1
|
Hu H, Zhang T, Wang J, Guo J, Jiang Y, Liao Q, Chen L, Lu Q, Liu P, Zhong K, Liu J, Chen J, Yang J. The dynamic TaRACK1B-TaSGT1-TaHSP90 complex modulates NLR-protein-mediated antiviral immunity in wheat. Cell Rep 2024; 43:114765. [PMID: 39306845 DOI: 10.1016/j.celrep.2024.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins contribute widely to plant immunity by regulating defense mechanisms through the elicitation of a hypersensitive response (HR). Here, we find that TaRACK1B (the receptor for activated C-kinase 1B) regulates wheat immune response against Chinese wheat mosaic virus (CWMV) infection. TaRACK1B recruits TaSGT1 and TaHSP90 to form the TaRACK1B-TaSGT1-TaHSP90 complex. This complex is essential for maintaining NLR proteins' stability (TaRGA5-like and TaRGH1A-like) in order to control HR activation and inhibit viral infection. However, the cysteine-rich protein encoded by CWMV can disrupt TaRACK1B-TaSGT1-TaHSP90 complex formation, leading to the reduction of NLR-protein stability and suppression of HR activation, thus promoting CWMV infection. Interestingly, the 7K protein of wheat yellow mosaic virus also interferes with this antiviral immunity. Our findings show a shared viral counter-defense strategy whereby two soil-borne viruses may disrupt the TaRACK1B-TaSGT1-TaHSP90 complex, suppressing NLR-protein-mediated broad-spectrum antiviral immunity and promoting viral infection in wheat.
Collapse
Affiliation(s)
- Haichao Hu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jinnan Wang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun Guo
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lu Chen
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qisen Lu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Zhou X, Lv Y, Xie H, Li Y, Liu C, Zheng M, Wu R, Zhou S, Gu X, Li J, Mi D. RNA sequencing of exosomes secreted by fibroblast and Schwann cells elucidates mechanisms underlying peripheral nerve regeneration. Neural Regen Res 2024; 19:1812-1821. [PMID: 38103248 PMCID: PMC10960293 DOI: 10.4103/1673-5374.387980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00035/figure1/v/2023-12-16T180322Z/r/image-tiff Exosomes exhibit complex biological functions and mediate a variety of biological processes, such as promoting axonal regeneration and functional recovery after injury. Long non-coding RNAs (lncRNAs) have been reported to play a crucial role in axonal regeneration. However, the role of the lncRNA-microRNA-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network in exosome-mediated axonal regeneration remains unclear. In this study, we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts (FC-EXOs) and Schwann cells (SC-EXOs). Differential gene expression analysis, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and protein-protein interaction network analysis were used to explore the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs. We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs, which suggests that it may promote axonal regeneration. In addition, using the miRWalk and Starbase prediction databases, we constructed a regulatory network of ceRNAs targeting Rps5, including 27 microRNAs and five lncRNAs. The ceRNA regulatory network, which included Ftx and Miat, revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury. Our findings suggest that exosomes derived from fibroblast and Schwann cells could be used to treat injuries of peripheral nervous system.
Collapse
Affiliation(s)
- Xinyang Zhou
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yehua Lv
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Nantong Stomatological Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| | - Yan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jingjing Li
- Department of General Practice, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Daguo Mi
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Wang H, Xie Y, Wang X, Geng X, Gao L. Characterization of the RACK1 gene of Aips cerana cerana and its role in adverse environmental stresses. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110796. [PMID: 35973656 DOI: 10.1016/j.cbpb.2022.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Receptors for Activated C Kinase 1 (RACK1s) are a kind of multifunction scaffold protein that plays an important role in cell signal transductions and animal development. However, the function of RACK1 in the Chinese honeybee Apis cerana cerana is little known. Here, we isolated and identified a RACK1 gene from Apis cerana cerana, named AccRACK1. By bioinformatic analysis, we revealed a high nucleic acid homology between AccRACK1 and RACK1 of Apis cerana. RT-qPCR analyses demonstrated AccRACK1 was mostly expressed in 3rd instar larvae, darked-eyed pupae and adults (one and thirty days post-emergence), suggesting it might participate in the development of A. cerana cerana. Moreover, the expression of AccRACK1 was highest in the thorax, followed by the venom gland. Compared to the blank control group, AccRACK1 was induced by 24 and 44 °C, HgCl2 and pesticides (paraquat, pyridaben and methomyl) but inhibited by 14 °C, H2O2, UV light and cyhalothrin. Additionally, 0.05, 0.1, 1, 5 and 10 mg/ml PPN (juvenile hormone analogue pyriproxyfen) could promote the expression of AccRACK1, with 1 mg/ml showing the highest upregulation, suggesting it was regulated by hormones. Further study found that after knockdown of AccRACK1 by RNAi, the expression of the eukaryotic initiation factor 6 of A. cerana cerana (AcceIF6), an initiation factor regulating the initiation of translation, was inhibited, indicating AccRACK1 might affect cellular responses by translation. These findings, taken together, suggest AccRACK1 is involved in the development and responses to abiotic stresses of A. cerana cerana, and therefore, it may be of critical importance to the survival of A. cerana cerana.
Collapse
Affiliation(s)
- Hongfei Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yucai Xie
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoqing Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoshan Geng
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lijun Gao
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| |
Collapse
|
4
|
Li GB, He JX, Wu JL, Wang H, Zhang X, Liu J, Hu XH, Zhu Y, Shen S, Bai YF, Yao ZL, Liu XX, Zhao JH, Li DQ, Li Y, Huang F, Huang YY, Zhao ZX, Zhang JW, Zhou SX, Ji YP, Pu M, Qin P, Li S, Chen X, Wang J, He M, Li W, Wu XJ, Xu ZJ, Wang WM, Fan J. Overproduction of OsRACK1A, an effector-targeted scaffold protein promoting OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty. MOLECULAR PLANT 2022; 15:1790-1806. [PMID: 36245122 DOI: 10.1016/j.molp.2022.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.
Collapse
Affiliation(s)
- Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xue He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Long Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Fei Bai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zong-Lin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian-Jun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng-Jun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Prakash MA, Kumaresan A, Ebenezer Samuel King JP, Nag P, Sharma A, Sinha MK, Kamaraj E, Datta TK. Comparative Transcriptomic Analysis of Spermatozoa From High- and Low-Fertile Crossbred Bulls: Implications for Fertility Prediction. Front Cell Dev Biol 2021; 9:647717. [PMID: 34041237 PMCID: PMC8141864 DOI: 10.3389/fcell.2021.647717] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Crossbred bulls produced by crossing Bos taurus and Bos indicus suffer with high incidence of infertility/subfertility problems; however, the etiology remains poorly understood. The uncertain predictability and the inability of semen evaluation techniques to maintain constant correlation with fertility demand for alternate methods for bull fertility prediction. Therefore, in this study, the global differential gene expression between high- and low-fertile crossbred bull sperm was assessed using a high-throughput RNA sequencing technique with the aim to identify transcripts associated with crossbred bull fertility. Crossbred bull sperm contained transcripts for 13,563 genes, in which 2,093 were unique to high-fertile and 5,454 were unique to low-fertile bulls. After normalization of data, a total of 776 transcripts were detected, in which 84 and 168 transcripts were unique to high-fertile and low-fertile bulls, respectively. A total of 176 transcripts were upregulated (fold change > 1) and 209 were downregulated (<1) in low-fertile bulls. Gene ontology analysis identified that the sperm transcripts involved in the oxidative phosphorylation pathway and biological process such as multicellular organism development, spermatogenesis, and in utero embryonic development were downregulated in low-fertile crossbred bull sperm. Sperm transcripts upregulated and unique to low-fertile bulls were majorly involved in translation (biological process) and ribosomal pathway. With the use of RT-qPCR, selected sperm transcripts (n = 12) were validated in crossbred bulls (n = 12) with different fertility ratings and found that the transcriptional abundance of ZNF706, CRISP2, TNP2, and TNP1 genes was significantly (p < 0.05) lower in low-fertile bulls than high-fertile bulls and was positively (p < 0.05) correlated with conception rate. It is inferred that impaired oxidative phosphorylation could be the predominant reason for low fertility in crossbred bulls and that transcriptional abundance of ZNF706, CRISP2, TNP2, and TNP1 genes could serve as potential biomarkers for fertility in crossbred bulls.
