1
|
Bora-Singhal N, Saha B, Mohankumar D, Padmanabhan J, Coppola D, Chellappan S. A Novel PHD2/VHL-mediated Regulation of YAP1 Contributes to VEGF Expression and Angiogenesis. CANCER RESEARCH COMMUNICATIONS 2022; 2:624-638. [PMID: 35937460 PMCID: PMC9351435 DOI: 10.1158/2767-9764.crc-21-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The transcriptional co-activator YAP1 is the major oncogenic component of the Hippo signaling pathway and contributes to the genesis and progression of various tumors, including non-small cell lung cancer (NSCLC). YAP1 levels are regulated by the canonical Hippo kinases, MST1/2 and LATS1/2, which modulate its cytoplasmic retention and proteasomal degradation. While non-canonical regulation of YAP1 has been reported, its role in hypoxic response is not fully elucidated. The studies presented here show that YAP1 levels and function are modulated by VHL and PHD2. YAP1 could regulate multiple genes involved in angiogenesis through E2F1; it also associates with HIF1α in cancer cells under hypoxic conditions, inducing the VEGF-A promoter. Under normoxic conditions, PHD2 associates with and hydroxylates specific proline residues on YAP1, facilitating its interaction with VHL and promoting ubiquitination and subsequent proteasomal degradation. Exposure to hypoxia dissociates YAP1 from PHD2 and VHL, elevating YAP1 levels and enhancing its association with HIF1α. YAP1-HIF1α interaction was higher in NSCLC and RCC samples, indicating a role for this interaction in the genesis of these cancers. Our results thus reveal a novel mode of regulation of YAP1 by PHD2 and VHL in normoxic cells, suggesting that YAP1-mediated induction of VEGF and other genes contributes to hypoxic response in tumors.
Collapse
Affiliation(s)
| | - Biswarup Saha
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida
| | | | - Jaya Padmanabhan
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida
| | - Domenico Coppola
- Department of Anatomic pathology, Moffitt Cancer Center, Tampa, Florida
| | | |
Collapse
|
2
|
Eldawud R, Wagner A, Dong C, Gupta N, Rojanasakul Y, O'Doherty G, Stueckle TA, Dinu CZ. Potential antitumor activity of digitoxin and user-designed analog administered to human lung cancer cells. Biochim Biophys Acta Gen Subj 2020; 1864:129683. [PMID: 32679249 DOI: 10.1016/j.bbagen.2020.129683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac glycosides (CGs), such as digitoxin, are traditionally used for treatment of congestive heart failure; recently they also gained attention for their anticancer properties. Previous studies showed that digitoxin and a synthetic L-sugar monosaccharide analog treatment decreases cancer cell proliferation, increases apoptosis, and pro-adhesion abilities; however, no reports are available on their potential to alter lung cancer cell cytoskeleton structure and reduce migratory ability. Herein, we investigated the anticancer effects of digitoxin and its analog, digitoxigenin-α-L-rhamnoside (D6MA), to establish whether cytoskeleton reorganization and reduced motility are drug-induced cellular outcomes. METHODS We treated non-small cell lung carcinoma cells (NSCLCs) with sub-therapeutic, therapeutic, and toxic concentrations of digitoxin and D6MA respectively, followed by both single point and real-time assays to evaluate changes in cellular gene and protein expression, adhesion, elasticity, and migration. RESULTS Digitoxin and D6MA induced a decrease in matrix metalloproteinases expression via altered focal adhesion signaling and a suppression of the phosphoinositide 3-kinases / protein kinase B pathway which lead to enhanced adhesion, altered elasticity, and reduced motility of NSCLCs. Global gene expression analysis identified dose-dependent changes to nuclear factor kappa-light-chain-enhancer, epithelial tumor, and microtubule dynamics signaling. CONCLUSIONS Our study demonstrates that digitoxin and D6MA can target antitumor signaling pathways to alter NSCLC cytoskeleton and migratory ability to thus potentially reduce their tumorigenicity. SIGNIFICANCE Discovering signaling pathways that control cancer's cell phenotype and how such pathways are affected by CG treatment will potentially allow for active usage of synthetic CG analogs as therapeutic agents in advanced lung conditions.
