors increasing the expression of secretory machinery during several of these developmental processes. Moreover, dysfunctional trafficking leads to a range of developmental syndromes.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
28
|
Labbaoui H, Bogliolo S, Ghugtyal V, Solis NV, Filler SG, Arkowitz RA, Bassilana M. Role of Arf GTPases in fungal morphogenesis and virulence. PLoS Pathog 2017; 13:e1006205. [PMID: 28192532 PMCID: PMC5325608 DOI: 10.1371/journal.ppat.1006205] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/24/2017] [Accepted: 01/29/2017] [Indexed: 12/30/2022] Open
Abstract
Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion.
Collapse
Affiliation(s)
- Hayet Labbaoui
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | | | - Vikram Ghugtyal
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| |
Collapse
|
29
|
Rodrigues FF, Shao W, Harris TJC. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila. Mol Biol Cell 2016; 27:3143-3155. [PMID: 27535433 PMCID: PMC5063621 DOI: 10.1091/mbc.e16-05-0272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 11/11/2022] Open
Abstract
Drosophila embryo cleavage requires the conserved Arf GAP Asap. Asap seems to recycle Arf1 to the Golgi from post-Golgi membranes for optimal Golgi output and cleavage furrow biosynthesis. Biosynthetic traffic from the Golgi drives plasma membrane growth. For Drosophila embryo cleavage, this growth is rapid but regulated for cycles of furrow ingression and regression. The highly conserved small G protein Arf1 organizes Golgi trafficking. Arf1 is activated by guanine nucleotide exchange factors, but essential roles for Arf1 GTPase-activating proteins (GAPs) are less clear. We report that the conserved Arf GAP Asap is required for cleavage furrow ingression in the early embryo. Because Asap can affect multiple subcellular processes, we used genetic approaches to dissect its primary effect. Our data argue against cytoskeletal or endocytic involvement and reveal a common role for Asap and Arf1 in Golgi organization. Although Asap lacked Golgi enrichment, it was necessary and sufficient for Arf1 accumulation at the Golgi, and a conserved Arf1-Asap binding site was required for Golgi organization and output. Of note, Asap relocalized to the nuclear region at metaphase, a shift that coincided with subtle Golgi reorganization preceding cleavage furrow regression. We conclude that Asap is essential for Arf1 to function at the Golgi for cleavage furrow biosynthesis. Asap may recycle Arf1 to the Golgi from post-Golgi membranes, providing optimal Golgi output for specific stages of the cell cycle.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Wei Shao
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
30
|
Tamkovich SN, Tutanov OS, Laktionov PP. Exosomes: Generation, structure, transport, biological activity, and diagnostic application. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816020112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Candiello E, Kratzke M, Wenzel D, Cassel D, Schu P. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway. Sci Rep 2016; 6:29950. [PMID: 27411398 PMCID: PMC4944158 DOI: 10.1038/srep29950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022] Open
Abstract
The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein
complex is expressed as three isoforms. Tissues express σ1A and one of
the σ1B and σ1C isoforms. Brain is the tissue with the
highest σ1A and σ1B expression. σ1B-deficiency
leads to severe mental retardation, accumulation of early endosomes in synapses and
fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and
AP-1/σ1B regulate maturation of these early endosomes into
multivesicular body late endosomes, thereby controlling synaptic vesicle protein
transport into a degradative pathway. σ1A binds ArfGAP1, and with higher
affinity brain-specific ArfGAP1, which bind Rabex-5.
AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal
Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity,
which is essential for multivesicular body endosome formation. Formation of
AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B
binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes
differentially regulate endosome maturation and coordinate protein recycling and
degradation, revealing a novel molecular mechanism by which they regulate protein
transport besides their established function in clathrin-coated-vesicle
formation.
