1
|
Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, Hao N, Chen W, Alber M. Study of impacts of two types of cellular aging on the yeast bud morphogenesis. PLoS Comput Biol 2024; 20:e1012491. [PMID: 39348424 PMCID: PMC11476777 DOI: 10.1371/journal.pcbi.1012491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/10/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024] Open
Abstract
Understanding the mechanisms of the cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short cell cycle, and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. By analyzing experimental data, this study shows that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional multiscale chemical-mechanical model was developed and used to suggest and test hypothesized impacts of aging on bud morphogenesis. Experimentally calibrated model simulations showed that during the early stage of budding, tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip, a process guided by the polarized Cdc42 signal. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage as observed in experiments in this work. The model simulation results suggest that the localization of new cell surface material insertion, regulated by chemical signal polarization, could be weakened due to cellular aging in yeast and other cell types, leading to the change and stabilization of the bud aspect ratio.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, California, United States of America
| | - Jiadong Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
| | - Zhiliang Xu
- Applied and Computational Mathematics and Statistics Department, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Roya Zandi
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Physics and Astronomy, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, California, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, Hao N, Chen W, Alber M. Study of Impacts of Two Types of Cellular Aging on the Yeast Bud Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582376. [PMID: 38464259 PMCID: PMC10925247 DOI: 10.1101/2024.02.29.582376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding the mechanisms of cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short lifespan and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. In this study, by analyzing experimental data it was shown that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional chemical-mechanical model was developed and used to suggest and test hypothesized mechanisms of bud morphogenesis during aging. Experimentally calibrated simulations showed that tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip guided by the polarized Cdc42 signal during the early stage of budding. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage, as observed in experiments, through a reduction on the new cell surface material insertion or an expansion of the polarization site. Thus model simulations suggest the maintenance of new cell surface material insertion or chemical signal polarization could be weakened due to cellular aging in yeast and other cell types.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Jiadong Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States of America
| | - Zhiliang Xu
- Applied and Computational Mathematics and Statistics Department, University of Notre Dame, Notre Dame, IN, United States of America
| | - Shixin Xu
- Duke Kunshan University, Kunshan, Jiangsu, China
| | - Roya Zandi
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Physics and Astronomy, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Bioengineering, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| |
Collapse
|
3
|
Awada Z, Nedjar B. On a finite strain modeling of growth in budding yeast. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3710. [PMID: 37070287 DOI: 10.1002/cnm.3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/05/2023] [Accepted: 04/02/2023] [Indexed: 06/07/2023]
Abstract
Cell's ability to proliferate constitutes one of the most defining features of life. The proliferation occurs through a succession of events; the cell cycle, whereby the cell grows and divides. In this paper, focus is made on the growth step and we deal specifically with Saccharomyces cerevisiae yeast that reproduces by budding. For this, we develop a theoretical model to predict the growth powered by the turgor pressure. This cell is herein considered as a thin-walled structure with almost axisymmetrical shape. Due to its soft nature, the large deformation range is a priori assumed through a finite growth modeling framework. The used kinematics is based on the multiplicative decomposition of the deformation gradient into an elastically reversible part and a growth part. Constitutive equations are proposed where use is made of hyperelasticity together with a local evolution equation, this latter to describe the way growth takes place. In particular, two essential parameters are involved: a stress-like threshold, and a characteristic time. The developed model is extended to a shell approach as well. In a finite element context, representative numerical simulations examining stress-dependent growth are given and a parametric study is conducted to show the sensitivity with respect to the above mentioned parameters. Finally, a suggestion for natural contractile ring modeling closes this study.