Collapse
Affiliation(s)
- Reem Eldawud
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Chenbo Dong
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Neha Gupta
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - George O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
3
|
Groß A, Chernyakov D, Gallwitz L, Bornkessel N, Edemir B. Deletion of Von Hippel-Lindau Interferes with Hyper Osmolality Induced Gene Expression and Induces an Unfavorable Gene Expression Pattern. Cancers (Basel) 2020; 12:cancers12020420. [PMID: 32059438 PMCID: PMC7073186 DOI: 10.3390/cancers12020420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Loss of von Hippel–Lindau (VHL) protein function can be found in more than 90% of patients with clear cell renal carcinoma (ccRCC). Mice lacking Vhl function in the kidneys have urine concentration defects due to postulated reduction of the hyperosmotic gradient. Hyperosmolality is a kidney-specific microenvironment and induces a unique gene expression pattern. This gene expression pattern is inversely regulated in patients with ccRCC with consequences for cancer-specific survival. Within this study, we tested the hypothesis if Vhl function influences the hyperosmolality induced changes in gene expression. We made use of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to inhibit functional Vhl expression in murine collecting duct cell line. Loss of Vhl function induced morphological changes within the cells similar to epithelial to mesenchymal transition like phenotype. Vhl-deficient cells migrated faster and proliferated slower compared to control cells. Gene expression profiling showed significant changes in gene expression patterns in Vhl-deficient cells compared to control cells. Several genes with unfavorable outcomes showed induced and genes with favorable outcomes for patients with renal cancer reduced gene expression level. Under hyperosmotic condition, the expression of several hyperosmolality induced genes, with favorable prognostic value, was downregulated in cells that do not express functional Vhl. Taken together, this study shows that Vhl interferes with hyperosmotic signaling pathway and hyperosmolality affected pathways might represent new promising targets.
Collapse
Affiliation(s)
| | | | | | | | - Bayram Edemir
- Correspondence: ; Tel.: +49-345-557-4890; Fax: +49-345-557-2950
| |
Collapse
|
4
|
Ishihara M, Hu J, Wong A, Cano-Ruiz C, Wu L. Mouse- and patient-derived CAM xenografts for studying metastatic renal cell carcinoma. Enzymes 2019; 46:59-80. [PMID: 31727277 DOI: 10.1016/bs.enz.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Renal cell carcinoma is the seventh most common cancer in the United States, and its metastatic form has a very poor prognosis due to a lack of effective treatment and thorough understanding on metastatic mechanism. This chapter will demonstrate a novel concept that intratumoral heterogeneity is essential for metastasis in renal cell carcinoma. We will first introduce the in vitro system and the mouse model that led to the finding of the cooperative mechanism for metastasis. Then, the results from the CAM model illustrate the cooperative interactions that lead to metastasis also occur in this model. We believe that the CAM model, as a unique and sustainable system, can open up new opportunities to study the metastatic disease.
