1
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Doering KRS, Ermakova G, Taubert S. Nuclear hormone receptor NHR-49 is an essential regulator of stress resilience and healthy aging in Caenorhabditis elegans. Front Physiol 2023; 14:1241591. [PMID: 37645565 PMCID: PMC10461480 DOI: 10.3389/fphys.2023.1241591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
The genome of Caenorhabditis elegans encodes 284 nuclear hormone receptor, which perform diverse functions in development and physiology. One of the best characterized of these is NHR-49, related in sequence and function to mammalian hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Initially identified as regulator of lipid metabolism, including fatty acid catabolism and desaturation, additional important roles for NHR-49 have since emerged. It is an essential contributor to longevity in several genetic and environmental contexts, and also plays vital roles in the resistance to several stresses and innate immune response to infection with various bacterial pathogens. Here, we review how NHR-49 is integrated into pertinent signaling circuits and how it achieves its diverse functions. We also highlight areas for future investigation including identification of regulatory inputs that drive NHR-49 activity and identification of tissue-specific gene regulatory outputs. We anticipate that future work on this protein will provide information that could be useful for developing strategies to age-associated declines in health and age-related human diseases.
Collapse
Affiliation(s)
- Kelsie R. S. Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Agbo L, Blanchet SA, Kougnassoukou Tchara PE, Fradet-Turcotte A, Lambert JP. Comprehensive Interactome Mapping of Nuclear Receptors Using Proximity Biotinylation. Methods Mol Biol 2022; 2456:223-240. [PMID: 35612745 DOI: 10.1007/978-1-0716-2124-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nuclear receptors, including hormone receptors, perform their cellular activities by modulating their protein-protein interactions. They engage with specific ligands and translocate to the nucleus, where they bind the DNA and activate extensive transcriptional programs. Therefore, gaining a comprehensive overview of the protein-protein interactions they establish requires methods that function effectively throughout the cell with fast dynamics and high reproducibility. Focusing on estrogen receptor alpha (ESR1), the founding member of the nuclear receptor family, this chapter describes a new lentiviral system that allows the expression of TurboID-hemagglutinin (HA)-2 × Strep tagged proteins in mammalian cells to perform fast proximity biotinylation assays. Key validation steps for these reagents and their use in interactome mapping experiments in two distinct breast cancer cell lines are described. Our protocol enabled the quantification of ESR1 interactome generated by cellular contexts that were hormone-sensitive or not.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Sophie Anne Blanchet
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Amélie Fradet-Turcotte
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Cancer Research Center, Université Laval, Québec, QC, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada.
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.
| |
Collapse
|
4
|
Lee JM, Kim H, Baek SH. Unraveling the physiological roles of retinoic acid receptor-related orphan receptor α. Exp Mol Med 2021; 53:1278-1286. [PMID: 34588606 PMCID: PMC8492739 DOI: 10.1038/s12276-021-00679-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid receptor-related orphan receptor-α (RORα) is a member of the orphan nuclear receptor family and functions as a transcriptional activator in response to circadian changes. Circadian rhythms are complex cellular mechanisms regulating diverse metabolic, inflammatory, and tumorigenic gene expression pathways that govern cyclic cellular physiology. Disruption of circadian regulators, including RORα, plays a critical role in tumorigenesis and facilitates the development of inflammatory hallmarks. Although RORα contributes to overall fitness among anticancer, anti-inflammatory, lipid homeostasis, and circadian clock mechanisms, the molecular mechanisms underlying the mode of transcriptional regulation by RORα remain unclear. Nonetheless, RORα has important implications for pharmacological prevention of cancer, inflammation, and metabolic diseases, and understanding context-dependent RORα regulation will provide an innovative approach for unraveling the functional link between cancer metabolism and rhythm changes.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|
6
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
7
|
Duez H, Pourcet B. Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Front Endocrinol (Lausanne) 2021; 12:630536. [PMID: 33716981 PMCID: PMC7947301 DOI: 10.3389/fendo.2021.630536] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is the first line of defense specialized in the clearing of invaders whether foreign elements like microbes or self-elements that accumulate abnormally including cellular debris. Inflammasomes are master regulators of the innate immune system, especially in macrophages, and are key sensors involved in maintaining cellular health in response to cytolytic pathogens or stress signals. Inflammasomes are cytoplasmic complexes typically composed of a sensor molecule such as NOD-Like Receptors (NLRs), an adaptor protein including ASC and an effector protein such as caspase 1. Upon stimulation, inflammasome complex components associate to promote the cleavage of the pro-caspase 1 into active caspase-1 and the subsequent activation of pro-inflammatory cytokines including IL-18 and IL-1β. Deficiency or overactivation of such important sensors leads to critical diseases including Alzheimer diseases, chronic inflammatory diseases, cancers, acute liver diseases, and cardiometabolic diseases. Inflammasomes are tightly controlled by a two-step activation regulatory process consisting in a priming step, which activates the transcription of inflammasome components, and an activation step which leads to the inflammasome complex formation and the subsequent cleavage of pro-IL1 cytokines. Apart from the NF-κB pathway, nuclear receptors have recently been proposed as additional regulators of this pathway. This review will discuss the role of nuclear receptors in the control of the NLRP3 inflammasome and the putative beneficial effect of new modulators of inflammasomes in the treatment of inflammatory diseases including colitis, fulminant hepatitis, cardiac ischemia-reperfusion and brain diseases.
Collapse
|
8
|
Picroside II alleviates liver injury induced by alpha-naphthylisothiocyanate through AMPK-FXR pathway. Toxicol Appl Pharmacol 2020; 408:115248. [PMID: 32976922 DOI: 10.1016/j.taap.2020.115248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Alpha-naphthylisothiocyanate (ANIT) is a typical hepatotoxicant that causes cholestasis, which causes toxic bile acid accumulation in the liver and leads to liver injury. Picroside II (PIC), one of the dominant effective components extracted from Picrorhiza scrophulariiflora Pennell, exhibits many pharmacological effects. However, the role of AMP-activated protein kinase (AMPK)-Farnesoid X receptor (FXR) pathway in the hepatoprotective effect of PIC against ANIT-induced cholestasis remains largely unknown. This study aimed to investigate the mechanisms of PIC on ANIT-induced cholestasis in vivo and in vitro. Our results showed that PIC protected against ANIT-induced liver injury in primary mouse hepatocytes, and decreased serum biochemical markers and lessened histological injuries in mice. ANIT inhibited FXR and its target genes of bile acid synthesis enzymes sterol-12α-hydroxylase (CYP8B1), and increase bile acid uptake transporter Na + -dependent taurocholate transporter (NTCP), efflux transporter bile salt export pump (BSEP) and bile acid metabolizing enzymes UDP-glucuronosyltransferase 1a1 (UGT1A1) expressions. PIC prevented its downregulation of FXR, NTCP, BSEP and UGT1A1, and further reduced CYP8B1 by ANIT. Furthermore, ANIT activated AMPK via ERK1/2-LKB1 pathway. PIC inhibited ERK1/2, LKB1 and AMPK phosphorylation in ANIT-induced cholestasis in vivo and in vitro. AICAR, an AMPK agonist, blocked PIC-mediated changes in FXR, CYP8B1 and BSEP expression in vitro. Meanwhile, U0126, an ERK1/2 inhibitor, further repressed ERK1/2-LKB1-AMPK pathway phosphorylation. In conclusion, PIC regulated bile acid-related transporters and enzymes to protect against ANIT-induced liver injury, which related to ERK1/2-LKB1-AMPK pathway. Thus, this study extends the understanding of the anti-cholestasis effect of PIC and provides new therapeutic targets for cholestasis treatment.
