1
|
Bruno PS, Arshad A, Gogu MR, Waterman N, Flack R, Dunn K, Darie CC, Neagu AN. Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer. Life (Basel) 2025; 15:126. [PMID: 39860065 PMCID: PMC11766951 DOI: 10.3390/life15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein-protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania;
| | - Natalie Waterman
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Rylie Flack
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Kimberly Dunn
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
2
|
Shi Z, Mi Y, Zhang L, Zhang W, Zhang W, Shi X, Gao S, Zuo L, Zhang L. Mechanistic study of NUPR1 in bladder cancer development through transcriptional regulation of CCR2. J Cell Physiol 2024; 239:e31412. [PMID: 39149887 DOI: 10.1002/jcp.31412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Nuclear protein-1 (NUPR1) (also known as p8) is one of the genes associated with transcription factors that participate in various aspects of cancer initiation and development. However, the molecular mechanisms of NUPR1 in bladder cancer (BLCA) remain unclear. We conducted an analysis of the correlation between NUPR1 expression and related genes using the Gene Expression Omnibus (GEO) online database. We employed lentivirus-mediated small interfering RNA (siRNA) to knockdown the expression of NUPR1 in two human BLCA cell lines. In vitro experiments were conducted to validate the impact of NUPR1 interference on BLCA and the influence of NUPR1 on the transcription of chemokine receptor-2 (CCR2). Furthermore, transcription factors for CCR2 were predicted using the PROMO database. Co-immunoprecipitation (Co-IP) and immunofluorescence double staining were used to detect the binding between NUPR1 and CCAAT/enhancer binding protein γ (CEBPG). In vivo and in vitro experiments were conducted to validate that NUPR1 regulates CCR2 transcription through CEBPG. In vitro experiments indicate that the suppression of NUPR1 inhibited BLCA growth. Analysis of the GEO database revealed a positive correlation between the expression of NUPR1 and CCR2. Luciferase experiments confirmed that NUPR1 influences the transcription of CCR2. Online data indicates that CEBPG is a transcription factor for CCR2. Co-IP and immunofluorescence double staining confirmed binding between NUPR1 and CEBPG. Luciferase assays and chromatin immunoprecipitation (ChIP) demonstrate that CEBPG regulates the transcription of CCR2. Additionally, rescue experiments at the cellular level and animal experiments validated the aforementioned mechanism. NUPR1 promotes a promotional role in BLCA, and interference with NUPR1 can inhibit the proliferation and invasive abilities of BLCA. There was a correlation between the expressions of NUPR1 and CCR2, and NUPR1 binds with CEBPG in the cell nucleus. Transcriptional regulation of CCR2 by NUPR1 may be achieved through the involvement of CEBPG.
Collapse
Affiliation(s)
- Zebin Shi
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Li Zhang
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
| | - Wenxu Zhang
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
| | - Wei Zhang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Xiaokai Shi
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Shenglin Gao
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Li Zuo
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Lifeng Zhang
- Department of Urology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
3
|
Kar P, Sivasailam A, Lavarti R, Cai L, Thangaraju M, Nguyen E, Mundluru B, Raju RP. p53 dependence of senescence markers p21v1 and p21v2 in aging and acute injury. NPJ AGING 2024; 10:45. [PMID: 39402059 PMCID: PMC11473800 DOI: 10.1038/s41514-024-00175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/29/2024] [Indexed: 10/17/2024]
Abstract
The senescence phenotype is heterogeneous, as observed by the context-dependent differential expression of senescence markers. Here, we provide evidence to demonstrate an inverse relationship in the expression pattern of the two murine variants of p21 (p21v1, and p21v2) in aging and hemorrhagic shock. While an upregulation of p21v1 was observed following hemorrhagic shock injury, p21v2 was upregulated in the aged mouse. We further show that the p21v1 response is, at least, partially independent of p53.
Collapse
Affiliation(s)
- Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashok Sivasailam
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lun Cai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Emma Nguyen
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Bhavishya Mundluru
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
4
|
Yeh WC, Tu YC, Chien TC, Hsu PL, Lee CW, Wu SY, Pan BS, Yu HH, Su BC. Vismodegib Potentiates Marine Antimicrobial Peptide Tilapia Piscidin 4-Induced Cytotoxicity in Human Non-Small Cell Lung Cancer Cells. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10282-8. [PMID: 38743208 DOI: 10.1007/s12602-024-10282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a common cancer with several accepted treatments, such as chemotherapy, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, and immune checkpoint inhibitors. Nevertheless, NSCLC cells often become insensitive to these treatments, and therapeutic resistance is a major reason NSCLC still has a high mortality rate. The induction of therapeutic resistance in NSCLC often involves hedgehog, and suppression of hedgehog can increase NSCLC cell sensitivity to several conventional therapies. In our previous work, we demonstrated that the marine antimicrobial peptide tilapia piscidin 4 (TP4) exhibits potent anti-NSCLC activity in both EGFR-WT and EGFR-mutant NSCLC cells. Here, we sought to further explore whether hedgehog might influence the sensitivity of NSCLC cells to TP4. Our results showed that hedgehog was activated by TP4 in both WT and EGFR-mutant NSCLC cells and that pharmacological inhibition of hedgehog by vismodegib, a Food and Drug Administration-approved hedgehog inhibitor, potentiated TP4-induced cytotoxicity. Mechanistically, vismodegib acted by enhancing TP4-mediated increases in mitochondrial membrane potential and intracellular reactive oxygen species (ROS). MitoTempo, a specific mitochondrial ROS scavenger, abolished vismodegib/TP4 cytotoxicity. The combination of vismodegib with TP4 also reduced the levels of the antioxidant proteins catalase and superoxide dismutase, and it diminished the levels of chemoresistance-related proteins, Bcl-2 and p21. Thus, we conclude that hedgehog regulates the cytotoxic sensitivity of NSCLC cells to TP4 by protecting against mitochondrial dysfunction and suppressing oxidative stress. These findings suggest that combined treatment of vismodegib and TP4 may be a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Wei-Chen Yeh
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Chieh Tu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Cheng Chien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan, 70007, Taiwan
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27157, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University School of Medicine, Durham, NC27710, USA
| | - Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Tan M, He Y, Yi J, Chen J, Guo Q, Liao N, Peng L. WTAP Mediates NUPR1 Regulation of LCN2 Through m 6A Modification to Influence Ferroptosis, Thereby Promoting Breast Cancer Proliferation, Migration and Invasion. Biochem Genet 2024; 62:876-891. [PMID: 37477758 DOI: 10.1007/s10528-023-10423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/07/2023] [Indexed: 07/22/2023]
Abstract
Ferroptosis is involved in various pathophysiological diseases, including triple-negative breast cancer (TNBC). Targeting ferroptosis is considered as a novel anti-TNBC strategy. Nevertheless, the regulatory mechanism of ferroptosis during TNBC progression is unclear. Here, the role of WTAP in ferroptosis during TNBC progression was investigated. The clinicopathological significance of WTAP, NUPR1 and LCN2 was analyzed by Kaplan-Meier method. Cell viability was assessed using MTT assay. Transwell assay was employed to analyze cell migration and invasion. GSH/GSSG and Fe2+ levels in TNBC cells were analyzed using kits. m6A level was examined using m6A dot blot assay. NUPR1 mRNA stability was analyzed using RNA degradation assay. RIP was performed to analyze the interaction between eIF3a and NURP1. Herein, our results revealed that WTAP, NUPR1 and LCN2 expressions were significantly elevated in TNBC. NUPR1 silencing inhibited TNBC cell proliferation, migration and invasion by inducing ferroptosis. NUPR1 positively regulated LCN2 expression in TNBC cells, and LCN2 knockdown induced ferroptosis to suppress TNBC cell malignant behaviors. Our molecular study further revealed that WTAP promoted NUPR1 expression in an m6A-EIF3A mediated manner. And, as expected, WTAP knockdown promoted ferroptosis to suppress TNBC cell malignant behaviors, which were abrogated by NUPR1 overexpression. WTAP upregulated LCN2 by regulation of NUPR1 m6A modification, thereby suppressing ferroptosis to contribute to accelerate TNBC progression. Our study revealed the cancer-promoting effect of WTAP, NUPR1 and LCN2 in TNBC and clarified the relevant mechanism, providing a theoretical basis for developing novel diagnostic and therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Miduo Tan
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Yazhou He
- Health Management Center, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Jiansheng Yi
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Jingjing Chen
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Qiong Guo
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Ni Liao
- Department of Breast surgery, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan Province, P.R. China.
- Department of Breast surgery, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan Province, P.R. China.
| | - Liping Peng
- Department of Breast and Nails, The First Affiliated Hospital of Jishou University, The intersection of Shiji Avenue and Jianxin Road, Jishou, 416000, Hunan Province, P.R. China.
| |
Collapse
|
6
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
7
|
Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, Xiao H, Liu L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat 2024; 72:101016. [PMID: 37980859 DOI: 10.1016/j.drup.2023.101016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Da-Qian Chen
- Department of Medicine Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lihong Shi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yueqi Zuo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Garbacki N, Willems J, Neutelings T, Lambert C, Deroanne C, Adrian A, Franz M, Maurer M, De Gieter P, Nusgens B, Colige A. Microgravity triggers ferroptosis and accelerates senescence in the MG-63 cell model of osteoblastic cells. NPJ Microgravity 2023; 9:91. [PMID: 38104197 PMCID: PMC10725437 DOI: 10.1038/s41526-023-00339-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
In space, cells sustain strong modifications of their mechanical environment. Mechanosensitive molecules at the cell membrane regulate mechanotransduction pathways that induce adaptive responses through the regulation of gene expression, post-translational modifications, protein interactions or intracellular trafficking, among others. In the current study, human osteoblastic cells were cultured on the ISS in microgravity and at 1 g in a centrifuge, as onboard controls. RNAseq analyses showed that microgravity inhibits cell proliferation and DNA repair, stimulates inflammatory pathways and induces ferroptosis and senescence, two pathways related to ageing. Morphological hallmarks of senescence, such as reduced nuclear size and changes in chromatin architecture, proliferation marker distribution, tubulin acetylation and lysosomal transport were identified by immunofluorescence microscopy, reinforcing the hypothesis of induction of cell senescence in microgravity during space flight. These processes could be attributed, at least in part, to the regulation of YAP1 and its downstream effectors NUPR1 and CKAP2L.