Collapse
Affiliation(s)
- Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Anthony Wong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
| | - Celine Cano-Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Zhou Q, Dai J, Chen T, Dada LA, Zhang X, Zhang W, DeCamp MM, Winn RA, Sznajder JI, Zhou G. Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal 2017; 38:49-59. [PMID: 28652146 PMCID: PMC5555371 DOI: 10.1016/j.cellsig.2017.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Atypical protein kinase C ζ (PKCζ) forms an apico-basal polarity complex with Partitioning Defective (Pard) 3 and Pard6 to regulate normal epithelial cell apico-basolateral polarization. The dissociation of the PKCζ/Pard3/Pard6 complex is essential for the disassembly of the tight/adherens junction and epithelial-mesenchymal transition (EMT) that is critical for tumor spreading. Loss of cell polarity and epithelial organization is strongly correlated with malignancy and tumor progression in some other cancer types. However, it is unclear whether the PKCζ/Pard3/Pard6 complex plays a role in the progression of non-small-cell lung cancer (NSCLC). We found that hypoxia downregulated the PKCζ/Pard3/Pard6 complex, correlating with induction of lung cancer cell migration and invasion. Silencing of the PKCζ/Pard3/Pard6 polarity complex components induced lung cancer cell EMT, invasion, and colonization in vivo. Suppression of Pard3 was associated with altered expression of genes regulating wound healing, cell apoptosis/death and cell motility, and particularly upregulation of MAP3K1 and fibronectin which are known to contribute to lung cancer progression. Human lung adenocarcinoma tissues expressed less Pard6b and PKCζ than the adjacent normal tissues and in experimental mouse lung adenocarcinoma, the levels of Pard3 and PKCζ were also decreased. In addition, we showed that a methylation locus in the gene body of Pard3 is positively associated with the expression of Pard3 and that methylation of the Pard3 gene increased cellular sensitivity to carboplatin, a common chemotherapy drug. Suppression of Pard3 increased chemoresistance in lung cancer cells. Together, these results suggest that reduced expression of PKCζ/Pard3/Pard6 contributes to NSCLC EMT, invasion, and chemoresistance.
Collapse
Affiliation(s)
- Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jingbo Dai
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Tianji Chen
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xu Zhang
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malcolm M DeCamp
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert A Winn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Risk of Hypertension With Sorafenib Use in Patients With Cancer: A Meta-Analysis From 20,494 Patients. Am J Ther 2017; 24:e81-e101. [DOI: 10.1097/mjt.0000000000000331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zhou Q, Chen T, Zhang W, Bozkanat M, Li Y, Xiao L, van Breemen RB, Christman JW, Sznajder JI, Zhou G. Suppression of von Hippel-Lindau Protein in Fibroblasts Protects against Bleomycin-Induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 54:728-39. [PMID: 26488390 PMCID: PMC4942192 DOI: 10.1165/rcmb.2015-0111oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022] Open
Abstract
We have reported that von Hippel-Lindau protein (pVHL) expression is elevated in human and mouse fibrotic lungs and that overexpression of pVHL stimulates fibroblast proliferation. We sought to determine whether loss of pVHL in fibroblasts prevents injury and fibrosis in mice that are treated with bleomycin. We generated heterozygous fibroblast-specific pVHL (Fsp-VHL) knockdown mice (Fsp-VHL(+/-)) and homozygous Fsp-VHL knockout mice (Fsp-VHL(-/-)) by crossbreeding vhlh 2-lox mice (VHL(fl/fl)) with Fsp-Cre recombinase mice. Our data show that Fsp-VHL(-/-) mice, but not Fsp-VHL(+/-) mice, have elevated red blood cell counts, hematocrit, hemoglobin content, and expression of hypoxia-inducible factor (HIF) targets, indicating HIF activation. To examine the role of pVHL in bleomycin-induced lung injury and fibrosis in vivo, we administered PBS or bleomycin to age-, sex-, and strain-matched 8-week-old VHL(fl/fl), Fsp-VHL(+/-), and Fsp-VHL(-/-) mice. In Fsp-VHL(+/-) and Fsp-VHL(-/-) mice, bleomycin-induced collagen accumulation, fibroblast proliferation, differentiation, and matrix protein dysregulation were markedly attenuated. Suppression of pVHL also decreased bleomycin-induced Wnt signaling and prostaglandin E2 signaling but did not affect bleomycin-induced initial acute lung injury and lung inflammation. These results indicate that pVHL has a pivotal role in bleomycin-induced pulmonary fibrosis, possibly via an HIF-independent pathway. Paradoxically, pVHL does not affect bleomycin-induced lung injury and inflammation, indicating a separation of the mechanisms involved in injury/inflammation from those involved in pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- Department of Preventive Medicine and
| | | | | | - Lei Xiao
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, and
| | | | - John W. Christman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Ohio State University, Columbus, Ohio
| | - Jacob I. Sznajder
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Guofei Zhou
- Departments of Pediatrics and
- Cancer Center, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Foster JG, Wong SCK, Sharp TV. The hypoxic tumor microenvironment: driving the tumorigenesis of non-small-cell lung cancer. Future Oncol 2015; 10:2659-74. [PMID: 25531051 DOI: 10.2217/fon.14.201] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since the application of molecular biology in cancer biology, lung cancer research has classically focused on molecular drivers of disease. One such pathway, the hypoxic response pathway, is activated by reduced local oxygen concentrations at the tumor site. Hypoxia-driven gene and protein changes enhance epithelial-to-mesenchymal transition, remodel the extracellular matrix, drive drug resistance, support cancer stem cells and aid evasion from immune cells. However, it is not the tumor cells alone which drive this response to hypoxia, but rather their interaction with a complex milieu of supporting cells. This review will focus on recent advances in our understanding of how these cells contribute to the tumor response to hypoxia in non-small-cell lung cancer.