Collapse
Affiliation(s)
- Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council of Agricultural Research (ICAR), National Dairy Research Institute, Karnal, India
| |
Collapse
|
6
|
Bu W, Levitskaya Z, Tan SM, Gao YG. Emerging evidence for kindlin oligomerization and its role in regulating kindlin function. J Cell Sci 2021; 134:256567. [PMID: 33912917 DOI: 10.1242/jcs.256115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) interactions play crucial roles in a broad range of physiological and pathological processes. Kindlins are important positive regulators of integrin activation. The FERM-domain-containing kindlin family comprises three members, kindlin-1, kindlin-2 and kindlin-3 (also known as FERMT1, FERMT2 and FERMT3), which share high sequence similarity (identity >50%), as well as domain organization, but exhibit diverse tissue-specific expression patterns and cellular functions. Given the significance of kindlins, analysis of their atomic structures has been an attractive field for decades. Recently, the structures of kindlin and its β-integrin-bound form have been obtained, which greatly advance our understanding of the molecular functions that involve kindlins. In particular, emerging evidence indicates that oligomerization of kindlins might affect their integrin binding and focal adhesion localization, positively or negatively. In this Review, we presented an update on the recent progress of obtaining kindlin structures, and discuss the implication for integrin activation based on kindlin oligomerization, as well as the possible regulation of this process.
Collapse
Affiliation(s)
- Wenting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China518055
| | - Zarina Levitskaya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore639798
| |
Collapse
|
7
|
Schmitt K, Valerius O. yRACK1/Asc1 proxiOMICs-Towards Illuminating Ships Passing in the Night. Cells 2019; 8:cells8111384. [PMID: 31689955 PMCID: PMC6912217 DOI: 10.3390/cells8111384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Diverse signals and stress factors regulate the activity and homeostasis of ribosomes in all cells. The Saccharomyces cerevisiae protein Asc1/yRACK1 occupies an exposed site at the head region of the 40S ribosomal subunit (hr40S) and represents a central hub for signaling pathways. Asc1 strongly affects protein phosphorylation and is involved in quality control pathways induced by translation elongation arrest. Therefore, it is important to understand the dynamics of protein formations in the Asc1 microenvironment at the hr40S. We made use of the in vivo protein-proximity labeling technique Biotin IDentification (BioID). Unbiased proxiOMICs from two adjacent perspectives identified nucleocytoplasmic shuttling mRNA-binding proteins, the deubiquitinase complex Ubp3-Bre5, as well as the ubiquitin E3 ligase Hel2 as neighbors of Asc1. We observed Asc1-dependency of hr40S localization of mRNA-binding proteins and the Ubp3 co-factor Bre5. Hel2 and Ubp3-Bre5 are described to balance the mono-ubiquitination of Rps3 (uS3) during ribosome quality control. Here, we show that the absence of Asc1 resulted in massive exposure and accessibility of the C-terminal tail of its ribosomal neighbor Rps3 (uS3). Asc1 and some of its direct neighbors together might form a ribosomal decision tree that is tightly connected to close-by signaling modules.
Collapse
Affiliation(s)
- Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany.
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
8
|
Johnson AG, Lapointe CP, Wang J, Corsepius NC, Choi J, Fuchs G, Puglisi JD. RACK1 on and off the ribosome. RNA (NEW YORK, N.Y.) 2019; 25:881-895. [PMID: 31023766 PMCID: PMC6573788 DOI: 10.1261/rna.071217.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/21/2019] [Indexed: 05/17/2023]
Abstract
Receptor for activated C kinase 1 (RACK1) is a eukaryote-specific ribosomal protein (RP) implicated in diverse biological functions. To engineer ribosomes for specific fluorescent labeling, we selected RACK1 as a target given its location on the small ribosomal subunit and other properties. However, prior results suggested that RACK1 has roles both on and off the ribosome, and such an exchange might be related to its various cellular functions and hinder our ability to use RACK1 as a stable fluorescent tag for the ribosome. In addition, the kinetics of spontaneous exchange of RACK1 or any RP from a mature ribosome in vitro remain unclear. To address these issues, we engineered fluorescently labeled human ribosomes via RACK1, and applied bulk and single-molecule biochemical analyses to track RACK1 on and off the human ribosome. Our results demonstrate that, despite its cellular nonessentiality from yeast to humans, RACK1 readily reassociates with the ribosome, displays limited conformational dynamics, and remains stably bound to the ribosome for hours in vitro. This work sheds insight into the biochemical basis of RPs exchange on and off a mature ribosome and provides tools for single-molecule analysis of human translation.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nicholas C Corsepius
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Gabriele Fuchs
- The RNA Institute, Department of Biological Sciences, University of Albany, Albany, New York 12222, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
9
|
Subramani C, Nair VP, Anang S, Mandal SD, Pareek M, Kaushik N, Srivastava A, Saha S, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Host-Virus Protein Interaction Network Reveals the Involvement of Multiple Host Processes in the Life Cycle of Hepatitis E Virus. mSystems 2018; 3:e00135-17. [PMID: 29404423 PMCID: PMC5781259 DOI: 10.1128/msystems.00135-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Comprehensive knowledge of host-pathogen interactions is central to understand the life cycle of a pathogen and devise specific therapeutic strategies. Protein-protein interactions (PPIs) are key mediators of host-pathogen interactions. Hepatitis E virus (HEV) is a major cause of viral hepatitis in humans. Recent reports also demonstrate its extrahepatic manifestations in the brain. Toward understanding the molecular details of HEV life cycle, we screened human liver and fetal brain cDNA libraries to identify the host interaction partners of proteins encoded by genotype 1 HEV and constructed the virus-host PPI network. Analysis of the network indicated a role of HEV proteins in modulating multiple host biological processes such as stress and immune responses, the ubiquitin-proteasome system, energy and iron metabolism, and protein translation. Further investigations revealed the presence of multiple host translation regulatory factors in the viral translation/replication complex. Depletion of host translation factors such as eIF4A2, eIF3A, and RACK1 significantly reduced the viral replication, whereas eIF2AK4 depletion had no effect. These findings highlight the ingenuity of the pathogen in manipulating the host machinery to its own benefit, a clear understanding of which is essential for the identification of strategic targets and development of specific antivirals against HEV. IMPORTANCE Hepatitis E virus (HEV) is a pathogen that is transmitted by the fecal-oral route. Owing to the lack of an efficient laboratory model, the life cycle of the virus is poorly understood. During the course of infection, interactions between the viral and host proteins play essential roles, a clear understanding of which is essential to decode the life cycle of the virus. In this study, we identified the direct host interaction partners of all HEV proteins and generated a PPI network. Our functional analysis of the HEV-human PPI network reveals a role of HEV proteins in modulating multiple host biological processes such as stress and immune responses, the ubiquitin-proteasome system, energy and iron metabolism, and protein translation. Further investigations revealed an essential role of several host factors in HEV replication. Collectively, the results from our study provide a vast resource of PPI data from HEV and its human host and identify the molecular components of the viral translation/replication machinery.