Collapse
|
9
|
Voisin M, Gage MC, Becares N, Shrestha E, Fisher EA, Pineda-Torra I, Garabedian MJ. LXRα Phosphorylation in Cardiometabolic Disease: Insight From Mouse Models. Endocrinology 2020; 161:bqaa089. [PMID: 32496563 PMCID: PMC7324054 DOI: 10.1210/endocr/bqaa089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023]
Abstract
Posttranslational modifications, such as phosphorylation, are a powerful means by which the activity and function of nuclear receptors such as LXRα can be altered. However, despite the established importance of nuclear receptors in maintaining metabolic homeostasis, our understanding of how phosphorylation affects metabolic diseases is limited. The physiological consequences of LXRα phosphorylation have, until recently, been studied only in vitro or nonspecifically in animal models by pharmacologically or genetically altering the enzymes enhancing or inhibiting these modifications. Here we review recent reports on the physiological consequences of modifying LXRα phosphorylation at serine 196 (S196) in cardiometabolic disease, including nonalcoholic fatty liver disease, atherosclerosis, and obesity. A unifying theme from these studies is that LXRα S196 phosphorylation rewires the LXR-modulated transcriptome, which in turn alters physiological response to environmental signals, and that this is largely distinct from the LXR-ligand-dependent action.
Collapse
Affiliation(s)
- Maud Voisin
- Department of Microbiology, New York University School of Medicine, New York, New York, US
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Natalia Becares
- Centre of Clinical Pharmacology, Division of Medicine, University College of London, London, UK
| | - Elina Shrestha
- Department of Microbiology, New York University School of Medicine, New York, New York, US
| | - Edward A Fisher
- Department of Microbiology, New York University School of Medicine, New York, New York, US
- Department of Medicine, New York University School of Medicine, New York, New York, US
| | - Ines Pineda-Torra
- Centre of Cardiometabolic and Vascular Science, Division of Medicine, University College of London, London, UK
| | - Michael J Garabedian
- Department of Microbiology, New York University School of Medicine, New York, New York, US
| |
Collapse
|
10
|
Kaupang Å, Hansen TV. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. PPAR Res 2020; 2020:9657380. [PMID: 32695150 PMCID: PMC7351019 DOI: 10.1155/2020/9657380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade of PPARγ research has dramatically improved our understanding of the structural and mechanistic bases for the diverging physiological effects of different classes of PPARγ ligands. The discoveries that lie at the heart of these developments have enabled the design of a new class of PPARγ ligands, capable of isolating central therapeutic effects of PPARγ modulation, while displaying markedly lower toxicities than previous generations of PPARγ ligands. This review examines the emerging framework around the design of these ligands and seeks to unite its principles with the development of new classes of ligands for PPARα and PPARβ/δ. The focus is on the relationships between the binding modes of ligands, their influence on PPAR posttranslational modifications, and gene expression patterns. Specifically, we encourage the design and study of ligands that primarily bind to the Ω pockets of PPARα and PPARβ/δ. In support of this development, we highlight already reported ligands that if studied in the context of this new framework may further our understanding of the gene programs regulated by PPARα and PPARβ/δ. Moreover, recently developed pharmacological tools that can be utilized in the search for ligands with new binding modes are also presented.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
11
|
Najumuddin, Fakhar M, Rashid S. Evidence for NAD +-dependent histone dynamics and tunneling associated conformational transitions in circadian deacetylase SIRT1. J Mol Graph Model 2020; 99:107646. [PMID: 32531731 DOI: 10.1016/j.jmgm.2020.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022]
Abstract
Circadian rhythm is a biological cycle that is involved in all processes over 24 h day and night period. Sirtuin 1 (SIRT1) is a 747 amino acid-long class III Nicotinamide adenine dinucleotide (NAD+)-dependent histone that acts as a circadian deacetylase. Here we present a detailed in-silico analysis to address comparative structure-function relationship and interaction pattern of SIRT1-NAD+/Zn+2 and SIRT1NAD+/Zn+2-acetylated histone H4 (H4KAC16) complexes. MD-based ensemble analysis suggested an overall loss of helical content (21.144-17.230%) in H4KAC16-bound SIRT1NAD+/Zn+2 due to conformational readjustments of 32 residues, as compared to SIRT1NAD+/Zn+2. Due to increased flexibility, SIRT1-specific SER275, SER442 and ARG466 residues involved in NAD+ association facilitated in the formation of a transient tunnel (17.77 Å) that was further elongated to 19.25 Å upon SIRT1NAD+/Zn+2 binding to H4KAC16. A close conformation of SIRT1NAD+/Zn+2 was achieved due to binding of H4KAC16 that results in the movement of helical module towards Zn+2 binding module together with Rossmann fold at NAD+ binding region. Furthermore, a 2-fold increase (4.31-8.82 Å) in the measured inter-atomic distance between imidazole nitrogen of conserved HIS363 and NAD+-specific 2'-hydroxyl group of ribose ring was evident in SIRT1NAD+/Zn+2-H4KAC16 complex. At 90 ns time scale, the distance between C6A of adenine ring and C2N of nicotinamide ring was more extended (19.32 Å) in SIRT1NAD+/Zn+2-H4KAC16 as compared to SIRT1NAD+/Zn+2 (11.54 Å). These data suggest that H4KAC16 binding to SIRT1 may coordinate an unusual conformational readjustment of nicotinamide ring at site-b and reposition of HIS363 to facilitate SIRT1-dependent deacetylase activity. Taken together, our findings will help in understanding the precise structural changes occurring in response to SIRT1 deacetylase activity of core histone.