Collapse
Affiliation(s)
- Zeinab Awada
- MAST (MAterial and STructures), EMGCU (Expérimenation en Modélisation pour le Génic Civil et Urdain), Université Gustave Eiffel, Marne-la-Vallée cedex 2, France
| | - Boumediene Nedjar
- MAST (MAterial and STructures), EMGCU (Expérimenation en Modélisation pour le Génic Civil et Urdain), Université Gustave Eiffel, Marne-la-Vallée cedex 2, France
| |
Collapse
|
4
|
Jensen ED, Deichmann M, Ma X, Vilandt RU, Schiesaro G, Rojek MB, Lengger B, Eliasson L, Vento JM, Durmusoglu D, Hovmand SP, Al'Abri I, Zhang J, Crook N, Jensen MK. Engineered cell differentiation and sexual reproduction in probiotic and mating yeasts. Nat Commun 2022; 13:6201. [PMID: 36261657 PMCID: PMC9582028 DOI: 10.1038/s41467-022-33961-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) enable cells to sense environmental cues and are indispensable for coordinating vital processes including quorum sensing, proliferation, and sexual reproduction. GPCRs comprise the largest class of cell surface receptors in eukaryotes, and for more than three decades the pheromone-induced mating pathway in baker's yeast Saccharomyces cerevisiae has served as a model for studying heterologous GPCRs (hGPCRs). Here we report transcriptome profiles following mating pathway activation in native and hGPCR-signaling yeast and use a model-guided approach to correlate gene expression to morphological changes. From this we demonstrate mating between haploid cells armed with hGPCRs and endogenous biosynthesis of their cognate ligands. Furthermore, we devise a ligand-free screening strategy for hGPCR compatibility with the yeast mating pathway and enable hGPCR-signaling in the probiotic yeast Saccharomyces boulardii. Combined, our findings enable new means to study mating, hGPCR-signaling, and cell-cell communication in a model eukaryote and yeast probiotics.
Collapse
Affiliation(s)
- Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Marcus Deichmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Xin Ma
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Rikke U Vilandt
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Giovanni Schiesaro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Marie B Rojek
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Line Eliasson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Justin M Vento
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Deniz Durmusoglu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sandie P Hovmand
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Ibrahim Al'Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| |
Collapse
|
5
|
Banavar SP, Trogdon M, Drawert B, Yi TM, Petzold LR, Campàs O. Coordinating cell polarization and morphogenesis through mechanical feedback. PLoS Comput Biol 2021; 17:e1007971. [PMID: 33507956 PMCID: PMC7872284 DOI: 10.1371/journal.pcbi.1007971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Many cellular processes require cell polarization to be maintained as the cell changes shape, grows or moves. Without feedback mechanisms relaying information about cell shape to the polarity molecular machinery, the coordination between cell polarization and morphogenesis, movement or growth would not be possible. Here we theoretically and computationally study the role of a genetically-encoded mechanical feedback (in the Cell Wall Integrity pathway) as a potential coordination mechanism between cell morphogenesis and polarity during budding yeast mating projection growth. We developed a coarse-grained continuum description of the coupled dynamics of cell polarization and morphogenesis as well as 3D stochastic simulations of the molecular polarization machinery in the evolving cell shape. Both theoretical approaches show that in the absence of mechanical feedback (or in the presence of weak feedback), cell polarity cannot be maintained at the projection tip during growth, with the polarization cap wandering off the projection tip, arresting morphogenesis. In contrast, for mechanical feedback strengths above a threshold, cells can robustly maintain cell polarization at the tip and simultaneously sustain mating projection growth. These results indicate that the mechanical feedback encoded in the Cell Wall Integrity pathway can provide important positional information to the molecular machinery in the cell, thereby enabling the coordination of cell polarization and morphogenesis.
Collapse
Affiliation(s)
- Samhita P. Banavar
- Department of Physics, University of California, University of California, Santa Barbara, California, United States of America
- California NanoSystems Institute, University of California, Santa Barbara, California, United States of America
| | - Michael Trogdon
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America
| | - Brian Drawert
- Department of Computer Science, University of North Carolina, Asheville, North Carolina, United States of America
| | - Tau-Mu Yi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Linda R. Petzold
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America
- Center for Bioengineering, University of California, Santa Barbara, California, United States of America
| | - Otger Campàs
- California NanoSystems Institute, University of California, Santa Barbara, California, United States of America
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California, United States of America
- Center for Bioengineering, University of California, Santa Barbara, California, United States of America
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
Zhu YH, Hyun J, Pan YZ, Hopper JE, Rizo J, Wu JQ. Roles of the fission yeast UNC-13/Munc13 protein Ync13 in late stages of cytokinesis. Mol Biol Cell 2018; 29:2259-2279. [PMID: 30044717 PMCID: PMC6249806 DOI: 10.1091/mbc.e18-04-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytokinesis is a complicated yet conserved step of the cell-division cycle that requires the coordination of multiple proteins and cellular processes. Here we describe a previously uncharacterized protein, Ync13, and its roles during fission yeast cytokinesis. Ync13 is a member of the UNC-13/Munc13 protein family, whose animal homologues are essential priming factors for soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex assembly during exocytosis in various cell types, but no roles in cytokinesis have been reported. We find that Ync13 binds to lipids in vitro and dynamically localizes to the plasma membrane at cell tips during interphase and at the division site during cytokinesis. Deletion of Ync13 leads to defective septation and exocytosis, uneven distribution of cell-wall enzymes and components of cell-wall integrity pathway along the division site and massive cell lysis during cell separation. Interestingly, loss of Ync13 compromises endocytic site selection at the division plane. Collectively, we find that Ync13 has a novel function as an UNC-13/Munc13 protein in coordinating exocytosis, endocytosis, and cell-wall integrity during fission yeast cytokinesis.