Collapse
Affiliation(s)
- Nancy Garbacki
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Jérôme Willems
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Thibaut Neutelings
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Astrid Adrian
- Airbus Defence and Space, GmbH, 88090, Immenstaad, Germany
| | - Markus Franz
- Airbus Defence and Space, GmbH, 88090, Immenstaad, Germany
| | - Matthias Maurer
- European Space Agency (ESA), European Astronaut Centre (EAC), 51147, Cologne, Germany
| | | | - Betty Nusgens
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
9
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
10
|
Wang C, Wang T, Li KJ, Hu LH, Li Y, Yu YZ, Xie T, Zhu S, Fu DJ, Wang Y, Zeng XZ, Liu FP, Chen H, Chen ZS, Feng NH, Liu J, Jiang Y, Zhao SC. SETD4 inhibits prostate cancer development by promoting H3K27me3-mediated NUPR1 transcriptional repression and cell cycle arrest. Cancer Lett 2023; 579:216464. [PMID: 37879429 DOI: 10.1016/j.canlet.2023.216464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
The suppressor of variegation enhancer of zeste-trithorax (SET) domain methyltransferases have been reported to function as key regulators in multiple tumor types by catalyzing histone lysine methylation. Nevertheless, our understanding on the role of these lysine methyltransferases, including SETD4, in prostate cancer (PCa) remains limited. Hence, the specific role of SETD4 in PCa was investigated in this study. The expression of SETD4 in PCa cells and tissue samples was downregulated in PCa cells and tissue specimens, and decreased SETD4 expression led to inferior clinicopathological characteristics in patients with PCa. knockdown of SETD4 facilitated the proliferation of PCa cells and accelerated cell cycle progression. Mechanistically, SETD4 repressed NUPR1 transcription by methylating H3K27 to generate H3K27me3, subsequently inactivated Akt pathway and impeded the tumorigenesis of PCa. Our results highlight that SETD4 prevents the development of PCa by catalyzing the methylation of H3K27 and suppressing NUPR1 transcription, subsequently inactivating the Akt signaling pathway. The findings suggest the potential application of SETD4 in PCa prognosis and therapeutics.
Collapse
Affiliation(s)
- Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tao Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, China
| | - Kang-Jing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ling-Hong Hu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yue Li
- Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yu-Zhong Yu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China
| | - Tao Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sha Zhu
- Department of Urology, Jiangnan University Medical Center, Wuxi, 214002, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, China
| | - Du-Jiang Fu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Wang
- Department of Urology, Jiangnan University Medical Center, Wuxi, 214002, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, China
| | - Xian-Zi Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng-Ping Liu
- Department of Urology, Jiangnan University Medical Center, Wuxi, 214002, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Ning-Han Feng
- Department of Urology, Jiangnan University Medical Center, Wuxi, 214002, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China.
| |
Collapse
|
11
|
Tóthová Z, Šemeláková M, Bhide K, Bhide M, Kováč A, Majerová P, Kvaková M, Štofilová J, Solárová Z, Solár P. Differentially Expressed Genes Induced by Erythropoietin Receptor Overexpression in Rat Mammary Adenocarcinoma RAMA 37-28 Cells. Int J Mol Sci 2023; 24:ijms24108482. [PMID: 37239828 DOI: 10.3390/ijms24108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The erythropoietin receptor (EPOR) is a transmembrane type I receptor with an essential role in the proliferation and differentiation of erythroid progenitors. Besides its function during erythropoiesis, EPOR is expressed and has protective effect in various non-hematopoietic tissues, including tumors. Currently, the advantageous aspect of EPOR related to different cellular events is still under scientific investigation. Besides its well-known effect on cell proliferation, apoptosis and differentiation, our integrative functional study revealed its possible associations with metabolic processes, transport of small molecules, signal transduction and tumorigenesis. Comparative transcriptome analysis (RNA-seq) identified 233 differentially expressed genes (DEGs) in EPOR overexpressed RAMA 37-28 cells compared to parental RAMA 37 cells, whereas 145 genes were downregulated and 88 upregulated. Of these, for example, GPC4, RAP2C, STK26, ZFP955A, KIT, GAS6, PTPRF and CXCR4 were downregulated and CDH13, NR0B1, OCM2, GPM6B, TM7SF3, PARVB, VEGFD and STAT5A were upregulated. Surprisingly, two ephrin receptors, EPHA4 and EPHB3, and EFNB1 ligand were found to be upregulated as well. Our study is the first demonstrating robust differentially expressed genes evoked by simple EPOR overexpression without the addition of erythropoietin ligand in a manner which remains to be elucidated.
Collapse
Affiliation(s)
- Zuzana Tóthová
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Martina Šemeláková
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 04001 Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 04001 Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Monika Kvaková
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Jana Štofilová
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| |
Collapse
|
12
|
Zhang L, Gao S, Shi X, Chen Y, Wei S, Mi Y, Zuo L, Qi C. NUPR1
imparts oncogenic potential in bladder cancer. Cancer Med 2022; 12:7149-7163. [PMID: 36468653 PMCID: PMC10067104 DOI: 10.1002/cam4.5518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND NUPR1, or p8, is a small chromatin protein that plays a central role in the resistance to treatment and progression of cancer. Nevertheless, the molecular mechanism of NUPR1 in bladder cancer (BLCA) remains unclear. METHODS We used online databases and immunohistochemistry (IHC) to explore the expression of NUPR1 in BLCA tissues and controls. Lentivirus-mediated small interfering ribonucleic acid (siRNA) was used to knockdown the expression of NUPR1 in two human BLCA cell lines. We used an in vivo experiment to investigate the effect of NUPR1 knockdown on the growth of BLCA. Moreover, an in silico analysis was conducted to assess the differential expression profile after NUPR1 interference. The CIBERSORT algorithm was utilized to evaluate the effects of tumor-infiltrating immune cells among BLCA patients. RESULTS The expression of NUPR1 in BLCA tissues was significantly higher than in the control. NUPR1 expression was also positively correlated with the stage of BLCA. After lentivirus-mediated interference, the expression of NUPR1 was significantly down-regulated in BLCA cell lines. The cell cycle was blocked in G1 phase and the cell proportion of S phase was decreased in both two cell lines. Moreover, in vivo experiment revealed that the tumor growth of BLCA can be delayed by inhibiting the expression of NUPR1. Both in silico analysis and functional experiments revealed that NUPR1 was correlated with epithelial-mesenchymal transition (EMT). We also revealed that macrophages were the most related immune cells associated with the expression of NUPR1 in BLCA. CONCLUSIONS This study suggests that NUPR1 plays a carcinogenic role in BLCA. NUPR1 lentivirus-mediated interference could interfere with cycle progression of the BLCA cell, resulting in cell cycle arrest in the G1-phase. The carcinogenic effect of NUPR1 in BLCA is likely achieved through EMT. NUPR1 is correlated with the M0-type macrophage markers CD68 and CD11b-integrin.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of Urology The Affiliated Changzhou Second People's Hospital of Nanjing Medical University Changzhou China
| | - Shenglin Gao
- Department of Urology The Affiliated Changzhou Second People's Hospital of Nanjing Medical University Changzhou China
| | - Xiaokai Shi
- Department of Urology The Affiliated Changzhou Second People's Hospital of Nanjing Medical University Changzhou China
| | - Yin Chen
- Department of Urology The Affiliated Changzhou Second People's Hospital of Nanjing Medical University Changzhou China
| | - Shuzhang Wei
- Department of Urology The Affiliated Changzhou Second People's Hospital of Nanjing Medical University Changzhou China
| | - Yuanyuan Mi
- Department of Urology Affiliated Hospital of Jiangnan University Wuxi China
| | - Li Zuo
- Department of Urology The Affiliated Changzhou Second People's Hospital of Nanjing Medical University Changzhou China
| | - Chunjian Qi
- Medical Research Center The Affiliated Changzhou Second People's Hospital of Nanjing Medical University Changzhou China
| |
Collapse
|
13
|
Wang J, Han X, Yuan Y, Gu H, Liao X, Jiang M. The Value of Dysregulated LncRNAs on Clinicopathology and Survival in Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front Genet 2022; 13:821675. [PMID: 35450214 PMCID: PMC9016135 DOI: 10.3389/fgene.2022.821675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: There is growing evidence that a number of lncRNAs are involved in the pathogenesis of non-small-cell lung cancer (NSCLC). However, studies on lncRNA expression in NSCLC patients are far from conclusive. Therefore, we performed a systematic review of such studies to collect and examine the evidence on the potential role of lncRNAs in the development of NSCLC. Methods: We systematically searched seven literature databases to identify all published studies that evaluated the expression of one or more lncRNAs in human samples with NSCLC (cases) and without NSCLC (controls) from January 1, 1995 to May 24, 2021. Quality assessment of studies was conducted by using the “Quality in Prognosis Studies” (QUIPS) tool, and the heterogeneity across studies was analyzed with the I-squared statistic and chi-square-based Q-tests. Either fixed or random-effect meta-analysis was performed to summarize effect size to investigate the association between lncRNA expression and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and clinicopathological features. The R statistical software program was used to conduct standard meta-analysis. Results: We finally obtained 48 studies with 5,211 patients included in this review after screening. Among the 48 lncRNAs, 38 lncRNAs were consistently upregulated, and 10 were deregulated in patients with NSCLC compared with the control groups. The upregulated lncRNAs were positively associated with histological type: study number (n) = 18, odds ratio (OR) = 0.78, 95% CI: 0.65–0.95 and OR = 1.30, 95% CI: 1.08–1.57, p < 0.01; TNM stages: n = 20, OR = 0.41, 95% CI: 0.29–0.57 and OR = 2.44, 95% CI: 1.73–3.44, p < 0.01; lymph node metastasis: n = 29, OR = 0.49, 95% CI: 0.34–0.71 and OR = 2.04, 95% CI: 1.40–2.96, p < 0.01; differentiation grade: n = 6, OR = 0.61, 95% CI: 0.38–0.99 and OR = 1.63, 95% CI: 1.01–2.64, p < 0.01; distant metastasis: n = 9, OR = 0.37, 95% CI: 0.26–0.53 and OR = 2.72, 95% CI: 1.90–3.90, p < 0.01; tumor size: n = 16, OR = 0.52, 95% CI: 0.43–0.64 and OR = 1.92, 95% CI: 1.57–2.34, p < 0.01; and overall survival [n = 38, hazard ratio (HR) = 1.79, 95% CI = 1.59–2.02, p < 0.01]. Especially, five upregulated lncRNAs (linc01234, ZEB1-AS1, linc00152, PVT1, and BANCR) were closely associated with TNM Ⅲa stage (n = 5, OR = 4.07, 95% CI: 2.63–6.28, p < 0.01). However, 10 deregulated lncRNAs were not significantly associated with the pathogenesis and overall survival in NSCLC in the meta-analysis (p ≥ 0.05). Conclusion: This systematic review suggests that the upregulated lncRNAs could serve as biomarkers for predicting promising prognosis of NSCLC. The prognostic value of downregulated lncRNA in NSCLC needs to be further explored. Systematic Review Registration: (http://www.crd.york.ac.uk/PROSPERO).identifier CRD42021240635.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Astarita EM, Maloney SM, Hoover CA, Berkeley BJ, VanKlompenberg MK, Nair TM, Prosperi JR. Adenomatous Polyposis Coli loss controls cell cycle regulators and response to paclitaxel in MDA-MB-157 metaplastic breast cancer cells. PLoS One 2021; 16:e0255738. [PMID: 34370741 PMCID: PMC8351968 DOI: 10.1371/journal.pone.0255738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022] Open
Abstract
Adenomatous Polyposis Coli (APC) is lost in approximately 70% of sporadic breast cancers, with an inclination towards triple negative breast cancer (TNBC). TNBC is treated with traditional chemotherapy, such as paclitaxel (PTX); however, tumors often develop drug resistance. We previously created APC knockdown cells (APC shRNA1) using the human TNBC cells, MDA-MB-157, and showed that APC loss induces PTX resistance. To understand the mechanisms behind APC-mediated PTX response, we performed cell cycle analysis and analyzed cell cycle related proteins. Cell cycle analysis indicated increased G2/M population in both PTX-treated APC shRNA1 and parental cells, suggesting that APC expression does not alter PTX-induced G2/M arrest. We further studied the subcellular localization of the G2/M transition proteins, cyclin B1 and CDK1. The APC shRNA1 cells had increased CDK1, which was preferentially localized to the cytoplasm, and increased baseline CDK6. RNA-sequencing was performed to gain a global understanding of changes downstream of APC loss and identified a broad mis-regulation of cell cycle-related genes in APC shRNA1 cells. Our studies are the first to show an interaction between APC and taxane response in breast cancer. The implications include designing combination therapy to re-sensitize APC-mutant breast cancers to taxanes using the specific cell cycle alterations.