Collapse
Affiliation(s)
- Najumuddin
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Fakhar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
12
|
Falomir-Lockhart LJ, Cavazzutti GF, Giménez E, Toscani AM. Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Front Cell Neurosci 2019; 13:162. [PMID: 31105530 PMCID: PMC6491900 DOI: 10.3389/fncel.2019.00162] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types. FAs can serve as secondary messengers, as well as modulators of enzymatic activities and substrates for cytokines synthesis. More recently, it has been documented a direct activity of free FAs as ligands of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged, demonstrating its participation in a wide range of physiological and pathological conditions. It has been long known that the central nervous system is enriched with poly-unsaturated FAs, such as arachidonic (C20:4ω-6) or docosohexaenoic (C22:6ω-3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth, development, memory, and inflammatory response. Furthermore, a whole family of low molecular weight compounds derived from FAs has also gained special attention as the natural ligands for cannabinoid receptors or key cytokines involved in inflammation, largely expanding the role of FAs as precursors of signaling molecules. Nutritional deficiencies, and alterations in lipid metabolism and lipid signaling have been associated with developmental and cognitive problems, as well as with neurodegenerative diseases. The molecular mechanism behind these effects still remains elusive. But in the last two decades, different families of proteins have been characterized as receptors mediating FAs signaling. This review focuses on different receptors sensing and transducing free FAs signals in neural cells: (1) membrane receptors of the family of G Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly discuss the advantages of evaluating them as potential targets for drug design in order to manipulate lipid signaling. A thorough characterization of lipid receptors of the nervous system could provide a framework for a better understanding of their roles in neurophysiology and, potentially, help for the development of novel drugs against aging and neurodegenerative processes.
Collapse
Affiliation(s)
- Lisandro Jorge Falomir-Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gian Franco Cavazzutti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ezequiel Giménez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Andrés Martín Toscani
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
13
|
Sealy RE, Jones BG, Surman SL, Penkert RR, Pelletier S, Neale G, Hurwitz JL. Will Attention by Vaccine Developers to the Host's Nuclear Hormone Levels and Immunocompetence Improve Vaccine Success? Vaccines (Basel) 2019; 7:vaccines7010026. [PMID: 30818795 PMCID: PMC6466149 DOI: 10.3390/vaccines7010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023] Open
Abstract
Despite extraordinary advances in fields of immunology and infectious diseases, vaccine development remains a challenge. The development of a respiratory syncytial virus vaccine, for example, has spanned more than 50 years of research with studies of more than 100 vaccine candidates. Dozens of attractive vaccine products have entered clinical trials, but none have completed the path to licensing. Human immunodeficiency virus vaccine development has proven equally difficult, as there is no licensed product after more than 30 years of pre-clinical and clinical research. Here, we examine vaccine development with attention to the host. We discuss how nuclear hormones, including vitamins and sex hormones, can influence responses to vaccines. We show how nuclear hormones interact with regulatory elements of immunoglobulin gene loci and how the deletion of estrogen response elements from gene enhancers will alter patterns of antibody isotype expression. Based on these findings, and findings that nuclear hormone levels are often insufficient or deficient among individuals in both developed and developing countries, we suggest that failed vaccine studies may in some cases reflect weaknesses of the host rather than the product. We encourage analyses of nuclear hormone levels and immunocompetence among study participants in clinical trials to ensure the success of future vaccine programs.
Collapse
Affiliation(s)
- Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Geoff Neale
- The Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
14
|
Huang B, Pei HZ, Chang HW, Baek SH. The E3 ubiquitin ligase Trim13 regulates Nur77 stability via casein kinase 2α. Sci Rep 2018; 8:13895. [PMID: 30224829 PMCID: PMC6141542 DOI: 10.1038/s41598-018-32391-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/24/2018] [Indexed: 01/23/2023] Open
Abstract
Nur77 is a member of the NR4A subfamily of nuclear receptors and has been shown to regulate various biological processes such as apoptosis and inflammation. Here, we show that Nur77 ubiquitination is mediated by the tripartite motif 13 (Trim13), a RING-type E3 ubiquitin ligase. The interaction between Nur77 and Trim13 was confirmed by co-immunoprecipitation. Moreover, we found that Lys539 in Nur77 ubiquitination is targeted for Trim13, which leads to Nur77 degradation. The Trim13-mediated ubiquitination of Nur77 was optimal in the presence of the E2 enzyme UbcH5. Importantly, in addition to Trim13-mediated ubiquitination, the stability of Nur77 was also regulated by casein kinase 2α (CK2α). Pharmacological inhibition of CK2 markedly increased Nur77 levels, whereas overexpression of CK2α, but not its inactive mutant, dramatically decreased Nur77 levels by promoting Nur77 ubiquitination. CK2α phosphorylated Ser154 in Nur77 and thereby regulated Nur77 protein levels by promoting its ubiquitin-mediated degradation. Importantly, we also show that degradation of Nur77 is involved in TNFα-mediated IL-6 production via CK2α and Trim13. Taken together, these results suggest that the sequential phosphorylation and ubiquitination of Nur77 controls its degradation, and provide a therapeutic approach for regulating Nur77 activity through the CK2α-Trim13 axis as a mechanism to control the inflammatory response.
Collapse
Affiliation(s)
- Bin Huang
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Han Zhong Pei
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea.
| | - Suk-Hwan Baek
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea.
| |
Collapse
|
15
|
Najumuddin, Fakhar M, Gul M, Rashid S. Interactive structural analysis of βTrCP1 and PER2 phosphoswitch binding through dynamics simulation assay. Arch Biochem Biophys 2018; 651:34-42. [DOI: 10.1016/j.abb.2018.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 10/16/2022]
|
16
|
Corrales P, Izquierdo-Lahuerta A, Medina-Gómez G. Maintenance of Kidney Metabolic Homeostasis by PPAR Gamma. Int J Mol Sci 2018; 19:ijms19072063. [PMID: 30012954 PMCID: PMC6073436 DOI: 10.3390/ijms19072063] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that control the transcription of specific genes by binding to regulatory DNA sequences. Among the three subtypes of PPARs, PPARγ modulates a broad range of physiopathological processes, including lipid metabolism, insulin sensitization, cellular differentiation, and cancer. Although predominantly expressed in adipose tissue, PPARγ expression is also found in different regions of the kidney and, upon activation, can redirect metabolism. Recent studies have highlighted important roles for PPARγ in kidney metabolism, such as lipid and glucose metabolism and renal mineral control. PPARγ is also implicated in the renin-angiotensin-aldosterone system and, consequently, in the control of systemic blood pressure. Accordingly, synthetic agonists of PPARγ have reno-protective effects both in diabetic and nondiabetic patients. This review focuses on the role of PPARγ in renal metabolism as a likely key factor in the maintenance of systemic homeostasis.