Collapse
Affiliation(s)
- Chandru Subramani
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Vidya P. Nair
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saumya Anang
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | | | - Madhu Pareek
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Nidhi Kaushik
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Akriti Srivastava
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, Gautam Nagar, Ansari Nagar East, New Delhi, Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, Gautam Nagar, Ansari Nagar East, New Delhi, Delhi, India
| | - C. T. Ranjith-Kumar
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
10
|
Liu C, Ren L, Wang Y, Liu Y, Xiao J. The interaction between RACK1 and WEE1 regulates the growth of gastric cancer cell line HGC27. Oncol Lett 2017; 14:4784-4792. [PMID: 29085480 PMCID: PMC5649583 DOI: 10.3892/ol.2017.6741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Receptor of activated C Kinase 1 (RACK1) is an essential scaffold and anchoring protein, which serves an important role in multiple tumorigenesis signaling pathways. The present study aimed to investigate the expression of RACK1 in gastric cancer (GC), and its association with the occurrence and development of GC. In addition, the effect and mechanism of RACK1 overexpression on the growth, and proliferation of GC cells was examined. Firstly, the protein expression of RACK1 was detected in 70 cases of GC tissues and 30 cases of noncancerous tissues using immunohistochemical staining, and the association between clinical and pathological features of GC was analyzed. Secondly, the mRNA and protein expression of RACK1 was determined in the poorly-differentiated human gastric cancer cell line HGC27 and gastric epithelial cell line GES-1. The growth of HGC27 cells following the upregulation of RACK1 was detected using MTT method. Subsequently, the interaction and co-location between RACK1, and WEE1 homolog (S. pombe) (WEE1) in HGC27 cells was confirmed using co-immunoprecipitation and indirect immunofluorescence. The expression level of RACK1 in GC was significantly lower compared with that in pericarcinous tissues (P<0.05). The protein level of RACK1 expression correlated with tumor node metastasis stage, tumor differentiation and lymph node metastasis. The mRNA and protein levels of RACK1 in HGC27 cells were significantly reduced, and overexpressed RACK1 downregulated WEE1 protein expression, thus inhibiting the growth of HGC27 cells. Co-immunoprecipitation and immunofluorescence confirmed that RACK1, and WEE1 interacted and co-located in the cytoplasm of HGC27 cells. Therefore, the abnormal expression of RACK1 in GC tissues was identified to be involved in the occurrence and development of GC. Overexpression of RACK1 was able to inhibit the growth of HGC27 cells. The current study suggests that low expression of RACK1 is an important indicator of poor prognosis of GC. RACK1 and WEE1 interact to regulate the growth of HGC27 cells.
Collapse
Affiliation(s)
- Chao Liu
- Department of Developmental Biology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Lili Ren
- Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yizhao Wang
- Department of Biochemistry and Molecular Biology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yimeng Liu
- Department of Developmental Biology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jianying Xiao
- Department of Biochemistry and Molecular Biology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
11
|
Definition of a RACK1 Interaction Network in Drosophila melanogaster Using SWATH-MS. G3-GENES GENOMES GENETICS 2017; 7:2249-2258. [PMID: 28522639 PMCID: PMC5499132 DOI: 10.1534/g3.117.042564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Receptor for Activated protein C kinase 1 (RACK1) is a scaffold protein that has been found in association with several signaling complexes, and with the 40S subunit of the ribosome. Using the model organism Drosophila melanogaster, we recently showed that RACK1 is required at the ribosome for internal ribosome entry site (IRES)-mediated translation of viruses. Here, we report a proteomic characterization of the interactome of RACK1 in Drosophila S2 cells. We carried out Label-Free quantitation using both Data-Dependent and Data-Independent Acquisition (DDA and DIA, respectively) and observed a significant advantage for the Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) method, both in terms of identification of interactants and quantification of low abundance proteins. These data represent the first SWATH spectral library available for Drosophila and will be a useful resource for the community. A total of 52 interacting proteins were identified, including several molecules involved in translation such as structural components of the ribosome, factors regulating translation initiation or elongation, and RNA binding proteins. Among these 52 proteins, 15 were identified as partners by the SWATH strategy only. Interestingly, these 15 proteins are significantly enriched for the functions translation and nucleic acid binding. This enrichment reflects the engagement of RACK1 at the ribosome and highlights the added value of SWATH analysis. A functional screen did not reveal any protein sharing the interesting properties of RACK1, which is required for IRES-dependent translation and not essential for cell viability. Intriguingly however, 10 of the RACK1 partners identified restrict replication of Cricket paralysis virus (CrPV), an IRES-containing virus.
Collapse
|
12
|
Morino K, Kimizu M, Fujiwara M. Disulfide proteomics of rice cultured cells in response to OsRacl and probenazole-related immune signaling pathway in rice. Proteome Sci 2017; 15:6. [PMID: 28413359 PMCID: PMC5390479 DOI: 10.1186/s12953-017-0115-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/05/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) production is an early event in the immune response of plants. ROS production affects the redox-based modification of cysteine residues in redox proteins, which contribute to protein functions such as enzymatic activity, protein-protein interactions, oligomerization, and intracellular localization. Thus, the sensitivity of cysteine residues to changes in the cellular redox status is critical to the immune response of plants. METHODS We used disulfide proteomics to identify immune response-related redox proteins. Total protein was extracted from rice cultured cells expressing constitutively active or dominant-negative OsRacl, which is a key regulator of the immune response in rice, and from rice cultured cells that were treated with probenazole, which is an activator of the plant immune response, in the presence of the thiol group-specific fluorescent probe monobromobimane (mBBr), which was a tag for reduced proteins in a differential display two-dimensional gel electrophoresis. The mBBr fluorescence was detected by using a charge-coupled device system, and total protein spots were detected using Coomassie brilliant blue staining. Both of the protein spots were analyzed by gel image software and identified using MS spectrometry. The possible disulfide bonds were identified using the disulfide bond prediction software. Subcellular localization and bimolecular fluorescence complementation analysis were performed in one of the identified proteins: Oryza sativa cold shock protein 2 (OsCSP2). RESULTS We identified seven proteins carrying potential redox-sensitive cysteine residues. Two proteins of them were oxidized in cultured cells expressing DN-OsRac1, which indicates that these two proteins would be inactivated through the inhibition of OsRac1 signaling pathway. One of the two oxidized proteins, OsCSP2, contains 197 amino acid residues and six cysteine residues. Site-directed mutagenesis of these cysteine residues revealed that a Cys140 mutation causes mislocalization of a green fluorescent protein fusion protein in the root cells of rice. Bimolecular fluorescence complementation analysis revealed that OsCSP2 is localized in the nucleus as a homo dimer in rice root cells. CONCLUSIONS The findings of the study indicate that redox-sensitive cysteine modification would contribute to the immune response in rice.
