1
|
Chen YZ, Zhou Y, Chen JL, Luo YP, Feng CZ, Fan XH. Mechanism of modified danggui buxue decoction in glucocorticoid-induced osteoporosis: A discussion based on network pharmacology and molecular docking. Heliyon 2024; 10:e37249. [PMID: 39286188 PMCID: PMC11402759 DOI: 10.1016/j.heliyon.2024.e37249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Objective Glucocorticoid-induced osteoporosis (GIOP) represents a major complication arising from the long-term use of glucocorticoids, which are widely prescribed for various inflammatory and autoimmune conditions. Despite its prevalence, the current therapeutic options for GIOP are limited in terms of efficacy, safety profiles, and patient compliance. The Modified Danggui Buxue Decoction (DGBXD), a traditional Chinese herbal formulation, has shown promise in preliminary studies for its potential osteoprotective effects. The present study aimed to explore the mechanistic underpinnings of DGBXD's action on GIOP using network pharmacology and molecular docking approaches, bridging traditional medicine with modern pharmacological insights. Method Network pharmacology is applied to screen drug-active compounds and potential core target proteins for disease treatment and to explore the drugs' therapeutic mechanisms. Result Altogether, 78 DGBXD active compounds and 223 DGBXD-related, 146 component-disease common, and 2168 GIOP-associated target genes were obtained. The PPI network had 43 nodes and 462 edges, and a total of 10 core target genes, including TP53, JUN and MAPK3, were identified. The results of the GO enrichment analysis implied that DGBXD might participate in biological activities, including responses to oxidative stress and nutrient levels. The outcomes of the KEGG pathway enrichment analysis showed that DGBXD may treat GIOP through TNF, IL-17, and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathways. Based on to the molecular docking results, biologically active compounds (beta-carotene, formononetin, luteolin, and isorhamnetin) exhibited good binding to AKT1 and ESR1. Conclusion DGBXD may aid in GIOP treatment by modulating multiple therapeutic targets and signaling pathways.
Collapse
Affiliation(s)
- Yu-Zhou Chen
- Chengdu University of TCM, Chengdu, 610075, China
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yi Zhou
- Department of Traditional Chinese Medicine, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, 611130, China
| | - Jun-Long Chen
- Department of Anorectal, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, 611130, China
| | - Yi-Ping Luo
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Cheng-Zhi Feng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiao-Hong Fan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| |
Collapse
|
2
|
Wang R, Wu N, Zhan D, Chen F. Naringin exerts antibacterial and anti-inflammatory effects on mice with Staphylococcus aureus-induced osteomyelitis. J Biochem Mol Toxicol 2024; 38:e23753. [PMID: 38923626 DOI: 10.1002/jbt.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Osteomyelitis is an invasive bone infection that can lead to severe pain and even disability, posing a challenge for orthopedic surgery. Naringin can reduce bone-related inflammatory conditions. This study aimed to elucidate the function and mechanism of naringin in a Staphylococcus aureus-induced mouse model of osteomyelitis. Femurs of S. aureus-infected mice were collected after naringin administration and subjected to microcomputed tomography to analyze cortical bone destruction and bone loss. Bacterial growth in femurs was also assessed. Proinflammatory cytokine levels in mouse femurs were measured using enzyme-linked immunosorbent assays. Pathological changes and bone resorption were analyzed using hematoxylin and eosin staining and tartrate-resistant acid phosphatase staining, respectively. Quantitative reverse transcription polymerase chain reaction and western blot analysis were used to quantify the messenger RNA and protein expression of osteogenic differentiation-associated genes in the femurs. The viability of human bone marrow-derived stem cells (hBMSCs) was determined using cell counting kit-8. Alizarin Red S staining and alkaline phosphatase staining were performed to assess the formation of mineralization nodules and bone formation in vitro. Notch signaling-related protein levels in femur tissues and hBMSCs were assessed using western blot analysis. Experimental results revealed that naringin alleviated S. aureus-induced cortical bone destruction and bone loss in mice by increasing the bone volume/total volume ratio. Naringin suppressed S. aureus-induced bacterial growth and inflammation in femurs. Moreover, it alleviated histopathological changes, inhibited bone resorption, and increased the expression of osteogenic markers in osteomyelitic mice. It increased the viability of hBMSCs and promoted their differentiation and bone mineralization in vitro. Furthermore, naringin activated Notch signaling by upregulating the protein levels of Notch1, Jagged1, and Hes1 in the femurs of model mice and S. aureus-stimulated hBMSCs. In conclusion, naringin reduces bacterial growth, inflammation, and bone resorption while upregulating the expression of osteogenic markers in S. aureus-infected mice and hBMSCs by activating Notch signaling.
Collapse
Affiliation(s)
- Rong Wang
- Department of Clinical Laboratory Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - NongXin Wu
- Department of Orthopedics, Xiangyang Central HospitaI, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Dong'ang Zhan
- Department of Hospital Infection Management Office, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fengwen Chen
- Department of Orthopedics, Xiangyang Central HospitaI, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
3
|
Liu J, Li F, Ouyang Y, Su Z, Chen D, Liang Z, Zhang Z, Lin R, Luo T, Guo L. Naringin-induced M2 macrophage polarization facilitates osteogenesis of BMSCs and improves cranial bone defect healing in rat. Arch Biochem Biophys 2024; 753:109890. [PMID: 38246327 DOI: 10.1016/j.abb.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Osteoimmunology has uncovered the critical role of the immune microenvironment in the bone healing process, with macrophages playing a central part in generating immune responses via chemokine production. Naringin, a flavanone glycoside extracted from various plants, has been shown to promote osteoblast differentiation, thereby enhancing bone formation and mitigating osteoporosis progression. Current research on the osteogenic mechanism primarily focuses on the direct impact of naringin on mesenchymal stem cells, while its indirect immunoregulatory effects remain elusive. In this study, we investigated the bone defect-enhancing effects of varying naringin concentrations in vivo using a cranial bone defect model in Sprague-Dawley rats. We assessed the osteoimmune modulation capacity of naringin by exposing lipopolysaccharide (LPS)-induced RAW 264.7 macrophages to different doses of naringin. To further elucidate the underlying osteogenic enhancement mechanism, Bone Marrow Stromal Cells (BMSCs) derived from mice were treated with conditioned media from naringin-treated macrophages. Our findings indicated that naringin promotes M2 phenotype polarization in macrophages, as evidenced by the downregulation of pro-inflammatory cytokines Inducible Nitric Oxide Synthase (iNOS), interleukin (IL)-1β, and Tumor Necrosis Factor (TNF)-α, and the upregulation of anti-inflammatory cytokine Transforming growth factor (TGF)-β. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in osteoblast differentiation and anti-inflammatory response pathways in naringin-pretreated macrophages, with the cytokines signaling pathway being upregulated. The conditioned media from naringin-treated macrophages stimulated the expression of osteogenic-related genes Alkaline phosphatase (Alp), osteocalcin (Ocn), osteopontin (Opn), and Runt-related transcription factor (Runx) 2, as well as protein expression in BMSCs. In conclusion, naringin alleviates macrophage inflammation by promoting M2 phenotype polarization, which in turn enhances the osteogenic differentiation of BMSCs, contributing to its bone healing effects in vivo. These results suggest that naringin holds significant potential for improving bone defect healing through osteoimmune modulation.
Collapse
Affiliation(s)
- Jiaohong Liu
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Fuyao Li
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yuanting Ouyang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhikang Su
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ding Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zitian Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhiyi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ruofei Lin
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Luo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| | - Lvhua Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Shi W, Jiang Y, Wu T, Zhang Y, Li T. Advancements in drug-loaded hydrogel systems for bone defect repair. Regen Ther 2024; 25:174-185. [PMID: 38230308 PMCID: PMC10789937 DOI: 10.1016/j.reth.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Bone defects are primarily the result of high-energy trauma, pathological fractures, bone tumor resection, or infection debridement. The treatment of bone defects remains a huge clinical challenge. The current treatment options for bone defects include bone traction, autologous/allogeneic bone transplantation, gene therapy, and bone tissue engineering amongst others. With recent developments in the field, composite scaffolds prepared using tissue engineering techniques to repair bone defects are used more often. Among the various composite scaffolds, hydrogel exhibits the advantages of good biocompatibility, high water content, and degradability. Its three-dimensional structure is similar to that of the extracellular matrix, and as such it is possible to load stem cells, growth factors, metal ions, and small molecule drugs upon these scaffolds. Therefore, the hydrogel-loaded drug system has great potential in bone defect repair. This review summarizes the various natural and synthetic materials used in the preparation of hydrogels, in addition to the latest research status of hydrogel-loaded drug systems.
Collapse
Affiliation(s)
- Weipeng Shi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Li X, Zhou X, Huang Z, Chen K, Jiang X, Lai R, Li Z. Study on the mechanism of naringin in promoting bone differentiation: In vitro and in vivo study. Heliyon 2024; 10:e24906. [PMID: 38312545 PMCID: PMC10834819 DOI: 10.1016/j.heliyon.2024.e24906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Osteoporosis is a common clinical bone disease that occurs most frequently in middle-aged and elderly people. Various traditional herbal medicine formulations have shown significant benefits in models of osteoporosis. In this study, we aim to investigate the osteogenic efficacy of naringin (NRG) in the osteoporotic state. Design We treated Bone marrow stromal cells (BMSCs) with various concentrations of NRG for 3 and 7 days. BMSC proliferation was measured by the MTT assay. The effect of NRG on the osteogenic differentiation of BMSCs was detected by ALP and alizarin red staining. The effect of NRG on the BMP2/Runx2/Osterix signaling pathway was analyzed by using real-time PCR. The effect of NRG on the oestrogen receptor was measured by Enzyme-linked immunosorbent assay. In vivo animal experiments were performed by micro-computed tomography and ALP immunohistochemistry to determine the ectopic osteogenic effect of NRG sustained-release nanoparticles in a mouse model of osteoporosis. Results NRG promoted the proliferation and osteogenic differentiation of BMSCs. Moreover, it also activated the BMP2/Runx2/Osterix signaling pathway. When NRG sustained-release nanoparticles were added in vivo in animal experiments, we found that NRG sustained-release nanoparticles had better ectopic osteogenic effects in a mouse model of osteoporosis. Conclusions NRG induced osteoblastic differentiation of BMSCs by activating the BMP2/Runx2/Osterix signaling pathway and promoted the regulation of oestrogen receptor pathway protein expression, and NRG sustained-release nanoparticles exerted a more significant in vivo ectopic osteogenic effect in an osteoporosis mouse model. Therefore, naringin is expected to be developed as a novel treatment for inducing osteogenesis, because of its ubiquitous, cost-efficient, and biologically active characteristics. However, further research is needed on how to improve the pharmacokinetic properties of naringin and its specific mechanism.