Collapse
Affiliation(s)
- Patricia Corrales
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos. Avda. de Atenas s/n. Alcorcón, 28922 Madrid, Spain.
| | - Adriana Izquierdo-Lahuerta
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos. Avda. de Atenas s/n. Alcorcón, 28922 Madrid, Spain.
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos. Avda. de Atenas s/n. Alcorcón, 28922 Madrid, Spain.
- MEMORISM Research Unit of University Rey Juan Carlos-Institute of Biomedical Research "Alberto Sols" (CSIC), 28029 Madrid, Spain.
| |
Collapse
|
17
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
18
|
Chan JKW, Bittner S, Bittner A, Atwal S, Shen WJ, Inayathullah M, Rajada J, Nicolls MR, Kraemer FB, Azhar S. Nordihydroguaiaretic Acid, a Lignan from Larrea tridentata (Creosote Bush), Protects Against American Lifestyle-Induced Obesity Syndrome Diet-Induced Metabolic Dysfunction in Mice. J Pharmacol Exp Ther 2018; 365:281-290. [PMID: 29472517 PMCID: PMC5878670 DOI: 10.1124/jpet.117.243733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/16/2018] [Indexed: 12/30/2022] Open
Abstract
To determine the effects of nordihydroguaiaretic acid (NDGA) on metabolic and molecular changes in response to feeding a typical American fast food or Western diet, mice were fed an American lifestyle-induced obesity syndrome (ALIOS) diet and subjected to metabolic analysis. Male C57BL/6J mice were randomly assigned to the ALIOS diet, the ALIOS diet supplemented with NDGA (NDGA+ALIOS), or a control diet and were maintained on the specific diet for 8 weeks. Mice fed the ALIOS diet showed increased body, liver, and epididymal fat pad weight as well as increased plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) levels (a measure of liver injury) and liver triglyceride content. Coadministration of NDGA normalized body and epididymal fat pad weight, ALT and AST levels, and liver triglycerides. NDGA treatment also improved insulin sensitivity but not glucose intolerance in mice fed the ALIOS diet. In mice fed the NDGA+ALIOS diet, NDGA supplementation induced peroxisome proliferator-activated receptor α (PPARα; the master regulator of fatty acid oxidation) and mRNA levels of carnitine palmitoyltransferases Cpt1c and Cpt2, key genes involved in fatty acid oxidation, compared with the ALIOS diet. NDGA significantly reduced liver endoplasmic reticulum (ER) stress response C/EBP homologous protein, compared with chow or the ALIOS diet, and also ameliorated ALIOS diet-induced elevation of apoptosis signaling protein, caspase 3. Likewise, NDGA downregulated the ALIOS diet-induced mRNA levels of Pparg, fatty acid synthase Fasn, and diacylglycerol acyltransferase Dgat2 NDGA treatment of ALIOS-fed mice upregulated the hepatic expression of antioxidant enzymes, glutathione peroxidase 4, and peroxiredoxin 3 proteins. In conclusion, we provide evidence that NDGA improves metabolic dysregulation by simultaneously modulating the PPARα transcription factor and key genes involved in fatty acid oxidation, key antioxidant and lipogenic enzymes, and apoptosis and ER stress signaling pathways.
Collapse
Affiliation(s)
- Jackie K W Chan
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Stefanie Bittner
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Alex Bittner
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Suman Atwal
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Wen-Jun Shen
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Mohammed Inayathullah
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Jayakumar Rajada
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Mark R Nicolls
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Fredric B Kraemer
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Salman Azhar
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| |
Collapse
|
19
|
Saenz J, Santa-María C, Reyes-Quiroz ME, Geniz I, Jiménez J, Sobrino F, Alba G. Grapefruit Flavonoid Naringenin Regulates the Expression of LXRα in THP-1 Macrophages by Modulating AMP-Activated Protein Kinase. Mol Pharm 2018; 15:1735-1745. [PMID: 29140707 DOI: 10.1021/acs.molpharmaceut.7b00797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present work investigates the modulation of grapefruit flavonoid naringenin over liver X receptor alpha (LXRα) and its target genes in THP-1 macrophages, focusing on AMP-activated protein kinase (AMPK) implication. Naringenin induced LXRα at mRNA and protein levels besides influencing the expression of LXRα target genes ABCA1, ABCG1 (ATP-binding cassette A1 and G1), and SREBP1c (sterol response element binding protein 1c) in THP-1 macrophages. The increased LXRα mRNA and protein expression was reverted when AMPK was inhibited by its chemical inhibitor, compound C or by transfection with AMPK α1 and α2 siRNA. Naringenin treatments were also able to promote reverse cholesterol transport in THP-1 cells, which is in line with the increase in the ABCA1 and ABCG1 expression found. Treatments with this flavonoid also inhibited cell migration in THP-1 cells. In conclusion, LXRα and its target genes are up-regulated by naringenin in an AMPK dependent manner in human macrophages. The enhancement in the expression of genes involved in cholesterol efflux may reveal a new mechanism by which this polyphenol can prevent atherosclerosis and foam cell progression.
Collapse
Affiliation(s)
- Javier Saenz
- Departamento de Bioquímica Médica y Biología Molecular , Universidad de Sevilla , 41004 Sevilla , Spain
| | - Consuelo Santa-María
- Departamento de Bioquímica y Biología Molecular , Universidad de Sevilla , 41004 Sevilla , Spain
| | - María Edith Reyes-Quiroz
- Departamento de Bioquímica Médica y Biología Molecular , Universidad de Sevilla , 41004 Sevilla , Spain
| | - Isabel Geniz
- Hospital Nuestra Señora de Valme , Servicio Andaluz de Salud , 41001 Sevilla , Spain
| | - Juan Jiménez
- Departamento de Bioquímica Médica y Biología Molecular , Universidad de Sevilla , 41004 Sevilla , Spain
| | - Francisco Sobrino
- Departamento de Bioquímica Médica y Biología Molecular , Universidad de Sevilla , 41004 Sevilla , Spain
| | - Gonzalo Alba
- Departamento de Bioquímica Médica y Biología Molecular , Universidad de Sevilla , 41004 Sevilla , Spain
| |
Collapse
|
20
|
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 2017; 13:259-278. [PMID: 28581332 PMCID: PMC5941715 DOI: 10.2217/fca-2016-0059] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
This article provides a comprehensive review about the molecular and metabolic actions of PPAR-α. It describes its structural features, ligand specificity, gene transcription mechanisms, functional characteristics and target genes. In addition, recent progress with the use of loss of function and gain of function mouse models in the discovery of diverse biological functions of PPAR-α, particularly in the vascular system and the status of the development of new single, dual, pan and partial PPAR agonists (PPAR modulators) in the clinical management of metabolic diseases are presented. This review also summarizes the clinical outcomes from a large number of clinical trials aimed at evaluating the atheroprotective actions of current clinically used PPAR-α agonists, fibrates and statin-fibrate combination therapy.