Collapse
Affiliation(s)
- Ermes Candiello
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Manuel Kratzke
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Dirk Wenzel
- Electron microscopy, Max-Planck-Institut for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Dan Cassel
- Israel Institute of Technology, Department Biology, Haifa 32000, Israel
| | - Peter Schu
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
32
|
Sumiyoshi M, Masuda N, Tanuma N, Ogoh H, Imai E, Otsuka M, Hayakawa N, Ohno K, Matsui Y, Hara K, Gotoh R, Suzuki M, Rai S, Tanaka H, Matsumura I, Shima H, Watanabe T. Mice doubly-deficient in the Arf GAPs SMAP1 and SMAP2 exhibit embryonic lethality. FEBS Lett 2015; 589:2754-62. [PMID: 26296315 DOI: 10.1016/j.febslet.2015.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
In mammals, the small Arf GTPase-activating protein (SMAP) subfamily of Arf GTPase-activating proteins consists of closely related members, SMAP1 and SMAP2. These factors reportedly exert distinct functions in membrane trafficking, as manifested by different phenotypes seen in single knockout mice. The present study investigated whether SMAP proteins interact genetically. We report for the first time that simultaneous loss of SMAP1 and SMAP2 promotes apoptosis in the distal region of E7.5 mouse embryos, likely resulting in embryonic lethality. Thus, at least one SMAP gene, either SMAP1 or SMAP2, is required for proper embryogenesis.
Collapse
Affiliation(s)
- Mami Sumiyoshi
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Narumi Masuda
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Eri Imai
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Mizuki Otsuka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Natsuki Hayakawa
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Kinuyo Ohno
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Kanae Hara
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Risa Gotoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Mai Suzuki
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan.
| |
Collapse
|
33
|
Ho JCS, Nadeem A, Rydström A, Puthia M, Svanborg C. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism. Oncogene 2015; 35:897-907. [PMID: 26028028 DOI: 10.1038/onc.2015.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/24/2015] [Accepted: 03/29/2015] [Indexed: 12/20/2022]
Abstract
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.
Collapse
Affiliation(s)
- J C S Ho
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - A Nadeem
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - A Rydström
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - M Puthia
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - C Svanborg
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Estrada AF, Muruganandam G, Prescianotto-Baschong C, Spang A. The ArfGAP2/3 Glo3 and ergosterol collaborate in transport of a subset of cargoes. Biol Open 2015; 4:792-802. [PMID: 25964658 PMCID: PMC4571087 DOI: 10.1242/bio.011528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins reach the plasma membrane through the secretory pathway in which the trans Golgi network (TGN) acts as a sorting station. Transport from the TGN to the plasma membrane is maintained by a number of different pathways that act either directly or via the endosomal system. Here we show that a subset of cargoes depends on the ArfGAP2/3 Glo3 and ergosterol to maintain their proper localization at the plasma membrane. While interfering with neither ArfGAP2/3 activity nor ergosterol biosynthesis individually significantly altered plasma membrane localization of the tryptophan transporter Tat2, the general amino acid permease Gap1 and the v-SNARE Snc1, in a Δglo3 Δerg3 strain those proteins accumulated in internal endosomal structures. Export from the TGN to the plasma membrane and recycling from early endosomes appeared unaffected as the chitin synthase Chs3 that travels along these routes was localized normally. Our data indicate that a subset of proteins can reach the plasma membrane efficiently but after endocytosis becomes trapped in endosomal structures. Our study supports a role for ArfGAP2/3 in recycling from endosomes and in transport to the vacuole/lysosome.