Collapse
Affiliation(s)
- Xian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaojun Zhou
- School of stomatology, Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Zhanyu Huang
- School of stomatology, Jinan University, Guangzhou, China
| | - Kexiao Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Xinrong Jiang
- School of stomatology, Jinan University, Guangzhou, China
| | - Renfa Lai
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Gu Z, Zhou G, Zhang X, Liang G, Xiao X, Dou Y. Research progress of plant medicine and Chinese herbal compounds in the treatment of rheumatoid arthritis combined with osteoporosis. Front Med (Lausanne) 2024; 10:1288591. [PMID: 38274450 PMCID: PMC10808767 DOI: 10.3389/fmed.2023.1288591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. The clinical manifestations of various joint pain and bone destruction are common. RA has a high disability rate and is closely related to local and systemic osteoporosis (OP). RA can occur at any age, however, its incidence increases with age. Most patients are 40 to 50 years old with an incidence among women approximately 3 to 5 times more than among men. Osteoporosis is a kind of metabolic bone disease characterized by bone mass and bone microstructure damage and is one of the common complications of RA. Currently, in the clinic, more patients develop RA with OP symptoms. Therefore, both OP and RA-related factors should be considered in the OP treatment of RA. Currently, there is more and more research on RA combined with OP drugs, including basic drugs, bone resorption inhibitors, bone formation promoters, and anti-rheumatic drugs to improve the condition. The high cost or limited efficacy of certain Western drugs, coupled with their potential for adverse reactions during treatment highlight the pressing need for novel pharmaceuticals in clinical practice. In recent years, traditional Chinese medicine (TCM) can improve the bone formation and bone resorption indexes of patients with RA, regulate the balance of osteoclasts and osteoblasts, and regulate the immune inflammatory response, so as to treat RA combined with OP. This article discusses the advancements in single Chinese medicine and Chinese medicine combination treatments for RA complicated with OP, focusing on the mechanism of action and syndrome differentiation and classification, to offer new ideas for future clinical prevention and treatment.
Collapse
Affiliation(s)
- Zhuoxu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianquan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guihong Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoxing Dou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Kumari S, Singh M, Nupur, Jain S, Verma N, Malik S, Rustagi S, Priya K. A review on therapeutic mechanism of medicinal plants against osteoporosis: effects of phytoconstituents. Mol Biol Rep 2023; 50:9453-9468. [PMID: 37676432 DOI: 10.1007/s11033-023-08751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Osteoporosis is a metabolic bone disorder that over time results in bone loss and raises the risk of fracture. The condition is frequently silent and only becomes apparent when fractures develop. Osteoporosis is treated with pharmacotherapy as well as non-pharmacological therapies such as mineral supplements, lifestyle changes, and exercise routines. Herbal medicine is frequently used in clinical procedures because of its low risk of adverse effects and cost-effective therapeutic results. In the current review, we have used a thorough strategy to identify some known medicinal plants with anti-osteoporosis capabilities, their origin, active ingredients, and pharmacological information. Furthermore, several signaling pathways, such as the apoptotic pathway, transcription factors, the Wnt/-catenin signaling pathway, and others, are regulated by bioactive components and help to improve bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of bioactive components and the concomitant modulations of signaling pathways.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Mohini Singh
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Nupur
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Smita Jain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Neha Verma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, 834002, Jharkhand, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India.
| |
Collapse
|
8
|
Shi GX, Sun WD, Chen ZH, Yang CJ, Luo WL, Wang DF, Zhou ZZ. Drynaria Naringin alleviated mechanical stress deficiency-caused bone loss deterioration via Rspo1/Lgr4-mediated Wnt/β-catenin signalling pathway. In Vitro Cell Dev Biol Anim 2023; 59:706-716. [PMID: 37831321 DOI: 10.1007/s11626-023-00815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Osteoporosis is a metabolic condition distinguished by the degradation of bone microstructure and mechanical characteristics. Traditional Chinese medicine (TCM) has been employed in China for the treatment of various illnesses. Naringin, an ingredient found in Drynariae TCM, is known to have a significant impact on bone metabolism. For this research, we studied the precise potential effect of Drynaria Naringin on protecting against bone loss caused by stress deficiency. In this study, a tail-suspension (TS) test was performed to establish a mouse model with hind leg bone loss. Some mice received subcutaneous injections of Drynaria Naringin for 30 d. Trabecular bone microarchitecture was evaluated using micro-computed tomography analysis and bone histological analysis. Bone formation and resorption markers were quantified in blood samples from mice or in the supernatant of MC3T3-E1 cells by ELISA analysis, Western blotting, and PCR. Immunofluorescence was utilized to visualize the location of β-catenin. Additionally, siRNA was employed to knockdown-specific genes in the cells. Our findings highlight the efficacy of Drynaria Naringin in protecting against the deterioration of bone loss and promoting bone formation and Rspo1 expression in a mouse model following the TS test. Specifically, in vitro experiments also indicated that Drynaria Naringin may promote osteogenesis through the Wnt/β-catenin signalling pathway. Moreover, our results suggest that Drynaria Naringin upregulates the expression of Rspo1/Lgr4, leading to the promotion of osteogenesis via the Wnt/β-catenin signalling pathway. Therefore, Drynaria Naringin holds potential as a therapeutic medication for osteoporosis. Drynaria Naringin alleviates bone loss deterioration caused by mechanical stress deficiency through the Rspo1/Lgr4-mediated Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Gui-Xun Shi
- Department of Orthopedic Surgery, Anting Hospital, Jiading District, Shanghai, 200805, China
| | - Wei-Dong Sun
- Department of Orthopedic Surgery, Anting Hospital, Jiading District, Shanghai, 200805, China
| | - Zeng-Huan Chen
- Department of Anesthesiology, Putuo Central Hospital, Putuo District, Shanghai, 200333, China
| | - Chuan-Jun Yang
- Department of Orthopedic Surgery, Anting Hospital, Jiading District, Shanghai, 200805, China
| | - Wang-Lin Luo
- Department of Orthopedic Surgery, Anting Hospital, Jiading District, Shanghai, 200805, China
| | - Dan-Feng Wang
- Department of Orthopedic Surgery, Anting Hospital, Jiading District, Shanghai, 200805, China
| | - Ze-Zhu Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
9
|
Gan J, Deng X, Le Y, Lai J, Liao X. The Development of Naringin for Use against Bone and Cartilage Disorders. Molecules 2023; 28:3716. [PMID: 37175126 PMCID: PMC10180405 DOI: 10.3390/molecules28093716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bone and cartilage disorders are the leading causes of musculoskeletal disability. There is no absolute cure for all bone and cartilage disorders. The exploration of natural compounds for the potential therapeutic use against bone and cartilage disorders is proving promising. Among these natural chemicals, naringin, a flavanone glycoside, is a potential candidate due to its multifaceted pharmacological activities in bone and cartilage tissues. Emerging studies indicate that naringin may promote osteogenic differentiation, inhibit osteoclast formation, and exhibit protective effects against osteoporosis in vivo and in vitro. Many signaling pathways, such as BMP-2, Wnt/β-catenin, and VEGF/VEGFR, participate in the biological actions of naringin in mediating the pathological development of osteoporosis. In addition, the anti-inflammatory, anti-oxidative stress, and anti-apoptosis abilities of naringin also demonstrate its beneficial effects against bone and cartilage disorders, including intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone and cartilage tumors, and tibial dyschondroplasia. Naringin exhibits protective effects against bone and cartilage disorders. However, more efforts are still needed due to, at least in part, the uncertainty of drug targets. Further biological and pharmacological evaluations of naringin and its applications in bone tissue engineering, particularly its therapeutic effects against osteoporosis, might result in developing potential drug candidates.
Collapse
Affiliation(s)
- Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaolan Deng
- Department of Pharmacy, Haikou Affiliated Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Yonghong Le
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Jun Lai
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| |
Collapse
|
10
|
Jiao Y, Wang X, Wang Q, Geng Q, Cao X, Zhang M, Zhao L, Deng T, Xu Y, Xiao C. Mechanisms by which kidney-tonifying Chinese herbs inhibit osteoclastogenesis: Emphasis on immune cells. Front Pharmacol 2023; 14:1077796. [PMID: 36814488 PMCID: PMC9939464 DOI: 10.3389/fphar.2023.1077796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a crucial role in regulating osteoclast formation and function and has significance for the occurrence and development of immune-mediated bone diseases. Kidney-tonifying Chinese herbs, based on the theory of traditional Chinese medicine (TCM) to unify the kidney and strengthen the bone, have been widely used in the prevention and treatment of bone diseases. The common botanical drugs are tonifying kidney-yang and nourishing kidney-yin herbs, which are divided into two parts: one is the compound prescription of TCM, and the other is the single preparation of TCM and its active ingredients. These botanical drugs regulate osteoclastogenesis directly and indirectly by immune cells, however, we have limited information on the differences between the two botanical drugs in osteoimmunology. In this review, the mechanism by which kidney-tonifying Chinese herbs inhibiting osteoclastogenesis was investigated, emphasizing the immune response. The differences in the mechanism of action between tonifying kidney-yang herbs and nourishing kidney-yin herbs were analysed, and the therapeutic value for immune-mediated bone diseases was evaluated.