Collapse
Affiliation(s)
- Lu Han
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jun Shen
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stefanie Bittner
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Fredric B Kraemer
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Salman Azhar
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Hanley ML, Yoo TY, Sonnett M, Needleman DJ, Mitchison TJ. Chromosomal passenger complex hydrodynamics suggests chaperoning of the inactive state by nucleoplasmin/nucleophosmin. Mol Biol Cell 2017; 28:1444-1456. [PMID: 28404751 PMCID: PMC5449145 DOI: 10.1091/mbc.e16-12-0860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/30/2023] Open
Abstract
The chromosomal passenger complex (CPC) is a conserved, essential regulator of cell division. As such, significant anti-cancer drug development efforts have been focused on targeting it, most notably by inhibiting its AURKB kinase subunit. The CPC is activated by AURKB-catalyzed autophosphorylation on multiple subunits, but how this regulates CPC interactions with other mitotic proteins remains unclear. We investigated the hydrodynamic behavior of the CPC in Xenopus laevis egg cytosol using sucrose gradient sedimentation and in HeLa cells using fluorescence correlation spectroscopy. We found that autophosphorylation of the CPC decreases its sedimentation coefficient in egg cytosol and increases its diffusion coefficient in live cells, indicating a decrease in mass. Using immunoprecipitation coupled with mass spectrometry and immunoblots, we discovered that inactive, unphosphorylated CPC interacts with nucleophosmin/nucleoplasmin proteins, which are known to oligomerize into pentamers and decamers. Autophosphorylation of the CPC causes it to dissociate from nucleophosmin/nucleoplasmin. We propose that nucleophosmin/nucleoplasmin complexes serve as chaperones that negatively regulate the CPC and/or stabilize its inactive form, preventing CPC autophosphorylation and recruitment to chromatin and microtubules in mitosis.
Collapse
Affiliation(s)
- Mariah L Hanley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701.,Department of Chemistry, Harvard University, Cambridge, MA 02138-2902
| | - Tae Yeon Yoo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902
| | - Matthew Sonnett
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138-2902.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2902
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02114-5701
| |
Collapse
|
22
|
Becares N, Gage MC, Pineda-Torra I. Posttranslational Modifications of Lipid-Activated Nuclear Receptors: Focus on Metabolism. Endocrinology 2017; 158:213-225. [PMID: 27925773 PMCID: PMC5413085 DOI: 10.1210/en.2016-1577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022]
Abstract
Posttranslational modifications (PTMs) occur to nearly all proteins, are catalyzed by specific enzymes, and are subjected to tight regulation. They have been shown to be a powerful means by which the function of proteins can be modified, resulting in diverse effects. Technological advances such as the increased sensitivity of mass spectrometry-based techniques and availability of mutant animal models have enhanced our understanding of the complexities of their regulation and the effect they have on protein function. However, the role that PTMs have in a pathological context still remains unknown for the most part. PTMs enable the modulation of nuclear receptor function in a rapid and reversible manner in response to varied stimuli, thereby dramatically altering their activity in some cases. This review focuses on acetylation, phosphorylation, SUMOylation, and O-GlcNAcylation, which are the 4 most studied PTMs affecting lipid-regulated nuclear receptor biology, as well as on the implications of such modifications on metabolic pathways under homeostatic and pathological situations. Moreover, we review recent studies on the modulation of PTMs as therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Natalia Becares
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| | - Matthew C Gage
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| | - Inés Pineda-Torra
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| |
Collapse
|
23
|
Abstract
Obesity is a worldwide epidemic that predisposes individuals to cardiometabolic complications, such as type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD), which are all related to inappropriate ectopic lipid deposition. Identification of the pathogenic molecular mechanisms and effective therapeutic approaches are highly needed. The peroxisome proliferator-activated receptors (PPARs) modulate several biological processes that are perturbed in obesity, including inflammation, lipid and glucose metabolism and overall energy homeostasis. Here, we review how PPARs regulate the functions of adipose tissues, such as adipogenesis, lipid storage and adaptive thermogenesis, under healthy and pathological conditions. We also discuss the clinical use and mechanism of PPAR agonists in the treatment of obesity comorbidities such as dyslipidaemia, T2DM and NAFLD. First generation PPAR agonists, primarily those acting on PPARγ, are associated with adverse effects that outweigh their clinical benefits, which led to the discontinuation of their development. An improved understanding of the physiological roles of PPARs might, therefore, enable the development of safe, new PPAR agonists with improved therapeutic potential.
Collapse
Affiliation(s)
- Barbara Gross
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Michal Pawlak
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Philippe Lefebvre
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| |
Collapse
|
24
|
Watson E, Yilmaz LS, Walhout AJM. Understanding Metabolic Regulation at a Systems Level: Metabolite Sensing, Mathematical Predictions, and Model Organisms. Annu Rev Genet 2016; 49:553-75. [PMID: 26631516 DOI: 10.1146/annurev-genet-112414-055257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolic networks are extensively regulated to facilitate tissue-specific metabolic programs and robustly maintain homeostasis in response to dietary changes. Homeostatic metabolic regulation is achieved through metabolite sensing coupled to feedback regulation of metabolic enzyme activity or expression. With a wealth of transcriptomic, proteomic, and metabolomic data available for different cell types across various conditions, we are challenged with understanding global metabolic network regulation and the resulting metabolic outputs. Stoichiometric metabolic network modeling integrated with "omics" data has addressed this challenge by generating nonintuitive, testable hypotheses about metabolic flux rewiring. Model organism studies have also yielded novel insight into metabolic networks. This review covers three topics: the feedback loops inherent in metabolic regulatory networks, metabolic network modeling, and interspecies studies utilizing Caenorhabditis elegans and various bacterial diets that have revealed novel metabolic paradigms.