Collapse
Affiliation(s)
- John G Foster
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | |
Collapse
|
9
|
Chen T, Zhou G, Zhou Q, Tang H, Ibe JCF, Cheng H, Gou D, Chen J, Yuan JXJ, Raj JU. Loss of microRNA-17∼92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med 2015; 191:678-92. [PMID: 25647182 DOI: 10.1164/rccm.201405-0941oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Recent studies suggest that microRNAs (miRNAs) play important roles in regulation of pulmonary artery smooth muscle cell (PASMC) phenotype and are implicated in pulmonary arterial hypertension (PAH). However, the underlying molecular mechanisms remain elusive. OBJECTIVES This study aims to understand the mechanisms regulating PASMC proliferation and differentiation by microRNA-17∼92 (miR-17∼92) and to elucidate its implication in PAH. METHODS We generated smooth muscle cell (SMC)-specific miR-17∼92 and PDZ and LIM domain 5 (PDLIM5) knockout mice and overexpressed miR-17∼92 and PDLIM5 by injection of miR-17∼92 mimics or PDLIM5-V5-His plasmids and measured their responses to hypoxia. We used miR-17∼92 mimics, inhibitors, overexpression vectors, small interfering RNAs against PDLIM5, Smad, and transforming growth factor (TGF)-β to determine the role of miR-17∼92 and its downstream targets in PASMC proliferation and differentiation. MEASUREMENTS AND MAIN RESULTS We found that human PASMC (HPASMC) from patients with PAH expressed decreased levels of the miR-17∼92 cluster, TGF-β, and SMC markers. Overexpression of miR-17∼92 increased and restored the expression of TGF-β3, Smad3, and SMC markers in HPASMC of normal subjects and patients with idiopathic PAH, respectively. Knockdown of Smad3 but not Smad2 prevented miR-17∼92-induced expression of SMC markers. SMC-specific knockout of miR-17∼92 attenuated hypoxia-induced pulmonary hypertension (PH) in mice, whereas reconstitution of miR-17∼92 restored hypoxia-induced PH in these mice. We also found that PDLIM5 is a direct target of miR-17/20a, and hypertensive HPASMC and mouse PASMC expressed elevated PDLIM5 levels. Suppression of PDLIM5 increased expression of SMC markers and enhanced TGF-β/Smad2/3 activity in vitro and enhanced hypoxia-induced PH in vivo, whereas overexpression of PDLIM5 attenuated hypoxia-induced PH. CONCLUSIONS We provided the first evidence that miR-17∼92 inhibits PDLIM5 to induce the TGF-β3/SMAD3 pathway, contributing to the pathogenesis of PAH.