Collapse
Affiliation(s)
- Yi Jiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qishun Geng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| | - Cheng Xiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China,Department of Emergency, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| |
Collapse
|
11
|
Effects and Mechanisms of Rhus chinensis Mill. Fruits on Suppressing RANKL-Induced Osteoclastogenesis by Network Pharmacology and Validation in RAW264.7 Cells. Nutrients 2022; 14:nu14051020. [PMID: 35267996 PMCID: PMC8912277 DOI: 10.3390/nu14051020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023] Open
Abstract
Rhus chinensis Mill. fruits are a kind of widely distributed edible seasoning, which have been documented to possess a variety of biological activities. However, its inhibitory effect on osteoclast formation has not been determined. The objective of this study was to evaluate the effect of the fruits on osteoclast differentiation of RAW264.7 cells, induced by receptor activator of nuclear factor-κB ligand (RANKL) and to illuminate the potential mechanisms using network pharmacology and western blots. Results showed that the extract containing two organic acids and twelve phenolic substances could effectively inhibit osteoclast differentiation in RANKL-induced RAW264.7 cells. Network pharmacology examination and western blot investigation showed that the concentrate essentially decreased the expression levels of osteoclast-specific proteins, chiefly through nuclear factor kappa-B, protein kinase B, and mitogen-activated protein kinase signaling pathways, particularly protein kinase B α and mitogen-activated protein kinase 1 targets. Moreover, the extract likewise directly down regulated the expression of cellular oncogene Fos and nuclear factor of activated T-cells cytoplasmic 1 proteins. Citric acid, quercetin, myricetin-3-O-galactoside, and quercetin-3-O-rhamnoside were considered as the predominant bioactive ingredients. Results of this work may provide a scientific basis for the development and utilization of R. chinensis fruits as a natural edible material to prevent and/or alleviate osteoporosis-related diseases.
Collapse
|
12
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
13
|
Li Y, Liu J, Zhou H, Liu J, Xue X, Wang L, Ren S. Liquid chromatography-mass spectrometry method for discovering the metabolic markers to reveal the potential therapeutic effects of naringin on osteoporosis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123170. [DOI: 10.1016/j.jchromb.2022.123170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
14
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
15
|
Zhao ZH, Ma XL, Ma JX, Kang JY, Zhang Y, Guo Y. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Mater Today Bio 2022; 13:100206. [PMID: 35128373 PMCID: PMC8808263 DOI: 10.1016/j.mtbio.2022.100206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Bone defects are a common challenge in the clinical setting. Bone tissue engineering (BTE) is an effective treatment for the clinical problem of large bone defects. In this study, we fabricated silk fibroin (SF)/hydroxyapatite (HAp) scaffolds inlaid with naringin poly lactic-co-glycolic acid (PLGA) microspheres, investigating the feasibility of their application in BTE. Naringin PLGA microspheres were manufactured and adhered to the SF/HAp scaffold. Bone mesenchymal stem cells (BMSCs) were inoculated onto the SF/HAp scaffold containing naringin PLGA microsphere to examine the biocompatibility of the SF/HAp scaffolds. A rabbit femoral distal bone defect model was used to evaluate the in vivo function of the SF/HAp scaffolds containing naringin-loaded PLGA microspheres. The current study demonstrated that SF/HAp scaffolds containing naringin-loaded PLGA microspheres show promise as osteo-modulatory biomaterials for bone regeneration.
Collapse
Key Words
- ALP, Alkaline phosphatase activity
- ANOVA, one-way analysis of variance
- BMSCs, Bone mesenchymal stem cells
- BP, biological process
- BTE, Bone tissue engineering
- Bone defect
- CC, cellular component
- CCK-8, Cell count kit-8
- DAVID, database for annotation, visualization, and integrated discovery
- GO, Gene ontology
- HAp, hydroxyapatite
- HUVEC, human umbilical endothelial cells
- Hydroxyapatite
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MF, molecular function
- Microsphere
- Naringin
- PLGA
- PLGA, poly lactic-co-glycolic acid
- PVA, Polyvinyl alcohol
- RNA-Seq, RNA sequencing
- RT-PCR, real-time quantitative polymerase chain reaction
- SEM, scanning electron microscopy
- SF, silk fibroin
- Silk
Collapse
Affiliation(s)
- Zhi-hu Zhao
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefangnan Road, Hexi District, Tianjin, 300000, China
| | - Xin-long Ma
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefangnan Road, Hexi District, Tianjin, 300000, China
| | - Jian-xiong Ma
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| | - Jia-yu Kang
- Department of Orthopedics, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China
| | - Yang Zhang
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| | - Yue Guo
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| |
Collapse
|
16
|
Xu Q, Cao Z, Xu J, Dai M, Zhang B, Lai Q, Liu X. Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases. J Drug Target 2021; 30:394-412. [PMID: 34859718 DOI: 10.1080/1061186x.2021.2013488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bone-destructive diseases, caused by overdifferentiation of osteoclasts, reduce bone mass and quality, and disrupt bone microstructure, thereby causes osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis. Osteoclasts, the only multinucleated cells with bone resorption function, are derived from haematopoietic progenitors of the monocyte/macrophage lineage. The regulation of osteoclast differentiation is considered an effective target for the treatment of bone-destructive diseases. Natural plant-derived products have received increasing attention in recent years due to their good safety profile, the preference of natural compounds over synthetic drugs, and their potential therapeutic and preventive activity against osteoclast-mediated bone-destructive diseases. In this study, we reviewed the research progress of the potential antiosteoclast active compounds extracted from medicinal plants and their molecular mechanisms. Active compounds from natural plants that inhibit osteoclast differentiation and functions include flavonoids, terpenoids, quinones, glucosides, polyphenols, alkaloids, coumarins, lignans, and limonoids. They inhibit bone destruction by downregulating the expression of osteoclast-specific marker genes (CTSK, MMP-9, TRAP, OSCAR, DC-STAMP, V-ATPase d2, and integrin av3) and transcription factors (c-Fos, NFATc1, and c-Src), prevent the effects of local factors (ROS, LPS, and NO), and suppress the activation of various signalling pathways (MAPK, NF-κB, Akt, and Ca2+). Therefore, osteoclast-targeting natural products are of great value in the prevention and treatment of bone destructive diseases.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyou Cao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - JiaQiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuqiang Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Front Endocrinol (Lausanne) 2021; 12:779638. [PMID: 34887836 PMCID: PMC8649804 DOI: 10.3389/fendo.2021.779638] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are polyphenolic compounds spotted in various fruits, vegetables, barks, tea plants, and stems and many more natural commodities. They have a multitude of applications through their anti-inflammatory, anti-oxidative, anti-carcinogenic properties, along with the ability to assist in the stimulation of bone formation. Bone, a rigid connective body tissue made up of cells embedded in a mineralised matrix is maintained by an assemblage of pathways assisting osteoblastogenesis and osteoclastogenesis. These have a significant impact on a plethora of bone diseases. The homeostasis between osteoblast and osteoclast formation decides the integrity and structure of the bone. The flavonoids discussed here are quercetin, kaempferol, icariin, myricetin, naringin, daidzein, luteolin, genistein, hesperidin, apigenin and several other flavonoids. The effects these flavonoids have on the mitogen activated protein kinase (MAPK), nuclear factor kappa β (NF-kβ), Wnt/β-catenin and bone morphogenetic protein 2/SMAD (BMP2/SMAD) signalling pathways, and apoptotic pathways lead to impacts on bone remodelling. In addition, these polyphenols regulate angiogenesis, decrease the levels of inflammatory cytokines and play a crucial role in scavenging reactive oxygen species (ROS). Considering these important effects of flavonoids, they may be regarded as a promising agent in treating bone-related ailments in the future.
Collapse
Affiliation(s)
| | | | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | |
Collapse
|
18
|
Rodríguez V, Rivoira M, Picotto G, de Barboza GD, Collin A, de Talamoni NT. Analysis of the molecular mechanisms by flavonoids with potential use for osteoporosis prevention or therapy. Curr Med Chem 2021; 29:2913-2936. [PMID: 34547992 DOI: 10.2174/0929867328666210921143644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis is the most common skeletal disorder worldwide. Flavonoids have the potential to alleviate bone alterations in osteoporotic patients with the advantage of being safer and less expensive than the conventional therapies. OBJECTIVE The main objective is to analyze the molecular mechanisms triggered in bone by different subclasses of flavonoids. In addition, this review provides an up-to-date overview on the cellular and molecular aspects of osteoporotic bones versus healthy bones, and a brief description of some epidemiological studies indicating that flavonoids could be useful for osteoporosis treatment. METHODS The PubMed database was searched in the range of years 2001- 2021 using the keywords osteoporosis, flavonoids, and their subclasses such as flavones, flavonols, flavanols, isoflavones, flavanones and anthocyanins, focusing the data on the molecular mechanisms triggered in bone. RESULTS Although flavonoids comprise many compounds that differ in structure, their effects on bone loss in postmenopausal women or in ovariectomized-induced osteoporotic animals are quite similar. Most of them increase bone mineral density and bone strength, which occur through enhancement of osteoblastogenesis and osteoclast apoptosis, decrease in osteoclastogenesis as well as increase in neovascularization on the site of the osteoporotic fracture. CONCLUSION Several molecules of signaling pathways are involved in the effect of flavonoids on osteoporotic bone. Whether all flavonoids have a common mechanism or they act as ligands of estrogen receptors remain to be established. More clinical trials are necessary to know better their safety, efficacy, delivery and bioavailability in humans, as well as comparative studies with conventional therapies.