Collapse
Affiliation(s)
- Emily M. Astarita
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Chemistry/Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, South Bend, IN, United States of America
| | - Camden A. Hoover
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | | | - Monica K. VanKlompenberg
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, South Bend, IN, United States of America
| | - T. Murlidharan Nair
- Department of Biology and Computer Science/Informatics, Indiana University South Bend, South Bend, IN, United States of America
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, South Bend, IN, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
15
|
Augello G, Emma MR, Azzolina A, Puleio R, Condorelli L, Cusimano A, Giannitrapani L, McCubrey JA, Iovanna JL, Cervello M. The NUPR1/p73 axis contributes to sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2021; 519:250-262. [PMID: 34314755 DOI: 10.1016/j.canlet.2021.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
The multikinase inhibitor sorafenib was the first drug approved by the FDA for treating patients with advanced hepatocellular carcinoma (HCC). However, sorafenib resistance remains a major challenge for improving the effectiveness of HCC treatment. Previously, we identified several genes modulated after sorafenib treatment of human HCC cells, including the stress-inducible nuclear protein 1 (NUPR1) gene. Multiple studies have shown that NUPR1 regulates autophagy, apoptosis, and chemoresistance. Here, we demonstrate that treatment of HCC cells with sorafenib resulted in the activation of autophagic flux. NUPR1 knock-down (KD) in HCC cells was associated with increased p62 expression, suggesting an impairment of autophagic flux, and with a significant increase of cell sensitivity to sorafenib. In NUPR1 KD cells, reduced levels of NUPR1 were associated with the increased expression of p73 as well as its downstream transcription targets PUMA, NOXA, and p21. Simultaneous silencing of p73 and NUPR1 in HCC cells resulted in increased resistance to sorafenib, as compared to the single KD of either gene. Conversely, pharmacological activation of p73, via the novel p73 small molecule activator NSC59984, determined synergistic anti-tumor effects in sorafenib-treated HCC cells. The combination of NSC59984 and sorafenib, when compared to either treatment alone, synergistically suppressed tumor growth of HCC cells in vivo. Our data suggest that the activation of the p73 pathway achieved by NUPR1 KD potentiates sorafenib-induced anti-tumor effects in HCC cells. Moreover, combined pharmacological therapy with the p73 activator NSC59984 and sorafenib could represent a novel approach for HCC treatment.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Maria Rita Emma
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Lucia Condorelli
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.
| |
Collapse
|
16
|
He W, Cheng F, Zheng B, Wang J, Zhao G, Yao Z, Zhang T. NUPR1 is a novel potential biomarker and confers resistance to sorafenib in clear cell renal cell carcinoma by increasing stemness and targeting the PTEN/AKT/mTOR pathway. Aging (Albany NY) 2021; 13:14015-14038. [PMID: 34030133 PMCID: PMC8202846 DOI: 10.18632/aging.203012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/31/2021] [Indexed: 04/08/2023]
Abstract
BACKGROUND Sorafenib can improve the survival of metastatic clear cell renal cell carcinoma (ccRCC) patients. However, its benefits are modest, as patients eventually become resistant, and the mechanisms remain elusive. NUPR1, a stress-induced protein, has been reported in malignancies and functions as an oncogene by modulating the stress response, facilitating survival in harsh environments and conferring drug resistance. However, its role in ccRCC has not been explored. METHODS The expression and clinical significance of NUPR1 were analyzed in ccRCC patients in in-house patients and The Cancer Genome Atlas (TCGA) cohorts. The biological functions of NUPR1 were investigated. Xenografts were performed to confirm the effects of NUPR1 on tumorigenesis. The molecular mechanism of NUPR1 was investigated in vitro and in vivo. RESULTS NUPR1 expression was upregulated in tumor tissue. Further analysis showed that NUPR1 overexpression was associated with an aggressive phenotype and predicted a poor prognosis. Depletion of NUPR1 suppressed tumorigenesis and sensitized cells to sorafenib treatment. Finally, mechanistic investigations indicated that NUPR1 promoted tumorigenesis in ccRCC by increasing stemness and activating the PTEN/AKT/mTOR signaling pathway. CONCLUSIONS Collectively, our results suggest that NUPR1 may serve as a predictor of ccRCC. Notably, NUPR1 silencing reversed sorafenib resistance in ccRCC. These findings provide a novel potential therapeutic target in the clinical management of ccRCC.
Collapse
Affiliation(s)
- Wei He
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bin Zheng
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianwei Wang
- Department of Urology, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Guiting Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongshun Yao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tong Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Kashyap D, Garg VK, Sandberg EN, Goel N, Bishayee A. Oncogenic and Tumor Suppressive Components of the Cell Cycle in Breast Cancer Progression and Prognosis. Pharmaceutics 2021; 13:pharmaceutics13040569. [PMID: 33920506 PMCID: PMC8072616 DOI: 10.3390/pharmaceutics13040569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer, a disease of inappropriate cell proliferation, is strongly interconnected with the cell cycle. All cancers consist of an abnormal accumulation of neoplastic cells, which are propagated toward uncontrolled cell division and proliferation in response to mitogenic signals. Mitogenic stimuli include genetic and epigenetic changes in cell cycle regulatory genes and other genes which regulate the cell cycle. This suggests that multiple, distinct pathways of genetic alterations lead to cancer development. Products of both oncogenes (including cyclin-dependent kinase (CDKs) and cyclins) and tumor suppressor genes (including cyclin-dependent kinase inhibitors) regulate cell cycle machinery and promote or suppress cell cycle progression, respectively. The identification of cyclins and CDKs help to explain and understand the molecular mechanisms of cell cycle machinery. During breast cancer tumorigenesis, cyclins A, B, C, D1, and E; cyclin-dependent kinase (CDKs); and CDK-inhibitor proteins p16, p21, p27, and p53 are known to play significant roles in cell cycle control and are tightly regulated in normal breast epithelial cells. Following mitogenic stimuli, these components are deregulated, which promotes neoplastic transformation of breast epithelial cells. Multiple studies implicate the roles of both types of components-oncogenic CDKs and cyclins, along with tumor-suppressing cyclin-dependent inhibitors-in breast cancer initiation and progression. Numerous clinical studies have confirmed that there is a prognostic significance for screening for these described components, regarding patient outcomes and their responses to therapy. The aim of this review article is to summarize the roles of oncogenic and tumor-suppressive components of the cell cycle in breast cancer progression and prognosis.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India;
| | | | - Elise N. Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Neelam Goel
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, Punjab, India
- Correspondence: (N.G.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (N.G.); or (A.B.)
| |
Collapse
|
18
|
Park C, Oh J, Lee WM, Koh HR, Sohn UD, Ham SW, Oh K. Inhibition of NUPR1-Karyopherin β1 Binding Increases Anticancer Drug Sensitivity. Int J Mol Sci 2021; 22:ijms22062794. [PMID: 33801927 PMCID: PMC8000408 DOI: 10.3390/ijms22062794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Nuclear protein-1 (NUPR1, also known as p8/Com-1) is a transcription factor involved in the regulation of cellular stress responses, including serum starvation and drug stimulation. Methods: We investigated the mechanism of NUPR1 nuclear translocation involving karyopherin β1 (KPNB1), using a single-molecule binding assay and confocal microscopy. The cellular effects associated with NUPR1–KPNB1 inhibition were investigated by gene expression profiling and cell cycle analysis. Results: The single-molecule binding assay revealed that KPNB1 bound to NUPR1 with a binding affinity of 0.75 nM and that this binding was blocked by the aminothiazole ATZ-502. Following doxorubicin-only treatment, NUPR1 was translocated to the nucleus in more than 90% and NUPR1 translocation was blocked by the ATZ-502 combination treatment in MDA-MB-231 with no change in NUPR1 expression, providing strong evidence that NUPR1 nuclear translocation was directly inhibited by the ATZ-502 treatment. Inhibition of KPNB1 and NUPR1 binding was associated with a synergistic anticancer effect (up to 19.6-fold) in various cancer cell lines. NUPR1-related genes were also downregulated following the doxorubicin–ATZ-502 combination treatment. Conclusion: Our current findings clearly demonstrate that NUPR1 translocation into the nucleus requires karyopherin β1 binding. Inhibition of the KPNB1 and NUPR1 interaction may constitute a new cancer therapeutic approach that can increase the drug efficacy while reducing the side effects.
Collapse
Affiliation(s)
- Chanhee Park
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (C.P.); (W.M.L.); (U.D.S.)
- Institute of Gastroenterology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun, Seoul 03772, Korea
| | - Jiwon Oh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (J.O.); (H.R.K.)
| | - Won Mo Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (C.P.); (W.M.L.); (U.D.S.)
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (J.O.); (H.R.K.)
| | - Uy Dong Sohn
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (C.P.); (W.M.L.); (U.D.S.)
| | - Seung Wook Ham
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (J.O.); (H.R.K.)