Collapse
Affiliation(s)
- Kazuko Morino
- National Agriculture and Food Research Organization, Central Region Agricultural Research Center, 1-2-1 Inada, Joetsu, Niigata 943-0193 Japan
| | - Mayumi Kimizu
- National Agriculture and Food Research Organization, Central Region Agricultural Research Center, 1-2-1 Inada, Joetsu, Niigata 943-0193 Japan
| | - Masayuki Fujiwara
- Keio University, Institute for Advanced Biosciences, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052 Japan
| |
Collapse
|
13
|
Kershner L, Welshhans K. RACK1 is necessary for the formation of point contacts and regulates axon growth. Dev Neurobiol 2017; 77:1038-1056. [PMID: 28245531 DOI: 10.1002/dneu.22491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 11/08/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal scaffolding protein that can interact with multiple signaling molecules concurrently through its seven WD40 repeats. We recently found that RACK1 is localized to mammalian growth cones, prompting an investigation into its role during neural development. Here, we show for the first time that RACK1 localizes to point contacts within mouse cortical growth cones. Point contacts are adhesion sites that link the actin network within growth cones to the extracellular matrix, and are necessary for appropriate axon guidance. Our experiments show that RACK1 is necessary for point contact formation. Brain-derived neurotrophic factor (BDNF) stimulates an increase in point contact density, which was eliminated by RACK1 shRNA or overexpression of a nonphosphorylatable mutant form of RACK1. We also found that axonal growth requires both RACK1 expression and phosphorylation. We have previously shown that the local translation of β-actin mRNA within growth cones is necessary for appropriate axon guidance and is dependent on RACK1. Thus, we examined the location of members of the local translation complex relative to point contacts. Indeed, both β-actin mRNA and RACK1 colocalize with point contacts, and this colocalization increases following BDNF stimulation. This implies the novel finding that local translation is regulated at point contacts. Taken together, these data suggest that point contacts are a targeted site of local translation within growth cones, and RACK1 is a critical member of the point contact complex and necessary for appropriate neural development. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1038-1056, 2017.
Collapse
Affiliation(s)
- Leah Kershner
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242.,School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
14
|
Zhang Y, Cao G, Zhu L, Chen F, Zar MS, Wang S, Hu X, Wei Y, Xue R, Gong C. Integrin beta and receptor for activated protein kinase C are involved in the cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2017; 101:3703-3716. [PMID: 28175946 DOI: 10.1007/s00253-017-8158-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Receptor-mediated endocytosis using a β1 integrin-dependent internalization was considered as the primary mechanism for the initiation of mammalian reovirus infection. Bombyx mori cypovirus (BmCPV) is a member of Reoviridae family which mainly infects the midgut epithelium of silkworm; the cell entry of BmCPV is poorly explored. In this study, co-immunoprecipitation (Co-IP), virus overlay protein binding assay (VOPBA), and BmCPV-protein interaction on the polyvinylidene difluoride membrane (BmCPV-PI-PVDF) methods were employed to screen the interacting proteins of BmCPV, and several proteins including integrin beta and receptor for activated protein kinase C (RACK1) were identified as the candidate interacting proteins for establishing the infection of BmCPV. The infectivity of BmCPV was investigated in vivo and in vitro by RNA interference (RNAi) and antibody blocking methods, and the results showed that the infectivity of BmCPV was significantly reduced by either small interfering RNA-mediated silencing of integrin beta and RACK1 or antibody blocking of integrin beta and RACK1. The expression level of integrin beta or RACK1 is not the highest in the silkworm midgut which is a principal target tissue of BmCPV, suggesting that the molecules other than integrin beta or RACK1 might play a key role in determining the tissue tropism of BmCPV infection. The establishment of BmCPV infection depends on other factors, and these factors interacted with integrin beta and RACK1 to form receptor complex for the cell entry of BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Suzhou Municipal Key Laboratory of Molecular Diagnostics and Therapeutics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Simei Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
PKC mediated phosphorylation of TIMAP regulates PP1c activity and endothelial barrier function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:431-439. [DOI: 10.1016/j.bbamcr.2016.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/10/2016] [Accepted: 12/04/2016] [Indexed: 12/17/2022]
|
16
|
Zhou S, Cao H, Zhao Y, Li X, Zhang J, Hou C, Ma Y, Wang Q. RACK1 promotes hepatocellular carcinoma cell survival via CBR1 by suppressing TNF-α-induced ROS generation. Oncol Lett 2016; 12:5303-5308. [PMID: 28105239 DOI: 10.3892/ol.2016.5339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/09/2016] [Indexed: 12/23/2022] Open
Abstract
It has been reported that intracellular accumulation of reactive oxygen species (ROS) has a significant role in tumor necrosis factor (TNF)-α-induced cell apoptosis and necrosis; however, the key molecules regulating ROS generation remain to be elucidated. The present study reports that knockdown of endogenous receptor for activated C kinase 1 (RACK1) increases the intracellular ROS level following TNF-α or H2O2 stimulation in human hepatocellular carcinoma (HCC) cells, leading to promotion of cell death. Carbonyl reductase 1 (CBR1), a ubiquitous nicotinamide adenine dinucleotide phosphate-dependent enzyme, is reported to protect cells from ROS-induced cell damage. The present study reports that RACK1 is a regulator of CBR1 that interacts with and sustains the protein stability of CBR1. Overexpression of CBR1 reverses the enhanced cell death due to RACK1 knockdown. Taken together, the results of the present study suggest that RACK1 protects HCC cells from TNF-α-induced cell death by suppressing ROS generation through interacting with and regulating CBR1.
Collapse
Affiliation(s)
- Silei Zhou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China; Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Huanling Cao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China; Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yawei Zhao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China; Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xinying Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Chunmei Hou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| |
Collapse
|
17
|
Kong Q, Gao L, Niu Y, Gongpan P, Xu Y, Li Y, Xiong W. RACK1 is required for adipogenesis. Am J Physiol Cell Physiol 2016; 311:C831-C836. [PMID: 27653985 DOI: 10.1152/ajpcell.00224.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022]
Abstract
Adipose tissue plays a critical role in metabolic diseases and the maintenance of energy homeostasis. RACK1 has been identified as an adaptor protein involved in multiple intracellular signal transduction pathways and diseases. However, whether it regulates adipogenesis remains unknown. Here, we reported that RACK1 is expressed in 3T3-L1 cells and murine white adipose tissue and that RACK1 knockdown by shRNA profoundly suppressed adipogenesis by reducing the expression of PPAR-γ and C/EBP-β. Depletion of RACK1 increased β-catenin protein levels and activated Wnt signaling. Furthermore, RACK1 knockdown also suppressed the PI3K-Akt-mTOR-S6K signaling pathway by reducing the PI3K p85α, pAkt T473, and S6K p70. Taken together, these results demonstrate that RACK1 is a novel factor required for adipocyte differentiation by emerging Wnt/β-catenin signaling and PI3K-Akt-mTOR-S6K signaling pathway(s).
Collapse
Affiliation(s)
- Qinghua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lan Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yanfen Niu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China; and
| | - Pianchou Gongpan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yuhui Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kumming, China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kumming, China
| |
Collapse
|
18
|
Receptor for Activated C-Kinase 1 (PfRACK1) is required for Plasmodium falciparum intra-erythrocytic proliferation. Mol Biochem Parasitol 2016; 211:62-66. [PMID: 27732881 DOI: 10.1016/j.molbiopara.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 11/24/2022]
Abstract
Emerging resistance to current anti-malarials necessitates a more detailed understanding of the biological processes of Plasmodium falciparum proliferation, thus allowing identification of new drug targets. The well-conserved protein Receptor for Activated C-Kinase 1 (RACK1) was originally identified in mammalian cells as an anchoring protein for protein kinase C (PKC) and has since been shown to be important for cell migration, cytokinesis, transcription, epigenetics, and protein translation. The P. falciparum ortholog, PfRACK1, is expressed in blood stages of the parasite and is diffusely localized in the parasite cytoplasm. Using a destabilizing domain to allow inducible knockdown of the endogenous protein level, we evaluated the requirement for PfRACK1 during blood-stage replication. Following destabilization, the parasites demonstrate a nearly complete growth arrest at the trophozoite stage. The essential nature of PfRACK1 suggests that the protein itself or the pathways regulated by the protein are potential targets for novel anti-malarial therapeutics.