Collapse
Affiliation(s)
- Valeria Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - María Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Alejandro Collin
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| |
Collapse
|
19
|
Yang C, Liu W, Shan H, Yu X, Zhang X, Zeng B, Qian Y. Naringin inhibits titanium particles-induced up-regulation of TNF-α and IL-6 via the p38 MAPK pathway in fibroblasts from hip periprosthetic membrane. Connect Tissue Res 2021; 62:485-494. [PMID: 32500755 DOI: 10.1080/03008207.2020.1778680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Inflammatory responses to wear debris cause osteolysis that leads to aseptic loosening and hip arthroplasty failure. Wear debris stimulate macrophages and fibroblasts to secret proinflammatory cytokines, including TNF-α and IL-6, which have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. Naringin has anti-inflammatory effect in macrophages. Moreover, naringin inhibited osteoclastogenesis and wear particles-induced osteolysis. In this study, we examined the potential inhibitory effects of naringin on titanium (Ti) particle-induced proinflammatory cytokines secretion in fibroblasts and the possible underlying molecular mechanisms. MATERIALS AND METHODS Fibroblasts were isolated from periprosthetic membrane at the time of revision surgery performed due to aseptic loosening after hip arthroplasty and were cultured in the presence or absence of Ti particles, naringin and mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (a selective inhibitor of ERK), SP600125 (a selective inhibitor of JNK), and SB203580 (a selective inhibitor of p38). TNF-α and IL-6 assays were performed using enzyme-linked immunosorbent assay kits. The phosphorylation levels of p38 and nuclear factor kappa B p65 (NF-κB p65) were examined by western blot. RESULTS Naringin or SB203580 pretreatment significantly suppressed the secretion of TNF-α and IL-6 induced by titanium particles in fibroblasts, while inhibition of ERK or JNK pathways showed no effect on production of TNF-α and IL-6. Moreover, naringin inhibited Ti particle-induced phosphorylation of p38 and p65. CONCLUSIONS These results indicated that naringin could inhibit Ti particle-induced inflammation in fibroblasts by inhibiting p38 MAPK/NF-κB p65 activity and might be a potential drug for the treatment of inflammatory periprosthetic osteolysis after arthroplasty.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haojie Shan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bingfang Zeng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yebin Qian
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Orthopedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
20
|
Shen K, Zhang X, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y, Lai M. Microstructured titanium functionalized by naringin inserted multilayers for promoting osteogenesis and inhibiting osteoclastogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1865-1881. [PMID: 34233132 DOI: 10.1080/09205063.2021.1949098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Osteoporosis is the most common cause of fractures in middle-aged and elderly people. Fracture repair can be difficult due to the decreased bone volume in osteoporosis patients and implants are often required. In this study, a slow-release system for microstructured titanium (Micro-Ti) was designed to promote osteogenesis and inhibit osteoclastogenesis. Firstly, Micro-Ti was prepared on titanium surfaces by dual acid etching. Micro-Ti was covered with naringin (NA), chitosan (CHI) and gelatin (GEL) multilayers through layer by layer technique, which is denoted as LBL (NA) coated-Ti. Osteoblasts (ME3T3-E1) and macrophages (RAW 264.7) were cultured on untreated and treated titanium surfaces in vitro. Osteoblasts grown on LBL (NA) coated-Ti showed higher alkaline phosphatase (ALP) and mineralization, consistent with qRT-PCR analysis of osteoblast genes including runt-related transcription factor 2 (Runx2), ALP, collagen I (Col I), osteocalcin (OCN), osteopontin (OPN), and osteoprotegerin (OPG). In contrast, acid tartarate-resistant phosphatase activity and the expression of osteoclastic differentiation related genes comprising of cathepsin K (CTSK), nuclear factor of activated T cells (NFAT), tartrate resistant acid phosphatase (TRAP) and V-ATPase (VATP) in osteoclasts were significantly reduced on LBL (NA) coated-Ti surfaces compared with other groups. These results indicate that microstructured titanium functionalized by naringin inserted multilayers enhanced the differentiation of osteoblasts and inhibited osteoclast formation. The proposed approach in this research provides a novel way to modify titanium-based implants for fracture repair in osteoporosis patients.
Collapse
Affiliation(s)
- Ke Shen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaojing Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qiang Tang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xingtang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chunlei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhaojing Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
21
|
Wu Y, Cai C, Xiang Y, Zhao H, Lv L, Zeng C. Naringin Ameliorates Monocrotaline-Induced Pulmonary Arterial Hypertension Through Endothelial-To-Mesenchymal Transition Inhibition. Front Pharmacol 2021; 12:696135. [PMID: 34335261 PMCID: PMC8320371 DOI: 10.3389/fphar.2021.696135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) caused by enhanced arterial pressure increases vessel resistance in the lung. Endothelial-to-mesenchymal transition (EndMT) plays key roles in the vascular remodeling in PAH. Naringin, a protective gaseous mediator is commonly extracted from tomatoes and citrus fruits (such as grapefruits), and demonstrates anti-inflammation, anti-oxidant, anti-proliferation, and anti-tumor effects. Meanwhile, the association of Naringin and the process of EndMT is still unclear. In this study, monocrotaline (MCT) administration (60 mg/kg) was delivered for the induction of PAH in rats. Following this, Naringin (concentrations: 25, 50, and 100 mg/kg/day) was used for treatments. Human Umbilical Vein Endothelial Cells (HUVECs) were stimulated with Naringin and transforming growth factor β1 (TGFβ1, 10 ng/ml). As the result, Naringin was demonstrated to inhibit EndMT and alleviate PAH progression. In particular, in HUVECs, Naringin significantly suppressed the mesenchymal marker expression induced by TGFβ1 treatment, enhanced the endothelial marker expression, and inhibited the activation of ERK and NF-κB signaling pathways. To conclude, this study provided novel evidence suggesting the beneficial effects of Naringin in PAH through the inhibition of the ERK and NF-κB signaling pathways and the EndMT progression in pulmonary arteries.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Changhong Cai
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Yijia Xiang
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Huan Zhao
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Lingchun Lv
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
22
|
Rivoira MA, Rodriguez V, Talamoni G, de Talamoni NT. New Perspectives in the Pharmacological Potential of Naringin in Medicine. Curr Med Chem 2021; 28:1987-2007. [PMID: 32496985 DOI: 10.2174/0929867327666200604171351] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Naringin (NAR) is a flavonoid enriched in several medicinal plants and fruits. An increasing interest in this molecule has emerged because it has the potential to contribute to alleviating many health problems. OBJECTIVE This review briefly describes the NAR pharmacokinetics and it mainly focuses on the in vitro and in vivo animal studies showing NAR beneficial effects on cardiovascular, metabolic, neurological and pulmonary disorders and cancer. The anabolic effects of NAR on different models of bone and dental diseases are also analyzed. In addition, the evidence of the NAR action on the gastrointestinal tract is reported as well as its influence on the microbiota composition and activity. Finally, current research on NAR formulations and clinical applications are discussed. METHODS The PubMed database was searched until 2019, using the keywords NAR, naringenin, cardiovascular and metabolic disorders, neurological and pulmonary disorders, cancer, bone and dental diseases, gastrointestinal tract, microbiota, NAR formulations, clinical trials. RESULTS The number of studies related to the bioavailability and pharmacokinetics of NAR is limited. Positive effects of NAR have been reported on cardiovascular diseases, Type 2 Diabetes Mellitus (T2DM), metabolic syndrome, pulmonary disorders, neurodegenerative diseases, cancer, and gastrointestinal pathologies. The current NAR formulations seem to improve its bioavailability, which would allow its clinical applications. CONCLUSION NAR is endowed with broad biological effects that could improve human health. Since a scarce number of clinical studies have been performed, the NAR use requires more investigation in order to know better their safety, efficacy, delivery, and bioavailability in humans.
Collapse
Affiliation(s)
- María Angélica Rivoira
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Valeria Rodriguez
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Germán Talamoni
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Canas", Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Cordoba), Pabellon Argentina, 2do. Piso, Ciudad Universitaria, 5000 Cordoba, Argentina
| |
Collapse
|
23
|
Aihaiti Y, Song Cai Y, Tuerhong X, Ni Yang Y, Ma Y, Shi Zheng H, Xu K, Xu P. Therapeutic Effects of Naringin in Rheumatoid Arthritis: Network Pharmacology and Experimental Validation. Front Pharmacol 2021; 12:672054. [PMID: 34054546 PMCID: PMC8160516 DOI: 10.3389/fphar.2021.672054] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease characterized by persistent hyperplasia of the synovial membrane and progressive erosion of articular cartilage. Disequilibrium between the proliferation and death of RA fibroblast-like synoviocytes (RA-FLSs) is the critical factor in progression of RA. Naringin has been reported to exert anti-inflammatory and antioxidant effect in acute and chronic animal models of RA. However, the therapeutic effect and underlying mechanisms of naringin in human RA-FLS remain unclear. Based on network pharmacology, the corresponding targets of naringin were identified using SwissTargetPrediction database, STITCH database, and Comparative Toxicogenomics Database. Deferentially expressed genes (DEGs) in RA were obtained from the GEO database. The protein–protein interaction (PPI) networks of intersected targets were constructed using the STRING database and visualized using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and the pathways directly related to pathogenesis of RA were integrated manually. Further, in vitro studies were carried out based on network pharmacology. 99 target genes were intersected between targets of naringin and DEGs. The PPI network and topological analysis indicated that IL-6, MAPK8, MMP-9, TNF, and MAPK1 shared the highest centrality among all. GO analysis and KEGG analysis indicated that target genes were mostly enriched in (hsa05200) pathways in cancer, (hsa05161) hepatitis B, (hsa04380) osteoclast differentiation, (hsa04151) PI3K-Akt signaling pathway, and (hsa05142) Chagas disease (American trypanosomiasis). In vitro studies revealed that naringin exposure was found to promote apoptosis of RA-FLS, increased the activation of caspase-3, and increased the ratio of Bax/Bcl-2 in a dose-dependent manner. Furthermore, treatment of naringin attenuated the production of inflammatory cytokines and matrix metalloproteinases (MMPs) in TNF-ɑ–induced RA-FLS. Moreover, treatment of naringin inhibited the phosphorylation of Akt and ERK in RA-FLS. Network pharmacology provides a predicative strategy to investigate the therapeutic effects and mechanisms of herbs and compounds. Naringin inhibits inflammation and MMPs production and promotes apoptosis in RA-FLS via PI3K/Akt and MAPK/ERK signaling pathways.