- Correspondence: (S.W.H.); (K.O.)
| | - Kyungsoo Oh
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (C.P.); (W.M.L.); (U.D.S.)
- Correspondence: (S.W.H.); (K.O.)
| |
Collapse
|
19
|
Wang L, Sun J, Yin Y, Sun Y, Ma J, Zhou R, Chang X, Li D, Yao Z, Tian S, Zhang K, Liu Z, Ma Z. Transcriptional coregualtor NUPR1 maintains tamoxifen resistance in breast cancer cells. Cell Death Dis 2021; 12:149. [PMID: 33542201 PMCID: PMC7862277 DOI: 10.1038/s41419-021-03442-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
To support cellular homeostasis and mitigate chemotherapeutic stress, cancer cells must gain a series of adaptive intracellular processes. Here we identify that NUPR1, a tamoxifen (Tam)-induced transcriptional coregulator, is necessary for the maintenance of Tam resistance through physical interaction with ESR1 in breast cancers. Mechanistically, NUPR1 binds to the promoter regions of several genes involved in autophagy process and drug resistance such as BECN1, GREB1, RAB31, PGR, CYP1B1, and regulates their transcription. In Tam-resistant ESR1 breast cancer cells, NUPR1 depletion results in premature senescence in vitro and tumor suppression in vivo. Moreover, enforced-autophagic flux augments cytoplasmic vacuolization in NUPR1-depleted Tam resistant cells, which facilitates the transition from autophagic survival to premature senescence. Collectively, these findings suggest a critical role for NUPR1 as a transcriptional coregulator in enabling endocrine persistence of breast cancers, thus providing a vulnerable diagnostic and/or therapeutic target for endocrine resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Autophagy/drug effects
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Binding Sites
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Proliferation/drug effects
- Cellular Senescence/drug effects
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- MCF-7 Cells
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic
- Tamoxifen/pharmacology
- Transcription, Genetic
- Transcriptome
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Lingling Wang
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Jiashen Sun
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Yueyuan Yin
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Yanan Sun
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Jinyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Ruimin Zhou
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Xinzhong Chang
- Department of Breast Cancer, Breast Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ding Li
- Department of Clinical Laboratory, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhi Yao
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Zhenyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
20
|
Krishnan R, Murugiah M, Lakshmi, NP, Mahalingam S. Guanine nucleotide binding protein like-1 (GNL1) promotes cancer cell proliferation and survival through AKT/p21 CIP1 signaling cascade. Mol Biol Cell 2020; 31:2904-2919. [PMID: 33147101 PMCID: PMC7927199 DOI: 10.1091/mbc.e20-04-0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/03/2022] Open
Abstract
Human guanine nucleotide binding protein like 1 (GNL1) is an evolutionary conserved putative nucleolar GTPase belonging to the HSR1_MMR1 subfamily of GTPases. GNL1 was found to be highly up-regulated in various cancers. Here, we report for the first time that GNL1 inhibits apoptosis by modulating the expression of Bcl2 family of proteins and the cleavage of caspases 7 and 8. Furthermore, GNL1 protects colon cancer cells from chemo-drug-induced apoptosis. Interestingly, GNL1 up-regulates the expression of p53 and its transcriptional target, p21 but the up-regulation of p21 was found to be p53 dependent as well as independent mechanisms. Our results further demonstrate that GNL1 promotes cell growth and survival by inducing cytoplasmic retention and stabilization of p21 through AKT-mediated phosphorylation. In addition, GNL1 failed to inhibit apoptosis under p21 knockdown conditions which suggests the critical role of p21 in GNL1-mediated cell survival. Finally, an inverse correlation of GNL1, p21, and AKT expression in primary colon and breast cancer with patient survival suggests their critical role in tumorigenesis. Collectively, our study reveals that GNL1 executes its antiapoptotic function by a novel mechanism and suggests that it may function as a regulatory component of the PI3K/AKT/p21 signaling network to promote cell proliferation and survival in cancers.
Collapse
Affiliation(s)
- Rehna Krishnan
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Mariappan Murugiah
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Naga Padma Lakshmi,
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
21
|
Mansour SMA, Ali SA, Nofal S, Soror SH. Targeting NUPR1 for Cancer Treatment: A Risky Endeavor. Curr Cancer Drug Targets 2020; 20:768-778. [PMID: 32619170 DOI: 10.2174/1568009620666200703152523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
NUPR1 is a transcription factor that has attracted great attention because of its various roles in cancer. Several studies were carried out to determine its molecular targets and mechanism of action to develop novel therapies against cancer. Here, we shed light on the role of NUPR1 in different types of cancer. NUPR1 regulates a complex network of pathways that may be affected by its silencing, which can cause varying effects. Its role in some types of cancer has been reported but remains incompletely understood, whereas its roles in other types of cancers have not been reported yet. Therefore, targeting NUPR1 for cancer treatment remains challenging and risky.
Collapse
Affiliation(s)
- Salma M A Mansour
- Egyptian Patent Office, Academy of Scientific Research and Technology (ASRT), 101 Kaser Al-Ainy Street, Cairo, Egypt
| | - Sahar A Ali
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| | - Shaira Nofal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| | - Sameh H Soror
- Egyptian Patent Office, Academy of Scientific Research and Technology (ASRT), 101 Kaser Al-Ainy Street, Cairo, Egypt.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| |
Collapse
|
22
|
Murphy A, Costa M. Nuclear protein 1 imparts oncogenic potential and chemotherapeutic resistance in cancer. Cancer Lett 2020; 494:132-141. [PMID: 32835767 DOI: 10.1016/j.canlet.2020.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Nuclear protein 1 (NUPR1) also known as p8 and candidate of metastasis 1 (COM1) functions as a transcriptional regulator, and plays a role in cell cycle, DNA damage response, apoptosis, autophagy, and chromatin remodeling in response to various cellular stressors. Since it was first suggested to contribute to cancer development and progression in 1999, a number of studies have sought to reveal its function. However, NUPR1 and its biological relevance in cancer have proven difficult to pinpoint. Based on evidence of NUPR1 expression in cancers, its function extends from carcinogenesis and tumorigenesis to metastasis and chemotherapeutic resistance. A tumor suppressive function of NUPR1 has also been documented in multiple cancers. By and large, literature involving NUPR1 and cancer is confined to pancreatic and breast cancers, yet significant progress has been made with respect to NUPR1 expression and its function in lung, colorectal, blood, and prostate cancers, among others. Recent evidence strongly supports the notion that NUPR1 is key in chemotherapeutic resistance by mediating both anti-apoptotic activity and autophagy when challenged with anti-cancer compounds. Therefore, it is of significant importance to understand the broad range of molecular functions directed by NUPR1. In this review, NUPR1 expression and its role in breast, lung, and colorectal cancer development and progression will be addressed.
Collapse
Affiliation(s)
- Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, USA.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, USA.
| |
Collapse
|
23
|
Narkhede AA, Crenshaw JH, Crossman DK, Shevde LA, Rao SS. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells. Acta Biomater 2020; 107:65-77. [PMID: 32119920 DOI: 10.1016/j.actbio.2020.02.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
Breast cancer cells (BCCs) can remain dormant at the metastatic site, which when revoked leads to formation of metastasis several years after the treatment of primary tumor. Particularly, awakening of dormant BCCs in the brain results in breast cancer brain metastasis (BCBrM) which marks the most advanced stage of the disease with a median survival period of ~4-16 months. However, our understanding of dormancy associated with BCBrM remains obscure, in part, due to the lack of relevant in vitro platforms to model dormancy associated with BCBrM. To address this need, we developed an in vitro hyaluronic acid (HA) hydrogel platform to model dormancy in brain metastatic BCCs via exploiting the bio-physical cues provided by HA hydrogels while bracketing the normal brain and metastatic brain malignancy relevant stiffness range. In this system, we observed that MDA-MB-231Br and BT474Br3 brain metastatic BCCs exhibited a dormant phenotype when cultured on soft (0.4 kPa) HA hydrogel compared to stiff (4.5 kPa) HA hydrogel as characterized by significantly lower EdU and Ki67 positivity. Further, we demonstrated the nuclear localization of p21 and p27 (markers associated with dormancy) in dormant MDA-MB-231Br cells contrary to their cytoplasmic localization in the proliferative population. We also demonstrated that the stiffness-based dormancy in MDA-MB-231Br cells was reversible and was, in part, mediated by focal adhesion kinases and the initial cell seeding density. Finally, RNA sequencing confirmed the dormant phenotype in MDA-MB-231Br cells. This platform could further our understanding of dormancy in BCBrM and could be adapted for anti-metastatic drug screening. STATEMENT OF SIGNIFICANCE: Our understanding of dormancy associated with BCBrM remains obscure, in part, due to the lack of relevant in vitro platforms to model dormancy associated with BCBrM. Herein, we present a HA hydrogel-based platform to model dormancy in brain metastatic BCCs while recapitulating key aspects of brain microenvironment. We demonstrated that the biophysical cues provided the HA hydrogel mediates dormancy in brain metastatic BCCs by assessing both proliferation and cell cycle arrest markers. We also established the role of focal adhesion kinases and initial cell seeding density in the stiffness-mediated dormancy in brain metastatic BCCs. Further, RNA-seq. confirmed the dormant phenotype in brain metastatic BCCs. This platform could be utilized to further our understanding of microenvironmental regulation of dormancy in BCBrM.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - James H Crenshaw
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
| |
Collapse
|
24
|
Zamagni A, Pasini A, Pirini F, Ravaioli S, Giordano E, Tesei A, Calistri D, Ulivi P, Fabbri F, Foca F, Delmonte A, Molinari C. CDKN1A upregulation and cisplatin‑pemetrexed resistance in non‑small cell lung cancer cells. Int J Oncol 2020; 56:1574-1584. [PMID: 32236605 PMCID: PMC7170038 DOI: 10.3892/ijo.2020.5024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Cisplatin-pemetrexed is a frequently adopted first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) ineligible for biological therapy, notwithstanding its limited efficacy. In the present study, the RAL cell line, an epidermal growth factor receptor (EGFR)-wild-type, p53- and KRAS-mutated model of NSCLC, was used to investigate novel biomarkers of resistance to this treatment. Cells were analyzed 96 h (96 h-post wo) and 21 days (21 days-post wo) after the combined treatment washout. Following an initial moderate sensitivity to the treatment, the cell growth proliferative capability had fully recovered. Gene expression analysis of the resistant surviving cells revealed a significant upregulation of CDKN1A expression in the cells at 96-h post-wo and, although to a lesser extent, in the cells at 21 days-post wo, accompanied by an enrichment of acetylated histone H3 in its promoter region. CDKN1A was also upregulated at the protein level, being mainly detected in the cytoplasm of the cells at 96 h-post wo. A marked increase in the number of apoptotic cells, together with a significant G1 phase block, were observed at 96-h post wo in the cells in which CDKN1A was knocked down, suggesting its involvement in the modulation of the response of RAL cells to the drug combination. On the whole, these data suggest that CDKN1A plays a role in the response to the cisplatin-pemetrexed combination in advanced KRAS-mutated NSCLC, thus suggesting that it may be used as a promising predictive marker.