Collapse
|
19
|
Roles of Rack1 Proteins in Fungal Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4130376. [PMID: 27656651 PMCID: PMC5021465 DOI: 10.1155/2016/4130376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023]
Abstract
Pathogenic fungi cause diseases on various organisms. Despite their differences in life cycles, fungal pathogens use well-conserved proteins and pathways to regulate developmental and infection processes. In this review, we focus on Rack1, a multifaceted scaffolding protein involved in various biological processes. Rack1 is well conserved in eukaryotes and plays important roles in fungi, though limited studies have been conducted. To accelerate the study of Rack1 proteins in fungi, we review the functions of Rack1 proteins in model and pathogenic fungi and summarize recent progress on how Rack1 proteins are involved in fungal pathogenesis.
Collapse
|
20
|
Corsini E, Galbiati V, Papale A, Kummer E, Pinto A, Serafini MM, Guaita A, Spezzano R, Caruso D, Marinovich M, Racchi M. Role of androgens in dhea-induced rack1 expression and cytokine modulation in monocytes. IMMUNITY & AGEING 2016; 13:20. [PMID: 27239218 PMCID: PMC4884617 DOI: 10.1186/s12979-016-0075-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023]
Abstract
Background Over the past fifteen years, we have demonstrated that cortisol and dehydroepiandrosterone (DHEA) have opposite effects on the regulation of protein kinase C (PKC) activity in the context of the immune system. The anti-glucocorticoid effect of DHEA is also related to the regulation of splicing of the glucocorticoid receptor (GR), promoting the expression of GRβ isoform, which acts as a negative dominant form on GRα activity. Moreover, it is very well known that DHEA can be metabolized to androgens like testosterone, dihydrotestosterone (DHT), and its metabolites 3α-diol and 3β-diol, which exert their function through the binding of the androgen receptor (AR). Based on this knowledge, and on early observation that castrated animals show results similar to those observed in old animals, the purpose of this study is to investigate the role of androgens and the androgen receptor (AR) in DHEA-induced expression of the PKC signaling molecule RACK1 (Receptor for Activated C Kinase 1) and cytokine production in monocytes. Results Here we demonstrated the ability of the anti-androgen molecule, flutamide, to counteract the stimulatory effects of DHEA on RACK1 and GRβ expression, and cytokine production. In both THP-1 cells and human peripheral blood mononuclear cells (PBMC), flutamide blocked the effects of DHEA, suggesting a role of the AR in these effects. As DHEA is not considered a direct AR agonist, we investigated the metabolism of DHEA in THP-1 cells. We evaluated the ability of testosterone, DHT, and androstenedione to induce RACK1 expression and cytokine production. In analogy to DHEA, an increase in RACK1 expression and in LPS-induced IL–8 and TNF–α production was observed after treatment with these selected androgens. Finally, the silencing of AR with siRNA completely prevented DHEA-induced RACK1 mRNA expression, supporting the idea that AR is involved in DHEA effects. Conclusions We demonstrated that the conversion of DHEA to active androgens, which act via AR, is a key mechanism in the effect of DHEA on RACK1 expression and monocyte activation. This data supports the existence of a complex hormonal balance in the control of immune modulation, which can be further studied in the context of immunosenescence and endocrinosenescence.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Angela Papale
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Elena Kummer
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Antonella Pinto
- Department of Drug Sciences - Pharmacology Unit, University of Pavia, Viale Taramelli 14, Pavia, 27100 Italy
| | - Melania M Serafini
- Department of Drug Sciences - Pharmacology Unit, University of Pavia, Viale Taramelli 14, Pavia, 27100 Italy
| | | | - Roberto Spezzano
- Mass Spectrometry Laboratory "Giovanni Galli", DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Mass Spectrometry Laboratory "Giovanni Galli", DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Marco Racchi
- Department of Drug Sciences - Pharmacology Unit, University of Pavia, Viale Taramelli 14, Pavia, 27100 Italy
| |
Collapse
|
21
|
Thompson MK, Rojas-Duran MF, Gangaramani P, Gilbert WV. The ribosomal protein Asc1/RACK1 is required for efficient translation of short mRNAs. eLife 2016; 5. [PMID: 27117520 PMCID: PMC4848094 DOI: 10.7554/elife.11154] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/21/2016] [Indexed: 02/06/2023] Open
Abstract
Translation is a core cellular process carried out by a highly conserved macromolecular machine, the ribosome. There has been remarkable evolutionary adaptation of this machine through the addition of eukaryote-specific ribosomal proteins whose individual effects on ribosome function are largely unknown. Here we show that eukaryote-specific Asc1/RACK1 is required for efficient translation of mRNAs with short open reading frames that show greater than average translational efficiency in diverse eukaryotes. ASC1 mutants in S. cerevisiae display compromised translation of specific functional groups, including cytoplasmic and mitochondrial ribosomal proteins, and display cellular phenotypes consistent with their gene-specific translation defects. Asc1-sensitive mRNAs are preferentially associated with the translational ‘closed loop’ complex comprised of eIF4E, eIF4G, and Pab1, and depletion of eIF4G mimics the translational defects of ASC1 mutants. Together our results reveal a role for Asc1/RACK1 in a length-dependent initiation mechanism optimized for efficient translation of genes with important housekeeping functions. DOI:http://dx.doi.org/10.7554/eLife.11154.001 Ribosomes are structures within cells that are responsible for making proteins. Molecules called messenger RNAs (or mRNAs), which contain genetic information derived from the DNA of a gene, pass through ribosomes that then “translate” that information to build proteins. Although all living cells contain ribosomes, the protein building blocks that make up the structure of the ribosome are not the same in all species. Furthermore, the exact roles that each building block plays during translation are not known. The ribosomes of plants, animals, and budding yeast contain the same protein, known as Asc1 in budding yeast and RACK1 in plants and animals. Thompson et al. have now explored the role of Asc1 in yeast cells by measuring translation in the absence of Asc1 using a technique called ribosome footprint profiling. This analysis revealed that cells lacking Asc1 translate fewer short mRNA molecules than normal cells. Short mRNAs encode small proteins that tend to play important ‘housekeeping’ roles in the cell — by forming the structural building blocks of ribosomes, for example. It has been observed previously that short mRNAs are translated at a higher rate than longer mRNAs on average, although the reasons behind this bias are still mysterious. The findings of Thompson et al. suggest that the ribosome itself may discriminate between short and long mRNAs and that the Asc1 protein is involved in calibrating the ribosome’s preference for short mRNAs. Cells need differing amounts of small proteins in different growth conditions. It will therefore be interesting to investigate whether mRNA length discrimination can be regulated by Asc1 and/or other components of the ribosome to tune gene expression to the environment. DOI:http://dx.doi.org/10.7554/eLife.11154.002
Collapse
Affiliation(s)
- Mary K Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Maria F Rojas-Duran
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Paritosh Gangaramani
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
22
|
Qu J, Ero R, Feng C, Ong LT, Tan HF, Lee HS, Ismail MHB, Bu WT, Nama S, Sampath P, Gao YG, Tan SM. Kindlin-3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells. Sci Rep 2015; 5:18491. [PMID: 26677948 PMCID: PMC4683439 DOI: 10.1038/srep18491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/19/2015] [Indexed: 12/22/2022] Open
Abstract
Kindlins are FERM-containing cytoplasmic proteins that regulate integrin-mediated cell-cell and cell-extracellular matrix (ECM) attachments. Kindlin-3 is expressed in hematopoietic cells, platelets, and endothelial cells. Studies have shown that kindlin-3 stabilizes cell adhesion mediated by ß1, ß2, and ß3 integrins. Apart from integrin cytoplasmic tails, kindlins are known to interact with other cytoplasmic proteins. Here we demonstrate that kindlin-3 can associate with ribosome via the receptor for activated-C kinase 1 (RACK1) scaffold protein based on immunoprecipitation, ribosome binding, and proximity ligation assays. We show that kindlin-3 regulates c-Myc protein expression in the human chronic myeloid leukemia cell line K562. Cell proliferation was reduced following siRNA reduction of kindlin-3 expression and a significant reduction in tumor mass was observed in xenograft experiments. Mechanistically, kindlin-3 is involved in integrin α5ß1-Akt-mTOR-p70S6K signaling; however, its regulation of c-Myc protein expression could be independent of this signaling axis.