Collapse
|
10
|
Zhang S, Zhou X, Wang B, Zhang K, Liu S, Yue K, Zhang L, Wang X. Loss of VHL expression contributes to epithelial-mesenchymal transition in oral squamous cell carcinoma. Oral Oncol 2014; 50:809-17. [PMID: 24998140 DOI: 10.1016/j.oraloncology.2014.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/18/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Loss of Von Hippel-Lindau (VHL) gene expression has been implicated in the development of human cancers. However, its function in oral squamous cell carcinoma (OSCC) remains undefined. The aim of this study was to clarify the VHL expression in OSCC and to explore the underlying mechanisms of VHL in modulating the epithelial-mesenchymal transition (EMT) in OSCC. MATERIALS AND METHODS The expression of VHL, HIF-1α and EMT related proteins in OSCC tissues were evaluated by immunohistochemistry. The correlation of VHL with clinico-pathological characteristics, prognosis and EMT related proteins were analyzed. The roles of VHL on the cell morphology, proliferation, migration, and invasion were determined by MTT, scratch and transwell invasion assay in Tscca and Tca8113P160 cells. The EMT related proteins were determined by Western blot and immunofluorescence (IF) methods. RESULTS Loss of VHL expression was closely associated with pathologic grading, lymph node metastasis, poor prognosis, and EMT in OSCC. After re-expression of VHL, there was a cell morphologic change and motivation, proliferation, invasion of the cells were inhibited. The expression of Snail, N-cadherin and MMP-2/9, HIF-1α and VEGF were down-regulated in both the cell lines after transfection with VHL plasmid, while E-cadherin was up-regulated. Moreover, the effect of VHL suppressing β-catenin accumulation in nucleus was proved by Western blot and IF. CONCLUSION VHL was significantly correlated with EMT process of OSCC. β-Catenin was an important downstream gene of VHL besides HIF-1α, which could induce the EMT process in OSCC.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xuan Zhou
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bo Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Kailiang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Su Liu
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Kai Yue
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Lun Zhang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
11
|
Pagano G, Shyamsunder P, Verma RS, Lyakhovich A. Damaged mitochondria in Fanconi anemia - an isolated event or a general phenomenon? Oncoscience 2014; 1:287-95. [PMID: 25594021 PMCID: PMC4278298 DOI: 10.18632/oncoscience.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/20/2014] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is known as an inherited bone marrow failure syndrome associated with cancer predisposition and susceptibility to a number of DNA damaging stimuli, along with a number of clinical features such as upper limb malformations, increased diabetes incidence and typical anomalies in skin pigmentation. The proteins encoded by FA-defective genes (FANC proteins) display well-established roles in DNA damage and repair pathways. Moreover, some independent studies have revealed that mitochondrial dysfunction (MDF) is also involved in FA phenotype. Unconfined to FA, we have shown that other syndromes featuring DNA damage and repair (such as ataxia-telangiectasia, AT, and Werner syndrome, WS) display MDF-related phenotypes, along with oxidative stress (OS) that, altogether, may play major roles in these diseases. Experimental and clinical studies are warranted in the prospect of future therapies to be focused on compounds scavenging reactive oxygen species (ROS) as well as protecting mitochondrial functions.
Collapse
Affiliation(s)
- Giovanni Pagano
- Italian National Cancer Institute, G Pascale Foundation, CROM, Mercogliano, AV, Italy
| | - Pavithra Shyamsunder
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Rama S Verma
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Alex Lyakhovich
- Duke-NUS Graduate Medical School, Singapore ; Novosibirsk Institute of Molecular Biology and Biophysics, Russian Federation ; Queen's University Belfast, UK
| |
Collapse
|
12
|
Liu T, Zhao L, Chen W, Li Z, Hou H, Ding L, Li X. Inactivation of von Hippel-Lindau increases ovarian cancer cell aggressiveness through the HIF1α/miR-210/VMP1 signaling pathway. Int J Mol Med 2014; 33:1236-42. [PMID: 24549370 DOI: 10.3892/ijmm.2014.1661] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/06/2014] [Indexed: 11/05/2022] Open
Abstract
The inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene not only results in tumor initiation, but also mediates tumor metastasis. However, the mechanisms by which VHL inactivation leads to metastasis have not yet been well defined. In this study, the silencing of VHL in 3AO and SKOV3 ovarian cancer cells was found to promote cell motility and to increase the expression of matrix metalloproteinase (MMP)2, MMP9, hypoxia-inducible factor 1-α (HIF-1α) and microRNA (miR)-210. The suppression of HIF-1α with its inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) in VHL-silenced 3AO cells antagonized the pro-migratory activity induced by the VHL deficiency and reversed the upregulation of MMP2, MMP9, HIF-1α and miR-210; however, it had no obvious effect on the VHL protein level. The introduction of miR-210 inhibitor into VHL-silenced 3AO cells resulted in similar changes as those induced by YC-1. Furthermore, vacuole membrane protein 1 (VMP1) was found to be diminished by VHL silencing in a HIF-1α/miR-210-dependent manner. Taken together, our data demonstrate that the loss of VHL stimulates ovarian cancer cell migration by stabilizing HIF-1α, upregulating miR-210 and decreasing VMP1 expression. These results indicate that the aberrant signaling of the VHL/HIF-1α/miR-210/VMP1 pathway may be involved in ovarian cancer aggressiveness.