Collapse
Affiliation(s)
- Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alice Pasini
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), University of Bologna, Campus of Cesena, 47522 Cesena, Italy
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Sara Ravaioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), University of Bologna, Campus of Cesena, 47522 Cesena, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| |
Collapse
|
25
|
Kreis NN, Louwen F, Yuan J. The Multifaceted p21 (Cip1/Waf1/ CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091220. [PMID: 31438587 PMCID: PMC6770903 DOI: 10.3390/cancers11091220] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | - Frank Louwen
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
26
|
Matsunaga K, Fujisawa K, Takami T, Burganova G, Sasai N, Matsumoto T, Yamamoto N, Sakaida I. NUPR1 acts as a pro-survival factor in human bone marrow-derived mesenchymal stem cells and is induced by the hypoxia mimetic reagent deferoxamine. J Clin Biochem Nutr 2019; 64:209-216. [PMID: 31138954 PMCID: PMC6529697 DOI: 10.3164/jcbn.18-112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/21/2022] Open
Abstract
Differences in the culturing conditions of mesenchymal stem cells used in regenerative medicine may affect their differentiation ability, genome instability, and therapeutic effects. In particular, bone marrow-derived mesenchymal stem cells cultured under hypoxia are known to proliferate while maintaining an undifferentiated state and the use of deferoxamine, a hypoxia mimetic reagent, has proven to be a suitable strategy to maintain the cells under hypoxic metabolic state. Here, the deferoxamine effects were investigated in mesenchymal stem cells to gain insights into the mechanisms regulating stem cell survival. A 12-h deferoxamine treatment reduced proliferation, oxygen consumption, mitochondrial activity, and ATP production. Microarray analysis revealed that deferoxamine enhanced the transcription of genes involved in glycolysis and the HIF1α pathway. Among the earliest changes, transcriptional variations were observed in HIF1α, NUPR1, and EGLN, in line with previous reports showing that short deferoxamine treatments induce substantial changes in mesenchymal stem cells glycolysis pathway. NUPR1, which is induced by stress and involved in autophagy-mediated survival, was upregulated by deferoxamine in a concentration-dependent manner. Consistently, NUPR1 knockdown was found to reduce cell proliferation and increase the proapoptotic effect of staurosporine, suggesting that deferoxamine-induced NUPR1 promotes mesenchymal stem cell survival and cytoprotective autophagy. Our findings may substantially contribute to improve the effectiveness of mesenchymal stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Kazuhito Matsunaga
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Guzel Burganova
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Nanami Sasai
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Department of Laboratory Science, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Department of Oncology and Laboratory Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.,Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
27
|
Rahman S, Archana A, Dutta D, Kumar V, Kim J, Jan AT, Minakshi R. The onus of cannabinoids in interrupting the molecular odyssey of breast cancer: A critical perspective on UPR ER and beyond. Saudi Pharm J 2019; 27:437-445. [PMID: 30976189 PMCID: PMC6438785 DOI: 10.1016/j.jsps.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/05/2019] [Indexed: 12/31/2022] Open
Abstract
Cannabinoids, commonly used for medicinal and recreational purposes, consist of various complex hydrophobic molecules obtained from Cannabis sativa L. Acting as an inhibitory molecule; they have been investigated for their antineoplastic effect in various breast tumor models. Lately, it was found that cannabinoid treatment not only stimulates autophagy-mediated apoptotic death of tumor cells through unfolded protein response (UPRER) activated downstream effectors, but also imposes cell cycle arrest. The exploitation of UPRER tumors as such is believed to be a major molecular event and is therefore employed in understanding the development and progression of breast tumor. Simultaneously, the data on clinical trials following administration of cannabinoid is currently being explored to find its role not only in palliation but also in the treatment of breast cancer. The present study summarizes new achievements in understanding the extent of therapeutic progress and highlights recent developments in cannabinoid biology towards achieving a better cure of breast cancer through the exploitation of different cannabinoids.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| | - Durgashree Dutta
- Department of Biochemistry, Jan Nayak Chaudhary Devilal Dental College, Sirsa, Haryana, India
| | - Vijay Kumar
- Department of Zoology, R.N. College, B.R. Ambedkar Bihar University, Muzaffarpur, Bihar, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| |
Collapse
|
28
|
Maiuthed A, Ninsontia C, Erlenbach-Wuensch K, Ndreshkjana B, Muenzner JK, Caliskan A, Husayn AP, Chaotham C, Hartmann A, Vial Roehe A, Mahadevan V, Chanvorachote P, Schneider-Stock R. Cytoplasmic p21 Mediates 5-Fluorouracil Resistance by Inhibiting Pro-Apoptotic Chk2. Cancers (Basel) 2018; 10:cancers10100373. [PMID: 30304835 PMCID: PMC6210175 DOI: 10.3390/cancers10100373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
The oncogenic cytoplasmic p21 contributes to cancer aggressiveness and chemotherapeutic failure. However, the molecular mechanisms remain obscure. Here, we show for the first time that cytoplasmic p21 mediates 5-Fluorouracil (5FU) resistance by shuttling p-Chk2 out of the nucleus to protect the tumor cells from its pro-apoptotic functions. We observed that cytoplasmic p21 levels were up-regulated in 5FU-resistant colorectal cancer cells in vitro and the in vivo Chorioallantoic membrane (CAM) model. Kinase array analysis revealed that p-Chk2 is a key target of cytoplasmic p21. Importantly, cytoplasmic form of p21 mediated by p21T145D transfection diminished p-Chk2-mediated activation of E2F1 and apoptosis induction. Co-immunoprecipitation, immunofluorescence, and proximity ligation assay showed that p21 forms a complex with p-Chk2 under 5FU exposure. Using in silico computer modeling, we suggest that the p21/p-Chk2 interaction hindered the nuclear localization signal of p-Chk2, and therefore, the complex is exported out of the nucleus. These findings unravel a novel mechanism regarding an oncogenic role of p21 in regulation of resistance to 5FU-based chemotherapy. We suggest a possible value of cytoplasmic p21 as a prognosis marker and a therapeutic target in colorectal cancer patients.
Collapse
Affiliation(s)
- Arnatchai Maiuthed
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Chuanpit Ninsontia
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Benardina Ndreshkjana
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Julienne K Muenzner
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Aylin Caliskan
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Ahmed P Husayn
- Institute of Bioinformatics & Applied Biotechnology (IBAB), Bangalore 560100, India.
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Adriana Vial Roehe
- Department of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil.
| | | | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
29
|
Vert A, Castro J, Ribó M, Vilanova M, Benito A. Transcriptional profiling of NCI/ADR-RES cells unveils a complex network of signaling pathways and molecular mechanisms of drug resistance. Onco Targets Ther 2018; 11:221-237. [PMID: 29379303 PMCID: PMC5757493 DOI: 10.2147/ott.s154378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer has the highest mortality rate among all the gynecological cancers. This is mostly due to the resistance of ovarian cancer to current chemotherapy regimens. Therefore, it is of crucial importance to identify the molecular mechanisms associated with chemoresistance. Methods NCI/ADR-RES is a multidrug-resistant cell line that is a model for the study of drug resistance in ovarian cancer. We carried out a microarray-derived transcriptional profiling analysis of NCI/ADR-RES to identify differentially expressed genes relative to its parental OVCAR-8. Results Gene-expression profiling has allowed the identification of genes and pathways that may be important for the development of drug resistance in ovarian cancer. The NCI/ADR-RES cell line has differential expression of genes involved in drug extrusion, inactivation, and efficacy, as well as genes involved in the architectural and functional reorganization of the extracellular matrix. These genes are controlled through different signaling pathways, including MAPK–Akt, Wnt, and Notch. Conclusion Our findings highlight the importance of using orthogonal therapies that target completely independent pathways to overcome mechanisms of resistance to both classical chemotherapeutic agents and molecularly targeted drugs.
Collapse
Affiliation(s)
- Anna Vert
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Jessica Castro
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Marc Ribó
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Maria Vilanova
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Antoni Benito
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| |
Collapse
|
30
|
Mu Y, Yan X, Li D, Zhao D, Wang L, Wang X, Gao D, Yang J, Zhang H, Li Y, Sun Y, Wei Y, Zhang Z, Chang X, Yao Z, Tian S, Zhang K, Terada LS, Ma Z, Liu Z. NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. Autophagy 2017; 14:654-670. [PMID: 29130426 DOI: 10.1080/15548627.2017.1338556] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the advanced stages of cancer, autophagy is thought to promote tumor progression through its ability to mitigate various cellular stresses. However, the details of how autophagy is homeostatically regulated in such tumors are unknown. Here, we report that NUPR1 (nuclear protein 1, transcriptional regulator), a transcriptional coregulator, is aberrantly expressed in a subset of cancer cells and predicts low overall survival rates for lung cancer patients. NUPR1 regulates the late stages of autolysosome processing through the induction of the SNARE protein SNAP25, which forms a complex with the lysosomal SNARE-associated protein VAMP8. NUPR1 depletion deregulates autophagic flux and impairs autolysosomal clearance, inducing massive cytoplasmic vacuolization and premature senescence in vitro and tumor suppression in vivo. Collectively, our data show that NUPR1 is a potent regulator of autolysosomal dynamics and is required for the progression of some epithelial cancers.