Collapse
Affiliation(s)
- Alejandro F Estrada
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Gopinath Muruganandam
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | - Anne Spang
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Kawada D, Kobayashi H, Tomita T, Nakata E, Nagano M, Siekhaus DE, Toshima JY, Toshima J. The yeast Arf-GAP Glo3p is required for the endocytic recycling of cell surface proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:144-56. [PMID: 25409928 DOI: 10.1016/j.bbamcr.2014.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022]
Abstract
Small GTP-binding proteins of the Ras superfamily play diverse roles in intracellular trafficking. Among them, the Rab, Arf, and Rho families function in successive steps of vesicle transport, in forming vesicles from donor membranes, directing vesicle trafficking toward target membranes and docking vesicles onto target membranes. These proteins act as molecular switches that are controlled by a cycle of GTP binding and hydrolysis regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this study we explored the role of GAPs in the regulation of the endocytic pathway using fluorescently labeled yeast mating pheromone α-factor. Among 25 non-essential GAP mutants, we found that deletion of the GLO3 gene, encoding Arf-GAP protein, caused defective internalization of fluorescently labeled α-factor. Quantitative analysis revealed that glo3Δ cells show defective α-factor binding to the cell surface. Interestingly, Ste2p, the α-factor receptor, was mis-localized from the plasma membrane to the vacuole in glo3Δ cells. Domain deletion mutants of Glo3p revealed that a GAP-independent function, as well as the GAP activity, of Glo3p is important for both α-factor binding and Ste2p localization at the cell surface. Additionally, we found that deletion of the GLO3 gene affects the size and number of Arf1p-residing Golgi compartments and causes a defect in transport from the TGN to the plasma membrane. Furthermore, we demonstrated that glo3Δ cells were defective in the late endosome-to-TGN transport pathway, but not in the early endosome-to-TGN transport pathway. These findings suggest novel roles for Arf-GAP Glo3p in endocytic recycling of cell surface proteins.
Collapse
Affiliation(s)
- Daiki Kawada
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiromu Kobayashi
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tsuyoshi Tomita
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan
| | - Eisuke Nakata
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan; Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Junko Y Toshima
- Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan; Faculty of Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan; Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
36
|
The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2. Biochem Biophys Res Commun 2014; 453:473-9. [DOI: 10.1016/j.bbrc.2014.09.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022]
|
37
|
Loskutov YV, Kozyulina PY, Kozyreva VK, Ice RJ, Jones BC, Roston TJ, Smolkin MB, Ivanov AV, Wysolmerski RB, Pugacheva EN. NEDD9/Arf6-dependent endocytic trafficking of matrix metalloproteinase 14: a novel mechanism for blocking mesenchymal cell invasion and metastasis of breast cancer. Oncogene 2014; 34:3662-75. [PMID: 25241893 PMCID: PMC4369482 DOI: 10.1038/onc.2014.297] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/20/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
Abstract
NEDD9 is an established marker of invasive and metastatic cancers. NEDD9 downregulation has been shown to dramatically reduce cell invasion and metastasis in multiple tumors. The mechanisms by which NEDD9 regulates invasion are largely unknown. In the current study, we have found that NEDD9 is required for MMP14 enzymatic recovery/recycling through the late endosomes to enable disengagement of tissue inhibitor of matrix metalloproteinase 2 (TIMP2) and tumor invasion. Depletion of NEDD9 decreases targeting of the MMP14/TIMP2 complex to late endosomes and increases trafficking of MMP14 from early/sorting endosomes back to the surface in a small GTPase Arf6-dependent manner. NEDD9 directly binds to Arf6-GAP, ARAP3, and Arf6 effector GGA3 thereby facilitating the Arf6 inactivation required for MMP14/TIMP2 targeting to late endosomes. Re-expression of NEDD9 or a decrease in Arf6 activity is sufficient to restore MMP14 activity and the invasive properties of tumor cells. Importantly, NEDD9 inhibition by Vivo-Morpholinos, an antisense therapy, decreases primary tumor growth and metastasis in xenograft models of breast cancer. Collectively, our findings uncover a novel mechanism to control tumor cells dissemination through NEDD9/Arf6-dependent regulation of MMP14/TIMP2 trafficking, and validates NEDD9 as a clinically relevant therapeutic target to treat metastatic cancer.