Collapse
Affiliation(s)
- Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Yong Song Cai
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Xiadiye Tuerhong
- Department of Thoracic Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Yan Ni Yang
- Department of Rehabilitation, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Yao Ma
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Hai Shi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| |
Collapse
|
24
|
Effect of Naringin Treatment on Postmenopausal Osteoporosis in Ovariectomized Rats: A Meta-Analysis and Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6016874. [PMID: 33628301 PMCID: PMC7889366 DOI: 10.1155/2021/6016874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022]
Abstract
Background Osteoporosis is a major disease that affects the quality of life of middle-aged and old people, so it is very important to find efficient and safe drugs to treat osteoporosis. The purpose of this study was to investigate the therapeutic effect of naringin on postmenopausal osteoporosis in ovariectomized (OVX) rats. Methods Chinese biomedical databases, CNKI, PubMed, EMBASE, and Wan Fang were searched for articles from inception to March 2020. Two independent researchers screened articles according to inclusion criteria. RevMan 5.3 was used for data analysis. Results Ten studies were included in the systematic review. The bone mineral density (BMD) significantly increased after naringin treatment (weighted mean difference, 0.06; 95% CI, 0.03–0.09; P < 0.01). There was no significant increase in BMD after estrogen treatment compared with naringin (weighted mean difference, 0.00; 95% CI, −0.00 to 0.01; P = 0.06). The trabecular bone volume (BV/TV) (weighted mean difference, 2.09; 95% CI, 1.85–2.34; P < 0.01) and trabecular thickness (Tb.Th) (weighted mean difference, 6.65; 95% CI, 6.55–6.74; P < 0.01) significantly increased after using naringin. Conclusions Naringin had been shown to promote bone formation in OVX rats. However, the mechanism of naringin needs more research to confirm.
Collapse
|
25
|
Inagaki Y, Kido JI, Nishikawa Y, Kido R, Sakamoto E, Bando M, Naruishi K, Nagata T, Yumoto H. Gan-Lu-Yin (Kanroin), Traditional Chinese Herbal Extracts, Reduces Osteoclast Differentiation In Vitro and Prevents Alveolar Bone Resorption in Rat Experimental Periodontitis. J Clin Med 2021; 10:jcm10030386. [PMID: 33498415 PMCID: PMC7926381 DOI: 10.3390/jcm10030386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Gan-Lu-Yin (GLY), a traditional Chinese herbal medicine, shows therapeutic effects on periodontitis, but that mechanism is not well known. This study aims to clarify the precise mechanism by investigating the inhibitory effects of GLY extracts on osteoclastogenesis in vitro and on bone resorption in periodontitis in vivo. RAW264.7 cells are cultured with soluble receptor activator of nuclear factor-kappa B (sRANKL) and GLY extracts (0.01–1.0 mg/mL), and stained for tartrate-resistant acid phosphatase (TRAP) to evaluate osteoclast differentiation. Experimental periodontitis is induced by placing a nylon ligature around the second maxillary molar in rats, and rats are administered GLY extracts (60 mg/kg) daily for 20 days. Their maxillae are collected on day 4 and 20, and the levels of alveolar bone resorption and osteoclast differentiation are estimated using micro-computed tomography (CT) and histological analysis, respectively. In RAW264.7 cells, GLY extracts significantly inhibit sRANKL-induced osteoclast differentiation at a concentration of more than 0.05 mg/mL. In experimental periodontitis, administering GLY extracts significantly decreases the number of TRAP-positive osteoclasts in the alveolar bone on day 4, and significantly inhibits the ligature-induced bone resorption on day 20. These results show that GLY extracts suppress bone resorption by inhibiting osteoclast differentiation in experimental periodontitis, suggesting that GLY extracts are potentially useful for oral care in periodontitis.
Collapse
|
26
|
Yang C, Liu W, Zhang X, Zeng B, Qian Y. Naringin increases osteoprotegerin expression in fibroblasts from periprosthetic membrane by the Wnt/β-catenin signaling pathway. J Orthop Surg Res 2020; 15:600. [PMID: 33302980 PMCID: PMC7731555 DOI: 10.1186/s13018-020-02145-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background The osteoclast bone resorption is critical in aseptic loosening after joint replacement. The balance between activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) is considered to play a central role in osteoclast maturation. Fibroblasts from the periprosthetic membrane express RANKL and promote osteoclast formation. Studies have demonstrated that naringin inhibited osteoclastogenesis and wear particle-induced osteolysis. In this study, the naringin-induced OPG/RANKL effects and its underlying mechanism were studied in fibroblasts from periprosthetic membrane. Methods Fibroblasts were isolated from the periprosthetic membrane during hip arthroplasty for revision due to aseptic loosening. Fibroblasts were cultured and treated with or without naringin and DKK-1 (the classical inhibitor of Wnt/β-catenin signaling pathway). OPG and RANKL mRNA and protein levels, gene expression of β-catenin, and cyclin D1, which participate in the Wnt signaling pathway, were examined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results The mRNA and protein levels of OPG were enhanced by naringin in a dose-dependent manner compared to that of the non-treated control. In contrast, naringin did not affect the expression of RANKL. Importantly, DKK-1 attenuated OPG expression in fibroblasts under naringin treatment. Moreover, naringin stimulated the gene expression of β-catenin and cyclin D1 in fibroblasts, and the effect could be inhibited by DKK-1. Conclusion The results indicated that naringin enhanced OPG expression through Wnt/β-catenin signaling pathway in fibroblasts from periprosthetic membrane, which may be useful to inhibit periprosthetic osteolysis during aseptic loosening after total joint arthroplasty.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Wei Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Bingfang Zeng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yebin Qian
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
27
|
Jia L, Shi L, Li J, Zeng Y, Tang S, Liu W, Mo X, Liu X. Total flavonoids from celery suppresses RANKL-induced osteoclast differentiation and bone resorption function via attenuating NF-κB and p38 pathways in RAW264.7 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Ming H, Chuang Q, Jiashi W, Bin L, Guangbin W, Xianglu J. Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY) 2019; 10:4141-4151. [PMID: 30580326 PMCID: PMC6326679 DOI: 10.18632/aging.101710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023]
Abstract
Naringin, a citrus bioflavonoid, has anti-inflammatory actions and cardio- and neuroprotective effects. In addition, naringin exhibits multiple antitumor actions in several cancer types, including osteosarcoma, the most common type of bone cancer. Here, we show that naringin inhibits proliferation and invasion and induces apoptosis in human osteosarcoma cells by inhibiting zinc finger E-box binding homeobox 1 (Zeb1), a transcriptional repressor of epithelial differentiation involved in tumor metastasis. Our expression analyses confirm that Zeb1 is highly expressed in osteosarcoma specimens and cell lines. The effects of naringin, which included downregulation of Cyclin D1, MMP2, and bcl-2, where reproduced by siRNA-mediated Zeb1 silencing, whereas Zeb1 overexpression increased proliferation, migration, and Cyclin D1, MMP2, and bcl-2 levels. In addition, naringin administration reduced tumor nodule formation and attenuated the expression of the above proteins in the livers of mice injected with MG63 osteosarcoma cells. Our study provides preclinical evidence for the potential therapeutic application of naringin in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- He Ming
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Qiu Chuang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Wang Jiashi
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Li Bin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Wang Guangbin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Ji Xianglu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| |
Collapse
|
29
|
A Review of Potential Beneficial Effects of Honey on Bone Health. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8543618. [PMID: 31641368 PMCID: PMC6770370 DOI: 10.1155/2019/8543618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
Bone remodelling is a complex and tightly regulated process. Disruption of bone remodelling skewing towards resorption will cause osteoporosis and increase the risk of fragility fracture. Honey is a natural product containing various bioactive ingredients with health benefits, especially polyphenols. Therefore, honey may be a novel dietary supplement to prevent osteoporosis. This review aims to summarize the current evidence on the effects of honey on bone health. The evidence reported so far indicates a skeletal-beneficial effect of honey in animal models of osteoporosis. However, the number of studies on humans is limited. Honey can protect the bone via its antioxidant and anti-inflammatory properties, primarily through its polyphenol content that acts upon several signalling pathways, leading to bone anabolic and antiresorptive effects. In conclusion, honey is a potential functional food for bone health, but the dose and the bioactive contents of honey need to be verified prior to its application in humans.
Collapse
|
30
|
Jang SA, Hwang YH, Kim T, Lee A, Ha H. Anti-Osteoporotic and Anti-Adipogenic Effects of the Water Extract of Drynaria roosii Nakaike in Ovariectomized Mice Fed a High-Fat Diet. Molecules 2019; 24:E3051. [PMID: 31443447 PMCID: PMC6749363 DOI: 10.3390/molecules24173051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
In traditional oriental medicine, Drynaria roosii Nakaike is widely used in treating bone diseases. Postmenopausal women are strongly associated with osteoporosis and obesity. This study aimed to investigate the effects of the water extract of D. roosii (WDR) on bone loss and obesity in ovariectomized (OVX) mice fed a high-fat diet (HFD). Body weight, gonadal fat weight, histological findings, and morphometric parameters in trabecular bone were evaluated after OVX mice were treated with WDR and HFD for four weeks. The receptor activator of nuclear κ-B ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) was examined. Phytochemical identification of WDR using ultrahigh-performance liquid chromatography-tandem mass spectrometry was performed. WDR reversed the changes in body weight gain, gonadal fat mass, and trabecular bone parameters by ovariectomy. However, ovariectomy-induced uterine atrophy was not affected by WDR. WDR decreased adipocyte size and pro-inflammatory cytokines (interleukin (IL)-1β and IL-6) in gonadal fats and lipid accumulation in the bone marrow, which were induced by ovariectomy. WDR significantly decreased RANKL-induced osteoclast differentiation in BMMs. Fifteen phytochemicals were identified in WDR: Seven and nine with anti-osteoporotic and anti-adipogenic activities, respectively. Our findings suggest that WDR may have beneficial effects on postmenopausal osteoporosis and obesity.