Collapse
Affiliation(s)
- Emma Watson
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| | - L Safak Yilmaz
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| |
Collapse
|
25
|
Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1155-1169. [PMID: 26855179 DOI: 10.1016/j.bbagrm.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 12/31/2022]
Abstract
Pregnane X receptor (PXR) is a major transcriptional regulator of xenobiotic metabolism and transport pathways in the liver and intestines, which are critical for protecting organisms against potentially harmful xenobiotic and endobiotic compounds. Inadvertent activation of drug metabolism pathways through PXR is known to contribute to drug resistance, adverse drug-drug interactions, and drug toxicity in humans. In both humans and rodents, PXR has been implicated in non-alcoholic fatty liver disease, diabetes, obesity, inflammatory bowel disease, and cancer. Because of PXR's important functions, it has been a therapeutic target of interest for a long time. More recent mechanistic studies have shown that PXR is modulated by multiple PTMs. Herein we provide the first investigation of the role of acetylation in modulating PXR activity. Through LC-MS/MS analysis, we identified lysine 109 (K109) in the hinge as PXR's major acetylation site. Using various biochemical and cell-based assays, we show that PXR's acetylation status and transcriptional activity are modulated by E1A binding protein (p300) and sirtuin 1 (SIRT1). Based on analysis of acetylation site mutants, we found that acetylation at K109 represses PXR transcriptional activity. The mechanism involves loss of RXRα dimerization and reduced binding to cognate DNA response elements. This mechanism may represent a promising therapeutic target using modulators of PXR acetylation levels. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
26
|
Abstract
The human genome codes for 48 members of the nuclear receptor superfamily, half of which have known ligands. Natural ligands for nuclear receptors are generally lipophilic in nature and include steroid hormones, bile acids, fatty acids, thyroid hormones, certain vitamins, and prostaglandins. Nuclear receptors regulate gene expression programs controlling development, differentiation, metabolic homeostasis and reproduction, in both a temporal and a tissue-selective manner. Since the original cloning of the cDNAs for the estrogen and glucocorticoid receptors, large strides have been made in our understanding of the structure and function of this family of transcription factors and their role in pathophysiology.
Collapse
Affiliation(s)
- Iain J McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
27
|
Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2). Sci Rep 2015; 5:16430. [PMID: 26548416 PMCID: PMC4637908 DOI: 10.1038/srep16430] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
The ability of the anti-diabetic drug metformin to inhibit anabolic processes including gluconeogenesis and lipogenesis is partly attributable to activation of the AMP-activated protein kinase (AMPK) pathway. The p160 steroid receptor coactivator 2 (SRC-2) is a key regulator of cellular metabolism and drives expression of the gluconeogenic enzyme glucose-6-phosphatase (G6Pc). Here, we uncovered a role for SRC-2 in the metabolic reprogramming imposed by metformin. In FaO cells, metformin dose-dependently reduced mRNA expression of SRC-2. Microarray analysis of metformin-treated cells revealed an overrepresentation of downregulated genes involved in biosynthesis of lipids and cholesterol. Several metformin-regulated genes including fatty acid synthase (FASN) were validated as transcriptional targets of SRC-2 with promoters characterized by sterol regulatory element (SRE) binding protein (SREBP) recognition sequences. Transactivation assays of the FASN promoter confirmed that SRC-2 is a coactivator of SREBP-1. By suppressing SRC-2 at the transcriptional level, metformin impeded recruitment of SRC-2 and RNA polymerase II to the G6Pc promoter and to SREs of mutual SRC-2/SREBP-1 target gene promoters. Hepatocellular fat accretion was reduced by metformin or knock-down of both SRC-2 and SREBP-1. Accordingly we propose that metformin inhibits glucose and lipid biosynthesis partly by downregulating SRC-2 gene expression.
Collapse
|
28
|
Lempradl A, Pospisilik JA, Penninger JM. Exploring the emerging complexity in transcriptional regulation of energy homeostasis. Nat Rev Genet 2015; 16:665-81. [PMID: 26460345 DOI: 10.1038/nrg3941] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity and its associated diseases are expected to affect more than 1 billion people by the year 2030. These figures have sparked intensive research into the molecular control of food intake, nutrient distribution, storage and metabolism--processes that are collectively termed energy homeostasis. Recent decades have also seen dramatic developments in our understanding of gene regulation at the signalling, chromatin and post-transcriptional levels. The seemingly exponential growth in this complexity now poses a major challenge for translational researchers in need of simplified but accurate paradigms for clinical use. In this Review, we consider the current understanding of transcriptional control of energy homeostasis, including both transcriptional and epigenetic regulators, and crosstalk between pathways. We also provide insights into emerging developments and challenges in this field.
Collapse
Affiliation(s)
- Adelheid Lempradl
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - J Andrew Pospisilik
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
29
|
Distinct functional modes of SUMOylation for retinoid X receptor alpha. Biochem Biophys Res Commun 2015; 464:195-200. [PMID: 26116533 DOI: 10.1016/j.bbrc.2015.06.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/24/2022]
Abstract
The present study investigated human retinoid X receptor alpha (hRXRα) as a substrate for modification with small ubiquitin like modifier (SUMO) and how members of the protein inhibitor of activated STAT (PIAS) family may impact upon this process. In agreement with a previous study, we validate Ubc9 to facilitate SUMOylation of hRXRα at lysine 108 but note this modification to occur for all isoforms rather than specifically with SUMO1 and to preferentially occur with the unliganded form of hRXRα. SUMOylation of hRXRα is significantly enhanced through PIAS4-mediated activity with lysine 245 identified as a specific SUMO2 acceptor site modified in a PIAS4-dependent fashion. While individual mutations at lysine 108 or 245 modestly increase receptor activity, the combined loss of SUMOylation at both sites significantly potentiates the transcriptional responsiveness of hRXRα suggesting both sites may cooperate in a DNA element-dependent context. Our findings highlight combinatorial effects of SUMOylation may regulate RXRα-directed signalling in a gene-specific fashion.