Collapse
Affiliation(s)
- Ting Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Le Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Chen
- Center for Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Zhen Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Huilian Hou
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Ding
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
13
|
Li X, You J, Zhou Q. [Advances of hypoxia and lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2013; 16:216-20. [PMID: 23601303 PMCID: PMC6000590 DOI: 10.3779/j.issn.1009-3419.2013.04.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
肺癌是我国发病率和死亡率增长最快, 对人群健康和生命威胁最大的恶性肿瘤, 其发生发展机制尚未完全清楚。肿瘤的低氧微环境发现于1955年, 而肺癌组织低氧直至2006年才被成功检测到。随着研究的深入, 低氧对肺癌的影响不仅限于对放疗的抵抗作用, 而且还会通过一个重要的促癌分子低氧诱导因子(hypoxia inducible factor, HIF)以及其调节蛋白脯氨酸羟化酶(prolyl hydroxylase domain, PHD)和希佩尔•林道病基因产物(product of von Hippel-Lindau gene, pVHL)对肺癌的发生发展、侵袭转移、化疗耐药以及预后等产生重要的调节作用。因此, 低氧、HIF、PHD和pVHL必将成为十分有潜力的肺癌治疗靶点。
Collapse
Affiliation(s)
- Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | | |
Collapse
|
14
|
Chen T, Sun M, Zhou G. Von Hippel-Lindau protein and respiratory diseases. World J Respirol 2013; 3:48-56. [DOI: 10.5320/wjr.v3.i3.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Von Hippel-Lindau protein (pVHL) was first identified as a tumor suppressor gene as mutations in the VHL gene predispose individuals to systemic benign or malignant tumors and cysts in many organs, including renal cell carcinoma of the clear-cell type and hemangioblastoma. Although pVHL is best known to act as a component of ubiquitin protein ligase for the proteasomal degradation of hypoxia inducible factor (HIF)-α, pVHL also interacts with extracellular matrix proteins and cytoskeleton, regulating extracellular matrix assembly, cell signaling, and many other cellular functions. Recent studies suggest that pVHL contributes to many lung diseases, including pulmonary arterial hypertension, lung cancer, pulmonary fibrosis, and acute respiratory distress syndrome. Mutation or loss of function of pVHL activates HIF and induced expression of vascular endothelial growth factor, endothelin-1, and FoxM1, leading to pulmonary arterial hypertension. Loss of pVHL in lung cancer cells promotes epithelial-mesenchymal transition and cancer migration and invasion while decreasing lung cancer cell proliferation and colonization. In patients of idiopathic pulmonary fibrosis, elevated expression of pVHL induces expression of fibronectin/integrin α5β1/focal adhesion kinase signaling, resulting in fibroproliferation and fibrosis. In alveolar epithelial cells, pVHL mediates Na-K-ATPase degradation in an HIF independent pathway, causing decreased edema clearance during hypoxia. These studies suggest that pVHL plays key roles in the pathogenesis of many lung diseases, and further investigations are warranted to elucidate the underlying molecular mechanisms.
Collapse
|