Collapse
Affiliation(s)
- Seon-A Jang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Korea
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Korea
| | - Ami Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Korea.
| |
Collapse
|
31
|
Shao S, Fu F, Wang Z, Song F, Li C, Wu ZX, Ding J, Li K, Xiao Y, Su Y, Lin X, Yuan G, Zhao J, Liu Q, Xu J. Diosmetin inhibits osteoclast formation and differentiation and prevents LPS-induced osteolysis in mice. J Cell Physiol 2019; 234:12701-12713. [PMID: 30515812 DOI: 10.1002/jcp.27887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023]
Abstract
Osteolytic bone diseases are closely linked to the over-activation of osteoclasts and enhancement of bone resorption. It has become a major health issue in orthopedic practice worldwide. Inhibition of osteoclasts is proposed to be the main treatment for osteolytic disorders. Diosmetin (DIO) is a natural flavonoid with properties of antioxidant, anti-infection, and antishock. The effect of DIO on osteoclast differentiation is poorly understood. In this study project, we found that DIO could inhibit osteoclastic formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in a dose-dependent manner. The expression of the osteoclast differentiation marker genes, cathepsin K, nuclear factor of activated T-cells 1 (NFATc1), Acp5, Ctr, Atp6v0d2, and Mmp9 were also decreased by the treatment of DIO. In addition, DIO attenuated the formation of actin ring and the ability of bone resorption. Further, the western blotting showed that DIO inhibits the phosphorylation of the mitogen-activated protein kinases signaling pathway induced by RANKL, accompanied by the downregulation of NFATc1 and c-Fos expression. We also found that DIO could reduce the accumulation of reactive oxygen species (ROS) induced by RANKL. In vivo, the study revealed that DIO can significantly reduce LPS-induced osteolysis in mice. Collectively, our study shows that DIO can inhibit osteoclast formation and activation, and could serve as a potential therapeutic drug for osteolytic bone diseases.
Collapse
Affiliation(s)
- Siyuan Shao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Fangsheng Fu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Ziyi Wang
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Fangming Song
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Chen Li
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zuo-Xing Wu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiaxing Ding
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Li
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Xiao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiji Su
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xixi Lin
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 2019; 132:110646. [PMID: 31252025 DOI: 10.1016/j.fct.2019.110646] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 06/23/2019] [Indexed: 12/23/2022]
Abstract
Neurological illnesses are multifactorial incurable debilitating disorders that may cause neurodegeneration. These diseases influence approximately 30 million people around the world. Despite several therapies, effective management of such disorders remains a global challenge. Thus, natural products might offer an alternative therapy for the treatment of various neurological disorders. Polyphenols, such as curcumin, resveratrol, myricetin, mangiferin and naringin (NRG) have been shown to possess promising potential in the treatment of neurogenerative illness. In this review, we have targeted the therapeutic potential of naringin as a neuroprotective agent. The overall neuroprotective effects and different possible underlying mechanisms related to NRG are discussed. In light of the strong evidence for the neuropharmacological efficacy of NRG in various experimental paradigms, it is concluded that this molecule should be further considered and studied as a potential candidate for neurotherapeutics, focusing on mechanistic and clinical trials to ascertain its efficacy.
Collapse
|
33
|
Kuang MJ, Zhang WH, He WW, Sun L, Ma JX, Wang D, Ma XL. Naringin regulates bone metabolism in glucocorticoid-induced osteonecrosis of the femoral head via the Akt/Bad signal cascades. Chem Biol Interact 2019; 304:97-105. [DOI: 10.1016/j.cbi.2019.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
|
34
|
Kim JS, Jeon J, An JJ, Yi HK. Interval running training improves age-related skeletal muscle wasting and bone loss: Experiments with ovariectomized rats. Exp Physiol 2019; 104:691-703. [PMID: 30843284 DOI: 10.1113/ep087458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect and mechanism of interval running training on age-related muscle wasting and bone loss in an ovariectomized rat model? What is the main finding and its importance? Interval running training improved muscle growth and osteogenic differentiation by enhancing the expression of bone morphogenic proteins and sirtuins in ageing-induced ovariectomized rats. Therefore, the repetition of low and high intensities within a single exercise bout, such as interval running training, may be recommended as a practical intervention to prevent skeletal muscle wasting and bone loss in the elderly. ABSTRACT Effective prophylactic strategies are needed for the suppression of age-related muscle wasting and bone loss after menopause. Exercise training is attractive due to its potential for improving energy metabolism, as well as age-related muscle wasting and bone loss. In particular, interval running (IR) training involves a repetition of low and high intensities within a single exercise bout. Therefore, this study elucidated the effect of interval training on muscle and bone health, as well as anti-ageing, in ovariectomized (OVX) rats. The anti-ageing effect of IR on muscle and bone was tested using western blotting and micro-computed tomography analysis, tartrate-resistant acid phosphatase and immunohistochemical staining. IR significantly inhibited the expression of inflammatory molecules, and improved antioxidant activity via down-regulation of mitogen-activated protein kinases (MAPKs) in the ageing-induced OVX rats skeletal muscle. IR compared with continuous running (CR) improved muscle mass and growth in OVX rats by the promotion of muscle growth-related factors including MyoD, myogenin, phospho-mechanistic target of rapamycin (p-mTOR), sirtuins (SIRTs), and bone morphogenic proteins (BMPs). IR also effectively recovered OVX-induced bone loss via the down-regulation of bone resorption and osteoclast formation in receptor activator of nuclear factor κB ligand (RANKL)-treated bone marrowmacrophages (BMMs). In particular, IR led to high expression of SIRT1 and 6, which promoted osteogenic differentiation and bone formation via modulating the BMP signalling pathway compared with CR training. The in vivo effect of IR was confirmed by immunohistochemical staining with the improvement of bone formation molecules such as BMPs and SIRTs. These results suggested that IR training affected myogenic and osteogenic formation. So, IR training may be considered for prevention of muscle wasting and bone loss for the elderly.
Collapse
Affiliation(s)
- Jeong-Seok Kim
- College of Natural Science, Chonbuk National University, 664-14 Dukjin-dong, Dukjin-ku, Jeonju, Chonbuk, Republic of Korea
| | - Jin Jeon
- College of Education, Chonbuk National University, 664-14 Dukjin-dong, Dukjin-ku, Jeonju, Chonbuk, Republic of Korea
| | - Jin-Jeong An
- College of Education, Chonbuk National University, 664-14 Dukjin-dong, Dukjin-ku, Jeonju, Chonbuk, Republic of Korea
| | - Ho-Keun Yi
- Schoolo of Dentistry, Chonbuk National University, 664-14 Dukjin-dong, Dukjin-ku, Jeonju, Chonbuk, 561-756, Republic of Korea
| |
Collapse
|
35
|
Ben-Azu B, Nwoke EE, Aderibigbe AO, Omogbiya IA, Ajayi AM, Olonode ET, Umukoro S, Iwalewa EO. Possible neuroprotective mechanisms of action involved in the neurobehavioral property of naringin in mice. Biomed Pharmacother 2018; 109:536-546. [PMID: 30399589 DOI: 10.1016/j.biopha.2018.10.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023] Open
Abstract
Flavonoids are naturally occurring bioactive phytochemical metabolites widely known to prevent and suppress several human diseases, and are important sources of therapeutic compounds from plants. Evidence derived from previous studies suggests that naringin, a neuroactive flavonoid possess functional beneficial neurobehavioral effects including anxiolytic, antidepressant and memory enhancing properties. However, literature search revealed that no studies have been carried out to evaluate the possible biochemical mechanisms involved in the neurobehavioral property of naringin alone following repeated treatment. Hence, this study was designed to evaluate the possible neuro-biochemical mechanisms involved in the neurobehavioral property of naringin following repeated administration in mice. The effects of naringin (2.5, 5 and 10 mg/kg), diazepam (2 mg/kg), imipramine (15 mg/kg) and donepezil (1 mg/kg) or vehicle on neurobehavioral and biochemical effects were evaluated in mice following repeated intraperitoneal injection for 7 consecutive days. Neurobehavioral activities consisting of open-field (locomotor), elevated-plus maze (anxiolytic), forced swim and social interaction (antidepressant and social preference), and Y-maze (memory enhancing) tests were assessed. Thereafter, brains levels of biomarkers of oxidative, nitrosative and cholinergic parameters were determined. Repeated treatment with naringin produced increased locomotor activity, and demonstrated antidepressant-like effects evidenced by decreased immobility time in forced swim test and increased % social preference in the social interaction test relative to controls. Also, naringin induced anxiolytic-like effect and increased cognitive performance in mice. Mechanistically, naringin significantly increased the activities of superoxide dismutase and catalase, and glutathione concentration relative to vehicle-controls. However, naringin significantly decreased malondialdehyde and nitrite contents, and reduced brain acetylcholinesterase activity in mice brains in a significant manner relative to controls. Taken together, these findings suggest that treatment with naringin might be useful to produce functional behavioral effects via mechanisms related to enhancement of cholinergic transmission, antioxidant defense systems, inhibition of lipid peroxidation and nitrosative processes.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Ekene Enekabokom Nwoke
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Itivere Adrian Omogbiya
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Elizabeth Toyin Olonode
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
36
|
Suvarna V, Sarkar M, Chaubey P, Khan T, Sherje A, Patel K, Dravyakar B. Bone Health and Natural Products- An Insight. Front Pharmacol 2018; 9:981. [PMID: 30283334 PMCID: PMC6157411 DOI: 10.3389/fphar.2018.00981] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022] Open
Abstract
Bone metabolism involves a complex balance between matrix deposition, mineralization, and resorption. Numerous evidences have revealed that dietary components and phytoconstituents can influence these processes, through inhibition of bone resorption, thus exhibiting beneficial effects on the skeleton. Various traditional herbal formulae in ayurvedic and Chinese medicine have shown demonstrable benefits in pharmacological models of osteoporosis. The present review discusses normal bone metabolism and disorders caused by bone disruption, with particular reference to osteoporosis and current therapeutic treatment. Furthermore the effects of constituents from natural products on bone tissue are explained, with relevant evidences of efficacy in various experimental models.