Collapse
Affiliation(s)
- Y V Loskutov
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - P Y Kozyulina
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - V K Kozyreva
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - R J Ice
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - B C Jones
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - T J Roston
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - M B Smolkin
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - A V Ivanov
- 1] Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA [2] Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - R B Wysolmerski
- 1] Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA [2] Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV, USA
| | - E N Pugacheva
- 1] Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA [2] Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
38
|
ArfGAP3 is a component of the photoreceptor synaptic ribbon complex and forms an NAD(H)-regulated, redox-sensitive complex with RIBEYE that is important for endocytosis. J Neurosci 2014; 34:5245-60. [PMID: 24719103 DOI: 10.1523/jneurosci.3837-13.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ribbon synapses are tonically active synapses in the retina and inner ear with intense vesicle traffic. How this traffic is organized and regulated is still unknown. Synaptic ribbons, large presynaptic structures associated with numerous synaptic vesicles, appear to be essential for this process. The base of the synaptic ribbon is anchored at the active zone and is a hotspot of exocytosis. The synaptic ribbon complex is also important for vesicle replenishment. RIBEYE is a unique and major component of synaptic ribbons. It consists of a unique A-domain and an NAD(H)-binding, C-terminal B-domain. In the present study, we show that the Arf-GTPase activating protein-3 (ArfGAP3), a well characterized regulator of vesicle formation at the Golgi apparatus, is also a component of the synaptic ribbon complex in photoreceptor synapses of the mouse retina and interacts with RIBEYE as shown by multiple, independent approaches. ArfGAP3 binds to RIBEYE(B)-domain in an NAD(H)-dependent manner. The interaction is redox sensitive because NADH is more efficient than the oxidized NAD(+) in promoting ArfGAP3-RIBEYE interaction. RIBEYE competes with the GTP-binding protein Arf1 for binding to ArfGAP3. Thus, binding of RIBEYE(B) to ArfGAP3 could prevent inactivation of Arf1 by ArfGAP3 and provides the synaptic ribbon with the possibility to control Arf1 function. The interaction is relevant for endocytic vesicle trafficking because overexpression of ArfGAP3 in photoreceptors strongly inhibited endocytotic uptake of FM1-43.
Collapse
|
39
|
Wittinghofer A. Arf Proteins and Their Regulators: At the Interface Between Membrane Lipids and the Protein Trafficking Machinery. RAS SUPERFAMILY SMALL G PROTEINS: BIOLOGY AND MECHANISMS 2 2014. [PMCID: PMC7123483 DOI: 10.1007/978-3-319-07761-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Arf small GTP-binding (G) proteins regulate membrane traffic and organelle structure in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. The first function identified for Arf proteins was recruitment of cytosolic coat complexes to membranes to mediate vesicle formation. However, subsequent studies have uncovered additional functions, including roles in plasma membrane signalling pathways, cytoskeleton regulation, lipid droplet function, and non-vesicular lipid transport. In contrast to other families of G proteins, there are only a few Arf proteins in each organism, yet they function specifically at many different cellular locations. Part of this specificity is achieved by formation of complexes with their guanine nucleotide-exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyse GTP binding and hydrolysis, respectively. Because these regulators outnumber their Arf substrates by at least 3-to-1, an important aspect of understanding Arf function is elucidating the mechanisms by which a single Arf protein is incorporated into different GEF, GAP, and effector complexes. New insights into these mechanisms have come from recent studies showing GEF–effector interactions, Arf activation cascades, and positive feedback loops. A unifying theme in the function of Arf proteins, carried out in conjunction with their regulators and effectors, is sensing and modulating the properties of the lipids that make up cellular membranes.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
40
|
Hsu JW, Chen ZJ, Liu YW, Lee FJS. Mechanism of action of the flippase Drs2p in modulating GTP hydrolysis of Arl1p. J Cell Sci 2014; 127:2615-20. [PMID: 24706946 DOI: 10.1242/jcs.143057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small GTPase ADP-ribosylation factors (ARFs) are key regulators of membrane trafficking and their activities are determined by guanine-nucleotide-binding status. In Saccharomyces cerevisiae, Arl1p, an ARF-like protein, is responsible for multiple trafficking pathways at the Golgi. The GTP-hydrolysis activity of Arl1p is stimulated by its GTPase-activating protein Gcs1p, and binding with its effector Imh1p protects Arl1p from premature inactivation. However, the mechanism involved in the timing of Arl1p inactivation is unclear. Here, we demonstrate that another Arl1p effector, the lipid flippase Drs2p, is required for Gcs1p-stimulated inactivation of Arl1p. Drs2p is known to be activated by Arl1p and is involved in vesicle formation through its ability to create membrane asymmetry. We found that the flippase activity of Drs2p is required for proper membrane targeting of Gcs1p in vivo. Through modification of the membrane environment, Drs2p promotes the affinity of Gcs1p for the Golgi, where it binds to active Arl1p. Together, Imh1p and Drs2p modulate the activity of Gcs1p by timing its interaction with Arl1p, hence providing feedback regulation of Arl1p activity.