Collapse
Affiliation(s)
- Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Joanne Hyun
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - James E Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
7
|
Banavar SP, Gomez C, Trogdon M, Petzold LR, Yi TM, Campàs O. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis. PLoS Comput Biol 2018; 14:e1005940. [PMID: 29346368 PMCID: PMC5790295 DOI: 10.1371/journal.pcbi.1005940] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/30/2018] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback.
Collapse
Affiliation(s)
- Samhita P. Banavar
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
- California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Carlos Gomez
- California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Michael Trogdon
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Linda R. Petzold
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, United States of America
| | - Tau-Mu Yi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Otger Campàs
- California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, United States of America
| |
Collapse
|
8
|
Wang W, Tao K, Wang J, Yang G, Ouyang Q, Wang Y, Zhang L, Liu F. Exploring the inhibitory effect of membrane tension on cell polarization. PLoS Comput Biol 2017; 13:e1005354. [PMID: 28135277 PMCID: PMC5305267 DOI: 10.1371/journal.pcbi.1005354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 02/13/2017] [Accepted: 01/11/2017] [Indexed: 01/02/2023] Open
Abstract
Cell polarization toward an attractant is influenced by both physical and chemical factors. Most existing mathematical models are based on reaction-diffusion systems and only focus on the chemical process occurring during cell polarization. However, membrane tension has been shown to act as a long-range inhibitor of cell polarization. Here, we present a cell polarization model incorporating the interplay between Rac GTPase, filamentous actin (F-actin), and cell membrane tension. We further test the predictions of this model by performing single cell measurements of the spontaneous polarization of cancer stem cells (CSCs) and non-stem cancer cells (NSCCs), as the former have lower cell membrane tension. Based on both our model and the experimental results, cell polarization is more sensitive to stimuli under low membrane tension, and high membrane tension improves the robustness and stability of cell polarization such that polarization persists under random perturbations. Furthermore, our simulations are the first to recapitulate the experimental results described by Houk et al., revealing that aspiration (elevation of tension) and release (reduction of tension) result in a decrease in and recovery of the activity of Rac-GTP, respectively, and that the relaxation of tension induces new polarity of the cell body when a cell with the pseudopod-neck-body morphology is severed.
Collapse
Affiliation(s)
- Weikang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, People’s Republic of China
| | - Kuan Tao
- Center for Quantitative Biology, Peking University, Beijing, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, People’s Republic of China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, People’s Republic of China
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, People’s Republic of China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, People’s Republic of China
| | - Lei Zhang
- Center for Quantitative Biology, Peking University, Beijing, People’s Republic of China
- Beijing International Center for Mathematical Research, Peking University, Beijing, People’s Republic of China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, People’s Republic of China
- Center for Quantitative Biology, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Goldenbogen B, Giese W, Hemmen M, Uhlendorf J, Herrmann A, Klipp E. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis. Open Biol 2016; 6:160136. [PMID: 27605377 PMCID: PMC5043577 DOI: 10.1098/rsob.160136] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022] Open
Abstract
The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells.
Collapse
Affiliation(s)
- Björn Goldenbogen
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Wolfgang Giese
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Marie Hemmen
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Jannis Uhlendorf
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Andreas Herrmann
- Molecular Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| |
Collapse
|
10
|
Chen W, Nie Q, Yi TM, Chou CS. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions. PLoS Comput Biol 2016; 12:e1004988. [PMID: 27404800 PMCID: PMC4942089 DOI: 10.1371/journal.pcbi.1004988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. One of the riddles of Nature is how cells interact with one another to create complex cellular networks such as the neural networks in the brain. Forming precise connections between irregularly shaped cells is a challenge for biology. We developed computational methods for simulating these complex cell-cell interactions. We applied these methods to investigate yeast mating in which two yeast cells grow projections that meet and fuse guided by pheromone attractants. The simulations described molecules both inside and outside of the cell, and represented the continually changing shapes of the cells. We found that positioning the secretion and sensing of pheromones at the same location on the cell surface was important. Other key factors for robust mating included secreting a protein that removed excess pheromone from outside of the cell so that the signal would not be too strong. An important advance was being able to simulate as many as five cells in complex mating arrangements. Taken together we used our novel computational methods to describe in greater detail the yeast mating process, and more generally, interactions among cells changing their shapes in response to their neighbors.