Collapse
Affiliation(s)
- Yanchao Mu
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Xiaojie Yan
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Ding Li
- c Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences , Tianjin Medical University , Tianjin , 22 Qixiangtai Road, Heping District, Tianjin , China.,d Present address: Department of Clinical Laboratory , Tianjin Medical University Cancer Institute and Hospital , National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy , Tianjin , China
| | - Dan Zhao
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Lingling Wang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Xiaoyang Wang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China.,e Present address: Department of Internal Medicine , The Fifth Hospital of Shijiazhuang , Shijiazhuang , Hebei , China
| | - Dan Gao
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Jie Yang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Hua Zhang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Yanzhe Li
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Yanan Sun
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Yiliang Wei
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Zhenfa Zhang
- f Department of Lung Cancer , Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital , Tianjin , China
| | - Xinzhong Chang
- g Department of Breast Cancer , Breast Cancer Center, Tianjin Medical University Cancer Institute and Hospital , Tianjin , China
| | - Zhi Yao
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education , Tianjin Medical University , Tianjin , China
| | - Shanshan Tian
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Kai Zhang
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China
| | - Lance S Terada
- h Department of Internal Medicine, Division of Pulmonary and Critical Care , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Zhenyi Ma
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China.,i Key Laboratory of Hormones and Development (Ministry of Health) , Metabolic Diseases Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University , Tianjin , China
| | - Zhe Liu
- a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics , Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology , Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin , China.,b Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education , Tianjin Medical University , Tianjin , China.,c Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences , Tianjin Medical University , Tianjin , 22 Qixiangtai Road, Heping District, Tianjin , China.,i Key Laboratory of Hormones and Development (Ministry of Health) , Metabolic Diseases Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University , Tianjin , China
| |
Collapse
|
31
|
Real NE, Castro GN, Darío Cuello-Carrión F, Perinetti C, Röhrich H, Cayado-Gutiérrez N, Guerrero-Gimenez ME, Ciocca DR. Molecular markers of DNA damage and repair in cervical cancer patients treated with cisplatin neoadjuvant chemotherapy: an exploratory study. Cell Stress Chaperones 2017; 22:811-822. [PMID: 28608263 PMCID: PMC5655369 DOI: 10.1007/s12192-017-0811-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
Neoadjuvant (or induction) chemotherapy can be used for cervical cancer patients with locally advanced disease; this treatment is followed by radical surgery and/or radiation therapy. Cisplatin is considered to be the most active platinum agent drug for this cancer, with a response rate of 20%. In order to understand how the cisplatin treatment affects the stress response, in this work, we performed an exploratory study to analyze a number of stress proteins before and after cisplatin neoadjuvant chemotherapy. The study involved 14 patients; the pre- and post-chemotherapy paired biopsies were examined by hematoxylin and eosin staining and by immunohistochemistry. The proteins evaluated were p53, P16/INK4A, MSH2, nuclear protein transcriptional regulator 1 (NUPR1), and HSPB1 (total: HSPB1/t and phosphorylated: HSPB1/p). These proteins were selected because there is previous evidence of their relationship with drug resistance. The formation of platinum-DNA adducts was also studied. There was a great variation in the expression levels of the mentioned proteins in the pre-chemotherapy biopsies. After chemotherapy, p53 was not significantly affected by cisplatin, as well as P16/INK4A and MSH2 while nuclear NUPR1 content tended to decrease (p = 0.056). Cytoplasmic HSPB1/t expression levels decreased significantly following cisplatin therapy while nuclear HSPB1/t and HSPB1/p tended to increase. Since the most significant changes following chemotherapy appeared in the HSPB1 expression levels, the changes were confirmed by Western blot. The platinum-DNA adducts were observed in HeLa cell in apoptosis; however, in the tumor samples, the platinum-DNA adducts were observed in morphologically healthy tumor cells; these cells displayed nuclear HSPB1/p. Further mechanistic studies should be performed to reveal how HSPB1/p is related with drug resistance. When the correlations of the markers with the response to neoadjuvant chemotherapy were examined, only high pre-chemotherapy levels of cytoplasmic HSPB1/p correlated with a poor clinical and pathological response to neoadjuvant cisplatin chemotherapy (p = 0.056) suggesting that this marker could be useful opening its study in a larger number of cases.
Collapse
Affiliation(s)
- Nilda E Real
- Oncology Department, Hospital Diego Paroissien of Maipú, Mendoza, Argentina
| | - Gisela N Castro
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - F Darío Cuello-Carrión
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Claudia Perinetti
- Oncology Department, Hospital Diego Paroissien of Maipú, Mendoza, Argentina
| | | | - Niubys Cayado-Gutiérrez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Martin E Guerrero-Gimenez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Daniel R Ciocca
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
32
|
Sohn BH, Hwang JE, Jang HJ, Lee HS, Oh SC, Shim JJ, Lee KW, Kim EH, Yim SY, Lee SH, Cheong JH, Jeong W, Cho JY, Kim J, Chae J, Lee J, Kang WK, Kim S, Noh SH, Ajani JA, Lee JS. Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by The Cancer Genome Atlas Project. Clin Cancer Res 2017; 23:4441-4449. [PMID: 28747339 DOI: 10.1158/1078-0432.ccr-16-2211] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/28/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022]
Abstract
Purpose: The Cancer Genome Atlas (TCGA) project recently uncovered four molecular subtypes of gastric cancer: Epstein-Barr virus (EBV), microsatellite instability (MSI), genomically stable (GS), and chromosomal instability (CIN). However, their clinical significances are currently unknown. We aimed to investigate the relationship between subtypes and prognosis of patients with gastric cancer.Experimental Design: Gene expression data from a TCGA cohort (n = 262) were used to develop a subtype prediction model, and the association of each subtype with survival and benefit from adjuvant chemotherapy was tested in 2 other cohorts (n = 267 and 432). An integrated risk assessment model (TCGA risk score) was also developed.Results: EBV subtype was associated with the best prognosis, and GS subtype was associated with the worst prognosis. Patients with MSI and CIN subtypes had poorer overall survival than those with EBV subtype but better overall survival than those with GS subtype (P = 0.004 and 0.03 in two cohorts, respectively). In multivariate Cox regression analyses, TCGA risk score was an independent prognostic factor [HR, 1.5; 95% confidence interval (CI), 1.2-1.9; P = 0.001]. Patients with the CIN subtype experienced the greatest benefit from adjuvant chemotherapy (HR, 0.39; 95% CI, 0.16-0.94; P = 0.03) and those with the GS subtype had the least benefit from adjuvant chemotherapy (HR, 0.83; 95% CI, 0.36-1.89; P = 0.65).Conclusions: Our prediction model successfully stratified patients by survival and adjuvant chemotherapy outcomes. Further development of the prediction model is warranted. Clin Cancer Res; 23(15); 1-9. ©2017 AACR.
Collapse
Affiliation(s)
- Bo Hwa Sohn
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun-Eul Hwang
- Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Jin Jang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Hyun-Sung Lee
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Sang Cheul Oh
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Jae-Jun Shim
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eui Hyun Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sun Young Yim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sang Ho Lee
- Department of Surgery, Kosin University College of Medicine, Busan, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Woojin Jeong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Jae Yong Cho
- Department of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Joohee Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jungsoo Chae
- Department Obstetrics and Gynecology, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Gangnam-Gu, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Gangnam-Gu, Seoul, Korea
| | - Sung Kim
- Department of surgery, Samsung Medical Center, Gangnam-Gu, Seoul, Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
33
|
Aka JA, Calvo EL, Lin SX. Estradiol-independent modulation of breast cancer transcript profile by 17beta-hydroxysteroid dehydrogenase type 1. Mol Cell Endocrinol 2017; 439:175-186. [PMID: 27544780 DOI: 10.1016/j.mce.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a steroidal enzyme which, in breast cancer cells, mainly synthesizes 17-beta-estradiol (E2), an estrogenic hormone that stimulates breast cancer cell growth. We previously showed that the enzyme increased breast cancer cell proliferation via a dual effect on E2 and 5α-dihydrotestosterone (DHT) levels and impacted gene expression and protein profile of breast cancer cells cultured in E2-contained medium. Here, we used RNA interference technique combined with microarray analyses to investigate the effect of 17β-HSD1 expression on breast cancer cell transcript profile in steroid-deprived condition. Our data revealed that knockdown of 17β-HSD1 gene, HSD17B1, modulates the transcript profile of the hormone-dependent breast cancer cell line T47D, with 105 genes regulated 1.5 fold or higher (p < 0.05) in estradiol-independent manner. Using Ingenuity Pathway Analysis (IPA), we additionally assessed functional enrichment analyses, including biological functions and canonical pathways, and found that, in concordance with the role of 17β-HSD1 in cancer cell growth, most regulated genes are cancer-related genes. Genes that primarily involved in the cell cycle progression, such as the cyclin A2 gene, CCNA2, are generally down-regulated whereas genes involved in apoptosis and cell death, including the pro-apoptotic gene XAF1, IFIH1 and FGF12, are on the contrary up-regulated by 17β-HSD1 knockdown, and 21% of the modulated genes belong to this latter functional category. This indicates that 17β-HSD1 may be involved in oncogenesis by favoring anti-apoptosis pathway in breast cancer cells and correborates with its previously shown role in increasing breast cancer cell proliferation. The gene regulation occurring in steroid-deprived conditions showed that 17β-HSD1 can modulate endogenous gene expression in steroid-independent manners. Besides, we tested the ability of estrogen to induce or repress endogenous genes of T47D by microarray analysis. Expression of a total of 130 genes were found to increase or decrease 1.5-fold or higher (p < 0.05) in response to E2 treatment (1 nM for 48 h), revealing a list of potential new estrogen-responsive genes and providing useful information for further studies of estrogen-dependent breast cancer mechanisms. In conclusion, in breast cancer cells, in addition to its implication in the E2-dependent gene transcription, the present study demonstrates that 17β-HSD1 also modulates gene expression via mechanisms independent of steroid actions. Those mechanisms that may include the ligand-independent gene transcription of estrogen receptor alpha (ERα), whose expression is positively correlated with that of the enzyme, and that may implicate 17β-HSD1 in anti-apoptosis pathways, have been discussed.