Collapse
|
30
|
Huwait EA, Singh NN, Michael DR, Davies TS, Moss JW, Ramji DP. Protein Kinase C Is Involved in the Induction of ATP-Binding Cassette Transporter A1 Expression by Liver X Receptor/Retinoid X Receptor Agonist in Human Macrophages. J Cell Biochem 2015; 116:2032-8. [DOI: 10.1002/jcb.25157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/03/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Etimad A. Huwait
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Nishi N. Singh
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Daryn R. Michael
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Thomas S. Davies
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Joe W.E. Moss
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| | - Dipak P. Ramji
- Cardiff School of Biosciences; Cardiff University; Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX United Kingdom
| |
Collapse
|
31
|
Lemkul JA, Lewis SN, Bassaganya-Riera J, Bevan DR. Phosphorylation of PPARγ Affects the Collective Motions of the PPARγ-RXRα-DNA Complex. PLoS One 2015; 10:e0123984. [PMID: 25954810 PMCID: PMC4425662 DOI: 10.1371/journal.pone.0123984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
Peroxisome-proliferator activated receptor-γ (PPARγ) is a nuclear hormone receptor that forms a heterodimeric complex with retinoid X receptor-α (RXRα) to regulate transcription of genes involved in fatty acid storage and glucose metabolism. PPARγ is a target for pharmaceutical intervention in type 2 diabetes, and insight into interactions between PPARγ, RXRα, and DNA is of interest in understanding the function and regulation of this complex. Phosphorylation of PPARγ by cyclin-dependent kinase 5 (Cdk5) has been shown to dysregulate the expression of metabolic regulation genes, an effect that is counteracted by PPARγ ligands. We applied molecular dynamics (MD) simulations to study the relationship between the ligand-binding domains of PPARγ and RXRα with their respective DNA-binding domains. Our results reveal that phosphorylation alters collective motions within the PPARγ-RXRα complex that affect the LBD-LBD dimerization interface and the AF-2 coactivator binding region of PPARγ.
Collapse
Affiliation(s)
- Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephanie N. Lewis
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology & Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- Nutritional Immunology & Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
32
|
Mazzoccoli G, Mazza T, Vinciguerra M, Castellana S, Scarpa M. The biological clock and the molecular basis of lysosomal storage diseases. JIMD Rep 2015; 18:93-105. [PMID: 25583520 DOI: 10.1007/8904_2014_354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 12/16/2022] Open
Abstract
The lysosomal storage disorders encompass nearly fifty diseases provoked by lack or deficiency of enzymes essential for the breakdown of complex molecules and hallmarked by accumulation in the lysosomes of metabolic residues. Histochemistry and cytochemistry studies evidenced patterns of circadian variation of the lysosomal marker enzymes, suggesting that lysosomal function oscillates rhythmically during the 24-h day. The circadian rhythmicity of cellular processes is driven by the biological clock ticking through transcriptional/translational feedback loops hardwired by circadian genes and proteins. Malfunction of the molecular clockwork may provoke severe deregulation of downstream gene expression regulating a complex array of cellular functions leading to anatomical and functional changes. In this review we highlight that all the genes mutated in lysosomal storage disorders encode circadian transcripts suggesting a direct participation of the biological clock in the pathophysiological mechanisms underlying cellular and tissue derangements hallmarking these hereditary diseases. The 24-h periodicity of oscillation of gene transcription and translation could lead in physiological conditions to circadian rhythmicity of fluctuation of enzyme levels and activity, so that gene transfer could be envisaged to reproduce 24-h periodicity of variation of enzymatic dynamics and circadian rhythmicity could have an impact on the schedule of enzyme replacement therapy.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S.Giovanni Rotondo, (FG), Italy,
| | | | | | | | | |
Collapse
|
33
|
Mazzoccoli G, Vinciguerra M, Oben J, Tarquini R, De Cosmo S. Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int 2014; 34:1133-52. [PMID: 24649929 DOI: 10.1111/liv.12534] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/16/2014] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the accumulation of triglycerides in the hepatocytes in the absence of excess alcohol intake, and is caused by an imbalance between hepatic synthesis and breakdown of fats, as well as fatty acid storage and disposal. Liver metabolic pathways are driven by circadian biological clocks, and hepatic health is maintained by proper timing of circadian patterns of metabolic gene expression with the alternation of anabolic processes corresponding to feeding/activity during wake times, and catabolic processes characterizing fasting/resting during sleep. A number of nuclear receptors in the liver are expressed rhythmically, bind hormones and metabolites, sense energy flux and expenditure, and connect the metabolic pathways to the molecular clockwork throughout the 24-h day. In this review, we describe the role played by the nuclear receptors in the genesis of NAFLD in relationship with the circadian clock circuitry.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | | | | | | | | |
Collapse
|
34
|
Lien F, Berthier A, Bouchaert E, Gheeraert C, Alexandre J, Porez G, Prawitt J, Dehondt H, Ploton M, Colin S, Lucas A, Patrice A, Pattou F, Diemer H, Van Dorsselaer A, Rachez C, Kamilic J, Groen AK, Staels B, Lefebvre P. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Invest 2014; 124:1037-51. [PMID: 24531544 DOI: 10.1172/jci68815] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022] Open
Abstract
The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis.
Collapse
|
35
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
36
|
Genome-wide studies of nuclear receptors in cell fate decisions. Semin Cell Dev Biol 2013; 24:706-15. [DOI: 10.1016/j.semcdb.2013.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
|
37
|
Luu W, Sharpe LJ, Gelissen IC, Brown AJ. The role of signalling in cellular cholesterol homeostasis. IUBMB Life 2013; 65:675-84. [PMID: 23847008 DOI: 10.1002/iub.1182] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/21/2013] [Indexed: 12/19/2022]
Abstract
Cholesterol is a vital lipid and performs diverse functions on a whole body and cellular level. However, excess cellular cholesterol is toxic, and thus, elegant mechanisms have evolved to tightly regulate this important lipid. The regulation of cholesterol homeostasis is an area of intense research, and the role that signalling plays is gradually becoming more widely recognised. Cholesterol homeostasis is achieved through intricate mechanisms involving synthesis, uptake, and efflux. Although there is a large body of work elucidating these cholesterol-related pathways, less is known about the role of signalling in these processes. Here, we discuss the variety of ways that signalling impacts on these modes and levels of cholesterol homeostasis, including transcriptional regulation. Most work thus far has investigated the role of kinases in cholesterol efflux (especially on ATP-binding cassette transporter A1, ABCA1), and therefore constitutes a major focus of this review. We also indicate further avenues to explore in the area of signalling in cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, NSW, Australia
| | | | | | | |
Collapse
|
38
|
Bernardes A, Souza PCT, Muniz JRC, Ricci CG, Ayers SD, Parekh NM, Godoy AS, Trivella DBB, Reinach P, Webb P, Skaf MS, Polikarpov I. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. J Mol Biol 2013; 425:2878-93. [PMID: 23707408 DOI: 10.1016/j.jmb.2013.05.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/30/2013] [Accepted: 05/15/2013] [Indexed: 01/01/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPARα ligands effectively treat dyslipidemia and have significant antiinflammatory and anti-atherosclerotic activities. These effects and their ligand-dependent activity make nuclear receptors obvious targets for drug design. Here, we present the structure of the human PPARα in complex with WY14643, a member of fibrate class of drug, and a widely used PPAR activator. The crystal structure of this complex suggests that WY14643 induces activation of PPARα in an unusual bipartite mechanism involving conventional direct helix 12 stabilization and an alternative mode that involves a second ligand in the pocket. We present structural observations, molecular dynamics and activity assays that support the importance of the second site in WY14643 action. The unique binding mode of WY14643 reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering clues for improving the binding affinity and selectivity of ligand. We show that binding of WY14643 to PPARα was associated with antiinflammatory disease in a human corneal cell model, suggesting possible applications for PPARα ligands.