Collapse
Affiliation(s)
- Jia-Wei Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zzu-Jung Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Fujimoto M, Tsutsumi N. Dynamin-related proteins in plant post-Golgi traffic. FRONTIERS IN PLANT SCIENCE 2014; 5:408. [PMID: 25237312 PMCID: PMC4154393 DOI: 10.3389/fpls.2014.00408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/31/2014] [Indexed: 05/21/2023]
Abstract
Membrane traffic between two organelles begins with the formation of transport vesicles from the donor organelle. Dynamin-related proteins (DRPs), which are large multidomain GTPases, play crucial roles in vesicle formation in post-Golgi traffic. Numerous in vivo and in vitro studies indicate that animal dynamins, which are members of DRP family, assemble into ring- or helix-shaped structures at the neck of a bud site on the donor membrane, where they constrict and sever the neck membrane in a GTP hydrolysis-dependent manner. While much is known about DRP-mediated trafficking in animal cells, little is known about it in plant cells. So far, two structurally distinct subfamilies of plant DRPs (DRP1 and DRP2) have been found to participate in various pathways of post-Golgi traffic. This review summarizes the structural and functional differences between these two DRP subfamilies, focusing on their molecular, cellular and developmental properties. We also discuss the molecular networks underlying the functional machinery centering on these two DRP subfamilies. Furthermore, we hope that this review will provide direction for future studies on the mechanisms of vesicle formation that are not only unique to plants but also common to eukaryotes.
Collapse
Affiliation(s)
- Masaru Fujimoto
- *Correspondence: Masaru Fujimoto, Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan e-mail:
| | | |
Collapse
|
42
|
Yorimitsu T, Sato K, Takeuchi M. Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. FRONTIERS IN PLANT SCIENCE 2014; 5:411. [PMID: 25191334 PMCID: PMC4140167 DOI: 10.3389/fpls.2014.00411] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/03/2014] [Indexed: 05/21/2023]
Abstract
Small GTPase proteins play essential roles in the regulation of vesicular trafficking systems in eukaryotic cells. Two types of small GTPases, secretion-associated Ras-related protein (Sar) and ADP-ribosylation factor (Arf), act in the biogenesis of transport vesicles. Sar/Arf GTPases function as molecular switches by cycling between active, GTP-bound and inactive, GDP-bound forms, catalyzed by guanine nucleotide exchange factors and GTPase-activating proteins, respectively. Activated Sar/Arf GTPases undergo a conformational change, exposing the N-terminal amphipathic α-helix for insertion into membranes. The process triggers the recruitment and assembly of coat proteins to the membranes, followed by coated vesicle formation and scission. In higher plants, Sar/Arf GTPases also play pivotal roles in maintaining the dynamic identity of organelles in the secretory pathway. Sar1 protein strictly controls anterograde transport from the endoplasmic reticulum (ER) through the recruitment of plant COPII coat components onto membranes. COPII vesicle transport is responsible for the organization of highly conserved polygonal ER networks. In contrast, Arf proteins contribute to the regulation of multiple trafficking routes, including transport through the Golgi complex and endocytic transport. These transport systems have diversified in the plant kingdom independently and exhibit several plant-specific features with respect to Golgi organization, endocytic cycling, cell polarity and cytokinesis. The functional diversification of vesicular trafficking systems ensures the multicellular development of higher plants. This review focuses on the current knowledge of Sar/Arf GTPases, highlighting the molecular details of GTPase regulation in vesicle formation in yeast and advances in knowledge of the characteristics of vesicle trafficking in plants.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