Collapse
Affiliation(s)
- Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Ezequiel-Luis Calvo
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada.
| |
Collapse
|
34
|
Hrgovic I, Doll M, Kleemann J, Wang XF, Zoeller N, Pinter A, Kippenberger S, Kaufmann R, Meissner M. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer 2016; 16:763. [PMID: 27716272 PMCID: PMC5045659 DOI: 10.1186/s12885-016-2807-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023] Open
Abstract
Background The formation of new lymphatic vessels provides an additional route for tumour cells to metastasize. Therefore, inhibiting lymphangiogenesis represents an interesting target in cancer therapy. First evidence suggests that histone deacetylase inhibitors (HDACi) may mediate part of their antitumor effects by interfering with lymphangiogenesis. However, the underlying mechanisms of HDACi induced anti-lymphangiogenic properties are not fully investigated so far and in part remain unknown. Methods Human lymphatic endothelial cells (LEC) were cultured in vitro and treated with or without HDACi. Effects of HDACi on proliferation and cell cycle progress were analysed by BrdU assay and flow cytometry. Apoptosis was measured by quantifying mono- and oligonucleosomes in the cytoplasmic fraction of cell lysates. In vitro lymphangiogenesis was investigated using the Matrigel short term lymphangiogenesis assay. The effects of TSA on cell cycle regulatory proteins and apoptosis-related proteins were examined by western blotting, immunofluorescence staining and semi-quantitative RT-PCR. Protein- and mRNA half-life of p21 were analysed by western blotting and quantitative RT-PCR. The activity of the p21 promoter was determined using a dual luciferase assay and DNA-binding activity of Sp1/3 was investigated using EMSA. Furthermore, siRNA assays were performed to analyse the role of p21 and p53 on TSA-mediated anti-lymphangiogenic effects. Results We found that HDACi inhibited cell proliferation and that the pan-HDACi TSA induced G0/G1 arrest in LEC. Cell cycle arrest was accompanied by up-regulation of p21, p27 and p53. Additionally, we observed that p21 protein accumulated in cellular nuclei after treatment with TSA. Moreover, we found that p21 mRNA was significantly up-regulated by TSA, while the protein and mRNA half-life remained largely unaffected. The promoter activity of p21 was enhanced by TSA indicating a transcriptional mechanism. Subsequent EMSA analyses showed increased constitutive Sp1/3-dependent DNA binding in response to HDACi. We demonstrated that p53 was not required for TSA induced p21 expression and growth inhibition of LECs. Interestingly, siRNA-mediated p21 depletion almost completely reversed the anti-proliferative effects of TSA in LEC. In addition, TSA induced apoptosis by cytochrome c release contributed to activating caspases-9, −7 and −3 and downregulating the anti-apoptotic proteins cIAP-1 and −2. Conclusions In conclusion, we demonstrate that TSA - a pan-HDACi - has distinct anti-lymphangiogenic effects in primary human lymphatic endothelial cells by activating intrinsic apoptotic pathway and cell cycle arrest via p21-dependent pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2807-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Igor Hrgovic
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany. .,Klinik für Dermatologie, Venerologie und Allergologie, Klinikum der J. W. Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany.
| | - Monika Doll
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Xiao-Fan Wang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, C218 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Nadja Zoeller
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Andreas Pinter
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| |
Collapse
|
35
|
Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents. Oncotarget 2016; 6:30957-67. [PMID: 26436589 PMCID: PMC4741580 DOI: 10.18632/oncotarget.5143] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/21/2015] [Indexed: 12/12/2022] Open
Abstract
p21CDKN1A is known as a potent inhibitor of cyclin-dependent kinase (CDK), which regulates cell cycle in response to various stimuli, including DNA damage, on the p53-dependent manner. Here we demonstrate that protein arginine methyltransferase 6 (PRMT6) methylates p21 at arginine 156 and promotes phosphorylation of threonine 145 on p21, resulting in the increase of cytoplasmic localization of p21. The cytoplasmic presence of p21 makes cancer cells more resistant to cytotoxic agents. Our results indicate that PRMT6 appears to be one of the key proteins to dysregulate p21 functions in human cancer, and targeting this pathway may be an appropriate strategy for development of anticancer drugs.
Collapse
Affiliation(s)
- Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115, Chicago, IL 60637, USA
| | - Zhenzhong Deng
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115, Chicago, IL 60637, USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115, Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Transcriptome profiling of the rat retina after optic nerve transection. Sci Rep 2016; 6:28736. [PMID: 27353354 PMCID: PMC4926057 DOI: 10.1038/srep28736] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a group of eye diseases characterized by alterations in the contour of the optic nerve head (ONH), with corresponding visual field defects and progressive loss of retinal ganglion cells (RGCs). This progressive RGC death is considered to originate in axonal injury caused by compression of the axon bundles in the ONH. However, the molecular pathomechanisms of axonal injury-induced RGC death are not yet well understood. Here, we used RNA sequencing (RNA-seq) to examine transcriptome changes in rat retinas 2 days after optic nerve transection (ONT), and then used computational techniques to predict the resulting alterations in the transcriptional regulatory network. RNA-seq revealed 267 differentially expressed genes after ONT, 218 of which were annotated and 49 unannotated. We also identified differentially expressed transcripts, including potentially novel isoforms. An in silico pathway analysis predicted that CREB1 was the most significant upstream regulator. Thus, this study identified genes and pathways that may be involved in the pathomechanisms of axonal injury. We believe that our data should serve as a valuable resource to understand the molecular processes that define axonal injury-driven RGC death and to discover novel therapeutic targets for glaucoma.
Collapse
|
37
|
Emma MR, Iovanna JL, Bachvarov D, Puleio R, Loria GR, Augello G, Candido S, Libra M, Gulino A, Cancila V, McCubrey JA, Montalto G, Cervello M. NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance. Cell Death Dis 2016; 7:e2269. [PMID: 27336713 PMCID: PMC5143401 DOI: 10.1038/cddis.2016.175] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/11/2023]
Abstract
Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC). However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in the normal liver. Knockdown of NUPR1 significantly increased cell sensitivity to sorafenib and inhibited the cell growth, migration and invasion of HCC cells, both in vitro and in vivo. Moreover, NUPR1 silencing influenced the expression of RELB and IER3 genes. Unsurprisingly, RELB and IER3 knockdown also inhibited HCC cell viability, growth and migration. Using gene expression profiling of HCC cells following stable NUPR1 knockdown, we found that genes functionally involved in cell death and survival, cellular response to therapies, lipid metabolism, cell growth and proliferation, molecular transport and cellular movement were mostly suppressed. Network analysis of dynamic gene expression identified NF-κB and ERK as downregulated gene nodes, and several HCC-related oncogenes were also suppressed. We identified Runt-related transcription factor 2 (RUNX2) gene as a NUPR1-regulated gene and demonstrated that RUNX2 gene silencing inhibits HCC cell viability, growth, migration and increased cell sensitivity to sorafenib. We propose that the NUPR1/RELB/IER3/RUNX2 pathway has a pivotal role in hepatocarcinogenesis. The identification of the NUPR1/RELB/IER3/RUNX2 pathway as a potential therapeutic target may contribute to the development of new treatment strategies for HCC management.
Collapse
Affiliation(s)
- M R Emma
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - J L Iovanna
- INSERM UMR1068, Center of Research in Cancerology of Marseille (CRCM), Marseille, France
| | - D Bachvarov
- Cancer Research Centre, Hôpital L'Hotel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Quebec City (Quebec), Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City (Quebec), Canada
| | - R Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Histopathology and Immunohistochemistry Laboratory, Palermo, Italy
| | - G R Loria
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Histopathology and Immunohistochemistry Laboratory, Palermo, Italy
| | - G Augello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - S Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - M Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - A Gulino
- Tumor Immunology Unit, Department of Health Science, University of Palermo, Palermo, Italy
| | - V Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo, Palermo, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - G Montalto
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - M Cervello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| |
Collapse
|
38
|
Manda KR, Tripathi P, Hsi AC, Ning J, Ruzinova MB, Liapis H, Bailey M, Zhang H, Maher CA, Humphrey PA, Andriole GL, Ding L, You Z, Chen F. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene 2015; 35:3282-92. [PMID: 26477312 PMCID: PMC5012433 DOI: 10.1038/onc.2015.389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Despite recent insights into prostate cancer (PCa)-associated genetic changes, full understanding of prostate tumorigenesis remains elusive due to complexity of interactions among various cell types and soluble factors present in prostate tissue. We found upregulation of Nuclear Factor of Activated T Cells c1 (NFATc1) in human PCa and cultured PCa cells, but not in normal prostates and non-tumorigenic prostate cells. To understand the role of NFATc1 in prostate tumorigenesis in situ, we temporally and spatially controlled the activation of NFATc1 in mouse prostate and showed that such activation resulted in prostatic adenocarcinoma with features similar to those seen in human PCa. Our results indicate that the activation of a single transcription factor, NFATc1 in prostatic luminal epithelium to PCa can affect expression of diverse factors in both cells harboring the genetic changes and in neighboring cells through microenvironmental alterations. In addition to the activation of oncogenes c-MYC and STAT3 in tumor cells, a number of cytokines and growth factors, such as IL1β, IL6, and SPP1 (Osteopontin, a key biomarker for PCa), were upregulated in NFATc1-induced PCa, establishing a tumorigenic microenvironment involving both NFATc1 positive and negative cells for prostate tumorigenesis. To further characterize interactions between genes involved in prostate tumorigenesis, we generated mice with both NFATc1 activation and Pten inactivation in prostate. We showed that NFATc1 activation led to acceleration of Pten-null–driven prostate tumorigenesis by overcoming the PTEN loss–induced cellular senescence through inhibition of p21 activation. This study provides direct in vivo evidence of an oncogenic role of NFATc1 in prostate tumorigenesis and reveals multiple functions of NFATc1 in activating oncogenes, in inducing proinflammatory cytokines, in oncogene addiction, and in overcoming cellular senescence, which suggests calcineurin-NFAT signaling as a potential target in preventing PCa.