Collapse
Affiliation(s)
- Amanda Bernardes
- Institute of Physics of São Carlos, University of São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos, SP 13560-970, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Richard Sever
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
40
|
Wang S, Wang J, Sun Y, Song Q, Li S. PKC-mediated USP phosphorylation at Ser35 modulates 20-hydroxyecdysone signaling in Drosophila. J Proteome Res 2012; 11:6187-96. [PMID: 23136906 DOI: 10.1021/pr3008804] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nuclear receptor complex of the steroid hormone, 20-hydroxyecdysone (20E), is a heterodimer composed of EcR and USP. Our previous studies in Drosophila suggest that PKC modulates 20E signaling by phosphorylating EcR-USP. However, the exact phosphorylation sites in EcR and USP have not been identified. Using LC-MS/MS analysis, we first identified Ser35 of USP as a PKC phosphorylation site. Mutation of USP Ser35 to Ala35 in S2 cells not only eliminated USP phosphorylation, but also attenuated the 20E-induced luciferase activity, mimicking the treatment with a PKC-specific inhibitor chelerythrine chloride in Kc cells. In the larval salivary glands (SG), inhibition of PKC activity with the binary GAL4/UAS system reduced USP phosphorylation and down-regulated the 20E primary-response genes, E75B and Br-C, and RNAi knockdown of Rack1 had stronger inhibitory effects than overexpression of PKCi. Moreover, RNAi knockdown of four PKC isozyme genes expressed in the SG exhibited a variety of inhibitory effects on USP phosphorylation and expression of E75B and Br-C, with the strongest inhibitory effects occurring when aPKC was knocked down by RNAi. Taken together, we conclude that PKC-mediated USP phosphorylation at Ser35 modulates 20E signaling in Drosophila.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
41
|
Eeckhoute J, Oger F, Staels B, Lefebvre P. Coordinated Regulation of PPARγ Expression and Activity through Control of Chromatin Structure in Adipogenesis and Obesity. PPAR Res 2012; 2012:164140. [PMID: 22991504 PMCID: PMC3444001 DOI: 10.1155/2012/164140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is required for differentiation and function of mature adipocytes. Its expression is induced during adipogenesis where it plays a key role in establishing the transcriptome of terminally differentiated white fat cells. Here, we review findings indicating that PPARγ expression and activity are intricately regulated through control of chromatin structure. Hierarchical and combinatorial activation of transcription factors, noncoding RNAs, and chromatin remodelers allows for temporally controlled expression of PPARγ and its target genes through sequential chromatin remodelling. In obesity, these regulatory pathways may be altered and lead to modified PPARγ activity.
Collapse
Affiliation(s)
- Jérôme Eeckhoute
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Frédérik Oger
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Bart Staels
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Philippe Lefebvre
- Université Lille Nord de France, 59000 Lille, France
- Inserm, U1011, 59000 Lille, France
- UDSL, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| |
Collapse
|
42
|
Mazzoccoli G, Pazienza V, Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 2012; 29:227-51. [PMID: 22390237 DOI: 10.3109/07420528.2012.658127] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Daily rotation of the Earth on its axis and yearly revolution around the Sun impose to living organisms adaptation to nyctohemeral and seasonal periodicity. Terrestrial life forms have developed endogenous molecular circadian clocks to synchronize their behavioral, biological, and metabolic rhythms to environmental cues, with the aim to perform at their best over a 24-h span. The coordinated circadian regulation of sleep/wake, rest/activity, fasting/feeding, and catabolic/anabolic cycles is crucial for optimal health. Circadian rhythms in gene expression synchronize biochemical processes and metabolic fluxes with the external environment, allowing the organism to function effectively in response to predictable physiological challenges. In mammals, this daily timekeeping is driven by the biological clocks of the circadian timing system, composed of master molecular oscillators within the suprachiasmatic nuclei of the hypothalamus, pacing self-sustained and cell-autonomous molecular oscillators in peripheral tissues through neural and humoral signals. Nutritional status is sensed by nuclear receptors and coreceptors, transcriptional regulatory proteins, and protein kinases, which synchronize metabolic gene expression and epigenetic modification, as well as energy production and expenditure, with behavioral and light-dark alternance. Physiological rhythmicity characterizes these biological processes and body functions, and multiple rhythms coexist presenting different phases, which may determine different ways of coordination among the circadian patterns, at both the cellular and whole-body levels. A complete loss of rhythmicity or a change of phase may alter the physiological array of rhythms, with the onset of chronodisruption or internal desynchronization, leading to metabolic derangement and disease, i.e., chronopathology.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital Casa Sollievo della Sofferenza, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.
| | | | | |
Collapse
|
43
|
Lee YW, Terranova C, Birkaya B, Narla S, Kehoe D, Parikh A, Dong S, Ratzka A, Brinkmann H, Aletta JM, Tzanakakis ES, Stachowiak EK, Claus P, Stachowiak MK. A novel nuclear FGF Receptor-1 partnership with retinoid and Nur receptors during developmental gene programming of embryonic stem cells. J Cell Biochem 2012; 113:2920-36. [DOI: 10.1002/jcb.24170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
45
|
Non-alcoholic Fatty liver disease: the bile Acid-activated farnesoid x receptor as an emerging treatment target. J Lipids 2011; 2012:934396. [PMID: 22187656 PMCID: PMC3236512 DOI: 10.1155/2012/934396] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/18/2011] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently evolving as the most common liver disease worldwide. It may progress to liver cirrhosis and liver cancer and is poised to represent the most common indication for liver transplantation in the near future. The pathogenesis of NAFLD is multifactorial and not fully understood, but it represents an insulin resistance state characterized by a cluster of cardiovascular risk factors including obesity, dyslipidemia, hyperglycemia, and hypertension. Importantly, NAFLD also has evolved as independent risk factor for cardiovascular disease. Unfortunately thus far no established treatment does exist for NAFLD. The bile acid-activated nuclear farnesoid X receptor (FXR) has been shown to play a role not only in bile acid but also in lipid and glucose homeostasis. Specific targeting of FXR may be an elegant and very effective way to readjust dysregulated nuclear receptor-mediated metabolic pathways. This review discusses the body's complex response to the activation of FXR with its beneficial actions but also potential undesirable side effects.
Collapse
|