| | - Masaki Takeuchi
- Department of Chemistry, Graduate School of Science, University of TokyoTokyo, Japan
- *Correspondence: Masaki Takeuchi, Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan e-mail:
| |
Collapse
|
43
|
Gubert CM, Liljegren SJ. HAESA and HAESA-LIKE2 activate organ abscission downstream of NEVERSHED and EVERSHED in Arabidopsis flowers. PLANT SIGNALING & BEHAVIOR 2014; 9:e29115. [PMID: 25763490 PMCID: PMC4203531 DOI: 10.4161/psb.29115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A ligand-receptor module comprised of the peptide inflorescence deficient in abscission (IDA) and the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2) activates organ abscission in Arabidopsis flowers. Another set of receptor-like kinases, including EVERSHED (EVR), restricts the extent of cell separation in abscission zones by potentially altering HAE/HSL2 localization or activity. The NEVERSHED (NEV) ADP-ribosylation factor GTPase-activating protein facilitates the intracellular movement of molecules required for organ abscission and fruit growth. Here we report further analysis of the relationship between NEV-mediated intracellular traffic, EVR activity and IDA-HAE/HSL2 signaling during flower development. Our results support a model in which cell separation is mediated by HAE/HSL2 signaling downstream of NEV and EVR. We discuss the possibility that conserved circuits control organ abscission and modulate fruit growth.
Collapse
|
44
|
Luo Y, Kong F, Wang Z, Chen D, Liu Q, Wang T, Xu R, Wang X, Yang JY. Loss of ASAP3 destabilizes cytoskeletal protein ACTG1 to suppress cancer cell migration. Mol Med Rep 2013; 9:387-94. [PMID: 24284654 DOI: 10.3892/mmr.2013.1831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/31/2013] [Indexed: 11/06/2022] Open
Abstract
ArfGAP with SH3 domain, ankyrin repeat and PH domain 3 (ASAP3), previously known as ACAP4, DDEFL1 and UPLC1, is considered to be an important regulator in cancer cell migration/invasion and actin-based cytoskeletal remodeling. However, the underlying mechanisms through which ASAP3 mediates these processes are not well-elucidated. This study reported that in certain types of cancer cells, loss of ASAP3 suppressed cell migration/invasion, in part by destabilizing γ-actin-1 (ACTG1), a cytoskeletal protein considered to be an integral component of the cell migratory machinery, essential for the rearrangement of the dynamic cytoskeletal networks and important in diseases, such as brain malformation, hearing loss and cancer development. The data, for the first time, link ASAP3 with ACTG1 in the regulation of cytoskeletal maintenance and cell motility.
Collapse
Affiliation(s)
- Yu Luo
- School of Nursing, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Fang Kong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Zhen Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Dahan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Qiuyan Liu
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, P.R. China
| | - Tao Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| | - Ruian Xu
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, P.R. China
| | - Xianyuan Wang
- School of Nursing, The Third Military Medical University, Chongqing 400038, P.R. China
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
45
|
Armbrecht HJ, Siddiqui AM, Green M, Farr SA, Kumar VB, Banks WA, Patrick P, Shah GN, Morley JE. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways. Neurobiol Aging 2013; 35:159-68. [PMID: 23969180 DOI: 10.1016/j.neurobiolaging.2013.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 06/11/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
Abstract
The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.