Collapse
Affiliation(s)
- Vasanti Suvarna
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang J, Ye X, Lin S, Liu H, Qiang Y, Chen H, Jiang Z, Zhang K, Duan X, Xu Y. Preparation, characterization and in vitro and in vivo evaluation of a solid dispersion of Naringin. Drug Dev Ind Pharm 2018; 44:1725-1732. [PMID: 29851514 DOI: 10.1080/03639045.2018.1483390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Naringin (NA) is one of typical flavanone glycosides widely distributed in nature and possesses several biological activities including antioxidant, anti-inflammatory, and antiapoptotic. The aim of this study was to develop solid dispersion (SD) and to improve the dissolution rate and oral bioavailability of NA. NA-SD was prepared by the traditional preparation methods using PEG6000, F68, or PVP K30 as carrier at different drug to carrier ratios. According to the results of solubility and in vitro dissolution test, the NA-PEG6000 (1:3) SD was considered as an optimal formulation to characterize by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry and powder X-ray diffraction. Furthermore, oral bioavailabilities of NA-PEG6000 (1:3) SD and NA-suspension with the same dosage were investigated in SD rats. The results confirmed the formation of SD and the pharmacokinetic parameters of NA-PEG6000 (1:3) SD (Cmax = 0.645 ± 0.262 µg/ml, AUC0-t = 0.471 ± 0.084 µg/ml h) were higher than that of NA-suspension (Cmax = 0.328 ± 0.183 µg/ml, AUC0-t = 0.361 ± 0.093 µg/ml h). Based on the results, the SD is considered as a promising approach to enhance the dissolution rate and oral bioavailability of NA.
Collapse
Affiliation(s)
- Jingjing Wang
- a School of Pharmacy , Guilin Medical University , Guilin , China
| | - Xueyi Ye
- b Guilin Pharmaceutical Co., Ltd. , Guilin , China
| | - Shiyuan Lin
- a School of Pharmacy , Guilin Medical University , Guilin , China
| | - Hanfu Liu
- a School of Pharmacy , Guilin Medical University , Guilin , China
| | - Yin Qiang
- c School of Pharmacy , Lanzhou University , Lanzhou , China
| | - Hui Chen
- a School of Pharmacy , Guilin Medical University , Guilin , China
| | - Zhiming Jiang
- a School of Pharmacy , Guilin Medical University , Guilin , China
| | - Kefeng Zhang
- a School of Pharmacy , Guilin Medical University , Guilin , China
| | - Xiaoqun Duan
- a School of Pharmacy , Guilin Medical University , Guilin , China
| | - Yourui Xu
- a School of Pharmacy , Guilin Medical University , Guilin , China
| |
Collapse
|
38
|
Bioinspired bone therapies using naringin: applications and advances. Drug Discov Today 2018; 23:1293-1304. [PMID: 29747006 DOI: 10.1016/j.drudis.2018.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/31/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
Abstract
The use of natural compounds for treating chronic bone diseases holds remarkable potential. Among these therapeutics, naringin, a flavanone glycoside, represents one of the most promising candidates owing to its multifaceted effect on bone tissues. This review provides an up-to-date overview on naringin applications in the treatment of bone disorders, such as osteoporosis and osteoarthritis, and further highlights its potential for stem cell pro-osteogenic differentiation therapies. A critical perspective on naringin clinical translation is also provided. The topic is discussed in light of recently developed biomaterial-based approaches that potentiate its bioavailability and bioactivity. Overall, the reported pro-osteogenic, antiresorptive and antiadipogenic properties establish this flavanone as an exciting candidate for application in bone tissue engineering and regenerative medicine.
Collapse
|
39
|
Preethi Soundarya S, Sanjay V, Haritha Menon A, Dhivya S, Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol 2018; 110:74-87. [DOI: 10.1016/j.ijbiomac.2017.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
|
40
|
Cheng J, Zhou L, Liu Q, Tickner J, Tan Z, Li X, Liu M, Lin X, Wang T, Pavlos NJ, Zhao J, Xu J. Cyanidin Chloride inhibits ovariectomy-induced osteoporosis by suppressing RANKL-mediated osteoclastogenesis and associated signaling pathways. J Cell Physiol 2018; 233:2502-2512. [PMID: 28771720 DOI: 10.1002/jcp.26126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
Abstract
Over-production and activation of osteoclasts is a common feature of osteolytic conditions such as osteoporosis, tumor-associated osteolysis, and inflammatory bone erosion. Cyanidin Chloride, a subclass of anthocyanin, displays antioxidant and anti-carcinogenesis properties, but its role in osteoclastic bone resorption and osteoporosis is not well understood. In this study, we showed that Cyanidin Chloride inhibits osteoclast formation, hydroxyapatite resorption, and receptor activator of NF-κB ligand (RANKL)-induced osteoclast marker gene expression; including ctr, ctsk, and trap. Further investigation revealed that Cyanidin Chloride inhibits RANKL-induced NF-κB activation, suppresses the degradation of IκB-α and attenuates the phosphorylation of extracellular signal-regulated kinases (ERK). In addition, Cyanidin Chloride abrogated RANKL-induced calcium oscillations, the activation of nuclear factor of activated T cells calcineurin-dependent 1 (NFATc1), and the expression of c-Fos. Further, we showed that Cyanidin Chloride protects against ovariectomy-induced bone loss in vivo. Together our findings suggest that Cyanidin Chloride is capable of inhibiting osteoclast formation, hydroxyapatite resorption and RANKL-induced signal pathways in vitro and OVX-induced bone loss in vivo, and thus might have therapeutic potential for osteolytic diseases.
Collapse
Affiliation(s)
- Jianwen Cheng
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhen Tan
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaofeng Li
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xixi Lin
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Tao Wang
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Nathan J Pavlos
- School of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Jinmin Zhao
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Guangxi, China
| | - Jiake Xu
- Research Center for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
41
|
Zhao H, Zhao N, Zheng P, Xu X, Liu M, Luo D, Xu H, Ju D. Prevention and Treatment of Osteoporosis Using Chinese Medicinal Plants: Special Emphasis on Mechanisms of Immune Modulation. J Immunol Res 2018; 2018:6345857. [PMID: 29675436 PMCID: PMC5838472 DOI: 10.1155/2018/6345857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/05/2017] [Accepted: 12/06/2017] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have examined the pathogenesis of osteoporosis. The causes of osteoporosis include endocrine factors, nutritional status, genetic factors, physical factors, and immune factors. Recent osteoimmunology studies demonstrated that the immune system and immune factors play important regulatory roles in the occurrence of osteoporosis, and people should pay more attention to the relationship between immunity and osteoporosis. Immune and bone cells are located in the bone marrow and share numerous regulatory molecules, signaling molecules, and transcription factors. Abnormal activation of the immune system alters the balance between osteoblasts and osteoclasts, which results in an imbalance of bone remodeling and osteoporosis. The incidence of osteoporosis is also increasing with the aging of China's population, and traditional Chinese medicine has played a vital role in the prevention and treatment of osteoporosis for centuries. Chinese medicinal plants possess unique advantages in the regulation of the immune system and the relationships between osteoporosis and the immune system. In this review, we provide a general overview of Chinese medicinal plants in the prevention and treatment of osteoporosis, focusing on immunological aspects.
Collapse
Affiliation(s)
- Hongyan Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ning Zhao
- Institute of Clinical Basic Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Zheng
- Jilin Provincial Hospital of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiaohong Xu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijie Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Dan Luo
- Traditional Chinese Medicine Hospital of Changping District, Beijing 102200, China
| | - Huihui Xu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dahong Ju
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| |
Collapse
|
42
|
Naringin prevents bone loss in a rat model of type 1 Diabetes mellitus. Arch Biochem Biophys 2018; 637:56-63. [DOI: 10.1016/j.abb.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
|
43
|
Li L, Sapkota M, Gao M, Choi H, Soh Y. Macrolactin F inhibits RANKL-mediated osteoclastogenesis by suppressing Akt, MAPK and NFATc1 pathways and promotes osteoblastogenesis through a BMP-2/smad/Akt/Runx2 signaling pathway. Eur J Pharmacol 2017; 815:202-209. [PMID: 28919027 DOI: 10.1016/j.ejphar.2017.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 01/27/2023]
Abstract
The balance between bone formation and bone resorption is maintained by osteoblasts and osteoclasts. In the current study, macrolactin F (MF) was investigated for novel biological activity on the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages (BMMs). We found that RANKL-induced osteoclast formation and differentiation from BMMs was significantly inhibited by MF in a dose-dependent manner without cytotoxicity. RANKL-induced F-actin ring formation and bone resorption activity in BMMs which was attenuated by MF. In addition, MF suppressed the expression of osteoclast-related genes, including c-myc, RANK, tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T cells c1 (NFATc1), cathepsin K and matrix metalloproteinase 9 (MMP9). Furthermore, the protein expression NFATc1, c-Fos, MMP9, cathepsin K and phosphorylation of Jun N-terminal kinase (JNK), p38 and Akt were also down-regulated by MF treatment. Interestingly, MF promoted pre-osteoblast cell differentiation on Alizarin Red-mineralization activity, alkaline phosphatase (ALP) activity, and the expression of osteoblastogenic markers including Runx2, Osterix, Smad4, ALP, type I collagen alpha 1 (Col1α), osteopontin (OPN), and osteocalcin (OCN) via activation of the BMP-2/smad/Akt/Runx2 pathway on MC3T3-E1. Taken together, these results indicate that MF may be useful as a therapeutic agent to enhance bone health and treat osteoporosis.