Collapse
Affiliation(s)
- K R Manda
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA
| | - P Tripathi
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - A C Hsi
- The Genome Institute, Washington University, St Louis, MO, USA
| | - J Ning
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA
| | - M B Ruzinova
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - H Liapis
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - M Bailey
- The Genome Institute, Washington University, St Louis, MO, USA
| | - H Zhang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - C A Maher
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA
| | - P A Humphrey
- Department of Pathology, Yale University, New Haven, CT, USA
| | - G L Andriole
- Siteman Cancer Center, Washington University, St Louis, MO, USA.,Department of Surgery, Washington University, St Louis, MO, USA
| | - L Ding
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA
| | - Z You
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA
| | - F Chen
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| |
Collapse
|
39
|
Chouchana L, Fernández-Ramos AA, Dumont F, Marchetti C, Ceballos-Picot I, Beaune P, Gurwitz D, Loriot MA. Molecular insight into thiopurine resistance: transcriptomic signature in lymphoblastoid cell lines. Genome Med 2015; 7:37. [PMID: 26015807 PMCID: PMC4443628 DOI: 10.1186/s13073-015-0150-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/03/2015] [Indexed: 12/15/2022] Open
Abstract
Background There has been considerable progress in the management of acute lymphoblastic leukemia (ALL) but further improvement is needed to increase long-term survival. The thiopurine agent 6-mercaptopurine (6-MP) used for ALL maintenance therapy has a key influence on clinical outcomes and relapse prevention. Genetic inheritance in thiopurine metabolism plays a major role in interindividual clinical response variability to thiopurines; however, most cases of thiopurine resistance remain unexplained. Methods We used lymphoblastoid cell lines (LCLs) from healthy donors, selected for their extreme thiopurine susceptibility. Thiopurine metabolism was characterized by the determination of TPMT and HPRT activity. We performed genome-wide expression profiling in resistant and sensitive cell lines with the goal of elucidating the mechanisms of thiopurine resistance. Results We determined a higher TPMT activity (+44%; P = 0.024) in resistant compared to sensitive cell lines, although there was no difference in HPRT activity. We identified a 32-gene transcriptomic signature that predicts thiopurine resistance. This signature includes the GTPBP4 gene coding for a GTP-binding protein that interacts with p53. A comprehensive pathway analysis of the genes differentially expressed between resistant and sensitive cell lines indicated a role for cell cycle and DNA mismatch repair system in thiopurine resistance. It also revealed overexpression of the ATM/p53/p21 pathway, which is activated in response to DNA damage and induces cell cycle arrest in thiopurine resistant LCLs. Furthermore, overexpression of the p53 target gene TNFRSF10D or the negative cell cycle regulator CCNG2 induces cell cycle arrest and may also contribute to thiopurine resistance. ARHGDIA under-expression in resistant cell lines may constitute a novel molecular mechanism contributing to thiopurine resistance based on Rac1 inhibition induced apoptosis and in relation with thiopurine pharmacodynamics. Conclusion Our study provides new insights into the molecular mechanisms underlying thiopurine resistance and suggests a potential research focus for developing tailored medicine. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0150-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laurent Chouchana
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France
| | - Ana Aurora Fernández-Ramos
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France
| | - Florent Dumont
- Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France ; INSERM U1016, Institut Cochin, 22 Rue Mechain, Paris, 75014 France
| | - Catherine Marchetti
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France
| | - Irène Ceballos-Picot
- Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France ; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Biochimie Métabolique, 149 Rue de Sèvres, Paris, 75015 France
| | - Philippe Beaune
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France ; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Biochimie Pharmacogénétique et Oncologie Moléculaire, 20 rue Leblanc, Paris, 75015 France
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marie-Anne Loriot
- INSERM UMR-S 1147, 45 rue des Saints-Pères, Paris, 75006 France ; Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, Paris, 75006 France ; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Biochimie Pharmacogénétique et Oncologie Moléculaire, 20 rue Leblanc, Paris, 75015 France
| |
Collapse
|
40
|
Kreis NN, Louwen F, Zimmer B, Yuan J. Loss of p21Cip1/CDKN1A renders cancer cells susceptible to Polo-like kinase 1 inhibition. Oncotarget 2015; 6:6611-26. [PMID: 25483104 PMCID: PMC4466638 DOI: 10.18632/oncotarget.2844] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
The deregulation of Polo-like kinase 1 is inversely linked to the prognosis of patients with diverse human tumors. Targeting Polo-like kinase 1 has been widely considered as one of the most promising strategies for molecular anticancer therapy. While the preclinical results are encouraging, the clinical outcomes are rather less inspiring by showing limited anticancer activity. It is thus of importance to identify molecules and mechanisms responsible for the sensitivity of Polo-like kinase 1 inhibition. We have recently shown that p21Cip1/CDKN1A is involved in the regulation of mitosis and its loss prolongs the mitotic duration accompanied by defects in chromosome segregation and cytokinesis in various tumor cells. In the present study, we demonstrate that p21 affects the efficacy of Polo-like kinase 1 inhibitors, especially Poloxin, a specific inhibitor of the unique Polo-box domain. Intriguingly, upon treatment with Polo-like kinase 1 inhibitors, p21 is increased in the cytoplasm, associated with anti-apoptosis, DNA repair and cell survival. By contrast, deficiency of p21 renders tumor cells more susceptible to Polo-like kinase 1 inhibition by showing a pronounced mitotic arrest, DNA damage and apoptosis. Furthermore, long-term treatment with Plk1 inhibitors induced fiercely the senescent state of tumor cells with functional p21. We suggest that the p21 status may be a useful biomarker for predicting the efficacy of Plk1 inhibition.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Brigitte Zimmer
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
41
|
Gaddis M, Gerrard D, Frietze S, Farnham PJ. Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin 2015; 8:9. [PMID: 26191083 PMCID: PMC4506402 DOI: 10.1186/1756-8935-8-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 11/27/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
Abstract
Background Due to the hyper-activation of WNT signaling in a variety of cancer types, there has been a strong drive to develop pathway-specific inhibitors with the eventual goal of providing a chemotherapeutic antagonist of WNT signaling to cancer patients. A new category of drugs, called epigenetic inhibitors, are being developed that hold high promise for inhibition of the WNT pathway. The canonical WNT signaling pathway initiates when WNT ligands bind to receptors, causing the nuclear localization of the co-activator β-catenin (CTNNB1), which leads to an association of β-catenin with a member of the TCF transcription factor family at regulatory regions of WNT-responsive genes. The TCF/β-catenin complex then recruits CBP (CREBBP) or p300 (EP300), leading to histone acetylation and gene activation. A current model in the field is that CBP-driven expression of WNT target genes supports proliferation whereas p300-driven expression of WNT target genes supports differentiation. The small molecule inhibitor ICG-001 binds to CBP, but not to p300, and competitively inhibits the interaction of CBP with β-catenin. Upon treatment of cancer cells, this should reduce expression of CBP-regulated transcription, leading to reduced tumorigenicity and enhanced differentiation. Results We have compared the genome-wide effects on the transcriptome after treatment with ICG-001 (the specific CBP inhibitor) versus C646, a compound that competes with acetyl-coA for the Lys-coA binding pocket of both CBP and p300. We found that both drugs cause large-scale changes in the transcriptome of HCT116 colon cancer cells and PANC1 pancreatic cancer cells and reverse some tumor-specific changes in gene expression. Interestingly, although the epigenetic inhibitors affect cell cycle pathways in both the colon and pancreatic cancer cell lines, the WNT signaling pathway was affected only in the colon cancer cells. Notably, WNT target genes were similarly downregulated after treatment of HCT116 with C646 as with ICG-001. Conclusion Our results suggest that treatment with a general HAT inhibitor causes similar effects on the transcriptome as does treatment with a CBP-specific inhibitor and that epigenetic inhibition affects the WNT pathway in HCT116 cells and the cholesterol biosynthesis pathway in PANC1 cells. Electronic supplementary material The online version of this article (doi:10.1186/1756-8935-8-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malaina Gaddis
- USC/Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089-9601 USA
| | - Diana Gerrard
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639 USA
| | - Seth Frietze
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639 USA
| | - Peggy J Farnham
- USC/Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089-9601 USA
| |
Collapse
|
42
|
Corsetti G, D’Antona G, Ruocco C, Stacchiotti A, Romano C, Tedesco L, Dioguardi F, Rezzani R, Nisoli E. Dietary supplementation with essential amino acids boosts the beneficial effects of rosuvastatin on mouse kidney. Amino Acids 2014; 46:2189-203. [PMID: 24923264 PMCID: PMC4133027 DOI: 10.1007/s00726-014-1772-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022]
Abstract
The effects of high-potency statins on renal function are controversial. To address the impact of statins on renal morpho-functional aspects, normotensive young mice were treated with rosuvastatin (Rvs). Moreover, because statins may impair mitochondrial function, mice received either dietary supplementation with an amino acid mixture enriched in essential amino acids (EAAm), which we previously demonstrated to increase mitochondrial biogenesis in muscle or an unsupplemented control diet for 1 month. Mitochondrial biogenesis and function, apoptosis, and insulin signaling pathway events were studied, primarily in cortical proximal tubules. By electron microscopy analysis, mitochondria were more abundant and more heterogeneous in size, with dense granules in the inner matrix, in Rvs- and Rvs plus EAAm-treated animals. Rvs administration increased protein kinase B and endothelial nitric oxide synthase phosphorylation, but the mammalian target of rapamycin signaling pathway was not affected. Rvs increased the expression of sirtuin 1, peroxisome proliferator-activated receptor γ coactivator-1α, cytochrome oxidase type IV, cytochrome c, and mitochondrial biogenesis markers. Levels of glucose-regulated protein 75 (Grp75), B-cell lymphoma 2, and cyclin-dependent kinase inhibitor 1 were increased in cortical proximal tubules, and expression of the endoplasmic reticulum-mitochondrial chaperone Grp78 was decreased. EAAm supplementation maintained or enhanced these changes. Rvs promotes mitochondrial biogenesis, with a probable anti-apoptotic effect. EAAm boosts these processes and may contribute to the efficient control of cellular energetics and survival in the mouse kidney. This suggests that appropriate nutritional interventions may enhance the beneficial actions of Rvs, and could potentially prevent chronic renal side effects.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Giuseppe D’Antona
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Chiara Ruocco
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy
| | - Alessandra Stacchiotti
- Division of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Claudia Romano
- Division of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Laura Tedesco
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy
| | - Francesco Dioguardi
- Department of Clinical Sciences and Community, University of Milan, 20122 Milan, Italy
| | - Rita Rezzani
- Division of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
43
|
Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene 2014; 34:1758-67. [DOI: 10.1038/onc.2014.133] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
|
44
|
de Renty C, DePamphilis ML, Ullah Z. Cytoplasmic localization of p21 protects trophoblast giant cells from DNA damage induced apoptosis. PLoS One 2014; 9:e97434. [PMID: 24848107 PMCID: PMC4029599 DOI: 10.1371/journal.pone.0097434] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023] Open
Abstract
Proliferating trophoblast stem cells (TSCs) can differentiate into nonproliferating but viable trophoblast giant cells (TGCs) that are resistant to DNA damage induced apoptosis. Differentiation is associated with selective up-regulation of the Cip/Kip cyclin-dependent kinase inhibitors p57 and p21; expression of p27 remains constant. Previous studies showed that p57 localizes to the nucleus in TGCs where it is essential for endoreplication. Here we show that p27 also remains localized to the nucleus during TSC differentiation where it complements the role of p57. Unexpectedly, p21 localized to the cytoplasm where it was maintained throughout both the G- and S-phases of endocycles, and where it prevented DNA damage induced apoptosis. This unusual status for a Cip/Kip protein was dependent on site-specific phosphorylation of p21 by the Akt1 kinase that is also up-regulated in TGCs. Although cytoplasmic p21 is widespread among cancer cells, among normal cells it has been observed only in monocytes. The fact that it also occurs in TGCs reveals that p57 and p21 serve nonredundant functions, and suggests that the role of p21 in suppressing apoptosis is restricted to terminally differentiated cells.
Collapse
Affiliation(s)
- Christelle de Renty
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melvin L. DePamphilis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zakir Ullah
- Department of Biology, School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
45
|
Stöckl S, Bauer RJ, Bosserhoff AK, Göttl C, Grifka J, Grässel S. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells. J Cell Sci 2013; 126:2890-902. [PMID: 23606745 DOI: 10.1242/jcs.124305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also for successful repair and regeneration of tissues and organs in adults.
Collapse
Affiliation(s)
- Sabine Stöckl
- Centre for Medical Biotechnology, BioPark I, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|