Collapse
Affiliation(s)
- Harvey J Armbrecht
- Geriatric Research, Education and Clinical Center (GRECC), St Louis Veterans Affairs Medical Center, St Louis, MO, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO, USA; Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Targeting the Dbl and dock-family RhoGEFs: a yeast-based assay to identify cell-active inhibitors of Rho-controlled pathways. Enzymes 2013; 33 Pt A:169-91. [PMID: 25033805 DOI: 10.1016/b978-0-12-416749-0.00008-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Ras-like superfamily of low molecular weight GTPases is made of five major families (Arf/Sar, Rab, Ran, Ras, and Rho), highly conserved across evolution. This is in keeping with their roles in basic cellular functions (endo/exocytosis, vesicular trafficking, nucleocytoplasmic trafficking, cell signaling, proliferation and apoptosis, gene regulation, F-actin dynamics), whose alterations are associated with various types of diseases, in particular cancer, neurodegenerative, cardiovascular, and infectious diseases. For these reasons, Ras-like pathways are of great potential in therapeutics and identifying inhibitors that decrease signaling activity is under intense research. Along this line, guanine exchange factors (GEFs) represent attractive targets. GEFs are proteins that promote the active GTP-bound state of GTPases and represent the major entry points whereby extracellular cues are converted into Ras-like signaling. We previously developed the yeast exchange assay (YEA), an experimental setup in the yeast in which activity of a mammalian GEF can be monitored by auxotrophy and color reporter genes. This assay was further engineered for medium-throughput screening of GEF inhibitors, which can readily select for cell-active and specific compounds. We report here on the successful identification of inhibitors against Dbl and CZH/DOCK-family members, GEFs for Rho GTPases, and on the experimental setup to screen for inhibitors of GEFs of the Arf family. We also discuss on inhibitors developed using virtual screening (VS), which target the GEF/GTPase interface with high efficacy and specificity. We propose that using VS and YEA in combination may represent a method of choice for identifying specific and cell-active GEF inhibitors.
Collapse
|
47
|
Abstract
The secretory pathway is responsible for the synthesis, folding, and delivery of a diverse array of cellular proteins. Secretory protein synthesis begins in the endoplasmic reticulum (ER), which is charged with the tasks of correctly integrating nascent proteins and ensuring correct post-translational modification and folding. Once ready for forward traffic, proteins are captured into ER-derived transport vesicles that form through the action of the COPII coat. COPII-coated vesicles are delivered to the early Golgi via distinct tethering and fusion machineries. Escaped ER residents and other cycling transport machinery components are returned to the ER via COPI-coated vesicles, which undergo similar tethering and fusion reactions. Ultimately, organelle structure, function, and cell homeostasis are maintained by modulating protein and lipid flux through the early secretory pathway. In the last decade, structural and mechanistic studies have added greatly to the strong foundation of yeast genetics on which this field was built. Here we discuss the key players that mediate secretory protein biogenesis and trafficking, highlighting recent advances that have deepened our understanding of the complexity of this conserved and essential process.