Collapse
Affiliation(s)
- Liang Li
- Department of Dental Pharmacology, School of Dentistry, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Mahesh Sapkota
- Department of Dental Pharmacology, School of Dentistry, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ming Gao
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Yunjo Soh
- Department of Dental Pharmacology, School of Dentistry, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
44
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
45
|
Gaoli X, Yi L, Lili W, Qiutao S, Guang H, Zhiyuan G. [Effect of naringin combined with bone morphogenetic protein-2 on the proliferation and differentiation of MC3T3-E1 cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:275-280. [PMID: 28675012 DOI: 10.7518/hxkq.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study evaluates the biological effects of naringin (NAR) joint bone morphogenetic protein (BMP)-2 on the proliferation, alkaline phosphatase (ALP) activity, and expression of osteoblastogenic genes, such as Runt-related transcription factor 2 (Runx2), collagen Ⅰ (ColⅠ), ALP, and osteocalcin (OCN) of pre-osteoblasts. METHODS Three different NAR concentrations (10, 100, and 1 000 μmol·L⁻¹) were applied, alone or combined with BMP-2(50 ng·mL⁻¹), to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line). Cell numbers (proliferation) were evaluated at first, fourth, and seventh days by Alamar blue assay. ALP activity and the expression of osteoblastogenic genes, such as Runx2, ColⅠ, ALP, and OCN were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) at fourth and seventh day. RESULTS Stimulation by NAR alone and in combination with BMP-2 for 1 day and 4 days could promote cell proliferation, which peaked at a concentration of 100 μmol·L⁻¹ NAR combined with BMP-2 could promote cell proliferation significantly (P<0.05). Stimulation by NAR alone and in combination with BMP-2 for 4 and 7 days could promote ALP activity and bone-related gene(ALP, OCN, Runx2, ColⅠ) expression. ALP expression was significantly promoted after stimulation of 100 μmol·L⁻¹ NAR and BMP-2 (P<0.05). CONCLUSIONS NAR exhibits promising potential for improving MC3T3-E1 proliferation and differentiation, and appropriate concentrations of NAR and BMP-2 show synergistic effect.
.
Collapse
Affiliation(s)
- Xu Gaoli
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China;Dept. of Stomatology, Zhejiang Hospital, Hangzhou 310053, China
| | - Liu Yi
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China;Dept. of Dental Implant and Prosthetics, University of Amsterdam, Amsterdam 1011-1109, Holland
| | - Wu Lili
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shi Qiutao
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huo Guang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Gu Zhiyuan
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
46
|
Cao J, Lu Q, Liu N, Zhang YX, Wang J, Zhang M, Wang HB, Sun WC. Sciadopitysin suppresses RANKL-mediated osteoclastogenesis and prevents bone loss in LPS-treated mice. Int Immunopharmacol 2017; 49:109-117. [DOI: 10.1016/j.intimp.2017.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
47
|
Cong W, Zhou C, Yin J. Alpinumisoflavone inhibits osteoclast differentiation and exerts anti-osteoporotic effect in ovariectomized mice. Biomed Pharmacother 2017. [PMID: 28651235 DOI: 10.1016/j.biopha.2017.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alpinumisoflavone (AIF), a naturally occurring flavonoid compound exacted from Derris eriocarpa, has been found to have a number of pharmacological activities. However, its role in bone disorder has not been investigated. The aim of this study is to evaluate the osteoprotective effect of AIF on ovariectomy-induced bone loss in mice model and related underlying mechanisms. Our study provides experimental evidence that AIF could regulate the remodeling process of bone and exert osteoprotective effect against ovariectomy-induced bone loss. Moreover, our results show that AIF suppresses osteoclast differentiation by attenuating RANKL-induced activation of p38, ERK and JNK pathways and consequently represses the expression of c-Fos and NFATc1.
Collapse
Affiliation(s)
- Wei Cong
- Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Chao Zhou
- Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Jun Yin
- Qilu Hospital of Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
48
|
Tan Z, Cheng J, Liu Q, Zhou L, Kenny J, Wang T, Lin X, Yuan J, Quinn JMW, Tickner J, Hong G, Qin A, Zhao J, Xu J. Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice. Mol Cell Endocrinol 2017; 439:369-378. [PMID: 27664516 DOI: 10.1016/j.mce.2016.09.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022]
Abstract
Excessive bone resorption by osteoclasts plays an important role in osteoporosis. Bone loss occurs in ovariectomised (OVX) mice in a similar manner to that in humans, so this model is suitable for evaluating potential new therapies for osteoporosis. Neohesperidin (NE) is a flavonoid compound isolated from citrus fruits. Its role in bone metabolism is unknown. In this study we found that neohesperidin inhibits osteoclast differentiation, bone resorption and the expression of osteoclast marker genes, tartrate-resistant acid phosphatase and cathepsin K. In addition, neohesperidin inhibited receptor activator of NF-κB ligand (RANKL)-induced activation of NF-κB, and the degradation of inhibitor of kappa B-alpha (IκBα). Furthermore, neohesperidin inhibited RANKL induction of nuclear factor of activated T-cells (NFAT) and calcium oscillations. In vivo treatment of ovariectomised mice with neohesperidin protected against bone loss in mice. The results suggest neohesperidin has anti-osteoclastic effects in vitro and in vivo and possesses therapeutic potential as a natural anti-catabolic treatment in osteoporosis.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China
| | - Jianwen Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Qian Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Jacob Kenny
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Tao Wang
- Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China
| | - Xixi Lin
- Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China
| | - Jinbo Yuan
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Julian M W Quinn
- The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Guoju Hong
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia; The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine, Ninth People's Hospital, Shanghai 200011, China
| | - Jinmin Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China.
| | - Jiake Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi 530021, China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
49
|
Abstract
CONTEXT Naringin is a natural flavanone glycoside that is found in the Chinese herbal medicines and citrus fruits. Studies have demonstrated that naringin possesses numerous biological and pharmacological properties, but few reviews of these studies have been performed. OBJECTIVE The present review gathers the fragmented information available in the literature describing the extraction of naringin, its pharmacology and its controlled release formulations. Current research progress and the therapeutic potential of naringin are also discussed. METHODS A literature survey for relevant information regarding the biological and pharmacological properties of naringin was conducted using Pubmed, Sciencedirect, MEDLINE, Springerlink and Google Scholar electronic databases from the year 2007-2015. RESULTS Naringin modulates signalling pathways and interacts with signalling molecules and thus has a wide range of pharmacological activities, including anti-inflammatory, anti-cancer activities, as well as effects on bone regeneration, metabolic syndrome, oxidative stress, genetic damage and central nervous system (CNS) diseases. Information was gathered that showed the extraction of naringin can be improved using several modifications. There has been some progress in the development of controlled release formulations of naringin. CONCLUSION Naringin is a promising candidate for further in vivo studies and clinical use. More detailed studies regarding its mechanism of action are required.
Collapse
Affiliation(s)
- Rui Chen
- a Medical Faculty , Kunming University of Science and Technology , Kunming , Yunnan Province , China
- b The First People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
- c Affiliated Hospital of Kunming University of Science and Technology , Kunming , Yunnan Province , China
| | - Qiao-Ling Qi
- d Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D , Dali University , Dali , Yunnan Province , China
| | - Meng-Ting Wang
- a Medical Faculty , Kunming University of Science and Technology , Kunming , Yunnan Province , China
- b The First People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
- c Affiliated Hospital of Kunming University of Science and Technology , Kunming , Yunnan Province , China
| | - Qi-Yan Li
- a Medical Faculty , Kunming University of Science and Technology , Kunming , Yunnan Province , China
- b The First People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
- c Affiliated Hospital of Kunming University of Science and Technology , Kunming , Yunnan Province , China
| |
Collapse
|
50
|
Nitidine chloride prevents OVX-induced bone loss via suppressing NFATc1-mediated osteoclast differentiation. Sci Rep 2016; 6:36662. [PMID: 27821837 PMCID: PMC5099608 DOI: 10.1038/srep36662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/18/2016] [Indexed: 11/26/2022] Open
Abstract
Nitidine chloride (NC), a bioactive alkaloid isolated from Zanthoxylum nitidum, has been used as a herbal ingredient in toothpaste that prevents cavities for decades. It also displays potential antitumor and anti-inflammation properties. However, its anticatabolic effect on bone is not known. We investigated the effect of NC on osteoclastogenesis, bone resorption and RANKL-induced NF-κB and NFATc1 signalling. In mouse-derived bone marrow monocytes (BMMs), NC suppressed RANKL-induced multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation and bone resorption in a dose dependent manner. NC attenuated the expression of osteoclast marker genes including cathepsin K, D2, calcitonin receptor, NFATc1, and TRAP. Further, NC inhibited RANKL-activated NF-κB and NFATc1 signalling pathways. In vivo study revealed that NC abrogated oestrogen deficiency-induced bone loss in ovariectomized mice. Histological analysis showed that the number of osteoclasts was significantly lower in NC-treated groups. Collectively, our data demonstrate that NC suppressed osteoclastogenesis and prevented OVX-induced bone loss by inhibiting RANKL-induced NF-κB and NFATc1 signalling pathways. NC may be a natural and novel treatment for osteoclast-related bone lytic diseases.
Collapse
|