Collapse
Affiliation(s)
- Weitao Chen
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Tau-Mu Yi
- Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
- * E-mail: (TMY); (CSC)
| | - Ching-Shan Chou
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TMY); (CSC)
| |
Collapse
|
11
|
Sharma R, Roberts E. Gradient sensing by a bistable regulatory motif enhances signal amplification but decreases accuracy in individual cells. Phys Biol 2016; 13:036003. [DOI: 10.1088/1478-3975/13/3/036003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Chou CS, Moore TI, Nie Q, Yi TM. Alternative cell polarity behaviours arise from changes in G-protein spatial dynamics. IET Syst Biol 2015; 9:52-63. [PMID: 26029251 DOI: 10.1049/iet-syb.2013.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Yeast cells form a single mating projection when exposed to mating pheromone, a classic example of cell polarity. Prolonged treatment with pheromone or specific mutations results in alternative cell polarity behaviours. The authors performed mathematical modelling to investigate these unusual cell morphologies from the perspective of balancing spatial amplification (i.e. positive feedback that localises components) with spatial tracking (i.e. negative feedback that allows sensing of gradient). First, they used generic models of cell polarity to explore different cell polarity behaviours that arose from changes in the model spatial dynamics. By exploring the positive and negative feedback loops in each stage of a two-stage model, they simulated a variety of cell morphologies including single bending projections, single straight projections, periodic multiple projections and simultaneous double projections. In the second half of the study, they used a two-stage mechanistic model of yeast cell polarity focusing on G-protein signalling to integrate the modelling results more closely with the authors' previously published experimental observations. In summary, the combination of modelling and experiments describes how yeast cells exhibit a diversity of cell morphologies arising from two-stage G-protein signalling dynamics modulated by positive and negative feedbacks.
Collapse
|
13
|
Nishimura S, Tokukura M, Ochi J, Yoshida M, Kakeya H. Balance between exocytosis and endocytosis determines the efficacy of sterol-targeting antibiotics. ACTA ACUST UNITED AC 2014; 21:1690-9. [PMID: 25500221 DOI: 10.1016/j.chembiol.2014.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/26/2014] [Accepted: 10/30/2014] [Indexed: 02/03/2023]
Abstract
Antifungals targeting membrane ergosterol are longstanding, yet indispensable drugs in clinical use. However, the mechanisms by which the cellular membrane domains recognized by these antibiotics are generated remain largely unknown. Here, we demonstrate that the balance between endocytosis and exocytosis in membrane trafficking is a critical factor in the action of sterol-targeting antibiotics. When fission yeast cells were treated with manumycin A, cellular binding and the action of the antifungals filipin, amphotericin B, and theonellamides, all of which are ergosterol-binders, were abolished. Additionally, manumycin A treatment attenuated Cdc42 activity and inhibited exocytosis, while endocytosis was only moderately suppressed. Similar defects in membrane trafficking could be reproduced by heat shock and genetic perturbation, which also abolished the action of the antibiotics. We propose that exocytosis and endocytosis respectively supply and internalize the specific plasma membrane domains recognized by sterol-targeting antibiotics.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Masato Tokukura
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Junko Ochi
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hideaki Kakeya
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
14
|
Roberts E. Cellular and molecular structure as a unifying framework for whole-cell modeling. Curr Opin Struct Biol 2014; 25:86-91. [PMID: 24509245 DOI: 10.1016/j.sbi.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Whole-cell modeling has the potential to play a major role in revolutionizing our understanding of cellular biology over the next few decades. A computational model of the entire cell would allow cellular biologists to integrate data from many disparate sources in a single consistent framework. Such a comprehensive model would be useful both for hypothesis testing and in the discovery of new behaviors that emerge from complex biological networks. Cellular and molecular structure can and should be a key organizing principle in a whole-cell model, connecting models across time and length scales in a multiscale approach. Here I present a summary of recent research centered around using molecular and cellular structure to model the behavior of cells.
Collapse
Affiliation(s)
- Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|