Collapse
|
48
|
Funaki T, Kon S, Tanabe K, Natsume W, Sato S, Shimizu T, Yoshida N, Wong WF, Ogura A, Ogawa T, Inoue K, Ogonuki N, Miki H, Mochida K, Endoh K, Yomogida K, Fukumoto M, Horai R, Iwakura Y, Ito C, Toshimori K, Watanabe T, Satake M. The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Mol Biol Cell 2013; 24:2633-44. [PMID: 23864717 PMCID: PMC3756916 DOI: 10.1091/mbc.e13-05-0234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SMAP2 is an Arf GAP and modulates clathrin-coated vesicle formation. SMAP2-deficient male mice exhibited globozoospermia due to acrosome deformation. In SMAP2(−/−) spermatids, budding of proacrosomal vesicles from the TGN was distorted and clathrin traffic–related molecules such as CALM and syntaxin2 were mislocated. The trans-Golgi network (TGN) functions as a hub organelle in the exocytosis of clathrin-coated membrane vesicles, and SMAP2 is an Arf GTPase-activating protein that binds to both clathrin and the clathrin assembly protein (CALM). In the present study, SMAP2 is detected on the TGN in the pachytene spermatocyte to the round spermatid stages of spermatogenesis. Gene targeting reveals that SMAP2-deficient male mice are healthy and survive to adulthood but are infertile and exhibit globozoospermia. In SMAP2-deficient spermatids, the diameter of proacrosomal vesicles budding from TGN increases, TGN structures are distorted, acrosome formation is severely impaired, and reorganization of the nucleus does not proceed properly. CALM functions to regulate vesicle sizes, and this study shows that CALM is not recruited to the TGN in the absence of SMAP2. Furthermore, syntaxin2, a component of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex, is not properly concentrated at the site of acrosome formation. Thus this study reveals a link between SMAP2 and CALM/syntaxin2 in clathrin-coated vesicle formation from the TGN and subsequent acrosome formation. SMAP2-deficient mice provide a model for globozoospermia in humans.
Collapse
Affiliation(s)
- Tomo Funaki
- Department of Molecular Immunology, Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sauer M, Delgadillo MO, Zouhar J, Reynolds GD, Pennington JG, Jiang L, Liljegren SJ, Stierhof YD, De Jaeger G, Otegui MS, Bednarek SY, Rojo E. MTV1 and MTV4 encode plant-specific ENTH and ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo from the trans-Golgi network. THE PLANT CELL 2013; 25:2217-35. [PMID: 23771894 PMCID: PMC3723622 DOI: 10.1105/tpc.113.111724] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/14/2013] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an epsin N-terminal homology protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein nevershed/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants.
Collapse
Affiliation(s)
- Michael Sauer
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - M. Otilia Delgadillo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - Jan Zouhar
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica, 28223 Madrid, Spain
| | | | | | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sarah J. Liljegren
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677-1848
| | - York-Dieter Stierhof
- Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, 72076 Tuebingen, Germany
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Marisa S. Otegui
- Department of Botany, University of Madison, Madison, Wisconsin 53706
| | | | - Enrique Rojo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
50
|
Kon S, Minegishi N, Tanabe K, Watanabe T, Funaki T, Wong WF, Sakamoto D, Higuchi Y, Kiyonari H, Asano K, Iwakura Y, Fukumoto M, Osato M, Sanada M, Ogawa S, Nakamura T, Satake M. Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia. J Clin Invest 2013; 123:1123-37. [PMID: 23434593 DOI: 10.1172/jci63711] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
The formation of clathrin-coated vesicles is essential for intracellular membrane trafficking between subcellular compartments and is triggered by the ARF family of small GTPases. We previously identified SMAP1 as an ARF6 GTPase-activating protein that functions in clathrin-dependent endocytosis. Because abnormalities in clathrin-dependent trafficking are often associated with oncogenesis, we targeted Smap1 in mice to examine its physiological and pathological significance. Smap1-deficent mice exhibited healthy growth, but their erythroblasts showed enhanced transferrin endocytosis. In mast cells cultured in SCF, Smap1 deficiency did not affect the internalization of c-KIT but impaired the sorting of internalized c-KIT from multivesicular bodies to lysosomes, resulting in intracellular accumulation of undegraded c-KIT that was accompanied by enhanced activation of ERK and increased cell growth. Interestingly, approximately 50% of aged Smap1-deficient mice developed anemia associated with morphologically dysplastic cells of erythroid-myeloid lineage, which are hematological abnormalities similar to myelodysplastic syndrome (MDS) in humans. Furthermore, some Smap1-deficient mice developed acute myeloid leukemia (AML) of various subtypes. Collectively, to our knowledge these results provide the first evidence in a mouse model that the deregulation of clathrin-dependent membrane trafficking may be involved in the development of MDS and subsequent AML.
Collapse
Affiliation(s)
- Shunsuke Kon
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|