Collapse
Affiliation(s)
- Jing Qu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chen Feng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Li-Teng Ong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hui-Foon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hui-Shan Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Muhammad H B Ismail
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Wen-Ting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Srikanth Nama
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore 117597,Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
23
|
Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value. Cell Signal 2015; 28:713-8. [PMID: 26498857 DOI: 10.1016/j.cellsig.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 12/16/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) is ubiquitous and directs a plethora of functions in all cells. Although theoretically freely diffusible through the cell from the site of its synthesis it is not evenly distributed. It rather is shaped into gradients and these gradients are established by phospodiesterases (PDEs), the only enzymes that hydrolyse cAMP and thereby terminate cAMP signalling upstream of cAMP's effector systems. Miles D. Houslay has devoted most of his scientific life highly successfully to a particular family of PDEs, the PDE4 family. The family is encoded by four genes and gives rise to around 20 enzymes, all with different functions. M. Houslay has discovered many of these functions and realised early on that PDE4 family enzymes are attractive drug targets in a variety of human diseases, but not their catalytic activity as that is encoded in conserved domains in all family members. He postulated that targeting the intracellular location would provide the specificity that modern innovative drugs require to improve disease conditions with fewer side effects than conventional drugs. Due to the wealth of M. Houslay's work, this article can only summarize some of his discoveries and, therefore, focuses on protein-protein interactions of PDE4. The aim is to discuss functions of selected protein-protein interactions and peptide spot technology, which M. Houslay introduced into the PDE4 field for identifying interacting domains. The therapeutic potential of PDE4 interactions will also be discussed.
Collapse
|
24
|
Direct and high throughput (HT) interactions on the ribosomal surface by iRIA. Sci Rep 2015; 5:15401. [PMID: 26486184 PMCID: PMC4613909 DOI: 10.1038/srep15401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/21/2015] [Indexed: 02/04/2023] Open
Abstract
Ribosomes function as platforms for binding of other molecules, but technologies for studying this process are lacking. Therefore we developed iRIA (in vitro Ribosomes Interaction Assay). In approach I, Artemia salina ribosomes spotted on solid phase are used for binding picomoles of analytes; in approach II, cellular extracts allow the measurement of ribosome activity in different conditions. We apply the method to analyze several features of eIF6 binding to 60S subunits. By approach I, we show that the off-rate of eIF6 from preribosomes is slower than from mature ribosomes and that its binding to mature 60S occurs in the nM affinity range. By approach II we show that eIF6 binding sites on 60S are increased with mild eIF6 depletion and decreased in cells that are devoid of SBDS, a ribosomal factor necessary for 60S maturation and involved in Swachman Diamond syndrome. We show binding conditions to immobilized ribosomes adaptable to HT and quantify free ribosomes in cell extracts. In conclusion, we suggest that iRIA will greatly facilitate the study of interactions on the ribosomal surface.
Collapse
|
25
|
Wang Q, Zhou S, Wang JY, Cao J, Zhang X, Wang J, Han K, Cheng Q, Qiu G, Zhao Y, Li X, Qiao C, Li Y, Hou C, Zhang J. RACK1 antagonizes TNF-α-induced cell death by promoting p38 activation. Sci Rep 2015; 5:14298. [PMID: 26381936 PMCID: PMC4585558 DOI: 10.1038/srep14298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) activity has been reported to either promote or suppress cell death, which depends on cell type and stimulus. Our previous report indicates that p38 exerts a protective role in tumor necrosis factor (TNF)-α-induced cell death in L929 fibroblastoma cells. However, key molecules regulating p38 activation remain unclear. Here, we show that ectopic expression of scaffold protein receptor for activated C kinase 1 (RACK1) suppressed TNF-α-induced cell death in L929 cells, which was associated with enhanced p38 activation. Knockdown of endogenous RACK1 expression exhibited opposite effects. The protective role of RACK1 in TNF-α-induced cell death diminished upon blockade of p38 activation. Therefore, RACK1 antagonizes TNF-α-induced cell death through, at least partially, augmenting p38 activation. Further exploration revealed that RACK1 directly bound to MKK3/6 and enhanced the kinase activity of MKK3/6 without affecting MKK3/6 phosphorylation. Similar effects of RACK1 were also observed in primary murine hepatocytes, another cell type sensitive to TNF-α-induced cell death. Taken together, our data suggest that RACK1 is a key factor involved in p38 activation as well as TNF-α-induced cell death.
Collapse
Affiliation(s)
- Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Silei Zhou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jing-Yang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Junxia Cao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Xueying Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jing Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Kun Han
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Guihua Qiu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Yawei Zhao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Xinying Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Chunxia Qiao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Yan Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Chunmei Hou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| |
Collapse
|
26
|
Majzoub K, Hafirassou ML, Meignin C, Goto A, Marzi S, Fedorova A, Verdier Y, Vinh J, Hoffmann JA, Martin F, Baumert TF, Schuster C, Imler JL. RACK1 controls IRES-mediated translation of viruses. Cell 2015; 159:1086-1095. [PMID: 25416947 DOI: 10.1016/j.cell.2014.10.041] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/16/2014] [Accepted: 10/20/2014] [Indexed: 01/31/2023]
Abstract
Fighting viral infections is hampered by the scarcity of viral targets and their variability, resulting in development of resistance. Viruses depend on cellular molecules-which are attractive alternative targets-for their life cycle, provided that they are dispensable for normal cell functions. Using the model organism Drosophila melanogaster, we identify the ribosomal protein RACK1 as a cellular factor required for infection by internal ribosome entry site (IRES)-containing viruses. We further show that RACK1 is an essential determinant for hepatitis C virus translation and infection, indicating that its function is conserved for distantly related human and fly viruses. Inhibition of RACK1 does not affect Drosophila or human cell viability and proliferation, and RACK1-silenced adult flies are viable, indicating that this protein is not essential for general translation. Our findings demonstrate a specific function for RACK1 in selective mRNA translation and uncover a target for the development of broad antiviral intervention.
Collapse
Affiliation(s)
- Karim Majzoub
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France
| | - Mohamed Lamine Hafirassou
- Université de Strasbourg, 67000 Strasbourg, France; Inserm UMR1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France
| | - Carine Meignin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Akira Goto
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France
| | - Stefano Marzi
- CNRS UPR9002, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France
| | - Antonina Fedorova
- Université de Strasbourg, 67000 Strasbourg, France; Inserm UMR1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France
| | | | - Joëlle Vinh
- USR3149, ESPCI ParisTech, 75005 Paris, France
| | - Jules A Hoffmann
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut d'Etudes Avancées de l'Université de Strasbourg, 67000 Strasbourg, France
| | - Franck Martin
- CNRS UPR9002, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, 67000 Strasbourg, France; Inserm UMR1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Institut Hospitalo-Universitaire (IHU), Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, 67000 Strasbourg, France; Inserm UMR1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
| | - Jean-Luc Imler
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
27
|
BoseDasgupta S, Moes S, Jenoe P, Pieters J. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J 2015; 282:1167-81. [PMID: 25645340 DOI: 10.1111/febs.13214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/12/2014] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
Abstract
The induction of macropinocytosis in macrophages during an inflammatory response is important for clearance of pathogenic microbes as well as the generation of appropriate immune responses. Recent data suggest that cytokine stimulation of macrophages induces macropinocytosis through phosphorylation of the protein coronin 1, thereby redistributing coronin 1 from the cell cortex to the cytoplasm followed by the activation of phosphoinositol-3 (PI-3) kinase. However, how coronin 1 phosphorylation regulates these processes remains unclear. We here define an essential role for 14-3-3ζ in cytokine-induced and coronin-1-dependent macropinocytosis in macrophages. We found that, upon stimulation, phosphorylated coronin 1 transiently associated with 14-3-3ζ and receptor of activated C kinase 1 (RACK1). Importantly, downregulation of 14-3-3ζ, but not RACK1, prevented relocation of coronin 1, as well as the induction of PI-3 kinase activity and thereby macropinocytosis upon cytokine stimulation. Together these data define an essential role for 14-3-3ζ in the regulation of macropinocytosis in macrophages upon cytokine stimulation through modulation of the localization of coronin 1.
Collapse
|
28
|
Islas-Flores T, Rahman A, Ullah H, Villanueva MA. The Receptor for Activated C Kinase in Plant Signaling: Tale of a Promiscuous Little Molecule. FRONTIERS IN PLANT SCIENCE 2015; 6:1090. [PMID: 26697044 PMCID: PMC4672068 DOI: 10.3389/fpls.2015.01090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/20/2015] [Indexed: 05/21/2023]
Abstract
Two decades after the first report of the plant homolog of the Receptor for Activated C Kinase 1 (RACK1) in cultured tobacco BY2 cells, a significant advancement has been made in the elucidation of its cellular and molecular role. The protein is now implicated in many biological functions including protein translation, multiple hormonal responses, developmental processes, pathogen infection resistance, environmental stress responses, and miRNA production. Such multiple functional roles are consistent with the scaffolding nature of the plant RACK1 protein. A significant advance was achieved when the β-propeller structure of the Arabidopsis RACK1A isoform was elucidated, thus revealing that its conserved seven WD repeats also assembled into this typical topology. From its crystal structure, it became apparent that it shares the structural platform for the interaction with ligands identified in other systems such as mammals. Although RACK1 proteins maintain conserved Protein Kinase C binding sites, the lack of a bona fide PKC adds complexity and enigma to the nature of the ligand partners with which RACK1 interacts in plants. Nevertheless, ligands recently identified using the split-ubiquitin based and conventional yeast two-hybrid assays, have revealed that plant RACK1 is involved in several processes that include defense response, drought and salt stress, ribosomal function, cell wall biogenesis, and photosynthesis. The information acquired indicates that, in spite of the high degree of conservation of its structure, the functions of the plant RACK1 homolog appear to be distinct and diverse from those in yeast, mammals, insects, etc. In this review, we take a critical look at the novel information regarding the many functions in which plant RACK1 has been reported to participate, with a special emphasis on the information on its currently identified and missing ligand partners.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
| | | | - Hemayet Ullah
- Department of Biology, Howard UniversityWashington, DC, USA
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
- *Correspondence: Marco A. Villanueva
| |
Collapse
|
29
|
González-Calixto C, Cázares-Raga FE, Cortés-Martínez L, Del Angel RM, Medina-Ramírez F, Mosso C, Ocádiz-Ruiz R, Valenzuela JG, Rodríguez MH, Hernández-Hernández FDLC. AealRACK1 expression and localization in response to stress in C6/36 HT mosquito cells. J Proteomics 2014; 119:45-60. [PMID: 25555378 DOI: 10.1016/j.jprot.2014.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/21/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED The Receptor for Activated C Kinase 1 (RACK1), a scaffold protein member of the tryptophan-aspartate (WD) repeat family, folds in a seven-bladed β-propeller structure that permits the association of proteins to form active complexes. Mosquitoes of the genus Aedes sp., are vectors of virus producing important diseases such as: dengue, chikungunya and yellow fever. Based on the highly conserved gene sequence of AeaeRACK1 of the mosquito Aedes aegypti we characterized the mRNA and protein of the homologous AealRACK1 from the Ae. albopictus-derived cell line C6/36 HT. Two protein species differing in MW/pI values were observed at 35kDa/8.0 and 36kDa/6.5. The behavior of AealRACK1 was studied inducing stress with serum deprivation and the glucocorticoid dexamethasone. Both stressors induced increase of the expression of AealRACK1 mRNA and proteins. In serum-deprived cells AealRACK1 protein was located cortically near the plasma membrane in contrast to dexamethasone-treated cells where the protein formed a dotted pattern in the cytoplasm. In addition, 33 protein partners were identified by immunoprecipitation and mass spectrometry. Most of the identified proteins were ribosomal, involved in signaling pathways and stress responses. Our results suggest that AealRACK1 in C6/36 HT cells respond to stress increasing its synthesis and producing phosphorylated activated form. BIOLOGICAL SIGNIFICANCE Insect cells adapt to numerous environmental stressors, including chemicals and invasion of pathogenic microorganisms among others, coordinating cellular and organismal responses. Individual cells sense the environment using receptors that trigger signaling pathways that regulate expression of specific effector proteins and/or cellular responses as movement or secretion. In the coordination of responses to stress, scaffold proteins are pivotal molecules that recruit other proteins forming active complexes. The Receptor for Activated C Kinase 1 (RACK1) is the best studied member of the conserved tryptophan-aspartate (WD) repeat family. RACK1 folds in a seven-bladed β-propeller structure and it could be activated during stress, participating in different signaling pathways. The presence and activities of RACK1 in mosquitoes had not been documented before, in this work the molecule is demonstrated in an Aedes albopictus-derived cell line and its reaction to stress is observed under the effect of serum deprivation and the presence of glucocorticoid analog dexamethasone, a chemical used to cause stress in vitro.
Collapse
Affiliation(s)
- Cecilia González-Calixto
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Rosa María Del Angel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Fernando Medina-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Clemente Mosso
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Ramón Ocádiz-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Jesús G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos, Mexico
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico.
| |
Collapse
|
30
|
Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae. Mol Cell Biol 2014; 34:4062-76. [PMID: 25154418 DOI: 10.1128/mcb.00799-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome stalling is an important incident enabling the cellular quality control machinery to detect aberrant mRNA. Saccharomyces cerevisiae Hbs1-Dom34 and Ski7 are homologs of the canonical release factor eRF3-eRF1, which recognize stalled ribosomes, promote ribosome release, and induce the decay of aberrant mRNA. Polyadenylated nonstop mRNA encodes aberrant proteins containing C-terminal polylysine segments which cause ribosome stalling due to electrostatic interaction with the ribosomal exit tunnel. Here we describe a novel mechanism, termed premature translation termination, which releases C-terminally truncated translation products from ribosomes stalled on polylysine segments. Premature termination during polylysine synthesis was abolished when ribosome stalling was prevented due to the absence of the ribosomal protein Asc1. In contrast, premature termination was enhanced, when the general rate of translation elongation was lowered. The unconventional termination event was independent of Hbs1-Dom34 and Ski7, but it was dependent on eRF3. Moreover, premature termination during polylysine synthesis was strongly increased in the absence of the ribosome-bound chaperones ribosome-associated complex (RAC) and Ssb (Ssb1 and Ssb2). On the basis of the data, we suggest a model in which eRF3-eRF1 can catalyze the release of nascent polypeptides even though the ribosomal A-site contains a sense codon when the rate of translation is abnormally low.
Collapse
|
31
|
Hans F, Fiesel FC, Strong JC, Jäckel S, Rasse TM, Geisler S, Springer W, Schulz JB, Voigt A, Kahle PJ. UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J Biol Chem 2014; 289:19164-79. [PMID: 24825905 DOI: 10.1074/jbc.m114.561704] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Trans-activation element DNA-binding protein of 43 kDa (TDP-43) characterizes insoluble protein aggregates in distinct subtypes of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 mediates many RNA processing steps within distinct protein complexes. Here we identify novel TDP-43 protein interactors found in a yeast two-hybrid screen using an adult human brain cDNA library. We confirmed the TDP-43 interaction of seven hits by co-immunoprecipitation and assessed their co-localization in HEK293E cells. As pathological TDP-43 is ubiquitinated, we focused on the ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin isopeptidase Y (UBPY). When cells were treated with proteasome inhibitor, ubiquitinated and insoluble TDP-43 species accumulated. All three UBE2E family members could enhance the ubiquitination of TDP-43, whereas catalytically inactive UBE2E3(C145S) was much less efficient. Conversely, silencing of UBE2E3 reduced TDP-43 ubiquitination. We examined 15 of the 48 known disease-associated TDP-43 mutants and found that one was excessively ubiquitinated. This strong TDP-43(K263E) ubiquitination was further enhanced by proteasomal inhibition as well as UBE2E3 expression. Conversely, UBE2E3 silencing and expression of UBPY reduced TDP-43(K263E) ubiquitination. Moreover, wild-type but not active site mutant UBPY reduced ubiquitination of TDP-43 C-terminal fragments and of a nuclear import-impaired mutant. In Drosophila melanogaster, UBPY silencing enhanced neurodegenerative TDP-43 phenotypes and the accumulation of insoluble high molecular weight TDP-43 and ubiquitin species. Thus, UBE2E3 and UBPY participate in the regulation of TDP-43 ubiquitination, solubility, and neurodegeneration.
Collapse
Affiliation(s)
- Friederike Hans
- From the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Fabienne C Fiesel
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Jennifer C Strong
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Sandra Jäckel
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Tobias M Rasse
- Synaptic Plasticity Group, Hertie Institute for Clinical Brain Research, Tübingen 72076, Germany
| | - Sven Geisler
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Wolfdieter Springer
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Jörg B Schulz
- Department of Neurology, University Medical Center, Aachen 52074, Germany, and Jülich Aachen Research Alliance (JARA)-Translational Brain Medicine, Aachen 52074, Germany
| | - Aaron Voigt
- Department of Neurology, University Medical Center, Aachen 52074, Germany, and
| | - Philipp J Kahle
- From the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| |
Collapse
|
32
|
Loreni F, Mancino M, Biffo S. Translation factors and ribosomal proteins control tumor onset and progression: how? Oncogene 2014; 33:2145-56. [PMID: 23644661 DOI: 10.1038/onc.2013.153] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
Abstract
Gene expression is shaped by translational control. The modalities and the extent by which translation factors modify gene expression have revealed therapeutic scenarios. For instance, eukaryotic initiation factor (eIF)4E activity is controlled by the signaling cascade of growth factors, and drives tumorigenesis by favoring the translation of specific mRNAs. Highly specific drugs target the activity of eIF4E. Indeed, the antitumor action of mTOR complex 1 (mTORc1) blockers like rapamycin relies on their capability to inhibit eIF4E assembly into functional eIF4F complexes. eIF4E biology, from its inception to recent pharmacological targeting, is proof-of-principle that translational control is druggable. The case for eIF4E is not isolated. The translational machinery is involved in the biology of cancer through many other mechanisms. First, untranslated sequences on mRNAs as well as noncoding RNAs regulate the translational efficiency of mRNAs that are central for tumor progression. Second, other initiation factors like eIF6 show a tumorigenic potential by acting downstream of oncogenic pathways. Third, genetic alterations in components of the translational apparatus underlie an entire class of inherited syndromes known as 'ribosomopathies' that are associated with increased cancer risk. Taken together, data suggest that in spite of their evolutionary conservation and ubiquitous nature, variations in the activity and levels of ribosomal proteins and translation factors generate highly specific effects. Beside, as the structures and biochemical activities of several noncoding RNAs and initiation factors are known, these factors may be amenable to rational pharmacological targeting. The future is to design highly specific drugs targeting the translational apparatus.
Collapse
Affiliation(s)
- F Loreni
- Department of Biology, University 'Tor Vergata', Roma, Italy
| | - M Mancino
- 1] San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy [2] DISIT, Alessandria, Italy
| | - S Biffo
- 1] San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy [2] DISIT, Alessandria, Italy
| |
Collapse
|
33
|
Browning KS. Plant Translational Machinery. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Cytoplasm: Translational Apparatus. Mol Biol 2014. [DOI: 10.1007/978-1-4939-0263-7_8-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Speth C, Willing EM, Rausch S, Schneeberger K, Laubinger S. RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:433-45. [PMID: 23941160 DOI: 10.1111/tpj.12308] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) regulate plant development by post-transcriptional regulation of target genes. In Arabidopsis thaliana, DCL1 processes precursors (pri-miRNAs) to miRNA duplexes, which associate with AGO1. Additional proteins act in concert with DCL1 (e.g. HYL1 and SERRATE) or AGO1 to facilitate efficient and precise pri-miRNA processing and miRNA loading, respectively. In this study, we show that the accumulation of plant microRNAs depends on RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1), a scaffold protein that is found in all higher eukaryotes. miRNA levels are reduced in rack1 mutants, and our data suggest that RACK1 affects the microRNA pathway via several distinct mechanisms involving direct interactions with known microRNA factors: RACK1 ensures the accumulation and processing of some pri-miRNAs, directly interacts with SERRATE and is part of an AGO1 complex. As a result, mutations in RACK1 lead to over-accumulation of miRNA target mRNAs, which are important for ABA responses and phyllotaxy, for example. In conclusion, our study identified complex functioning of RACK1 proteins in the Arabidopsis miRNA pathway; these proteins are important for miRNA production and therefore plant development.
Collapse
Affiliation(s)
- Corinna Speth
- Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany; Chemical Genomics Centre of the Max Planck Society, 44227, Dortmund, Germany; Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
36
|
Volta V, Beugnet A, Gallo S, Magri L, Brina D, Pesce E, Calamita P, Sanvito F, Biffo S. RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency. Cell Mol Life Sci 2013; 70:1439-50. [PMID: 23212600 PMCID: PMC11113757 DOI: 10.1007/s00018-012-1215-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/02/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
The receptor for activated C-kinase 1 (RACK1) is a conserved structural protein of 40S ribosomes. Strikingly, deletion of RACK1 in yeast homolog Asc1 is not lethal. Mammalian RACK1 also interacts with many nonribosomal proteins, hinting at several extraribosomal functions. A knockout mouse for RACK1 has not previously been described. We produced the first RACK1 mutant mouse, in which both alleles of RACK1 gene are defective in RACK1 expression (ΔF/ΔF), in a pure C57 Black/6 background. In a sample of 287 pups, we observed no ΔF/ΔF mice (72 expected). Dissection and genotyping of embryos at various stages showed that lethality occurs at gastrulation. Heterozygotes (ΔF/+) have skin pigmentation defects with a white belly spot and hypopigmented tail and paws. ΔF/+ have a transient growth deficit (shown by measuring pup size at P11). The pigmentation deficit is partly reverted by p53 deletion, whereas the lethality is not. ΔF/+ livers have mild accumulation of inactive 80S ribosomal subunits by polysomal profile analysis. In ΔF/+ fibroblasts, protein synthesis response to extracellular and pharmacological stimuli is reduced. These results highlight the role of RACK1 as a ribosomal protein converging signaling to the translational apparatus.
Collapse
Affiliation(s)
- Viviana Volta
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Anne Beugnet
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Simone Gallo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Laura Magri
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Daniela Brina
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Elisa Pesce
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| | - Piera Calamita
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesca Sanvito
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Biffo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| |
Collapse
|